A short-term impact of enriched CO2 [eCO2] on select growth performance of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) and its host plant Gossypium barbadense L. (Malvaceae)
DOI:
https://doi.org/10.11609/jott.9171.16.8.25758-25764Keywords:
Ambient CO2, CO2-enriched atmosphere, growth parametersAbstract
Natural interactions between herbivorous insect pests and their host plants are expected to be altered significantly as atmospheric CO2 concentrations (aCO2) continue to rise according to climate change scenario. The possible effect of enriched CO2 (eCO2) environments on these interactions is under attention. To better understand such effects on select insect growth parameters; early (3rd) and penultimate (6th) instar larvae of the Cotton Leaf Worm Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae), reared on the cotton plant leaves Gossypium barbadense L. (Malvacae) grown under either ambient (aCO2 = 350 ppm) or enriched (eCO2 = 700 ppm) atmospheres were investigated.
References
Abu ElEla, S.A. & W.M. ElSayed (2018). Impact of enriched CO2 fumigation effects on plant-insect interaction: feeding behaviour and growth of early and late instar larvae of the cotton leaf worm Spodoptera littoralis (Lepidoptera: Noctuidae). Far Eastern Entomologist (351): 17–26. https://doi.org/10.25221/fee.351.2
Åhlén, M., O. Cheung & C. Xu (2023). Low-concentration CO2 capture using metal-organic frameworks – Current status and future perspectives. Dalton Transactions 52(7): 1841–1856. https://doi.org/10.1039/D2DT04088C.
Ashok, K., V. Balasubramani, J.S. Kennedy, V. Geethalakshmi & N. Sathiah (2022). Impact of elevated carbon dioxide on the bionomics of maize fall armyworm Spodoptera frugiperda: an age-stage, two-sex life table approach. International Journal of Pest Management 1–16. https://doi.org/10.1080/09670874.2022.2027550
Bazzaz, F.A. (1990). The response of natural ecosystems to the rising global carbon dioxide levels. Annual Review of Ecology and Systematics 21: 167–196. https://doi.org/10.1146/annurev.es.21.110190.001123
Brooks, G.L. & J.B. Whittaker (1999). Responses of three generations of a xylem-feeding insect, Neophilaenus lineatus (Homoptera), to elevated CO2. Global Change Biology 5(4): 395-401. https://doi.org/10.1046/j.1365-2486.1999.00239.x
Berrigan, D. (2000). Correlations between measures of thermal stress resistance within and between species. Oikos 89: 301–304. https://doi.org/10.1034/j.1600-0706.2000.890211.x
Carlson, R.W. & F.A. Bazzaz (1980). The effects of elevated CO2 concentration on growth, photosynthesis, transpiration and water efficiency of plants. In: Singh, J.J. & A. Deepak (eds.). Environmental and Climatic Impact of Coal Utilization. New York, 655 pp.
Caulfield, F. & J.A. Bunce (1994). Elevated atmospheric carbon dioxide concentration affects interactions between Spodoptera exigua (Lepidoptera: Noctuidae) larvae and two host plant species outdoors. Environmental Entomology 23(4): 999–1005. https://doi.org/10.1093/ee/23.4.999
Cornelissen, T. (2011). Climate change and its effects on terrestrial insects and herbivory patterns. Neotropical Entomology 40(2): 155–163. https://doi.org/10.1590/s1519-566x2011000200001
Davis, T.D. & J.R. Potter (1989). Relations between carbohydrate, water status and adventitious root formation in leafy pea cuttings rooted under various levels of atmospheric CO2 and relative humidity. Physiologia Plantarum 77(2): 185–90. https://doi.org/10.1111/j.1399-3054.1989.tb04967.x
Fajer, E.D. (1989). The effects of enriched carbon dioxide atmospheres on plant-insect herbivore interactions: growth responses of larvae of the specialist butterfly, Junonia coenia (Lepidoptera: Nymphalidae). Oecologia (Berlin) 81: 514–520. https://doi.org/10.1007/BF00378962
Fajer, E.D., M.D. Bowers & F.A. Bazzaz (1991). The effects of enriched CO2 atmospheres on the buckeye butterfly Junonia coenia. Ecology 72: 751–754. https://doi.org/10.2307/2937217
Feng, G.Q., Y. Li & Z.M. Cheng (2014). Plant molecular and genomic responses to stresses in projected future CO2 environment. Critical Reviews in Plant Sciences 33: 238–249. https://doi.org/10.1080/07352689.2014.870421
Fine, P.V.A., Z.J. Miller, I. Mesones, S. Irazuzta, H.M. Appel & M.H.H. Stevens (2006). The growth defense tradeoff and habitat specialization by plants in Amazonian forest. Ecology, 87: 150–162. https://doi.org/10.1890/0012-9658(2006)87[150:TGTAHS]2.0.CO;2
Goufo, P., J. Pereira, J. Moutinho-Pereira, C.M. Correia, N. Figueiredoc, C. Carrancac, E.A.S. Rosaa & H. Trindadea (2014). Rice (Oryza sativa L.) phenolic compounds under elevated carbon dioxide (CO2) concentration. Environmental and Experimental Botany 99: 28–37.https://doi.org/10.1016/j.envexpbot.2013.10.021
Helmuth, B., C.D. Harley, P.M. Halpin, M. O’Donnell, G.E. Hofmann & C.A. Blanchette (2002). Climate change and latitudinal patterns of intertidal thermal stress. Science 298: 1015–1017. https://doi.org/ 10.1126/science.1076814
Hoffmann, A .A., J.G. Sorensen & V. Loeschcke (2003). Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. Journal of Thermal Biology 28: 175–216. https://doi.org/10.1016/S0306-4565(02)00057-8
Houghton, J.T., B.A. Callander & S.K. Varney (1992). Climate change 1992. The supplementary report to the intergovernmental panel on climate change scientific assessment. Cambridge University Press, Cambridge, United Kingdom. https://doi.org/10.1111/j.1469-8137.2012.04074.x
Hughes, L. & F.A. Bazzaz (1997). Effect of elevated CO2 on interactions between the western flower thrips, Frankliniella occidentalis (Thysanoptera: thripidae) and the common milkweed, Asclepias syriaca. Oecologia 109: 286–290. https://doi.org/10.1007/s004420050085
Ibrahim, M.H. & H.Z. Jaafar (2012). Impact of elevated carbon dioxide on primary, secondary metabolites and antioxidant responses of Eleais guineensis Jacq. (oil palm) seedlings. Molecules 17(5): 5195–5211. https://doi.org/10.3390/molecules17055195
Jindal, K.K. & R.N. Singh (1975). Phenolic content in male and female Carica papaya: A possible physiological marker for sex identification of vegetable seedlings. Physiologia Plantarum 33(1): 104–107. https://doi.org/10.1111/j.1399-3054.1975.tb03774.x
Johnson, R.H. & D.E. Lincoln (1990). Sagebrush and grasshopper responses to atmospheric carbon dioxide concentration. Oecologia 84: 103–110. https://doi.org/10.1007/BF00665602
Kim, D.O., S.W. Jeond & C.Y. Lee (2005). Antioxidant capacity of phenolics phytochemicals from various cultivars of plums. Food Chemistry 89: 27–36. https://doi.org/10.1016/j.foodchem.2004.01.075
Leakey, A.D.B., E.A. Ainsworth, C.J. Bernacchi, A. Rogers, S.P. Long & D.R. Ort (2009). Elevated CO2 effects on plant carbon, nitrogen, and water six important lessons from FACE. Journal of Experimental Botany 60: 2859–2876. https://doi.org/10.1093/jxb/erp096
Lincoln, D.E., E.D. Fajer & R.H. Johnson (1993). Plant insect herbivore interactions in elevated CO2 environments. Trends in Ecology and Evolution 8: 64–68. https://doi.org/10.1016/0169-5347(93)90161-H
Long, S.P. & D.R. Ort (2010). More than taking the heat: crops and global change. Current Opinion in Plant Biology 13: 241–248. https://doi.org/10.1016/j.pbi.2010.04.008
Manimanjari, D. & M.S. Rao (2022). Host-mediated effects of elevated CO2 on the performance of Spodoptera litura Hub. Feeding on sunflower (Helianthus annuus L.). Phytoparasitica 50: 319–333. https://doi.org/10.1007/s12600-021-00964-2
NOAA. (2022). US Department of Commerce, Global Monitoring Laboratory - Carbon Cycle Greenhouse Gases, GML, https://gml.noaa.gov/ccgg/trends/gl_trend.html.
Osbrink, W.L.A., J.T. Trumble & R.E. Wagner (1987). Host suitability of Phaseolus lunatus for Trichoplusiani (Lepidoptera: Noctuidae) in controlled carbon dioxide atmospheres. Environmental Entomology 16: 639–644. https://doi.org/10.1093/ee/16.3.639
Ottman, M. J., B. A., Kimball & P. J. Pinter (2001). Elevated CO2 increases sorghum biomass under drought conditions. New Phytologist 150: 261–273. https://doi.org/10.1046/j.1469-8137.2001.00110.x
Rajashekar, C. (2018). Elevated CO2 Levels affect phytochemicals and nutritional quality of food crops. American Journal of Plant Sciences 9: 150–162. https://doi.org/10.4236/ajps.2018.92013
Rao, S.M., D. Manimanjari, M. Vanaja, C.A.R. Rao, K. Srinivas, V.U. Rao & B. Venkateswarlu (2012). Impact of elevated CO₂ on tobacco caterpillar, Spodoptera litura on peanut, Arachis hypogea. Journal of Insect Science 12: 103. https://doi.org/10.1673/031.012.10301
Robinson, E.A., G.D. Ryan & J.A. Newman (2012). A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytologist 194: 321–336. https://doi.org/10.1111/j.1469-8137.2012.04074.x
Rogers, H.H., G.B. Runion & S.V. Krupa (1994). Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphere. Environmental Pollution 83: 155–189. https://doi.org/10.1016/0269-7491(94)90034-5
Russell, J. A. (1944). Note on the colorimetric determination of amino-nitrogen. Journal of Biological Chemistry 156: 467-468.
Slansky, F. Jr. & P. Feeny (1977). Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecological Monographs 47: 209–228. https://doi.org/10.2307/1942617
Stillman, J.H. (2003). Acclimation capacity underlies susceptibility to climate change. Science 301: 65–6. https://doi.org/10.1126/science.1083073
Stitt, M. & A. Krapp (1999). The Interaction between elevated carbon dioxide and nitrogen nutrition: The physiological and molecular background. Plant, Cell & Environment 22: 583–621. https://doi.org/10.1046/j.1365-3040.1999.00386.x
Streeter, J.G. & D.L. Jeffers (1979). Distribution of total nonstructural carbohydrates in soybean plants having increased reproductive load. Crop Science 19: 729–734. https://doi.org/10.2135/cropsci1979.0011183X001900050046x
Stockle, C.O., J.R. Williams, N.J. Rosenberg & C.A. Jones (1992). A method for estimating the direct and climatic effects of rising atmospheric carbon dioxide on growth and yield of crops. Part 1. Modification of the EPIC model for climate change analysis. Agricultural Systems 38: 225–238.
Sudderth, E.A., K.A. Stinson & F.A. Bazzaz (2005). Host-specific aphid population responses to elevated CO2 and increased N availability. Global Change Biology 11: 1997–2008. https://doi.org/10.1111/j.1365-2486.2005.01006.x
Watt, A.D., J.B. Whittaker, M. Docherty, G. Brooks, E. Lindsay & D.T. Salt (1995). The impact of elevated atmospheric CO2 on insect herbivores, pp. 197–217. In: Harrington, R. & M.E. Stork (eds.). Insects in a Changing Environment. Academic Press, San Diego, California.
Williams, L.E., T.M. Dejong & D.A. Philips (1981). Carbon and nitrogen limitations on soybean seedling development. Plant Physiology 68: 1206–1209. https://doi.org/10.1104/pp.68.5.1206
Wong, S.C. (1979). Elevated atmospheric partial pressure of CO2 and plant growth. Oecologia 44: 68–74. https://doi.org/10.1007/BF00346400
Zvereva, E.L. & M.V. Kozlov (2006). Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: a meta-analysis. Global Change Biology 12: 27–41. https://doi.org/10.1111/j.1365-2486.2005.01086.x
Published
Issue
Section
License
Copyright (c) 2024 A.A. Abu ElEla Shahenda, Wael M. ElSayed

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors own the copyright to the articles published in JoTT. This is indicated explicitly in each publication. The authors grant permission to the publisher Wildlife Information Liaison Development (WILD) Society to publish the article in the Journal of Threatened Taxa. The authors recognize WILD as the original publisher, and to sell hard copies of the Journal and article to any buyer. JoTT is registered under the Creative Commons Attribution 4.0 International License (CC BY), which allows authors to retain copyright ownership. Under this license the authors allow anyone to download, cite, use the data, modify, reprint, copy and distribute provided the authors and source of publication are credited through appropriate citations (e.g., Son et al. (2016). Bats (Mammalia: Chiroptera) of the southeastern Truong Son Mountains, Quang Ngai Province, Vietnam. Journal of Threatened Taxa 8(7): 8953–8969. https://doi.org/10.11609/jott.2785.8.7.8953-8969). Users of the data do not require specific permission from the authors or the publisher.


