Species distribution modeling of a cucurbit Herpetospermum darjeelingense in Darjeeling Himalaya, India

Main Article Content

Saurav Moktan
https://orcid.org/0000-0003-0355-4167
Debasruti Boral
https://orcid.org/0000-0002-8679-837X

Abstract

Herpetospermum darjeelingense (C.B.Clarke) H. Schaef. & S.S. Renner is a rare cucurbit found in Darjeeling, Himalaya. It is known for its use as food and medicine with possible pharmaceutical applications. Here we assess the current and future habitat suitability of H. darjeelingense in the study area using MaxEnt modeling. In order to obtain accurate results for future models, the ensemble method was used. The current suitable habitat covers only 13% of the study area, while the future models for 2050 and 2070 show zero habitat suitability for the species. This strongly indicates a possible local extinction of the species indicating a need for rapid and decisive conservation efforts.

Article Details

Section
Communications

References

Abdelaal, M., M. Fois, G. Fenu & G. Bacchetta (2019). Using MaxEnt modelling to predict the potential distribution of the endemic plant Rosa Arabica Crép. in Egypt. Ecological Informatics 50: 68–75. https://doi.org/10.1016/j.ecoinf.2019.01.003

Allouche, O., A. Tsoar & R. Kadmon (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43(6): 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

Araújo, M.B. & M. New (2007). Ensemble forecasting of species distributions. Trends in ecology & evolution 22(1): 42–47. https://doi.org/10.1016/j.tree.2006.09.010

Babar, S., G. Amarnath, C.S. Reddy, A. Jentsch & S. Sudhakar (2012). Species distribution models: ecological explanation and prediction of an endemic and endangered plant species (Pterocarpus santalinus L. f). Current Science 102(8): 1157–1165.

Ball, J.W., T.P. Robinson, G.W. Wardell-Johnson, J. Bovill, M. Byrne & P.G. Nevill (2020). Fine-scale species distribution modelling and genotyping by sequencing to examine hybridisation between two narrow endemic plant species. Scientific reports 10(1): 1–12. https://doi.org/10.1038/s41598-020-58525-2

Banag, C., T. Thrippleton, G.J. Alejandro, B. Reineking & S. Liede-Schumann (2015). Bioclimatic niches of selected endemic Ixora species on the Philippines: predicting habitat suitability due to climate change. Plant Ecology 216(9): 1325–1340. https://doi.org/10.1007/s11258-015-0512-6

Banerjee, A., M. Devi, A. Nag, R.K. Sharma & A. Kumar (2017). Modelling Probable Distribution of Podophyllum hexandrum in North-Western Himalaya. Indian Forester 143(12): 1255–1259.

Beaumont, L.J., L. Hughes & M. Poulsen (2005). Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions. Ecological Modelling 186(2): 251–270. https://doi.org/10.1016/j.ecolmodel.2005.01.030

BGCI (2021). Threat Search online database. Botanic Gardens Conservation International. Richmond, UK. https://www.bgci.org/threat_search.php. Electronic version accessed on 05 May 2021.

CEPF (2005). Ecosystem Profile: eastern Himalayas region. In: Critical Ecosystem Partnership Fund. https://www.cepf.net/sites/default/files/final.ehimalayas.ep_.pdf. Downloaded on 05 May 2021.

CEPF (2021). Critical Ecosystem Partnership Fund. https://www.cepf.net/our-work/biodiversity-hotspots/himalaya. Electronic version accessed on 04 April 2021.

Chakraborty, S., S. Majumder, A. Ghosh, S. Saha & M. Bhattacharya (2021). Metabolomics of potential contenders conferring antioxidant property to varied polar and non-polar solvent extracts of Edgaria darjeelingensis CB Clarke. Bulletin of the National Research Centre 45(1): 1–12. https://doi.org/10.1186/s42269-021-00503-3

Chandra, N., G. Singh, S. Lingwal, M.P.S. Bisht & L.M. Tiwari (2021). Population assessment and habitat distribution modelling of the threatened medicinal plant Picrorhiza kurroa Royle ex Benth. in the Kumaun Himalaya, India. Journal of Threatened Taxa 13(7): 18868–18877. https://doi.org/10.11609/jott.5603.13.7.18868-18877

Chaturvedi, R.K., J. Joshi, M. Jayaraman, G. Bala & N.H. Ravindranath (2012). Multi-model climate change projections for India under representative concentration pathways. Current Science 103(7): 791–802.

Chhetri, B. & H.K. Badola (2017). Predicting suitable habitats for the vulnerable species, Rhododendron niveum Hook. f. (Ericaceae) in eastern Himalaya. NeBIO 8(3): 139–146.

Das, A. (1995). Diversity of angiospermic flora of Darjeeling hills, pp 118–127. In: Pandey, A. (eds.) Taxonomy and Biodiversity CBS Publishers & Distributors, India.

Dullinger, S., A. Gattringer, W. Thuiller, D. Moser, N.E. Zimmermann, A. Guisan, W. Willner, C. Plutzar, M. Leitner,T. Mang, M. Caccianiga, T. Dirnböck, S. Ertl, A. Fischer, J. Lenoir, J. Svenning, A. Psomas, D. Schmatz, U. Silc, P. Vittoz & K. Hülber (2012). Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change 2: 619–622. https://doi.org/10.1038/nclimate1514

Elith, J. & J.R. Leathwick (2009). Species distribution models: ecological explanation and prediction across space and time. Annual review of ecology, evolution, and systematics 40: 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

Elith, J., S.J. Phillips, T. Hastie, M. Dudík, Y.E. Chee & C.J. Yates (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17(1): 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

Erdtman, G. (1960). The acetolysis method: a revised description. Svensk Botanisk Tidskrift 54: 561–564.

Fick, S.E. & R.J. Hijmans (2017). WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12): 4302–4315. https://doi.org/10.1002/joc.5086

Gómez-Ruiz, E.P. & T.E. Lacher Jr. (2019). Climate change, range shifts, and the disruption of a pollinator-plant complex. Scientific Reports 9(1): 1–10. https://doi.org/10.1038/s41598-019-50059-6

Grierson, A.J.C & D.G. Long (eds.) (1991). Flora of Bhutan: Volume II Part 1. The Royal Botanic Garden of Edinburgh, United Kingdom.

Griffies, S.M., M. Winton, L.J. Donner, L.W. Horowitz, S.M. Downes, R. Farneti, A. Gnanadesikan, W.J. Hurlin, H. Lee, Z. Liang, J.B. Palter, B.L. Samuels, A.T. Wittenberg, B.L. Wyman, J. Yin & N. Zadeh (2011). The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. Journal of Climate 24(13): 3520–3544. https://doi.org/10.1175/2011JCLI3964.1

Hart, R., J. Salick, S. Ranjitkar & J. Xu (2014). Herbarium specimens show contrasting phenological responses to Himalayan climate. Proceedings of the National Academy of Sciences 111(29): 10615–10619. https://doi.org/10.1073/pnas.1403376111

Hernandez, P.A., C.H. Graham, L.L. Master & D.L. Albert (2006). The effect of sample size and species characteristics on performance of different species distribution modelling methods. Ecography 29(5): 773–785. https://doi.org/10.1111/j.0906-7590.2006.04700.x

Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones & A. Jarvis (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978. https://doi.org/10.1002/joc.1276

Hills, R., S. Bachman, F. Forest, J. Moat & P. Wilkin (2019). Incorporating evolutionary history into conservation assessments of a highly threatened group of species, South African Dioscorea (Dioscoreaceae). South African Journal of Botany 123: 296–307. https://doi.org/10.1016/j.sajb.2019.03.032

IPCC (2014). Climate Change 2014: synthesis report. In: Pachauri RK, Meyer LA (eds) Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Core Writing Team. IPCC, Switzerland.

Irfan-Ullah, M., G. Amarnath, M.S.R. Murthy & A.T. Peterson (2006). Mapping the geographic distribution of Aglaia bourdillonii Gamble (Meliaceae), an endemic and threatened plant, using ecological niche modelling, pp. 343–351. In: Hawksworth, D.L. & A.T. Bull (eds.). Plant Conservation and Biodiversity. Springer, Dordrecht, 421 pp.

Kandel, P., N. Chettri, R.P. Chaudhary, H.K. Badola, K.S. Gaira, S. Wangchuk, N. Bidha, Y. Uprety & E. Sharma (2019). Plant diversity of the Kangchenjunga Landscape, Eastern Himalayas. Plant diversity 41: 153–165. https://doi.org/10.1016/j.pld.2019.04.006

Khanum, R., A.S. Mumtaz & S. Kumar (2013). Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modelling. Acta Oecologica 49: 23–31. https://doi.org/10.1016/j.actao.2013.02.007

Meehl, G.A., W.M. Washington, J.M. Arblaster, A. Hu, H. Teng, C. Tebaldi, B.N. Sanderson, J. Lamarque, A. Conley, W.G. Strand & J.B. White III (2012). Climate system response to external forcings and climate change projections in CCSM4. Journal of Climate 25(11): 3661–3683. https://doi.org/10.1175/JCLI-D-11-00240.1

Mueller-Boeker, U. (1993). Ethnobotanical studies among the Chitawan Tharus. Journal of the Nepal Research Center 9: 17–56. https://doi.org/10.5167/uzh-33899

Nirola, S. & A.P. Das (2017). Endemic monocot flora of Darjeeling Himalaya, West Bengal, India. Pleione 11(1): 116–124.

Pande, H.K. & S. Arora (2014). India’s Fifth National Report to the Convention on Biological Diversity. Ministry of Environment and Forestry, Government of India, India.

Pandit, M.K., K. Manish & L.P. Koh (2014). Dancing on the roof of the world: ecological transformation of the Himalayan landscape. BioScience 64(11): 980–992. https://doi.org/10.1093/biosci/biu152

Pearson, R.G. (2007). Species distribution modelling for conservation educators and practitioners. Synthesis: American Museum of Natural History 50: 54–89.

Pearson, R.G., C.J. Raxworthy, M. Nakamura & A.T. Peterson (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography 34(1): 102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x

Peterson, A.T., M. Papeş & M. Eaton (2007). Transferability and model evaluation in ecological niche modelling: a comparison of GARP and Maxent. Ecography 30(4): 550–560. https://doi.org/10.1111/j.0906-7590.2007.05102.x

Phillips, S.J., R.P. Anderson & R.E. Schapire (2006). Maximum entropy modelling of species geographic distributions. Ecological Modelling 190(3-4): 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Phillips, S.J., R.P. Anderson, M. Dudík, R.E. Schapire & M.E. Blair (2017). Opening the black box: An open‐source release of Maxent. Ecography 40(7): 887–893. https://doi: 10.1111/ecog.03049

Potts, A.J., T.A. Hedderson, J.H. Vlok & R.M. Cowling (2013). Pleistocene range dynamics in the eastern Greater Cape Floristic Region: a case study of the Little Karoo endemic Berkheya cuneata (Asteraceae). South African Journal of Botany 88: 401–413. https://doi.org/10.1016/j.sajb.2013.08.009

POWO (2021). Herpetospermum darjeelingense (C.B.Clarke) H.Schaef. & S.S.Renner | Plants of the World Online | Kew Science. http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:77110566-1. Electronic version accessed 01 May 2021.

Purohit, S. & N. Rawat (2021). MaxEnt modeling to predict the current and future distribution of Clerodendrum infortunatum L. under climate change scenarios in Dehradun district, India. Modeling Earth Systems and Environment 8: 2051–2063. https://doi.org/10.1007/s40808-021-01205-5

Qin, A., K. Jin, M.E. Batsaikhan, J. Nyamjav, G. Li, J. Li, Y. Xue, G. Sun, L. Wu, T. Indree, Z. Shi & W. Xiao (2020). Predicting the current and future suitable habitats of the main dietary plants of the Gobi Bear using MaxEnt modelling. Global Ecology and Conservation 22: e01032. https://doi.org/10.1016/j.gecco.2020.e01032

Renner, S.S. & A.K. Pandey (2013). The Cucurbitaceae of India: Accepted names, synonyms, geographic distribution, and information on images and DNA sequences. PhytoKeys 20: 53–118. https://doi.org/10.3897/phytokeys.20.3948

Shrestha, I. & P. Khadgi (2019). Herbal veterinary practices by Tamang community in central Nepal. NUTA Journal 6(1-2): 5–11.

Singh, G., N. Chandra, S. Lingwal, M.P.S Bisht & L.M. Tiwari (2020). Distribution and threat assessment of an endemic and endangered species Angelica glauca in high ranges of western Himalaya. Journal of Herbs, Spices and Medicinal Plants 26: 394–404. https://doi.org/10.1080/10496475.2020.1748783

Srivastava, V., V.C. Griess & H. Padalia (2018). Mapping invasion potential using ensemble modelling. A case study on Yushania maling in the Darjeeling Himalayas. Ecological modelling 385: 35–44. https://doi.org/10.1016/j.ecolmodel.2018.07.001

Sumarga, E. (2011). The comparison of logistic regression, geostatistics and Maxent for distribution modeling of a forest endemic: a pilot study on lobels maple at MT Pizzalto, Italy. MSc Thesis. Faculty of Geo-information Science and Earth Observation, University of Twente, vii+63 pp.

Swets, J.A. (1988). Measuring the accuracy of diagnostic systems. Science 240(4857): 1285–1293. https://doi.org/10.1126/science.3287615

Villa-Machío I., A.G.F. de Castro, J.F. Aguilar & G.N. Feliner (2020). Colonization history of the Canary Islands endemic Lavatera acerifolia, (Malvaceae) unveiled with genotyping by sequencing data and niche modelling. Journal of Biogeography 47(4): 993–1005. https://doi.org/10.1111/jbi.13808

Warren, D.L., R.E. Glor & M. Turelli (2010). Enmtools: a toolbox for comparative studies of environmental niche models, evaluation. Ecography 31: 161–175. https://doi.org/10.1111/j.1600-0587.2009.06142.x

Watanabe, M., T. Suzuki, R. O’ishi, Y. Komuro, S. Watanabe, S. Emori, T. Takemura, M. Chikira, T. Ogura, M. Sekiguchi, K. Takata, D. Yamazaki, T. Yokohata, T. Nozawa, H. Hasumi, H. Tatebe & M. Kimoto (2010). Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. Journal of Climate 23(23): 6312–6335. https://doi.org/10.1175/2010JCLI3679.1