Factors influencing the flush response and flight initiation distance of three owl species in the Andaman Islands

Main Article Content

Shanmugavel Sureshmarimuthu
Santhanakrishnan Babu
Honnavalli Nagaraj Kumara
Nagaraj Rajeshkumar


Effects of anthropogenic pressures on birds of the Andaman Islands have been documented to some extent, however studies on the effect of human activities on the behavioural response of these birds are limited. This study assessed the anti-predatory behaviour (flush response - FR and flight initiation distance - FID) of three owl species (Otus sunia, Otus balli, and Ninox obscura) in response to human stimuli and factors influencing it on the Andaman Islands. In total, 63 % of owls flushed from their roost sites in response to approaching human, and such a response varied between species. Similarly, FID varied widely among the species ranging from 4.23 to 6.73 m. The FR of N. obscura was influenced by the count of climbers, presence of spine, and branch status, while roost height, ambient temperature, and lower count of climbers contributed to a higher FID. For the two Otus species, camouflage and pairing were found to influence their FR while FID of O. balli was influenced by roost height, pairing, and presence of spines. Our results indicated that the anti-predatory behaviour of owls on the Andaman Islands was species- and site-specific and prolonged disturbance to their roost sites may affect the survival and reproductive rate of these owls.  

Article Details

How to Cite
Shanmugavel Sureshmarimuthu, Babu, S., Honnavalli Nagaraj Kumara and Nagaraj Rajeshkumar 2021. Factors influencing the flush response and flight initiation distance of three owl species in the Andaman Islands. Journal of Threatened Taxa. 13, 11 (Sep. 2021), 19500–19508. DOI:https://doi.org/10.11609/jott.7339.13.11.19500-19508.


Anderson, D.W. & J.O. Keith (1980). The human influence on seabird nesting success: conservation implications. Biological Conservation 18(1): 65–80. https://doi.org/10.1016/0006-3207(80)90067-1

Babu, S., S. Sureshmarimuthu & H.N. Kumara (2019). Ecological determinants of species richness and abundance of endemic and threatened owls in the Andaman Islands, India. Ardeola 66(1): 89–100. https://doi.org/10.13157/arla.66.1.2019.sc3

Barrows, C.W. (1981). Roost selection by spotted owls: an adaptation to heat stress. The Condor 83(4): 302–309. https://doi.org/10.2307/1367496

Bennett, P.M. & I.P.F Owens (2002). Evolutionary ecology of birds: life histories, mating systems, and extinction. Oxford University Press, Oxford, 278pp.

Blumstein, D.T., L.L. Anthony, R. Harcourt & G. Ross (2003). Testing a key assumption of wildlife buffer zones: is flight initiation distance a species-specific trait?. Biological Conservation 110(1): 97–100. https://doi.org/10.1016/S0006-3207(02)00180-5

Bradsworth, N., J. White, A. Rendall, N. Carter & R. Cooke (2021). Where to sleep in the city? How urbanisation impacts roosting habitat availability for an apex predator. Global Ecology and Conservation 26: e01494. https://doi.org/10.1016/j.gecco.2021.e01494

Braimoh, B., S. Iwajomo, M. Wilson, A. Chaskda, A. Ajang & W. Cresswell (2018). Managing human disturbance: factors influencing flight-initiation distance of birds in a West African nature reserve. Ostrich 89(1): 59–69. https://doi.org/10.2989/00306525.2017.1388300

Burger, J. & M. Gochfeld (1998). Effects of ecotourists on bird behaviour at Loxahatchee National Wildlife Refuge, Florida. Environmental Conservation 25(1): 13–21. https://www.jstor.org/stable/44519418

Champion, H.G. & S.K. Seth (1968). A Revised Forest Types of India. Manager of Publications, Government of India, Delhi, 404pp.

Collins, S.A., G.J. Giffin & W.T. Strong (2019). Using flight initiation distance to evaluate responses of colonial‐nesting Great Egrets to the approach of an unmanned aerial vehicle. Journal of Field Ornithology 90(4): 382–390. https://doi.org/10.1111/jofo.12312

Cooper, W.E. (1997). Threat factors affecting antipredatory behavior in the broad-headed skink (Eumeces laticeps): repeated approach, change in predator path, and predator’s field of view. Copeia 1997(3): 613–619. https://doi.org/10.2307/1447569

Cooper, W.E. (2003). Risk factors affecting escape behavior by the desert iguana, Dipsosaurus dorsalis: speed and directness of predator approach, degree of cover, direction of turning by a predator, and temperature. Canadian Journal of Zoology 81: 979–984. https://doi.org/10.1139/Z03-079

Dowling, L. & F. Bonier (2018). Should I stay, or should I go: Modeling optimal flight initiation distance in nesting birds. PloS one 13(11): e0208210. https://doi.org/10.1371/journal.pone.0208210

Ganey, J.L., R.P. Balda & R.M. King (1993). Metabolic rate and evaporative water loss of Mexican spotted and great horned owls. The Wilson Bulletin 105(4): 645–656. https://www.jstor.org/stable/4163356

Ganey, J.L., W.M. Block & R.M. King (2000). Roost sites of radio-marked Mexican spotted owls in Arizona and New Mexico: sources of variability and descriptive characteristics. Journal of Raptor Research 34 (4): 270–278.

Gotanda, K.M., K. Turgeon & D.L. Kramer (2009). Body size and reserve protection affect flight initiation distance in parrotfishes. Behavioral Ecology and Sociobiology 63(11): 1563–1572. https://doi.org/10.1007/s00265-009-0750-5

Grubb, T.G. & R.M. King (1991). Assessing human disturbance of breeding bald eagles with classification tree models. The Journal of Wildlife Management 55(3): 500–511. https://doi.org/10.2307/3808982

Hemmingsen, A. (1951). The relation of shyness (flushing distance) to body size. Spolia zoologica Musei hauniensis 11: 74–76.

Holmes, T.L., R.L. Knight, L. Stegall & G.R. Craig (1993). Responses of wintering grassland raptors to human disturbance. Wildlife Society Bulletin (1973–2006) 21(4): 461–468. https://www.jstor.org/stable/3783420

König, C., F. Welck & B. Jan-Hendrik (1999). Owls: A Guide to the Owls of the World. Yale University Press, New Haven, Connecticut, 462 pp.

Malik, J.N., C.V.R. Murty & D.C. Rai (2006). Landscape changes in the Andaman and Nicobar Islands (India) after the December 2004 great Sumatra earthquake and Indian Ocean tsunami. Earthquake Spectra 22(3): 43–66. https://doi.org/10.1193/1.2206792

Martín, J. & P. López (2015). Hiding Time in Refuge, pp. 227–262. In: Cooper Jr., W. & D. Blumstein (Eds.). Escaping from Predators: An Integrative View of Escape Decisions. Cambridge University Press, Cambridge, 460pp.

Miles, J. (2014). Residual Plot. In: Balakrishnan, N., T. Colton, B. Everitt, W. Piegorsch, F. Ruggeri & J.L. Teugels (eds.) Wiley StatsRef: Statistics Reference Online. Electronic version accessed 31 March 2021. https://doi.org/10.1002/9781118445112.stat06619

Møller, A.P., W. Liang & D.S. Samia (2019). Flight initiation distance, color and camouflage. Current Zoology 65(5): 535–540. https://doi.org/10.1093/cz/zoz005

Nishiumi, N. & A. Mori (2015). Distance-dependent switching of anti-predator behavior of frogs from immobility to fleeing. Journal of Ethology 33(2): 117–124. https://doi.org/10.1007/s10164-014-0419-z

Papouchis, C.M., F.J. Singer & W.B. Sloan (2001). Responses of desert bighorn sheep to increased human recreation. Journal of Wildlife Management 65(3): 573–582. https://doi.org/10.2307/3803110

Portugal, S.J., L. Sivess, G.R. Martin, P.J. Butler & C.R. White (2017). Perch height predicts dominance rank in birds. Ibis 159(2): 456–462. https://doi.org/10.1111/ibi.12447

Rasmussen, P.C. & J.C. Anderton (eds.) (2005). Birds of South Asia: the Ripley guide. 1st ed. Vol. 1 & 2. Smithsonian Institution and Lynx Edicions, Washington, D.C. and Barcelona, pp. 1–378 & 1–683.

Rohner, C., C.J. Krebs, D.B. Hunter & D.C. Currie (2000). Roost site selection of Great Horned Owls in relation to black fly activity: An anti-parasite behavior?. The Condor 102(4): 950–955. https://doi.org/10.1093/condor/102.4.950

Samia, D.S., D.T. Blumstein, T. Stankowich & W.E. Cooper Jr. (2016). Fifty years of chasing lizards: new insights advance optimal escape theory. Biological Reviews 91(2): 349–366. https://doi.org/10.1111/brv.12173

Sapolsky, R.M., L.M. Romero & A.U. Munck (2000). How do glucocorticoids influence stress response? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews 21: 55–89. https://doi.org/10.1210/edrv.21.1.0389

Solheim, R., K.O. Jacobsen, I.J. Øien, T. Aarvak & P. Polojärvi (2013). Snowy Owl nest failures caused by blackfly attacks on incubating females. Ornis Norvegica 36: 1–5. https://doi.org/10.15845/on.v36i0.394

Spaul, R.J. & J.A. Heath (2017). Flushing responses of Golden Eagles (Aquila chrysaetos) in response to recreation. The Wilson Journal of Ornithology 129(4): 834–845. https://doi.org/10.1676/16-165.1

Sproat, K.K., N.R. Martinez, T.S. Smith, W.B. Sloan, J.T. Flinders, J.W. Bates, J.G. Cresto & V.C. Bleich (2020). Desert bighorn sheep responses to human activity in south-eastern Utah. Wildlife Research 47(1): 16–24. https://doi.org/10.1071/WR19029

Stankowich, T. (2008). Ungulate flight responses to human disturbance: a review and meta-analysis. Biological conservation 141(9): 2159–2173. https://doi.org/10.1016/j.biocon.2008.06.026

Steidl, R.J. & R.G. Anthony (1996). Responses of Bald Eagles to human activity during the summer in interior Alaska. Ecological Applications 6 (2):482–484. https://doi.org/10.2307/2269385

Swarthout, E.C. & R.J. Steidl (2001). Flush responses of Mexican spotted owls to recreationists. The Journal of Wildlife Management 65(2): 312–317. https://doi.org/10.2307/3802910

Swarthout, E.C.H. (1999). Effects of backcountry recreation on Mexican Spotted Owls. M.S. Thesis. University of Arizona, Tucson.

Thiel, D., E. Ménoni, J.F. Brenot & L. Jenni (2007). Effects of recreation and hunting on flushing distance of capercaillie. The Journal of Wildlife Management 71(6): 1784–1792. https://doi.org/10.2193/2006-268

Velando, A. & I. Munilla (2011). Disturbance to a foraging seabird by sea-based tourism: implications for reserve management in marine protected areas. Biological Conservation 144 (3): 1167–1174. https://doi.org/10.1016/j.biocon.2011.01.004

Walsberg, G.E. (1985). Physiological consequences of microhabitat selection, pp. 389–413. In: Cody M.L. (eds.). Habitat selection in birds. Academic Press, New York, New York, USA, 558pp.

Walther, F.R. (1969). Flight behaviour and avoidance of predators in Thomson’s gazelle (Gazella thomsoni Guenther 1884). Behaviour 34(3): 184–220. https://doi.org/10.1163/156853969X00053

Watson, J.W. (1993). Responses of nesting bald eagles to helicopter surveys. Wildlife Society Bulletin 21(2): 171–178. https://www.jstor.org/stable/3782920

Zuberogoitia, I., J. Zabala, J.A. Martínez, J.E. Martínez & A. Azkona (2008). Effect of human activities on Egyptian vulture breeding success. Animal Conservation 11: 313–320. https://doi.org/10.1111/j.1469-1795.2008.00184.x

Most read articles by the same author(s)