Assessment of diversity, abundance, and seasonal variations of bird species in Bengaluru District, India during COVID-19 lockdown

Main Article Content

H. Hemanth
https://orcid.org/0009-0005-7863-4067
Rajalakshmi K.S. Vinanthi
Kuppusamy Alagesan Paari
https://orcid.org/0000-0002-6080-4137

Abstract

The study investigates bird population dynamics in Bengaluru, India, post-lockdown, focusing on occurrence, seasonal abundance, species diversity, richness, dominance, and evenness. It covers 55 bird species across 52 genera, grouped into 32 families within 13 orders, with a notable peak in winter. Various indices, including Shannon Wiener, Margalef’s, Pielou’s, and Simpson’s, reveal significant seasonal differences in bird population characteristics. The Rock Pigeon Columba livia dominates, while the Black-headed Ibis Threskiornis melanocephalus is less prevalent. The study identifies Near Threatened species like Black-headed Ibis and Oriental Darter Anhinga melanogaster, along with Least Concern species per the IUCN Red List. Common species include Rock Pigeon, Large-billed Crow Corvus macrorhynchos, House Crow Corvus splendens, Black Drongo Dicrurus macrocercus, Brown Shrike Lanius cristatus, Common Myna Acridotheres tristis, Jungle Myna Acridotheres fuscus, Red-whiskered Bulbul Pycnonotus jocosus, and Streak-throated Swallow Petrochelidon fluvicola. The study aims to inform improved management and conservation strategies for Bengaluru’s diverse bird species.

Article Details

Section
Communications
Author Biographies

H. Hemanth, Department of Lifesciences, CHRIST (Deemed to be University), Dharmaram College Road, Hosur Road, Bengaluru, Karnataka 560029, India.

-

Rajalakshmi K.S. Vinanthi, Department of Lifesciences, CHRIST (Deemed to be University), Dharmaram College Road, Hosur Road, Bengaluru, Karnataka 560029, India.

-

Kuppusamy Alagesan Paari, Department of Lifesciences, CHRIST (Deemed to be University), Dharmaram College Road, Hosur Road, Bengaluru, Karnataka 560029, India.

-

References

Ahlam, C., B. Ettayib, M. Fateh & D. Soumia (2019). Effects of vegetation and water seasonal variation on habitat use of herons (Aves, Ardeidae) in Tonga Lake (North-East Algeria). Bolyai Biologia (2): 25–40. https://doi.org/10.24193/subbbiol.2019.2.03 DOI: https://doi.org/10.24193/subbbiol.2019.2.03

Ali, S. (2002). The book of Indian birds. Oxford University Press. New Delhi, 326 pp. DOI: https://doi.org/10.5962/bhl.title.43949

Aynalem, S. & A. Bekele (2008). Species composition, relative abundance and distribution of bird fauna of riverine and wetland habitats of Infranz and Yiganda at southern tip of Lake Tana, Ethiopia. Tropical Ecology 49(2): 199.

Barik, S., G.K. Saha & S. Mazumdar (2021). How the habitat features influence Black-headed Ibis (Threskiornis melanocephalus) in a suburban area? A study from mid-West Bengal, India. Proceedings of the Zoological Society of London 75(1): 39–47. DOI: https://doi.org/10.1007/s12595-021-00385-3

Basile, M., L.F. Russo, V.G. Russo, A. Senese & N. Bernardo (2021). Birds seen and not seen during the COVID-19 pandemic: The impact of lockdown measures on citizen science bird observations. Biological Conservation 256: 109079. DOI: https://doi.org/10.1016/j.biocon.2021.109079

Bhatti, Z. (2017). A study on status and distribution of Passeriformes in Bagh district of Azad Kashmir. Journal of Bioresource Management 4(1): 3. DOI: https://doi.org/10.35691/JBM.7102.0066

Blair, R.B. (1999). Birds and butterflies along an urban gradient: Surrogate taxa for assessing biodiversity? Ecological Applications 9(1): 164–170. https://doi.org/10.1890/1051-0761(1999)009[0164:babaau]2.0.co;2 DOI: https://doi.org/10.1890/1051-0761(1999)009[0164:BABAAU]2.0.CO;2

Campbell, C.E., D.N. Jones, M. Awasthy & A.L. Chauvenet (2022). How do we study birds in urban settings? A systematic review. Biodiversity and Conservation 31(1): 1–20. DOI: https://doi.org/10.1007/s10531-021-02322-4

Cockrem, J.F. (1995). Timing of seasonal breeding in birds, with particular reference to New Zealand birds. Reproduction, Fertility, and Development 7(1): 1–19. https://doi.org/10.1071/rd9950001 DOI: https://doi.org/10.1071/RD9950001

Choudaj, K. & C. Shaha (2023). Natural remnants are refuges for rare birds in an urban area: a study from Pune city, India. Ornis Hungarica 31(1): 62–71. DOI: https://doi.org/10.2478/orhu-2023-0004

Donaldson, M.R., K.M. Henein & M.W. Runtz (2007). Assessing the effect of developed habitat on waterbird behaviour in an urban riparian system in Ottawa, Canada. Urban Ecosystems 10(2): 139–151. https://doi.org/10.1007/s11252-006-0015-2 DOI: https://doi.org/10.1007/s11252-006-0015-2

Estela, F.A., C.E. Sanchez-Sarria, E. Arbelaez-Cortes, D. Ocampo, M. Garcia-Arroyo, A. Perlaza-Gamboa & I. MacGregor-Fors (2021). Changes in the nocturnal activity of birds during the COVID-19 pandemic lockdown in a neotropical city. Animal Biodiversity and Conservation 44(2): 213–217. https://doi.org/10.32800/abc.2021.44.0213 DOI: https://doi.org/10.32800/abc.2021.44.0213

Gaston, K.J. & R.A. Fuller (2007). Biodiversity and extinction. Progress in Physical Geography 31(2): 213–225. https://doi.org/10.1177/0309133307076488 DOI: https://doi.org/10.1177/0309133307076488

Godefroid, S. (2001). Temporal analysis of the Brussels flora as an indicator for changing environmental quality. Landscape and Urban Planning 52(4): 203–224. https://doi.org/10.1016/s0169-2046(00)00117-1 DOI: https://doi.org/10.1016/S0169-2046(00)00117-1

Girma, Z., Y. Mamo, G. Mengesha, A. Verma & T. Asfaw (2017). Seasonal abundance and habitat use of bird species in and around Wondo Genet Forest, south‐central Ethiopia. Ecology and Evolution 7(10): 3397–3405. DOI: https://doi.org/10.1002/ece3.2926

Graham, C.H., C. Moritz & S.E. Williams (2006). Habitat history improves prediction of biodiversity in rainforest fauna. Proceedings of the National Academy of Sciences of the United States of America 103(3): 632–636. https://doi.org/10.1073/pnas.0505754103 DOI: https://doi.org/10.1073/pnas.0505754103

Grimmett, R., C. Inskipp & T. Inskipp (2016). Birds of the Indian Subcontinent: India, Pakistan, Sri Lanka, Nepal, Bhutan, Bangladesh and the Maldives. Bloomsbury Publishing, London, 528 pp.

Jetz, W., C.H. Sekercioglu & K. Böhning-Gaese (2008). The worldwide variation in avian clutch size across species and space. PLoS Biology 6(12): 2650–2657. https://doi.org/10.1371/journal.pbio.0060303 DOI: https://doi.org/10.1371/journal.pbio.0060303

Julliard, R., F. Jiguet & D. Couvet (2004). Common birds facing global changes: what makes a species at risk? Global Change Biology 10(1): 148–154. https://doi.org/10.1111/j.1365-2486.2003.00723.x DOI: https://doi.org/10.1111/j.1365-2486.2003.00723.x

Klemetsen, A. & R. Knudsen (2013). Diversity and abundance of water birds in a subarctic lake during three decades. Fauna Norvegica 33: 21–27. https://doi.org/10.5324/FN.V33I0.1584 DOI: https://doi.org/10.5324/fn.v33i0.1584

Kumar, P. & S.K. Gupta (1970). Diversity and Abundance of Wetland Birds around Kurukshetra, India. Our Nature 7(1): 212–17. DOI: https://doi.org/10.3126/on.v7i1.2574

Madhok, R. & S. Gulati (2022). Ruling the roost: Avian species reclaim urban habitat during India’s COVID-19 lockdown. Biological Conservation 271: 109597. https://doi.org/10.1016/j.biocon.2022.109597 DOI: https://doi.org/10.1016/j.biocon.2022.109597

Mallin, M., M. McIver, E. Wambach & A. Robuck (2016). Algal blooms, circulators, waterfowl, and eutrophic Greenfield Lake, North Carolina. Lake and Reservoir Management 32: 168–181. https://doi.org/10.1080/10402381.2016.1146374 DOI: https://doi.org/10.1080/10402381.2016.1146374

Manakadan, R., J.C. Daniel & N. Bhopale (2011). Birds of the Indian Subcontinent: A Field Guide. Oxford University Press. India, 400 pp.

Mönkkönen, M., J.T. Forsman & F. Bokma (2006). Energy availability, abundance, energy-use and species richness in forest bird communities: a test of the species-energy theory. Global Ecology and Biogeography: A Journal of Macroecology 15(3): 290–302. https://doi.org/10.1111/j.1466-8238.2006.00224.x DOI: https://doi.org/10.1111/j.1466-8238.2006.00224.x

Newson, S.E., N. Ockendon, A. Joys, D.G. Noble & S.R. Baillie (2009). Comparison of habitat-specific trends in the abundance of breeding birds in the UK. Bird Study 56(2): 233─243. https://doi.org/10.1080/00063650902792098 DOI: https://doi.org/10.1080/00063650902792098

Parmesan, C. & G. Yohe (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918): 37–42. https://doi.org/10.1038/nature01286 DOI: https://doi.org/10.1038/nature01286

Pimm, S.L., C.N. Jenkins, R. Abell, T.M. Brooks, J.L. Gittleman, L.N. Joppa, P.H. Raven, C.M. Roberts & J.O. Sexton (2014). The biodiversity of species and their rates of extinction, distribution, and protection. Science 344(6187): 1246752. https://doi.org/10.1126/science.1246752 DOI: https://doi.org/10.1126/science.1246752

Polyavina, O.V. & M.A. Lebedeva (2022). The diversity of plumage coloration and behavioral features of synanthropic blue rock pigeon of urbanized territories. Samara Journal of Science 11(3): 106–111. DOI: https://doi.org/10.55355/snv2022113112

Rajashekara, S. & M.G. Venkatesha (2016). Seasonal Incidence and Diversity Pattern of Avian Communities in the Bangalore University Campus, India. Proceedings of the Zoological Society of London 70(2): 178–193. https://doi.org/10.1007/s12595-016-0175-x DOI: https://doi.org/10.1007/s12595-016-0175-x

Ramachandra, T.V., H.A. Bharath, G. Kulkarni & S. Vinay (2017). Green spaces in Bengaluru: quantification through geospatial techniques. Indian Forester 143(4): 307–320.

Root, T.L., J.T. Price, K.R. Hall, S.H. Schneider, C. Rosenzweig & J.A. Pounds (2003). Fingerprints of global warming on wild animals and plants. Nature 421(6918): 57–60. https://doi.org/10.1038/nature01333 DOI: https://doi.org/10.1038/nature01333

Saracco, J., S. Fettig, G. Miguel, D. Mehlman, B. Thompson & S. Albert (2018). Avian demographic responses to drought and fire: a community-level perspective. Ecological Applications 28(7): 1773–1781. DOI: https://doi.org/10.1002/eap.1751

Schirmel, J., M. Bundschuh, M.H. Entling, I. Kowarik & S. Buchholz (2016). Impacts of invasive plants on resident animals across ecosystems, taxa, and feeding types: a global assessment. Global Change Biology 22(2): 594–603. DOI: https://doi.org/10.1111/gcb.13093

Schrimpf, M.B., P.G. Des Brisay, A. Johnston, A.C. Smith, J. Sánchez-Jasso, B.G. Robinson & N. Koper (2021). Reduced human activity during COVID-19 alters avian land use across North America. Science Advances 7(39): eabf5073. DOI: https://doi.org/10.1126/sciadv.abf5073

Shome, A.R., M.F. Jaman, M.F. Rabbe & M.M. Alam (2021). Bird diversity, composition and response during COVID-19 in an urban landscape, Jamalpur, Bangladesh. Dhaka University Journal of Biological Sciences 30(2): 261–274. DOI: https://doi.org/10.3329/dujbs.v30i2.54651

Soh, M.C., R.Y. Pang, B.X. Ng, B.P.H. Lee, A.H. Loo & B.H. Kenneth (2021). Restricted human activities shift the foraging strategies of feral pigeons (Columba livia) and three other commensal bird species. Biological Conservation 253(78): 108927. DOI: https://doi.org/10.1016/j.biocon.2020.108927

Turner, W.R. (2003). Citywide biological monitoring as a tool for ecology and conservation in urban landscapes: the case of the Tucson Bird Count. Landscape and Urban Planning 65(3): 149–166. https://doi.org/10.1016/s0169-2046(03)00012-4 DOI: https://doi.org/10.1016/S0169-2046(03)00012-4

Walther, G.R., S. Berger & M.T. Sykes (2005). An ecological “footprint” of climate change. Proceedings. Biological Sciences / The Royal Society 272(1571): 1427–1432. https://doi.org/10.1098/rspb.2005.3119 DOI: https://doi.org/10.1098/rspb.2005.3119

Yang, X., H. Cui & C. Chen (2022). Bird flight resistance analysis and planning strategies in urban regeneration areas: a case study of a certain area in Shenzhen, China. Sustainability 14(19): 12123. https://doi.org/10.3390/su141912123 DOI: https://doi.org/10.3390/su141912123