The past and current distribution of the lesser-known Indian endemic Madras Hedgehog Paraechinus nudiventris (Mammalia: Eulipotyphla: Erinaceidae)
DOI:
https://doi.org/10.11609/jott.8874.16.8.25639-25650Keywords:
Conservation, Endemism, IUCN, Maxent modeling, paleo distribution, South Indian Hedgehog, Teri red sandsAbstract
The Madras Hedgehog Paraechinus nudiventris (Horsefield, 1851) is a species endemic to a few isolated patches in southern India threatened by habitat loss and direct take. Little is known about its historical distribution or present climatic needs, both of which could provide important baselines for conservation and habitat restoration. The current distribution of Paraechinus nudiventris was modelled using occurrences collected in the field and from community reports. Based on the current climatic niche estimated from Maxent, Madras Hedgehog distribution was projected into southern India during the last interglacial gap (120,000–140,000 YBP), and last glacial maximum (22,000 YBP) and mid-Holocene (~6,000 YBP). During the (Last Interglacial Gap) LIG the suitable habitat was restricted to the Palghat gap in the southern Western Ghats mountains and a small region in south Sri Lanka, although it is unclear whether the suitable climates in Sri Lanka were occupied and then extirpated, or never colonized. The present climatic niche of the species is confined to lower elevations and semi-arid plains of southern and central Tamil Nadu in India. The contemporary models can be used to update the IUCN range map for P. nudiventris in India, as well as identify suitable habitats for this species to guide local conservation strategies.
References
Alappat, L., M. Frechen, R. Ramesh, S. Tsukamoto & S. Srinivasalu (2011). Evolution of late Holocene coastal dunes in the Cauvery delta region of Tamil Nadu, India. Journal of Asian Earth Sciences 42: 381–397. https://doi.org/10.1016/j.jseaes.2011.05.019
Alappat, L., S. Joseph, S. Tsukamoto, S. Kaufhold & M. Frechen (2017). Chronology and weathering history of red dunes (Teri Sands) in the southwest coast of Tamil Nadu, India. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 168: 183–198. https://doi.org/10.1127/zdgg/2016/0055
An, Z.S. (2000). The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19: 171–187. https://doi.org/10.1016/S0277-3791(99)00060-8
Anburaj, V., H. Sant’Ovaia, C. Gomes, A. Lourenco & S. Seshachalam (2015). A magnetic and geochemical characterization of red dune sands (teri sands) of Tamil Nadu coast. Indian Journal of Geo-Marine Sciences 44: 1382–1392.
Araujo, M.B., P.H. Williams & R.J. Fuller (2002). Dynamics of extinction and the selection of nature reserves. Proceedings of the Royal Society B-Biological Sciences 269: 1971–1980. https://doi.org/10.1098/rspb.2002.2121
Bannikova, A.A., V.S. Lebedev, A.V. Abramov & V.V. Rozhnov (2014). Contrasting evolutionary history of hedgehogs and gymnures (Mammalia: Erinaceomorpha) as inferred from a multigene study. Biological Journal of the Linnean Society 112: 499–519. https://doi.org/10.1111/bij.12299
Barry, J.C., M.E. Morgan, L.J. Flynn, D. Pilbeam, A.K. Behrensmeyer, S.M. Raza, I.A. Khan, C. Badgley, J. Hicks & J. Kelley (2002). Faunal and environmental change in the late Miocene Siwaliks of northern Pakistan. Paleobiology 28: 1–71. https://doi.org/10.1666/0094-8373(2002)28[1:FAECIT]2.0.CO;2
Beltrando, G. & P. Camberlin (1993). Interannual variability of rainfall in the eastern horn of Africa and indicators of atmospheric circulation. International Journal of Climatology 13: 533–546. https://doi.org/10.1002/joc.3370130505
Blois, J.L. & E.A. Hadly (2009). Mammalian Response to Cenozoic Climatic Change. Annual Review of Earth and Planetary Sciences 37: 181–208. https://doi.org/10.1146/annurev.earth.031208.100055
Bose, R., F. Munoz, B.R. Ramesh & R. Pélissier (2016). Past potential habitats shed light on the biogeography of endemic tree species of the Western Ghats biodiversity hotspot, South India. Journal of Biogeography 43: 899–910. https://doi.org/10.1111/jbi.12682
Boucher, K. (1998). Climates of South Asia. G.B.Pant & K.Rupa Kumar (eds). J.Wiley and Sons: Chichester, 1997. Pp. xxiii + 320. ISBN 0-471-94948-5. ú75.00. International Journal of Climatology 18: 581–581. https://doi.org/10.1002/(SICI)1097-0088(199804)18:5<581::AID-JOC267>3.0.CO;2-%23
Braun, C.E. (2005). Techniques for Wildlife Investigations and Management, The Wildlife Society (TWS), Bethesda, Maryland, USA.
Cabeza, M., M.B. Araujo, R.J. Wilson, C.D. Thomas, M.J.R. Cowley & A. Moilanen (2004). Combining probabilities of occurrence with spatial reserve design. Journal of Applied Ecology 41: 252–262. https://doi.org/10.1111/j.0021-8901.2004.00905.x
Census India (2011). Census of India. http://censusindia.gov.in/2011-Common/CensusData2011.html
Chakraborty, S., C. Srinivasulu & S. Molur (2017). Paraechinus nudiventris. The IUCN Red List of Threatened Species 2017: e.T39594A22326706. https://doi.org/10.2305/IUCN.UK.2017-2.RLTS.T39594A22326706.en. Accessed on 21 January 2024.
Cuffey, K.M. & S.J. Marshall (2000). Substantial contribution to sea–level rise during the last interglacial from the Greenland ice sheet. Nature 404: 591–594. https://doi.org/10.1038/35007053
Easterson, D.C.V (1966). Occurrence of fossil vertebrates in Tirunelveli District. Current Science 20: 622–623.
Elith, J., C.H. Graham, R.P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R.J. Hijmans, F. Huettmann, J.R. Leathwick, A. Lehmann, J. Li, L.G. Lohmann, B.A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J.M. Overton, A.T. Peterson, S.J. Phillips, K. Richardson, R. Scachetti–Pereira, R.E. Schapire, J. Soberon, S. Williams, M.S. Wisz & N.E. Zimmermann (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x
Elith, J. & J.R. Leathwick (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics 40: 677–697.
Farooqui, A., J.G. Ray, S.A. Farooqui, R.K. Tiwari & Z.A. Khan (2010). Tropical rainforest vegetation, climate and sea level during the Pleistocene in Kerala, India. Quaternary International 213: 2–11. https://doi.org/10.1016/j.quaint.2009.09.024
Franklin, J. (2010). Moving beyond static species distribution models in support of conservation biogeography. Diversity and Distributions 16: 321–330. https://doi.org/10.1111/j.1472-4642.2010.00641.x
Frost, D.R., W.C. Wozencraft & R.S. Hoffmann (1991). Phylogenetic relationships of hedgehogs and gymnures (Mammalia, Insectivora, Erinaceidae). Smithsonian Contributions to Zoology. No. 518, 69 pp.
Gadagkar, S., V.V. Robin, A. Sinha & U. Ramakrishnan (2010). Ancient Geographical Gaps and Paleo-Climate Shape the Phylogeography of an Endemic Bird in the Sky Islands of Southern India. PLoS One 5: e13321. https://doi.org/10.1371/journal.pone.0013321
Gardner, R. & H. Martingell (1990). Microlithic sites and their paleoenvironmental setting, Southeast India, a reevaluation. Geoarchaeology 5: 1–13. https://doi.org/10.1002/gea.3340050102
Gaston, K.J. (1991). How Large Is a Species Geographic Range. Oikos 61: 434–438. https://doi.org/10.2307/3545251
Gibbs, J.P. (1998). Distribution of woodland amphibians along a forest fragmentation gradient. Landscape Ecology 13: 263–268. https://doi.org/10.1023/A:1008056424692
Goelzer, H., P. Huybrechts, M.F. Loutre & T. Fichefet (2016). Last Interglacial climate and sea-level evolution from a coupled ice sheet–climate model. Climate of the Past 12: 2195–2213. https://doi.org/10.5194/cp-12-2195-2016
Green, E.E. (1913). Some suggestions for members of the Ceylon Natural History Society. Spolia Zeylanica 8: 285–288
Guisan, A. & W. Thuiller (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters 8: 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
Guisan, A. & N.E. Zimmermann (2000). Predictive habitat distribution models in ecology. Ecological Modelling 135: 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9
Gunatilleke, I.A.U.N. & C.V.S. Gunatilleke (1990). Distribution of Floristic Richness and Its Conservation in Sri Lanka. Conservation Biology 4: 21–31. https://doi.org/10.1111/j.1523-1739.1990.tb00262.x
Hicks, N.G. & S.M. Pearson (2003). Salamander diversity and abundance in forests with alternative land use histories in the Southern Blue Ridge Mountains. Forest Ecology and Management 177: 117–130. https://doi.org/10.1016/S0378-1127(02)00319-5
Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones & A. Jarvis (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978. https://doi.org/10.1002/joc.1276
Hijmans, R.J., J. Phillips, Leathwick & J. Elith (2011). Dismo. Available online at http://cran.r-project.org/web/packages/dismo/index.html. Accessed on 21 January 2024.
Jayakumar, S. & D.I. Arockiasamy (2003). Land use/land cover mapping and change detection in part of Eastern Ghats of Tamil Nadu using remote sensing and GIS. Journal of the Indian Society of Remote Sensing 31: 251–260. https://doi.org/10.1007/BF03007345
Jayangondaperumal, R., M.K. Murari, P. Sivasubramanian, N. Chandrasekar & A.K. Singhvi (2017) Luminescence dating of fluvial and coastal red sediments in the SE Coast, India, and implications for paleoenvironmental changes and dune reddening. Quaternary Research 77: 468–481. https://doi.org/10.1016/j.yqres.2012.01.010
Jha, C.S., C.B.S. Dutt & K.S. Bawa (2000) Deforestation and land use changes in Western Ghats, India. Current Science (Bangalore) 79: 231–238.
Joseph, S., K.P. Thrivikramaji & S. Anirudhan (1997). Textural parameters, Discriminant analysis and depositional environments of Teri Sands, Southern Tamil Nadu. Geological Society of India 50: 323–330.
Kumar, B. & V. Nijman (2016). Medicinal uses and trade of Madras Hedgehogs Paraechinus nudiventris in Tamil Nadu, India. Traffic Bulletin 28: 7–10.
Kumar, B., S. Babu & H.N. Kumara (2019a). Predicting the potential distribution of the lesser-known endemic Madras hedgehog Paraechinus nudiventris (Order: Eulipotyphla, Family: Erinaceidae) in southern India. Mammalia 83(5): 470–478. https://doi.org/10.1515/mammalia-2018-0101
Kumar, B., J. Togo & R. Singh (2019b). The South Indian hedgehog Paraechinus nudiventris (Horsfield, 1851): review of distribution data, additional localities and comments on habitat and conservation. Mammalia 83(4): 399–409. https://doi.org/10.1515/mammalia-2018-0128
Kumar, B., S.S Talmale and S. Molur (2020). New Data on Morphometry and Appendicular Skeleton of South Indian Hedgehog Paraechinus nudiventris Horsfield, 1851 (Mammalia: Eulipotyphla: Erinaceidae) from Urban Landscapes of Tamil Nadu, India. Proceedings of the Zoological Society 73: 205–214. https://doi.org/10.1007/s12595-020-00321-x
Kumar, P., K. Rupa Kumar, M. Rajeevan & A.K. Sahai (2006). On the recent strengthening of the relationship between ENSO and northeast monsoon rainfall over South Asia. Climate Dynamics 28: 649–660. https://doi.org/10.1007/s00382-006-0210-0
Kumar, S.N., P.K. Aggarwal, S. Rani, S. Jain, R. Saxena & N. Chauhan (2011). Impact of climate change on crop productivity in Western Ghats, coastal and northeastern regions of India. Current Science 10: 332–341.
Kumaran, K.P.N., R.B. Limaye, S.A. Punekar, S.N. Rajaguru, S.V. Joshi & S.N. Karlekar (2013). Vegetation response to South Asian Monsoon variations in Konkan, western India during the Late Quaternary: Evidence from fluvio-lacustrine archives. Quaternary International 286: 3–18. https://doi.org/10.1016/j.quaint.2012.03.010
Kunz, A., M. Frechen, R. Ramesh & B. Urban (2010). Luminescence dating of late Holocene dunes showing remnants of early settlement in Cuddalore and evidence of monsoon activity in south-east India. Quaternary International 222: 194–208. https://doi.org/10.1016/j.quaint.2009.10.042
Magesh, N.S & N. Chandrasekar (2017). Driving forces behind land transformations in the Tamiraparani sub-basin, South India. Remote Sensing Applications: Society and Environment 8: 12–19. https://doi.org/10.1016/j.rsase.2017.07.003
Manakadan, R. (2013). The Moyyar Wildlife Sanctuary. Hornbill 4–9 pp.
Mani, M.S. (1974). Ecology and Biogeography in India. Springer Dordrecht, Netherlands, XIX, 773 pp. https://doi.org/10.1007/978-94-010-2331-3_24
Marimuthu, R. & K. Asokan (2014). Bare-bellied or Madras hedgehog, Paraechinus nudiventris (Horsfield 1851) in Coimbatore, Tamil Nadu. Zoos’ Print 29: 33–34.
Nandini, R. & V.V. Robin (2012). Shola habitats on sky islands: status of research on montane forests and grasslands in southern India. Current Science 103: 1427–1437.
Ohnishi, N., R. Uno, Y. Ishibashi, H.B. Tamate & T. Oi (2009). The influence of climatic oscillations during the Quaternary Era on the genetic structure of Asian black bears in Japan. Heredity 102: 579–589. https://doi.org/10.1038/hdy.2009.28
Parmesan, C. & G. Yohe (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42. https://doi.org/10.1038/nature01286
Pate, H.R. (1917). Madras District Gazetteers Tinnevelly, Madras Presidency.
Phillips, S.J., R.P. Anderson & R.E. Schapire (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Prakasam, C. (2010). Land use and land cover change detection through remote sensing approach: A case study of Kodaikanal Taluk, Tamil Nadu. International Journal of Geomatics and Geosciences 1: 150–158.
Prater, S.H. (1971). The Book of Indian Mammals. Bombay.
Rohling, E.J., K. Grant, C. Hemleben, M. Siddall, B.A.A. Hoogakker, M. Bolshaw & M. Kucera (2007). High rates of sea-level rise during the last interglacial period. Nature Geoscience 1: 38–42. https://doi.org/10.1038/ngeo.2007.28
Rondinini, C., M. Di Marco, F. Chiozza, G. Santulli, D. Baisero, P. Visconti, M. Hoffmann, J. Schipper, S.N. Stuart, M.F. Tognelli, G. Amori, A. Falcucci, Maiorano & L.V. Boitani (2011). Global habitat suitability models of terrestrial mammals. Philosophical Transactions of the Royal Society B-Biological Sciences 366: 2633–2641. https://doi.org/10.1098/rstb.2011.0113
Shukla, A., R.C. Mehrotra, R.A. Spicer, T.E.V. Spicer & M. Kumar (2014). Cool equatorial terrestrial temperatures and the South Asian monsoon in the Early Eocene: Evidence from the Gurha Mine, Rajasthan, India. Palaeogeography, Palaeoclimatology, Palaeoecology 412: 187–198. https://doi.org/10.1016/j.palaeo.2014.08.004
Smith (2017). ‘geogThin’. http://www.earthskysea.org/r-code/ Accessed on 17 Marcch 2023.
Solberg, K.H., E. Bellemain, O. M. Drageset, P. Taberlet & J.E. Swenson (2006). An evaluation of field and non-invasive genetic methods to estimate brown bear (Ursus arctos) population size. Biological Conservation 128: 158–168. https://doi.org/10.1016/j.biocon.2005.09.025
Soman, K., K.G. Tharam, M. Arakelyants & V.N. Golubyev (1990). Mineral ages of pegmatites from the Palghat Gap region in Kerala and their tectonic significance. Journal of the Geological Society of India 35: 82–86.
Somaweera, R., N. Wijayathilaka, G. Bowatte & M. Meegaskumbura (2015). Conservation in a changing landscape: habitat occupancy of the critically endangered Tennent’s leaf-nosed lizard (Ceratophora tennentii) in Sri Lanka. Journal of Natural History 49: 1961–1985. https://doi.org/10.1080/00222933.2015.1006280
Srivastava, G., A. Trivedi, R.C. Mehrotra, K.N. Paudayal, R.B. Limaye, K.P.N. Kumaran & S.K. Yadav (2016). Monsoon variability over Peninsular India during Late Pleistocene: Signatures of vegetation shift recorded in terrestrial archive from the corridors of Western Ghats. Palaeogeography, Palaeoclimatology, Palaeoecology 443: 57–65. https://doi.org/10.1016/j.palaeo.2015.11.045
Unnikrishnan-Warrier, C., M. Santosh & M. Yoshida (2009). First report of Pan-African Sm—Nd and Rb—Sr mineral isochron ages from regional charnockites of southern India. Geological Magazine 132: 253. https://doi.org/10.1017/S0016756800013583
Voris, H.K. (2000). Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography 27: 1153–1167. https://doi.org/10.1046/j.1365-2699.2000.00489.x
Warren, D.L. & S.N. Seifert (2011). Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications 21: 335–342. https://doi.org/10.1890/10-1171.1
Webb-Peploe, C.G. (1949). Field notes on the mammals of South Tinnevelly, South India. The Journal of Bombay Natural History Society 46: 629–644.
Williams, P.H. & M.B. Araujo (2000). Using probability of persistence to identify important areas for biodiversity conservation. Proceedings of the Royal Society B-Biological Sciences 267: 1959–1966. https://doi.org/10.1098/rspb.2000.1236
Woodruff, D.S. (2010). Biogeography and conservation in Southeast Asia: how 2.7 million years of repeated environmental fluctuations affect today’s patterns and the future of the remaining refugial-phase biodiversity. Biodiversity and Conservation 19: 919–941. https://doi.org/10.1007/s10531-010-9783-3
Wroughton, R.C. (1907). Notes on the fauna of a desert tract in Southern India. Part III. - A list of a small collection of mammals from Ramanad. Memoirs of Asiatic Society of Bengal 1 : 221–222.
Xuelong, J. & Hoffman (2013). Insectivores. In: Johnsingh, A.J.T. & N. Manjrekar (eds.). Mammals of South Asia. Universities Press (India) Pvt. Ltd.,Hyderabad, 766 pp.
Zhang, Z., V. Trevino, S.S Hoseini, S. Belciug, A.M. Boopathi, P. Zhang, F. Gorunescu, V. Subha & S. Dai (2018). Variable selection in Logistic regression model with genetic algorithm. Annals of Translational Medicine 6(3): 45. https://doi.org/10.21037/atm.2018.01.15
Published
Issue
Section
License
Copyright (c) 2024 R. Brawin Kumar, William T. Bean

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors own the copyright to the articles published in JoTT. This is indicated explicitly in each publication. The authors grant permission to the publisher Wildlife Information Liaison Development (WILD) Society to publish the article in the Journal of Threatened Taxa. The authors recognize WILD as the original publisher, and to sell hard copies of the Journal and article to any buyer. JoTT is registered under the Creative Commons Attribution 4.0 International License (CC BY), which allows authors to retain copyright ownership. Under this license the authors allow anyone to download, cite, use the data, modify, reprint, copy and distribute provided the authors and source of publication are credited through appropriate citations (e.g., Son et al. (2016). Bats (Mammalia: Chiroptera) of the southeastern Truong Son Mountains, Quang Ngai Province, Vietnam. Journal of Threatened Taxa 8(7): 8953–8969. https://doi.org/10.11609/jott.2785.8.7.8953-8969). Users of the data do not require specific permission from the authors or the publisher.


