Diversity of spiders (Arachnida: Araneae) and the impact of pruning in Indian sandalwood plantations from Karnataka, India

Main Article Content

S. Padma
https://orcid.org/0000-0001-9729-6319
R. Sundararaj
https://orcid.org/0000-0001-8858-9312

Abstract

Indian sandalwood Santalum album L. plantations in Karnataka were surveyed to study the diversity and abundance of spider fauna. A total of 1,244 individuals belonging to 56 spider species in 40 genera under 14 families were recorded in the sandalwood plantations. Among the spider families recorded, Araneidae was the most dominant with 15 species in nine genera followed by Salticidae with 13 species in 10 genera, Thomisidae with seven species in four genera, Oxyopidae with four species in three genera, Uloboridae with four species in a genus, and Theridiidae by three species each under three genera. Lycosidae and Sparassidae are represented by two species under two genera each. The families Cheiracanthiidae, Clubionidae, Hersiliidae, Philodromidae, and Pholcidae are represented by a species each. The pruning of sandalwood revealed a significant negative effect on the occurrence and distribution of spiders. 

Article Details

Section
Communications

Funding data

References

Altieri, M.A. & D.K. Letourneau (1984). Vegetation diversity and insect pests outbreaks. CRC Critical Reviews in Plant Sciences 2: 131–169. https://doi.org/10.1080/07352688409382193

Buchholz, S. & M. Schroder (2013). Diversity and ecology of spider assemblages of a Mediterranean wetland complex. Journal of Arachnology 41: 364–373. https://doi.org/10.1636/p13-26.1

Carter, P.V. & A.L. Rypstra (1995). Top-down effects in soya bean agroecosystems: Spider density affects herbivore damage. Oikos 72: 433–439.

Caleb, J.T.D. & P.M. Sankaran (2021). Araneae of India. Version 2021, online at http://www.indianspiders.in [accessed on 18.viii.2021].

Coddington, J.A. & H.W. Levi (1991). Systematics and evolution of spiders (Araneae). Annual Review of Ecology and Systematics 22: 565–592. https://doi.org/10.1146/annurev.es.22.110191.003025

Downie, I.S., W.L. Wilson., V.J. Abernehy., D.I. McCracken., G.N. Foster., I. Ribera., A. Waterhouse & K.J. Murphy (1999). The impact of different agricultural land-uses on epigeal spider biodiversity in Scotland. Journal of Insect conservation 3: 273–286. https://doi.org/10.1023/A:1009649222102

Foelix, R.F. (1996). Biology of Spiders. (2nd ed.). Oxford University Press, New York.

Greenstone, M.H. (1984). Determinants of web spider species diversity: vegetation structural diversity vs. prey availability. Oecologia 62: 299–304. https://doi.org/10.1007/BF00384260

Halaj, J., D.W. Ross & A.R. Moldenke (1998). Habitat structure and prey availability as predictors of the abundance and community organization of spiders in western Oregon forest canopies. Journal of Arachnology 26: 203–220. https://andrewsforest.oregonstate.edu/sites/default/files/lter/pubs/pdf/pub2575.pdf

Lalnunsangi, R., D. Paul & L.K. Jha (2014). Natural enemy complex of some agroforestry systems of Aizawl and their implications in insect pest management. Energy and Environment Research 4: 29–33. https://doi.org/10.5539/eer.v4n2p29

Marc, P. & A. Canard (1997). Maintaining spider biodiversity in agroecosystems as a tool in pest control. Agriculture, Ecosystems & Environment 62: 229–235. https://doi.org/10.1016/S0167-8809(96)01133-4

Metzner, H. (2021). Jumping spiders (Arachnida: Araneae: Salticidae) of the world. Accessed on 19 August 2021.https://www.jumping-spiders.com/

Oguri, H., T. Yoshida, A. Nakamura, M. Soga & N. Hijii (2014). Vertical stratification of spider assemblages in two conifer plantations in central Japan. The Journal of Arachnology 42: 34–43. https://doi.org/10.1636/P13-73.1

Ossamy, S., S.M. Elbanna, G.M. Orabi & F.M. Semida (2016). Assessing the potential role of spider as bioindicators in Ashtoum el Gamil Natural Protected Area, Port Said, Egypt. Indian Journal of Arachnology 5: 100–112.

Pooja, A. Anilkumar, S. Quasin, Sreelekshmi & V.P. Uniyal (2019). Spider Fauna of Navdanya Biodiversity Farm, Uttarakhand, India. Indian Forester 145: 392–397.

Riechert, S.E. & L. Bishop (1990). Prey control by an assemblage of generalist predators: Spiders in garden test systems. Ecology 71: 1441–1450. https://doi.org/10.2307/1938281

Rypstra, A.L. (1986). Web spiders in temperate and tropical forests: relative abundance and environmental correlates. The American Midland Naturalist 115: 42–51. https://doi.org/10.2307/2425835

Sandeep, S., S. Reshmi & K.S. Jose (2020). Predatory spider faun in fruit crops of Punjab, India along with new records. Indian Journal of Agricultural Sciences 90: 1695–1701.

Sattler, C., J. Schrader, R.J. Flor, M. Keo, S. Chhun, S. Choun, H. Bar & J. Settele (2021). Reducing pesticides and increasing crop diversification offer ecological and economic benefits for farmers - a case study in Cambodian Rice Fields. Insects 12: 267. https://doi.org/10.3390/insects12030267

Scheidler, M. (1990). Influence of habitat structure and vegetation architecture on spiders. Zoologischer Anzeiger 225: 333–340. https://doi.org/10.32800/abc.2016.39.0221

Sudhikumar, A.V., M.J. Mathew, E. Sunish & P.A. Sebastian (2005). Seasonal variation in spider abundance in Kuttanad rice agroecosystem, Kerala, India (Araneae). European Arachnology 1: 181–190. https://doi.org/10.5829/idosi.wasj.2013.22.06.73114

Sundararaj, R., R. Rashmi, Shanbhag & B. Lingappa (2018). Habitat diversification in the cultivation of Indian sandalwood (Santalum album Linn.): an ideal option to conserve biodiversity and manage insect pests. Journal of Biological Control 32(3): 160–164. https://doi.org/10.18311/jbc/2018/17931

Sundararaj, R., J.J. Wilson & D. Vimala (2019). Stem borers of Indian Sandalwood (Santalum album Linn.) in Karnataka, India. Journal of the Indian Academy of Wood Science 16: 31–35.

Sundararaj, R., R. Raja Rishi & S. Padma (2020). Conservation of pollinators is vital for the sustainable cultivation and conservation of Indian sandalwood (Santalum album L.). Insect Environment 23: 64–67. https://nucleus.iaea.org/sites/naipc/twd/Documents/Insect-Environment-Volume-23-Dec2020.pdf

Sunderland, K & F. Samu (2000). Effects of agricultural diversification on the abundance, distribution and pest control potential of spiders: a review. Entomologia Experiments et Applicata 95: 1–13. https://doi.org/10.1046/j.1570-7458.2000.00635.x

Tews, J., U. Brose, V. Grimm, K. Tielbörger, M.C. Wichmann, M. Schwager & F. Jeltsch (2004). Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. Journal of Biogeography 31: 79–92. https://doi.org/10.1046/j.0305-0270.2003.00994.x

Tikader, B.K. (1987). Hand Book of Indian Spiders. Zoological Survey of India, India.

Torres, B., O.J. Maza, P. Aguirre, L. Hinojosa & S. Günter (2015). The Contribution of Traditional Agroforestry to Climate Change Adaptation in the Ecuadorian Amazon: The Chakra System, pp. 1973–1994. In: Filho, W.L. (ed.). Handbook of Climate Change Adaptation. Springer, Berlin/Heidelberg, Germany.

Uetz, G.W., J. Halaji & A.B. Cady (1999). Guild structure of spiders in major crops. Journal of Arachnology 24: 270–280.

Whitmore, C., R. Slotow, T.E. Crouch & A.S. Dippenaar-Schoeman (2002). Diversity of spiders (Araneae) in a Savanna Reserve, Northern Province, South Africa. Journal of Arachnology 30: 344–356. https://doi.org/10.1636/0161-8202(2002)030[0344:DOSAIA]2.0.CO;2

World Spider Catalog (2021). World Spider Catalog.Version 22.0. Natural History Museum Bern, online at http://wsc.nmbe.ch, Electronic version accessed on 24 March 2021.

Young, O.P. & G.B. Edwards (1990). Spiders in United States field crops and their potential effect on crop pests. Journal of Arachnology 18(1): 1–27.