Elliptic Fourier analysis of leaf shape of Callicarpa pedunculata and Callicarpa rubella (Lamiaceae)

Main Article Content

Jennifer S. Danila
https://orcid.org/0000-0001-8126-6107
Grecebio Jonathan D. Alejandro
https://orcid.org/0000-0003-4524-0385

Abstract

Leaves play an important role in species discrimination. An elliptic Fourier analysis (EFA) based morphometric technique was used to assess divergence between the poorly differentiated species, Callicarpa pedunculata and C. rubella. Using leaf specimen images from herbarium collections, principal components (PCs) were extracted from the Fourier coefficients and used to describe leaf outline and leaf shape descriptors: circularity, aspect ratio, and solidity. The results indicate that symmetric (54%) and asymmetric (35%) components of the leaves of C. pedunculata and C. rubella are sources of shape variation, as shown in the width and leaf tips among the samples. MANOVA revealed significant interspecific differences (P = 0.03) between C. pedunculata and C. rubella. The jack-knife cross-validation showed 71% of correctly classified species both in C. pedunculata and C. rubella. Furthermore, the results of this study were able to reveal significant leaf shape descriptors like aspect ratio, circularity, and solidity as important diagnostic characters in discriminating C. pedunculata and C. rubella. Thus, in conclusion, leaf serrations, leaf size, and leaf lobes are important characteristics in discriminating between C. pedunculata and C. rubella.

Article Details

Section
Articles
Author Biographies

Jennifer S. Danila, The Graduate School, University of Santo Tomas. España Blvd., 1015 Manila, Philippines; and College of Science and Research Centre for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., 1015 Manila, Philippines.

.

 

Grecebio Jonathan D. Alejandro, College of Science and Research Centre for the Natural and Applied Sciences, University of Santo Tomas, España Blvd., 1015 Manila, Philippines.

.

References

Abrammoff, M.D., P.J. Magalhaes & S.J. Ram (2004). Image Processing with Image Processing with Image. Journal of Biophotonics 11(7): 36–42.

Adebowale, A., A. Nicholas, J. Lamb & Y. Naidoo (2012). Elliptic Fourier analysis of leaf shape in southern African Strychnos section Densiflorae (Loganiaceae). Botanical Journal of the Linnean Society 170(4): 542–553. https://doi.org/10.1111/j.1095-8339.2012.01308 DOI: https://doi.org/10.1111/j.1095-8339.2012.01308.x

Alonso-Forn, D., D. Sancho-Knapik, J.P. Ferrio, J.J. Peguero-Pina, A. Bueno, Y. Onoda & E. Gil-Pelegrín (2020). Revisiting the Functional Basis of Sclerophylly Within the Leaf Economics Spectrum of Oaks: Different Roads to Rome. Current Forestry Reports 6: 260–281. https://doi.org/10.1007/s40725-020-00122-7 DOI: https://doi.org/10.1007/s40725-020-00122-7

Arvidsson, C. (2020). Callicarpa pedunculata. The IUCN Red List of Threatened Species 2020: e.T158679327A158679743. https://doi.org/10.2305/IUCN.UK.20203.RLTS.T158679327A158679743.en. Downloaded on 14 August 2021.

BGCI (2024). PlantSearch. Botanic Gardens Conservation International. Richmond, U.K. Available at https://plantsearch.bgci.org. Accessed on 07/02/2024.

Bramley, G.L.C. (2013). The genus Callicarpa (Lamiaceae) in the Philippines. Kew Bulletin 68(3): 369–418. DOI: https://doi.org/10.1007/s12225-013-9456-y

Bramley, G.L.C. (2019). Flora Malesiana 23: 1-444. Noordhoff-Kolff N.V., Djakarta.

Brown, W.H. (1920). Minor Products of Philippine Forests. Department of Agriculture and Natural Resources. Bureau of Forestry. Vol. 1 Bulletin No. 22. Bureau of Printing, Manila, 473 pp. DOI: https://doi.org/10.5962/bhl.title.13582

Chitwood, D.H., A. Ranjan, C. Martinez, L. Headland, T. Thiem, R. Kumar, M.F. Covington, T. Hatcher, D.T. Naylor, S. Zimmerma, N. Downs, N. Raymundo, E.S. Buckler, J.N. Maloof, M. Aradhya, B. Prins, L. Li, S. Myles & N. Sinha (2014). A modern ampelography: A genetic basis for leaf shape and venation patterning in grape. Plant Physiology 164: 259–272. DOI: https://doi.org/10.1104/pp.113.229708

Cope, J.S., D. Corney, J.Y. Clark, P. Remagnino & P. Wilkin (2012). Plant species identification using digital morphometrics: A review. Expert Systems with Applications 39(8): 7562–7573. https://doi.org/10.1016/j.eswa.2012.01.073 DOI: https://doi.org/10.1016/j.eswa.2012.01.073

Danila, J.S. & G.J.D Alejandro (2021). Leaf geometric morphometric analyses of Callicarpa and Geunsia (Lamiaceae) in the Malesian region. Biodiversitas 22: 4379–4390. DOI: https://doi.org/10.13057/biodiv/d221031

Di Marc, M. & L. Santini (2015). Human pressures predict species’ geographic range size better than biological traits. Global Change Biology 21(6): 2169–2178. https://doi.org/10.1111/gcb.12834 DOI: https://doi.org/10.1111/gcb.12834

Godefroy, J.E., F. Bornert, C.I. Gros & A. Constantinesco (2012). Elliptical Fourier descriptors for contours in three dimensions: A new tool for morphometrical analysis in biology. Comptes Rendus Biologies 335(3): 205–213. https://doi.org/10.1016/j.crvi.2011.12.004 DOI: https://doi.org/10.1016/j.crvi.2011.12.004

Gupta, S., D.M. Rosenthal, J.R. Stinchcombe & R.S. Baucom (2019). The remarkable morphological diversity of leaf shape in sweetpotato (Ipomoea batatas): the influence of genetics, environment, and G×E. New Phytologist 225(5): 2183–2195. https://doi.org/10.1111/nph.16286 DOI: https://doi.org/10.1111/nph.16286

Iwata, H. & Y. Ukai (2002). SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. Journal of Heredity 93: 384–385. DOI: https://doi.org/10.1093/jhered/93.5.384

Hammer, Ø., D.A.T. Harper & P.D. Ryan (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 2001(4): 1–9.

Hearn, D.J. (2009). Shape analysis for the automated identification of plants from images of leaves. Taxon 58(3): 934–954. DOI: https://doi.org/10.1002/tax.583021

Jones, C.S. (1995). Does shade prolong juvenile development: a morphological analysis of leaf shape changes in Cucurbita argyrosperma ssp. sororia (Cucurbitaceae). American Journal of Botany 82: 346–359. DOI: https://doi.org/10.1002/j.1537-2197.1995.tb12639.x

Jump, A.S. & J. Penuelas (2005). Running to stand still: adaptation and the response of plants to rapid climate change. Ecology Letters 8(9): 1010–1020. https://doi.org/10.1111/j.1461-0248.2005.00796 DOI: https://doi.org/10.1111/j.1461-0248.2005.00796.x

Klein, L.L. & H.T. Svoboda (2017). Comprehensive Methods for Leaf Geometric Morphometric Analyses. Bio-protocol 7(9): e2269. https://doi.org/10.21769/BioProtoc.2269 DOI: https://doi.org/10.21769/BioProtoc.2269

Leeratiwong, C., P. Chantaranothai & A.J. Paton (2009). A synopsis of the genus Callicarpa L. (Lamiaceae) in Thailand. Thai Forest Bulletin (Botany) 37: 36–58.

Lexer, C., J. Joseph, M. Van Loo, G. Prenner, B. Heinze, M.W. Chase & D. Kirkup (2009). The use of digital image based morphometrics to study the phenotypic mosaic in taxa with porous genomes. Taxon 58: 5–20. DOI: https://doi.org/10.1002/tax.582003

Linnaeus, C. (1753). Species plantarum: exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Impensis Laurentii Salvii, Holmiae 1: 560. DOI: https://doi.org/10.5962/bhl.title.59734

MacArthur, R.H. (1957). On the relative abundance of bird species. Proceedings of the National Academy of Sciences 43(3): 293–295. https://doi.org/10.1073/pnas.43.3.293 DOI: https://doi.org/10.1073/pnas.43.3.293

McLellan, T. & J.A. Endler (1998). The relative success of some methods for measuring and describing the shape of complex objects. Systematic Biology 47(2): 264–281. DOI: https://doi.org/10.1080/106351598260914

Mirouze, E., A. Staquet & R. Vezy (2012). Morphometric and Morphological analysis of leaves in two species of Araceae: Montrichardia linifera and Montrichardia arborescens among different French Guiana populations. Journal of Ecofog 3: 1–15.

Munir, J. (1982). A taxonomic revision of the genus Callicarpa in Australia. Journal of the Adelaide Botanic Gardens. 6: 5–39.

Newbold, T., L.N. Hudson, S.L.L. Hill, S. Contu, I. Lysenko, R.A. Senior & A. Purvis (2015). Global effects of land use on local terrestrial biodiversity. Nature 520(7545): 45–50. https://doi.org/10.1038/nature14324 DOI: https://doi.org/10.1038/nature14324

Orians, C.M. (2000). The effects of hybridization in plants on secondary chemistry: implications for the ecology and evolution of plant-herbivore interactions. American Journal of Botany 87(12): 1749–1756. DOI: https://doi.org/10.2307/2656824

Peppe, D.J., D.L. Royer, B. Cariglino, S.Y. Oliver, S. Newman, E. Leight & I.J. Wright, (2011). Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist 190(3): 724–739. https://doi.org/10.1111/j.1469-8137.2010.03615 DOI: https://doi.org/10.1111/j.1469-8137.2010.03615.x

Piazza, P., S. Jasinski & M. Tsiantis (2005). Evolution of leaf developmental mechanisms. New Phytologist. 167 693–710. DOI: https://doi.org/10.1111/j.1469-8137.2005.01466.x

Roxburgh, W. (1820). Flora Indica. Vol. I. Thacker, Spink & Co., Calcutta, 489 pp.

Royer D.L. & P. Wilf (2006). Why do toothed leaves correlate with cold climates? Gas exchange at leaf margins provides new insights into a classic paleotemperature proxy. International Journal of Plant Sciences 167: 11–18. DOI: https://doi.org/10.1086/497995

Royer, D.L., J.C. McElwain, J.M. Adams & P. Wilf (2008). Sensitivity of leaf size and shape to climate within Acer rubrum and Quercus kelloggii. New Phytologist.179(3): 808–817. DOI: https://doi.org/10.1111/j.1469-8137.2008.02496.x

Sandner, T.M. & D. Matthies (2017). Fluctuating asymmetry of leaves is a poor indicator of environmental stress and genetic stress by inbreeding in Silene vulgaris. Ecological Indicators 79: 247–253. https://doi.org/10.1016/j.ecolind.2017.04.030 DOI: https://doi.org/10.1016/j.ecolind.2017.04.030

Thomas, S.C. & F.A. Bazzaz (1996). Elevated CO2 and leaf shape: Are dandelions getting toothier? American Journal of Botany. 83: 106–111. DOI: https://doi.org/10.1002/j.1537-2197.1996.tb13882.x

Tsukaya, H., T. Fukuda & J. Yokoyama (2003). Hybridization and introgression between Callicarpa japonica and C. mollis (Verbenaceae) in central Japan, as inferred from nuclear and chloroplast DNA sequences. Molecular Ecology 12(11): 3003–3011. https://doi.org/10.1046/j.1365-294x.2003.01961 DOI: https://doi.org/10.1046/j.1365-294X.2003.01961.x

Tu, S.H., C.T. Ho, M.F. Liu, C.S. Huang, H.W. Chang, C.H. Chang, C.H. Wu & Y.S. Ho (2013). Luteolin sensitises drug-resistant human breast cancer cells to tamoxifen via de inhibition of cyclin E2 expression. Food Chemistry 141(2): 1553–1561. DOI: https://doi.org/10.1016/j.foodchem.2013.04.077

Van Valen, L. (1962). A study of fluctuating asymmetry. Evolution 16: 125–142. https://doi.org/10.1111/j.1558-5646.1962.tb03206 DOI: https://doi.org/10.1111/j.1558-5646.1962.tb03206.x

Vieira, M., S.J. Mayo & I.M. de Andrade (2014). Geometric morphometrics of leaves of Anacardium microcarpum Ducke and A. occidentale L. (Anacardiaceae) from the coastal region of Piauí, Brazil. Revista Brasileira de Botanica 37(3): 315–327. https://doi.org/10.1007/s40415-014-0072-3 DOI: https://doi.org/10.1007/s40415-014-0072-3

Wolfe, A. & A. Liston (1998). Contributions of PCR-Based Methods to Plant Systematics and Evolutionary Biology, pp. 43–86. In: Soltis, D., P. Soltis & J. Doyle (eds.). Molecular Systematics of Plants II. Springer US, 574 pp. DOI: https://doi.org/10.1007/978-1-4615-5419-6_2

Yamanaka, T. (1988). On Callicarpa tosaensis. Makino Journal of Japanese Botany 63: 15–17.

Zhang, J. & P. Li (2019). Response of plant functional traits to climate change. IOP Conference Series: Earth and Environmental Science 300(032078): 1–4. https://doi.org/10.1088/1755-1315/300/3/032078 DOI: https://doi.org/10.1088/1755-1315/300/3/032078