Species distribution modelling of Baya Weaver Ploceus philippinus in Nagaon District of Assam, India: a zoogeographical analysis

Main Article Content

Nilotpal Kalita
https://orcid.org/0000-0001-7744-349X
Neeraj Bora
https://orcid.org/0009-0000-8136-2457
Sandip Choudhury
https://orcid.org/0000-0002-6273-8233
Dhrubajyoti Sahariah
https://orcid.org/0000-0002-9563-0093

Abstract

Identification and mapping of the spatial distribution of species is an important aspect of zoogeographical enquiry. The habitats of many species are facing the threat of depletion in increasingly human-influenced environments. This has already led to the extinction of many species in different localities, making understanding the linkages between anthropogenic threats and species distribution of utmost importance. A GIS-based model was applied to gain an overall picture of the potential distribution of Ploceus philippinus (Baya Weaver) in and around Nagaon District in Assam. The used maxent model in the GIS environment gives a highly significant Area Under Curve (AUC) validation statistic of 0.99. Out of the total area of 3,975 km2, 596.86 km2 (15%) is demarcated as a high-potential area. Such predictions are highly useful in assisting in the conservation of threatened species under current and future climatic conditions. 

Article Details

Section
Communications
Author Biographies

Nilotpal Kalita, Department of Geography, Nowgong Girls’ College, Uttar Haibargaon, PO - Haibargaon, P.S. Sadar, Assam 782001, India.

.

Neeraj Bora, Department of Zoology, Nowgong Girls’ College, Uttar Haibargaon, PO - Haibargaon, P.S. Sadar, Assam 782001, India.

.

Sandip Choudhury, Department of Zoology, Nowgong Girls’ College, Uttar Haibargaon, PO - Haibargaon, P.S. Sadar, Assam 782001, India.

.

Dhrubajyoti Sahariah, Department of Geography, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam 781014, India.

.

References

Ali, S. (1931). The nesting habits of the baya (Ploceus philippinus): a new interpretation of their domestic relations. Journal of the Bombay Natural History Society 34: 947–964.

Arigela, R.K., R.K. Singh, N. Siddabathula, K. Prasad & B.S. Yadav (2021). Botanical view of the Baya Weaver’s choices in India. Species 22(70): 420–430.

Ambedkar, V.C. (1970). Nests of the Baya, Ploceus philippinus (Linnaeus) on telegraph wires. Journal of the Bombay Natural History Society 66: 624.

Booth, T.H., H.A. Nix, J.R. Busby & M.F. Hutchinson (2014). BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Diversity and Distributions 20(1): 1–9. https://doi.org/10.1111/ddi.12144 DOI: https://doi.org/10.1111/ddi.12144

Bradie, J. & B. Leung (2017). A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. Journal of Biogeography 44(6): 1344–1361. DOI: https://doi.org/10.1111/jbi.12894

Crook, J.H. (1960). Studies on the reproductive behaviour of the baya weaver [Ploceus philippinus (L.)]. Journal of the Bombay Natural History Society 57: 1–44.

Crook, J.H. (1963). The Asian weaver birds: problems of co-existence and evolution with particular reference to behaviour. Journal of the Bombay Natural History Society 60(1): 1–48.

Davis, T.A. (1971). Baya Weaver bird nesting on human habitations. Journal of the Bombay Natural History Society 68: 246–248

Davis, T.A. (1972). Mud and dung plastering in Baya nests. Journal of the Bombay Natural History Society 70(1): 57–71.

Davis, T.A. (1974). Selection of nesting trees and the frequency of nest visits by Baya Weaverbird. Journal of the Bombay Natural History Society 71(3): 356–366.

De Silva, T.N., A.T. Peterson & U. Perktas (2019). An extensive molecular phylogeny of weaverbirds (Aves: Ploceidae) unveils broad nonmonophyly of traditional genera and new relationships. The Auk 136(3): 1–21. https://doi.org/10.1093/auk/ukz041 DOI: https://doi.org/10.1093/auk/ukz041

Fick, S.E. & R.J. Hijmans (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12): 4302–4315. https://doi.org/10.1002/joc.5086 DOI: https://doi.org/10.1002/joc.5086

Friedl, M. & D. Sulla-Menashe (2019). MCD12Q1 MODIS/Terra+ Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006. 2019, distributed by NASA EOSDIS Land Processes DAAC.

Fourcade, Y., J.O. Engler, D. Rödder & J. Secondi (2014). Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS one 9(5): e97122. https://doi.org/10.1371/journal.pone.0097122 DOI: https://doi.org/10.1371/journal.pone.0097122

Jathar, G., D. Patil, M. Kalra, T. de Silva, A. T. Peterson, M. Irfan-Ullah, A. R. Rahmani, P. Mehta & J. Kulkarni (2015). Mapping the Potential Distribution of the Critically Endangered Forest Owlet Heteroglaux blewitti in India. Journal of the Bombay Natural History Society 112(2): 55–64. DOI: https://doi.org/10.17087/jbnhs/2015/v112i2/104924

Mehmud, S., N. Kalita, H. Roy, & D. Sahariah (2022). Species distribution modelling of Calamus floribundus Griff. (Arecaceae) using Maxent in Assam. Acta Ecologica Sinica 42(2): 115-121. https://doi.org/10.1016/j.chnaes.2021.10.005 DOI: https://doi.org/10.1016/j.chnaes.2021.10.005

Moya, W., G. Jacome & C. Yoo (2017). Past, current, and future trends of red spiny lobster based on PCA with MaxEnt model in Galapagos Islands, Ecuador. Ecology and Evolution 7(13): 4881–4890. https://doi.org/10.1002/ece3.3054 DOI: https://doi.org/10.1002/ece3.3054

Nameer, P.O. & J.V. Sanjo (2020). The expanding distribution of the Indian Peafowl (Pavo cristatus) as an indicator of changing climate in Kerala, southern India: a modelling study using MaxEnt. Ecological Indicators 110: 105930. https://doi.org/10.1016/j.ecolind.2019.105930 DOI: https://doi.org/10.1016/j.ecolind.2019.105930

Padalia, H., V. Srivastava & S.P.S. Kushwaha (2014). Modeling potential invasion range of alien invasive species, Hyptis suaveolens (L.) Poit. in India: Comparison of MaxEnt and GARP. Ecological informatics 22: 36–43. https://doi.org/10.1016/j.ecoinf.2014.04.002 DOI: https://doi.org/10.1016/j.ecoinf.2014.04.002

Phillips, S.J. & M. Dudík (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2): 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x DOI: https://doi.org/10.1111/j.0906-7590.2008.5203.x

Palacio, F.X. & J.M. Girini (2018). Biotic interactions in species distribution models enhance model performance and shed light on natural history of rare birds: a case study using the straight‐billed reedhaunter Limnoctites rectirostris. Journal of Avian Biology 49(11): e01743. https://doi.org/10.1111/jav.01743 DOI: https://doi.org/10.1111/jav.01743

Rahmani, A.R., M.U. Islam & R.M. Kasambe (2016). Important bird and biodiversity areas in India: Priority sites for conservation (Revised and updated). Bombay Natural History Society, Indian Bird Conservation Network, Royal Society for the Protection of Birds and BirdLife International United Kingdom, 1992 pp.

Reside, A.E., J.J. van der Wal, A.S. Kutt & G.C. Perkins (2010). Weather, not climate, defines distributions of vagile bird species. PLoS one 5(10): e13569. https://doi.org/10.1371/journal.pone.0013569 DOI: https://doi.org/10.1371/journal.pone.0013569

Rhoden, C.M., W.E. Peterman & C.A. Taylor (2017). Maxent-directed field surveys identify new populations of narrowly endemic habitat specialists. PeerJ 5: e3632. https://doi.org/10.7717/peerj.3632 DOI: https://doi.org/10.7717/peerj.3632

Rodrıguez, E., C.S. Morris, J.E. Belz, E.C. Chapin, J.M. Martin, W. Daffer & S. Hensley (2005). An assessment of the SRTM topographic products. Jet Propulsion Laboratory, Pasadena, California.

Sarma, K., A. Kumar, M. Krishna, M. Medhi & O.P. Tripathi (2015). Predicting suitable habitats for the vulnerable Eastern Hoolock Gibbon, Hoolock leuconedys, in India using the MaxEnt model. Folia Primatologica 86(4): 387–397. https://doi.org/10.1159/000381952 DOI: https://doi.org/10.1159/000381952

Street, S.E., R. Jaques & T.N. De Silva (2022). Convergent evolution of elaborate nests as structural defences in birds. Proceedings of the Royal Society B 289: 20221734. https://doi.org/10.1098/rspb.2022.1734 DOI: https://doi.org/10.1098/rspb.2022.1734

Syfert, M.M., M.J. Smith & D.A. Coomes (2013). The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS One 8(2): e55158. https://doi.org/10.1371/journal.pone.0055158 DOI: https://doi.org/10.1371/journal.pone.0055158