Argentinian odonates (dragonflies and damselflies): current and future distribution and discussion of their conservation

Main Article Content

A. Nava-Bolaños
https://orcid.org/0000-0002-4371-5415
D.E. Vrech
A.V. Peretti
https://orcid.org/0000-0002-5633-9922
A. Córdoba-Aguilar
https://orcid.org/0000-0002-5978-1660

Abstract

In terms of conservation, Argentinian odonates have not been assessed using a quantitative approach. One way to achieve this is by modelling their distribution to gather the extent of occurrence. Thus, we modelled the current and future (projected year, 2050) potential distribution of 44 odonate species that occur in Argentina as well as in neighboring countries. Our models of current times indicate a fairly wide distribution for most species but one exception is relevant for conservation purposes: Lestes dichrostigma has less than 30,000 km2 and falls in the ‘Near Threatened’ category according to the IUCN Red List. Another seven species have less than or close to 100,000 km2: Elasmothemis cannacrioides, Erythemis credula, E. paraguayensis, Heteragrion angustipenne, H. inca, Lestes forficula, and Mecistogaster linearis. Future distribution estimates suggest that: a) 12 species will lose or gain around 10%, four species will increase their distribution beyond 10% (up to 2,346%), and 28 species will lose more than 10% (up to 99%). Although current protected areas embrace most odonate species in Argentina, it is still premature to conclude whether this situation will remain in the future given the physiological tolerance and dispersal abilities of the study species among other drivers of distribution. 

Article Details

How to Cite
[1]
A. Nava-Bolaños, D.E. Vrech, A.V. Peretti and A. Córdoba-Aguilar 2021. Argentinian odonates (dragonflies and damselflies): current and future distribution and discussion of their conservation. Journal of Threatened Taxa. 13, 11 (Sep. 2021), 19448–19465. DOI:https://doi.org/10.11609/jott.7166.13.11.19448-19465.
Section
Articles

References

Allouche, O., A. Tsoar, & R. Kadmon (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43(6): 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

Broennimann, O., M.C. Fitzpatrick, P.B. Pearman, B. Petitpierre, L. Pellissier, N.G. Yoccoz, W. Thuiller, M-J. Fortin, C. Randin, N.E. Zimmermann, C.H. Graham & A. Guisan (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography 21(4): 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x

Bush, A.A., D.A. Nipperess, D.E. Duursma, G. Theischinger, E. Turak & L. Hughes (2014). Continental-scale assessment of risk to the Australian Odonata from climate change. PLoS ONE 9(2). https://doi.org/10.1371/journal.pone.0088958

Chapman, A.D. (2005). Principles and Methods of Data Cleaning. GBIF, Copenhagen, 75pp.

Collins, S.D. & N.E. McIntyre (2015). Modeling the distribution of odonates: A review. Freshwater Science 34(3): 1144–1158. https://doi.org/10.1086/682688

Corbet, P.S. & M.L. May (2008). Fliers and perchers among Odonata: Dichotomy or multidimensional continuum? A provisional reappraisal. International Journal of Odonatology 11(2): 155–171. https://doi.org/10.1080/13887890.2008.9748320

De Marco Júnior, P., C.C. Nóbrega, R.A. De Souza, & U.G. Neiss (2015). Modeling the distribution of a rare Amazonian odonate in relation to future deforestation. Freshwater Science 34(3): 1123–1132. https://doi.org/10.1086/682707

Elith, J., K. Michael & P. Steven (2010). The art of modelling range‐shifting species. Methods in Ecology and Evolution 1(4): 330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x

Hassall, C. (2012). Predicting the distributions of under-recorded Odonata using species distribution models. Insect Conservation and Diversity 5(3): 192–201. https://doi.org/10.1111/j.1752-4598.2011.00150.x

Hassall, C. (2015). Odonata as candidate macroecological barometers for global climate change. Freshwater Science 34(3): 1040–1049. https://doi.org/10.1086/682210

Hijmans, R.J., S.E. Cameron, J.L. Parra, P.G. Jones & A. Jarvis (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25(15): 1965–1978. https://doi.org/10.1002/joc.1276

Hof, C., M. Brändle & R. Brandl (2006). Lentic odonates have larger and more northern ranges than lotic species. Journal of Biogeography 33(1): 63–70. https://doi.org/10.1111/j.1365-2699.2005.01358.x

IUCN (2018). The IUCN Red List of Threatened Specieswww.theredlist.org accessed 25 August 2016.

Liu, C., M. White, & G. Newell (2009). Measuring the accuracy of species distribution models: A review. 18th World IMACS Congress and MODSIM 2009 - International Congress on Modelling and Simulation: Interfacing Modelling and Simulation with Mathematical and Computational Sciences, Proceedings (January 2009): 4241–4247.

Maes, D., N. Titeux, J. Hortal, A. Anselin, K. Decleer, G. de Knijf, … M. Luoto (2010). Predicted insect diversity declines under climate change in an already impoverished region. Journal of Insect Conservation 14(5): 485–498. https://doi.org/10.1007/s10841-010-9277-3

Merow, C., M.J. Smith, T.C. Edwards, A. Guisan, S.M. Mcmahon, S. Normand, W. Thuiller, R.O. Wüest, N.E. Zimmermann & Elith (2014). What do we gain from simplicity versus complexity in species distribution models? Ecography 37(12): 1267–1281. https://doi.org/10.1111/ecog.00845

Muzón, J., F. Lozano, A. del Palacio, L.S. Ramos, & A. Lutz (2015). Odonata from the Lower Delta of the Paraná River, Argentina. Agrion 20(2): 68–72.

Muzón, J., P. Pessacq & F. Lozano (2014). The Odonata (Insecta) of Patagonia: A synopsis of their current status with illustrated keys for their identification. Zootaxa 3784(4): 346–388. https://doi.org/10.11646/zootaxa.3784.4.2

Muzon, J. & N. von Ellenrieder (1999). Status and distribution of Odonata (Insecta) within natural protected areas in Argentina. Biogeographica 75(3): 119–128.

Nóbrega, C.C. & P. de Marco (2011). Unprotecting the rare species: A niche-based gap analysis for odonates in a core Cerrado area. Diversity and Distributions 17(3): 491–505. https://doi.org/10.1111/j.1472-4642.2011.00749.x

Paulson, D.R. (2004). Critical species of odonata in the neotropics. International Journal of Odonatology 7(2): 163–188. https://doi.org/10.1080/13887890.2004.9748208

Peterson, A.T. (2006). Uses and Requirements of Ecological Niche Models and Related Distributional Models. Biodiversity Informatics, 3(0): 59–72.

Phillips, S., R. Anderson & R. Schapire (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Pliscoff, P. & T. Fuentes-Castillo (2011). Modelación de la distribución de especies y ecosistemas en el tiempo y en el espacio: una revisión de las nuevas herramientas y enfoques disponibles 1. Revista de Geografía Norte Grande 48: 61–79. https://doi.org/http://dx.doi.org/10.4067/S0718-34022011000100005

Pritchard, G., M.A. Leggott, G. Pritchard & M.A. Leggott (1987). Temperature, Incubation Rates and Origins of Dragonflies. Odonatology 3(1): 121–126.

R Core Team (2017). R: A language and environment for statistical computing. In: R Found Stat Comput Vienna, Austria.

Rangel-Sánchez, L., A. Nava-Bolaños, F. Palacino-Rodríguez & A. Córdoba-Aguilar (2018). Estimating distribution area in six Argia damselflies (Insecta: Odonata: Coenagrionidae) including A. garrisoni, a threatened species. Revista Mexicana de Biodiversidad 89(3): 921–926. http://dx.doi.org/10.22201/ib.20078706e.2018.3.2469

Reiss, H., H. Cunze, K. König, K. Neumann & I. Kröncke (2011). Species distribution modelling of marine benthos: A North Sea case study. Marine Ecology Progress Series 442: 71–86. https://doi.org/10.3354/meps09391

Sala, O.E., F.S. Chapin, J.J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L.F. Huenneke, R.B. Jackson, A. Kinzig, R. Leemans, D.M. Lodge, H.A. Mooney, M. Oesterheld, N.L. Poff, M.T. Sykes, B.H. Walker, M. Walker & D.H. Wall (2000). Global biodiversity scenarios for the year 2100. Science 287(5459): 1770–1774. https://doi.org/10.1126/science.287.5459.1770

Sánchez-Guillén, R.A., A. Córdoba-Aguilar, B. Hansson, J. Ott & M. Wellenreuther (2016). Evolutionary consequences of climate-induced range shifts in insects. Biological Reviews 91(4): 1050–1064. https://doi.org/10.1111/brv.12204

Sánchez-Guillén, R.A., J. Muñoz, G. Rodríguez-Tapia, T.P.F. Arroyo & A. Córdoba-Aguilar (2013). Climate-induced range shifts and possible hybridisation consequences in insects. PLoS ONE 8(11): 1–10. https://doi.org/10.1371/journal.pone.0080531

Thuiller, W., B. Lafourcade, R. Engler, & M.B. Araújo (2009). BIOMOD - A platform for ensemble forecasting of species distributions. Ecography 32(3): 369–373. https://doi.org/10.1111/j.1600-0587.2008.05742.x

Von Ellenrieder, N. (2009). Odonata of the Argentine Yungas cloud forest: Distribution patterns and conservation status. Odonatologica 38(1): 39–53.

Von Ellenrieder, N. (2010). Odonata biodiversity of the argentine chaco biome. International Journal of Odonatology 13(1): 1–25. https://doi.org/10.1080/13887890.2010.9748357

Von Ellenrieder, N. & J. Muzon (2008). An updated checklist of the Odonata from Argentina. Odonatologica 37(1): 55–68.

Von Ellenrieder, N. & J. Muzón (1999). The Argentinean species of the genus Perithemis Hagen (Anisoptera: Libellulidae). Odonatologica 28(4): 385–398.