MaxENT tool for species modelling in India: an overview
DOI:
https://doi.org/10.11609/jott.8916.17.9.27523-27534Keywords:
Conservation planning, ecological niche modelling, environmental variables, geospatial analysis, habitat suitability, process based modelling, niche, occurrence data, species distribution modelling, taxonomic groupsAbstract
MaxENT has been the preferred choice for exploring the patterns and processes related to species distribution and niche models. Across the world, many researchers have used it and here we present the usage trend from the Indian context to identify the different aspects in which it is deployed including the spatial scale, geographical realm, thematic groups, and data sources. Of the 210 papers from India accessed from Web of Science (WoS), only represents 4% of the MaxENT-based papers across the globe. Plants especially trees (24%) and herbs (19%), followed by mammals (16%) while lichens (<1%) as well as corals (<1%) were the most, and least studied taxonomic/thematic groups from India, respectively. This work highlights the important facets of ecological niche modelling / species distribution modelling (ENM/SDM) like the intensity of occurrence data used and various environmental datasets incorporated during the modelling process. This overview provides insights into ENM/SDM-based research works.
References
Aleixandre, J.L., J.L. Aleixandre-Tudó, M. Bolaños-Pizarro & R. Aleixandre-Benavent (2015). Mapping the scientific research in organic farming: a bibliometric review. Scientometrics 105(1): 295–309. https://doi.org/10.1007/s11192-015-1677-4
Aria, M. & C. Cuccurullo (2017). bibliometrix: an R-tool for comprehensive science mapping analysis. Journal of Informetrics 11(4): 959–975. https://doi.org/10.1016/j.joi.2017.08.007
Asadollahzadeh, M. & R. Torkaman (2025). Interpret probability density functions and maximum entropy model for zinc removal in PRDC column by analyzing droplet size distribution. Scientific Reports 15: 22.
Banerjee, P. (2021). Maximum entropy-based forest fire likelihood mapping: analysing the trends, distribution, and drivers of forest fires in Sikkim Himalaya. Scandinavian Journal of Forest Research 36(4): 275–288. https://doi.org/10.1080/02827581.2021.1918239
Banerjee, A.K., A. Mukherjee & A. Dewanji (2017). Potential distribution of Mikania micrantha Kunth in India − evidence of climatic niche and biome shifts. Flora 234: 215–223. https://doi.org/10.1016/j.flora.2017.07.010
Benito, B.M., M.M. Martínez-Ortega, L.M. Muñoz, J. Lorite & J. Peñas (2009). Assessing extinction-risk of endangered plants using species distribution models: a case study of habitat depletion caused by the spread of greenhouses. Biodiversity and Conservation 18: 2509–2520. https://doi.org/10.1007/s10531-009-9604-0
Bharti, D.K. & K. Shanker (2021). Environmental correlates of distribution across spatial scales in the intertidal gastropods Littoraria and Echinolittorina of the Indian coastline. Journal of Molluscan Studies 87(1) eyaa029: 1–12. https://doi.org/10.1093/mollus/eyaa029
Brown, J.L. (2014). SDMtoolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution 5(7): 694–700. https://doi.org/10.1111/2041-210X.12200
Choudhary, J.S., S.S. Mali, B.B. Fand & B. Das (2019). Predicting the invasion potential of indigenous restricted mango fruit borer, Citripestis eutraphera (Lepidoptera: Pyralidae) in India based on MaxEnt modelling. Current Science 116(4): 636–642.
Feng, X., D.S. Park, Y. Liang, R. Pandey & M. Papeş (2019). Collinearity in ecological niche modeling: Confusions and challenges. Ecology and Evolution 9(18): 10365–10376. https://doi.org/10.1002/ece3.5555
He, Y., G. Wang, Y. Ren, S. Gao, S.J. McKirdy & D. Chu (2024). Maxent modelling combined with fuzzy logic provides new insights into predicting the distribution of potato cyst nematodes with limited data. Computers and Electronics in Agriculture 222: 109035. https://doi.org/10.1016/j.compag.2024.109035
Hemati, T., S. Pourebrahim, M. Monavari & A. Baghvand (2020). Species-specific nature conservation prioritization (a combination of MaxEnt, Co$ting Nature and DINAMICA EGO modeling approaches). Ecological Modelling 429: 109093. https://doi.org/10.1016/j.ecolmodel.2020.109093
Jha, A., J. P. & P.O. Nameer (2022). Contrasting occupancy models with presence-only models: Does accounting for detection lead to better predictions? Ecological Modelling 472: 110105. https://doi.org/10.1016/j.ecolmodel.2022.110105
Mao, K., Y. Wang, W. Zhou, J. Ye & B. Fang (2025). Evaluation of belief entropies: from the perspective of evidential neural network. Artificial Intelligence Review 58: 133.
Melo-Merino, S.M., H. Reyes-Bonilla & A. Lira-Noriega (2020). Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecological Modelling 415: 108837. https://doi.org/10.1016/j.ecolmodel.2019.108837
Merow, C., M.J. Smith & J.A. Silander (2013). A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography (Copenhagen) 36: 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x
Morales, N.S., I.C. Fernández & V. Baca-González (2017). MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ 5: e3093. https://doi.org/10.7717/peerj.3093
Nakagawa, S., G. Samarasinghe, N.R. Haddaway, M.J. Westgate, R.E. O’Dea, D.W.A. Noble & M. Lagisz (2019). Research Weaving: Visualizing the Future of Research Synthesis. Trends in Ecology & Evolution 34(3): 224–238. https://doi.org/10.1016/j.tree.2018.11.007
Orimoloye, I.R. & O.O. Ololade (2021). Global trends assessment of environmental health degradation studies from 1990 to 2018. Environment, Development and Sustainability 23(3): 3251–3264. https://doi.org/10.1007/s10668-020-00716-y
Pandey, V.K., H.R. Pourghasemi & M.C. Sharma (2020). Landslide susceptibility mapping using maximum entropy and support vector machine models along the highway corridor, Garhwal Himalaya. Geocarto International 35(2): 168–187. https://doi.org/10.1080/10106049.2018.1510038
Pasanisi, E., D.S. Pace, A. Orasi, M. Vitale & A. Arcangeli (2024). A global systematic review of species distribution modelling approaches for cetaceans and sea turtles. Ecological Informatics 82: 102700. https://doi.org/10.1016/j.ecoinf.2024.102700
Phillips, S.J., R.P. Anderson & R.E. Schapire (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling 190(3–4): 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Radosavljevic, A. & R.P. Anderson (2014). Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography 41: 629–643.
Rajpoot, R., D. Adhikari, S. Verma, P. Saikia, A. Kumar, K.R. Grant & M.L. Khan (2020). Climate models predict a divergent future for the medicinal tree Boswellia serrata Roxb. in India. Global Ecology and Conservation 23: e01040. https://doi.org/10.1016/j.gecco.2020.e01040
Rathinam, R.B., S.A. Iburahim, S.S. Ramanan & G. Tripathi (2022). A scientometric mapping of research on Aeromonas infection in fish across the world (1998–2020). Aquaculture International 30(1): 341–363. https://doi.org/10.1007/s10499-021-00802-6
Rathore, M.K. & L.K. Sharma (2023). Efficacy of species distribution models (SDMs) for ecological realms to ascertain biological conservation and practices. Biodiversity and Conservation 32(10): 3053–3087. https://doi.org/10.1007/s10531-023-02648-1
Renner, I.W., J. Elith, A. Baddeley, W. Fithian, T. Hastie, S.J. Phillips & D.I. Warton (2015). Point process models for presence‐only analysis. Methods in Ecology and Evolution 6(4): 366–379. https://doi.org/10.1111/2041-210X.12352
Santhanam, H., S. Dhyani & S.K. Kundu (2022). Ecosystem-based approaches to develop a monitoring framework for restoring the transitional lagoon ecosystem of Pulicat, India. Ecological Engineering 179: 106608. https://doi.org/10.1016/j.ecoleng.2022.106608
Sarkar, D. & G. Talukdar (2023). Predicting the impact of future climate changes and range-shifts of Indian hornbills (family: Bucerotidae). Ecological Informatics 74: 101987. https://doi.org/10.1016/j.ecoinf.2023.101987
Sillero, N. & A.M. Barbosa (2021). Common mistakes in ecological niche models. International Journal of Geographical Information Science 35(2): 213–226. https://doi.org/10.1080/13658816.2020.1798968
Sillero, N., J.C. Campos, S. Arenas-Castro & A.M. Barbosa (2023). A curated list of R packages for ecological niche modelling. Ecological Modelling 476: 110242. https://doi.org/10.1016/j.ecolmodel.2022.110242
Sundaram, S.R., A. Arunachalam, D. Adhikari, U.K. Sahoo & K. Upadhyaya (2023). Ecological Niche Modeling Predicts the Potential Area for Cultivation of Melia dubia Cav. (Meliaceae): A Promising Tree Species for Agroforestry in India, pp. 389–400. In: Ecosystem and Species Habitat Modeling for Conservation and Restoration. Springer Nature Singapore, Singapore.
Sutton, G.F. & G.D. Martin (2022). Testing MaxEnt model performance in a novel geographic region using an intentionally introduced insect. Ecological Modelling 473: 110139. https://doi.org/10.1016/j.ecolmodel.2022.110139
Sweileh, W.M., S.W. Al-Jabi, A.F. Sawalha, A.S. AbuTaha & S.H. Zyoud (2016). Bibliometric analysis of publications on Campylobacter: (2000–2015). Journal of Health, Population and Nutrition 35(1): 39. https://doi.org/10.1186/s41043-016-0076-7
Thakur, D., N. Rathore, M.K. Sharma, O. Parkash & A. Chawla (2021). Identification of ecological factors affecting the occurrence and abundance of Dactylorhiza hatagirea (D.Don) Soo in the Himalaya. Journal of Applied Research on Medicinal and Aromatic Plants 20: 100286. https://doi.org/10.1016/j.jarmap.2020.100286
Vollering, J., R. Halvorsen & S. Mazzoni (2019). The MIAmaxent R package: Variable transformation and model selection for species distribution models. Ecology and Evolution 9(21): 12051–12068. https://doi.org/10.1002/ece3.5654
Wang, F., X. Yuan, Y. Sun & Y. Liu (2024). Species distribution modeling based on MaxEnt to inform biodiversity conservation in the Central Urban Area of Chongqing Municipality. Ecological Indicators 158: 111491. https://doi.org/10.1016/j.ecolind.2023.111491
Wang, Y., W. Huo, K. Wu, J. Cao, G. Zhao & F. Zhang (2025). Prediction of the potentially suitable areas of Paeonia lactiflora in China based on Maxent and Marxan models. Frontiers in Plant Science 15: 1516251.
Warren, D.L. & S.N. Seifert (2011). Ecological niche modeling in MaxEnt: the importance of model complexity and the performance of model selection criteria. Ecological Applications 21(2): 335–342. https://doi.org/10.1890/10-1171.1
West, A.M., S. Kumar, C.S. Brown, T.J. Stohlgren & J. Bromberg (2016). Field validation of an invasive species Maxent model. Ecological Informatics 36: 126–134. https://doi.org/10.1016/j.ecoinf.2016.11.001
Yackulic, C.B., R. Chandler, E.F. Zipkin, J.A. Royle, J.D. Nichols, E.H. Campbell Grant & S. Veran (2013). Presence-only modelling using MAXENT: When can we trust the inferences? Methods in Ecology and Evolution 4(3): 236–243. https://doi.org/10.1111/2041-210X.12004
Yang, X.-Q., S.P.S. Kushwaha, S. Saran, J. Xu & P.S. Roy (2013). Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering 51: 83–87. https://doi.org/10.1016/j.ecoleng.2012.12.004
Additional Files
Published
Issue
Section
License
Copyright (c) 2025 S. Suresh Ramanan, A. Arunachalam, U.K. Sahoo, Kalidas Upadhyaya

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors own the copyright to the articles published in JoTT. This is indicated explicitly in each publication. The authors grant permission to the publisher Wildlife Information Liaison Development (WILD) Society to publish the article in the Journal of Threatened Taxa. The authors recognize WILD as the original publisher, and to sell hard copies of the Journal and article to any buyer. JoTT is registered under the Creative Commons Attribution 4.0 International License (CC BY), which allows authors to retain copyright ownership. Under this license the authors allow anyone to download, cite, use the data, modify, reprint, copy and distribute provided the authors and source of publication are credited through appropriate citations (e.g., Son et al. (2016). Bats (Mammalia: Chiroptera) of the southeastern Truong Son Mountains, Quang Ngai Province, Vietnam. Journal of Threatened Taxa 8(7): 8953–8969. https://doi.org/10.11609/jott.2785.8.7.8953-8969). Users of the data do not require specific permission from the authors or the publisher.





