Niche characterization and distribution of Sikkim Himalayan Begonia (Begoniaceae), India: a niche modeling approach

Authors

  • Aditya Pradhan Department of Botany, School of Basic Sciences, SRM University Sikkim, Tadong, Gangtok, Sikkim 737102, India. https://orcid.org/0000-0003-3671-1720
  • Dibyendu Adhikari CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh 226001, India. https://orcid.org/0000-0002-5057-0541
  • Arun Chettri Department of Botany, School of Life Sciences, Sikkim University, 6th Mile, Tadong, Gangtok, Sikkim 737102, India. https://orcid.org/0000-0002-1391-4122

DOI:

https://doi.org/10.11609/jott.9538.17.9.27433-27443

Keywords:

Conservation, Darjeeling, diversity, endemic, ENM, MaxEnt, NDVI, niche overlap, niche breadth, northeastern India

Abstract

Understanding species’ ecological niches and distribution patterns is crucial for biodiversity conservation and management, particularly in ecologically sensitive regions. We used an NDVI-based ecological niche modeling (ENM) approach for Begonia species for this purpose, where we achieved high predictive accuracy (AUC: 0.82–0.97). Niche breadth analysis revealed a positive correlation (r = 0.747, p = 0.003) between broader niche breadth and larger predicted distribution areas, aligning with the notion that better-performing models tend to capture either highly specialized (narrow-breadth) or ecologically flexible (broad-breadth) niches. Models for Begonia picta, B. panchtharensis, B. sikkimensis, and B. xanthina were classified as fair (0.8 < AUC < 0.9), and exhibited broader niche breadth, with ranges extending from the western Himalaya to the eastern Himalaya, encompassing Nepal, Bhutan, and China. In contrast, B. satrapis, B. gemmipara, and B. nepalensis showed very good model performance (AUC > 0.95) but had the narrowest niche breadth (0.102–0.195), suggesting specialized habitat requirements and restricted distributions. Given their limited ecological flexibility and smaller suitable areas, these species warrant immediate conservation attention to mitigate extinction risks.

Author Biographies

Aditya Pradhan, Department of Botany, School of Basic Sciences, SRM University Sikkim, Tadong, Gangtok, Sikkim 737102, India.

.

Dibyendu Adhikari, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh 226001, India.

.

Arun Chettri, Department of Botany, School of Life Sciences, Sikkim University, 6th Mile, Tadong, Gangtok, Sikkim 737102, India.

.

References

Adhikari, D., Z. Reshi, B.K. Datta, S.S. Samant, A. Chettri, K. Upadhaya, M.A. Shah, P.P. Singh, T. Tiwary, K. Majumdar, A. Pradhan, M.L. Thakur, N. Salam, Z. Zahoor, S.H. Mir, Z.A. Kaloo & S.K. Barik (2018). Inventory and characterization of new populations through ecological niche modelling improve threat assessment. Current Science 114(3): 0468–0595. https://doi.org/10.185 20/c s%2Fv114%2Fi03%2F519-531

Amaral, S., C.B. Costa & C.D. Renno (2007). Normalized Difference Vegetation Index (NDVI) improving species distribution models: an example with the Neotropical genus Coccocypselum (Rubiaceae). Anais XIII Simposio Brasileiro de Sensoriamento Remote, Florianopolis, Brazil, 21–26 April, INPE, pp 2275–2282.

Araújo, C., L. Marcondes-Machado & G. Costa (2014). The importance of biotic interactions in species distribution models: A test of the Eltonian noise hypothesis using parrots. Journal of Biogeography 41(3): 513–523. https://doi.org/ 10.1111/j bi.12234

Basu, S.K. (2013). Geology of Sikkim State and Darjeeling District of West Bengal. Geological Society of India, Bangalore, ix + 255 pp.

Burgman, M.A. (1989). The habitat volumes of scarce and ubiquitous plants: A test of the model of environmental control. The American Naturalist 133: 228–239. https://doi.org/10.1086/284912

Camfield, R. & M. Hughes (2018). A revision and one new species of Begonia L. (Begoniaceae, Cucurbitales) in Northeast India. European Journal of Taxonomy 396: 1–116. https://doi.org/10.5852/ejt.2018.396

Colwell, R.K. & T.F. Rangel (2009). Hutchinson’s duality: The once and future niche. Proceedings of the National Academy of Sciences 106: 19651–19658. https://doi.org/10.1073/pnas.0901650106

Dennis, R.L., L. Dapporto, S. Fattorini & L.M. Cook (2011). The generalism–specialism debate: the role of generalists in the life and death of species. Biological Journal of the Linnean Society 104: 725–737. https://doi.org/10.111 1/j.1095-8312.2011.01789.x

Elith, J., C. Graham & the NCEAS species distribution modelling group (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.

Fuchs, A., C. Gilbert & J. Kamilar (2018). Ecological niche modeling of the genus Papio. American Journal of Biological Anthropology 166(4): 812–823.

Futuyma, D. & G. Moreno (1988). The evolution of ecological specialization. Annual Review of Ecology Evolution and Systematics 19: 201–233.

Futuyma, D.J. & C. Mitter (1996). Insect-plant interactions: the evolution of component communities. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 351: 1361–1366. https://doi.org/10.1098/rs tb.1996.0119

Gaston, K.J. (1993). Rarity. Chapman and Hall, London. 205 pp. https://doi.org/10.1007/978-94-011-0701-3

Gaston, K.J. (2000). Global patterns in biodiversity. Nature 405: 220–227. https://doi.org/10.1038/35012228

Gaston, K.J. (2003). The Structure and Dynamics of Geographic Ranges. Oxford University Press, Oxford, UK, 278 pp.

Gaston, K.J. & J.I. Spicer (2001). The relationship between range size and niche breadth: A test using five species of Gammarus (Amphipoda). Global Ecology and Biogeography 10: 179–188. https://doi.org/10.1046/j.1466-822x.200 1.00225.x

Gaston, K.J. & T.M. Blackburn (2000). Pattern and Process in Macroecology. Wiley, U.S., 377 pp.

Gotelli, N.J., G.R. Graves & C. Rahbek (2010). Macroecological signals of species interactions in the Danish avifauna. Proceedings of the National Academy of Sciences of the United States of America 107: 5030–5035. https://doi.org/10.1073/pnas.0914089107

Gotzenberger, L., F. de Bello, K.A. Brathen, J. Davison, A. Dubuis, A. Guisan, J. Leps, R. Lindborg, M. Moora, M. Partel, L. Pellissier, J. Pottier, P. Vittoz, K. Zobel & M. Zobel (2012). Ecological assembly rules in plant communities approaches, patterns and prospects. Biological Reviews 87: 111–127. https://doi.org/10.11 11/j.1469-185X.2011.00187.x

Gregory, R.D. & K.J. Gaston (2000). Explanations of commonness and rarity in British breeding birds: Separating resource use and resource availability. Oikos 88: 515–526. https://doi.org/10.1034/j.1600-0706.2000.880307.x

Guisan, A. & W. Thuiller (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 993–1009. https://doi.org/1 0.1111 /j.1461-0248.2005.00792.x

Hardin, G. (1960). The competitive exclusion principle. Science 131: 1292–1297. https://doi.org/10.1126/science.131.3409.1292

Hughes, M., C.I. Peng, C.W. Lin, R.R. Rubite, P. Blanc & K.F. Chung (2018). Chloroplast and nuclear DNA exchanges among Begonia sect. Baryandra species (Begoniaceae) from Palawan Island, Philippines, and descriptions of five new species. PLoS ONE 13(5) : e0194877. https://doi.org/10.1371/journal.pone.0194877

Kassen, R. (2002). The experimental evolution of specialists, generalists, and the maintenance of diversity. Journal of Evolutionary Biology 15(2): 173–190. https://doi.org/10.1046/j.1420-9101.2002.00377.x

Kunin, W.E. & K.J. Gaston (1997). The Biology of Rarity: Causes and Consequences of Rare Common Differences. Chapman and Hall, London.

MacArthur, R. & R. Levins (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist 101(921): 377–385. https://doi.org/10.1086/282505

McKinney, M.L (1997). Extinction vulnerability and selectivity: Combining ecological and paleontological views. Annual Review of Ecology and Systematics 28: 495–516. http://doi.org/10.1146/annurev.ecolsys.28.1.495

Moonlight, P.W. (2017). Linking speciation and the niche: taxonomy, phylogeny and niche evolution in neotropical Begonia. PhD thesis. University of Glasgow. http://theses.gla.ac.uk/id/eprint/8397

Mosco, A. (2017). Niche characteristics and potential distribution of Thelocactus species, a Mexican genus of globular cacti. bioRxiv 124511. https://doi.org/10.1101/124511

Peterson, A.T. & D.M. Watson (1998). Problems with areal definitions of endemism: the effects of spatial scaling. Diversity and Distribution 4(4): 189–194. https://doi.org/10.1046/j.1472-4642.1998.00021.x

Phillips, S.J., R.P. Anderson & R.E. Schapire (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling 190 (3–4): 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Phillips, S.J. & M. Dudík (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2): 161–175. https://doi.org/101111/j.0906-7590.2008.5203.x

Pradhan, A., D. Rai, S.K. Barik & A. Chettri (2019). Begonia panchtharensis (Begoniaceae), a new record to India from Sikkim, Eastern Himalaya. Journal of Japanese Botany 94: 56–57.

Rai, L.K., P. Prasad & E. Sharma (2000). Conservation threats to some important medicinal plants of the Sikkim Himalaya. Biological Conservation 93: 27–33. https://doi.org/10.1016/S0006-3207(99)00116-0

Rajbhandary, S., M. Hughes & K. Shrestha (2010). Three new species of Begonia sect. platycentrum from Nepal. Gardens’ Bulletin Singapore 62: 151–162.

Roy, P.S., P. Meiyappan, P.K. Joshi, M.P. Kale, V.K. Srivastav, S.K. Srivasatava, M.D. Behera, A. Roy, Y. Sharma, R.M. Ramachandran, P. Bhavani, A.K. Jain & Y.V.N. Krishnamurthy (2016). Decadal Land Use and Land Cover Classifications across India, 1985, 1995, 2005. ORNL DAAC, Oak Ridge, Tennessee, USA.

Slatyer, R.A., M. Hirst & J.P. Sexton (2013). Niche breadth predicts geographical range size: A general ecological pattern. Ecology Letters 16: 1104–1114. https://doi.org/10.1111/ele.12140

Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters 10: 1115–1123. https://doi.org/10.1111/j.1461-0248. 2007.01107.x

Sunday, J.M., A.E. Bates & N.K. Dulvy (2011). Global analysis of thermal tolerance and latitude in ectotherms. Proceeding of the Royal Society B 278: 1823–1830. https://doi.org/10.1098/rspb.2010.1295

Synes, N.W. & P.E. Osborne (2011). Choice of predictor variables as a source of uncertainty in continental-scale species distribution modelling under climate change. Global Ecology and Biogeography 20(6): 904–914. https://doi.org/10.1 111/j.1466-8238.2010.00635.x

Thuiller, W., D.M. Richardson, P. Pyˇsek, G.F. Midgley, G.O. Hughes & M. Rouget (2005). Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology 11: 2234–2250. https://doi.org/10.1111/j.1365-2486.2005.001018.x

Violle, C., D.R. Nemergut, Z. Pu & L. Jiang (2011). Phylogenetic limiting similarity and competitive exclusion. Ecology Letters 14: 782–787.

Warren, D., G. Richard & M. Turelli (2010). ENM Tools: A toolbox for comparative studies of environmental niche models. Ecography 33: 607–611.

Webb, C.O. (2000). Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. The American Naturalist 156: 145–155. https://doi.org/10.1086/303378

Willis, J.C. (1922). Age and Area; A Study in Geographical Distribution and Origin of Species. The University Press, Cambridge, UK. https://doi.org/10.5962/bh l.title.30741

Zhu, G.P., H.Q. Li, L. Zhao, L. Man & Q. Liu (2016). Mapping the ecological dimensions and potential distributions of endangered relic shrubs in Western Ordos Biodiversity Centre. Scientific Report 6: 26268. https://doi.org/10.1038/s rep26268

Downloads

Published

26-09-2025

Issue

Section

Articles