Faunal diversity of an insular crepuscular cave of Goa, India

Main Article Content

Pratiksha Sail
https://orcid.org/0000-0002-6772-835X
Manoj Ramakant Borkar
https://orcid.org/0000-0003-0582-1978
Ismat Shaikh
https://orcid.org/0000-0003-4384-1558
Archana Pal
https://orcid.org/0000-0002-1657-0978

Abstract

This study is the first attempt to document troglofaunal diversity of crepuscular cave ecosystem from the state of Goa.  Twelve faunal species (seven invertebrates and five vertebrates) have been documented from an insular crepuscular cave which measures 18.62m in floor length and shows a transition of light and hygrothermal profile between its entrance and dead end.  Absence of primary producers, thermal constancy, high humidity, poor ventilation, and competitive exclusion due to limited food resources restricts the faunal diversity of this cave; though trophic linkages are interesting yet speculative, as is typical of subterranean ecosystem.  Among the macro-invertebrates, cavernicolous Whip Spider is a significant species here; whereas the important vertebrates encountered are the Fungoid frog and the Indian Cricket frog, besides roosts of the Rufous Horseshoe bat.  Eco-energetic subsidy, possibly offered by crickets and bats that regularly feed outside this oligotrophic cave ecosystem is discussed.  The need to document the unique and vulnerable troglofauna of this sensitive ecosystem from the conservation perspective is highlighted.   

Article Details

How to Cite
[1]
Sail, P., Borkar, M.R., Shaikh, I. and Pal, A. 2021. Faunal diversity of an insular crepuscular cave of Goa, India. Journal of Threatened Taxa. 13, 2 (Feb. 2021), 17630–17638. DOI:https://doi.org/10.11609/jott.6628.13.2.17630-17638.
Section
Communications

References

Adelowo, F.E., S.O. Oladeji & K.A. Odelade (2016). The Spectrophotometric evaluation of phosphate in soil samples. MAYFEB Journal of Environmental Science 1: 20–29.

Amarasekare, P. & R.M. Coutinho (2014). Effects of temperature on intraspecific competition in ectotherms. The American Naturalist 184(3): 50–65. https://doi.org/10.1086/677386

Baidya, P. & V. Chindarkar (2015). Common Ants of Goa. Mineral Foundation of Goa, Goa, India.

Barr, T.C. (1968). Cave ecology and the evolution of Troglobites. pp. 35–102. In: Dobzhansky T., M.K. Hecht & W.C. Steere (eds.). Evolutionary Biology. Springer, Boston, MA, https://doi.org/10.1007/978-1-4684-8094-8_2

Bastawade, D.B. (1995). Redescription of Phrynichus phipsoni (Pocock) (Phrynichidae: Arachnida) collected after 100 yrs from new locations in Maharashtra, western India. Journal of the Bombay Natural History Society 92: 132–136.

Bauer, A.M., T.R. Jackman, E. Greenbaum, A. de Silva, V.B. Giri & I. Das (2010a). Molecular evidence for the taxonomic status of Hemidactylus brookii group taxa (Squamata: Gekkonidae). Herpetological Journal 20(3): 129–138.

Bauer, A.M., T.R. Jackman, E. Greenbaum, V.B. Giri & A. de Silva (2010b). South Asia supports a major endemic radiation of Hemidactylus geckos. Molecular Phylogenetics and Evolution 57(1): 343–352. https://doi.org/10.1016/j.ympev.2010.06.014

Benoit, J.B., J.A. Yoder, L.W. Zettler & H.H. Hobbs (2004). Mycoflora of a trogloxenic cave cricket, Hadenoecus cumberlandicus (Orthoptera: Rhaphidophoridae), from two small caves in northeastern Kentucky. Annals of the Entomological Society of America 97(5): 989–993. https://doi.org/10.1603/0013-8746(2004)097[0989:MOATCC]2.0.CO;2

Biswas, J. (1992). Kotumsar Cave ecosystem: an interaction between geophysical, chemical and biological characteristics. Bulletin of the National Speleological Society 54: 7–10.

Biswas, J. (2009). The biodiversity of Krem Mawkhyrdop of Meghalaya, India, on the verge of extinction. Current Science 96(7): 904–910.

Biswas, J. (2010). Kotumsar cave biodiversity: a review of cavernicoles and their troglobiotic traits. Biodiversity and Conservation 19(1): 275–289. https://doi.org/10.1007/s10531-009-9710-7

Biswas, J. & S. Shrotriya (2011). Dandak: a mammalian dominated cave ecosystem of India. Subterranean Biology 8: 1–7. https://doi.org/10.3897/subtbiol.8.1224

Borkar, M.R., N. Komarpant & D.B. Bastawade (2006). First report of whip spider Phrynicus phipsoni Pocock from the human habitations and protected areas of Goa state, India; with notes on its habits and habitat. Records of the Zoological Survey of India 106(4): 33–38.

Chapin, K.J. (2015). Cave-epigean behavioral variation of the whip spider Phrynus longipes (Arachnida: Amblypygi) evidenced by activity, vigilance, and aggression. The Journal of Arachnology 43(2): 214–219.

Chari, V.K. (1962). A description of the hitherto undescribed tadpole of, and some field notes on the Fungoid frog, Rana malabarica (Bibr.) Journal of the Bombay Natural History Society 59(1): 71–76.

Chopard, L. (1970). Description de Gryllides cavernicoles nouveaus (Orthoptera: Phalangopsidae). Bulletin de la Societe Entomologique de France 75: 117–123.

Culver, D.C. & T. Pipan (2019). The biology of caves and other subterranean habitats. Oxford University Press, Oxford. https://doi.org/10.1093/oso/9780198820765.001.0001

Encinares, J.M.A. (2019). Guano arthropod assemblages in caves of Mabini, Pangasinan (Philippines). Philippine Entomologist 33(1): 11–29.

Fernandes, C.S., M.A. Batalha & M.E. Bichuette (2016). Does the Cave Environment Reduce Functional Diversity? PLoS ONE 11(3): 1–14. https://doi.org/10.1371/journal.pone.0151958

Ford, D. & P. Williams (2007). Speleogenesis: The develpoment of cave systems, pp. 209–270. In: Ford, D. & P. Williams (eds.). Karst Hydrogeology and Geomorphology. John Wiley & Sons, Ltd., Chichester, 562pp.

Gibert, J. & L. Deharveng (2002). Subterranean Ecosystems: A Truncated Functional Biodiversity. BioScience 52 (6): 473–481.

Gunn, J. (2004). Encyclopedia of Caves and Karst Science. Taylor and Francis, New York, 928pp. https://doi.org/10.4324/9780203483855

Gururaja, K.V. (2012). Pictorial guide to frogs and toads of the Western Ghats. Gubbi Labs LLP, Karnataka, India, 48pp.

Hawkins, S.J. & H.D. Jones (1992). Rocky shores- Marine Field Course Guide. Immel Publishing, London, 1144pp.

Hebets, E.A. (2002). Relating the unique sensory system of amblypygids to the ecology and behavior of Phrynus parvulus from Costa Rica (Arachnida, Amblypygi). Canadian Journal of Zoology 80(2): 286–295. https://doi.org/10.1139/z02-006

Iskali, G. & Y. Zhang (2015). Guano subsidy and the invertebrate community in Bracken Cave: the world’s largest colony of bats. Journal of Cave and Karst Studies 77(1): 28–36. https://doi.org/10.4311/2013LSC0128

Kearney, M.R., S.J. Simpson, D. Raubenheimer & S.A.L.M. Kooijman (2013). Balancing heat, water and nutrients under environmental change: a thermodynamic niche framework. Functional Ecology 27(4): 950–965. https://doi.org/10.1111/1365-2435.12020

Keswani, S., P. Hadole & A. Rajoria (2012). Checklist of spiders (Arachnida: Araneae) from India. Indian Journal of Arachnology 1(1): 1–129.

Korad, V., K. Yardi & R. Raut (2007). Diversity and distribution of bats in the Western Ghats of India. Zoo’ s Print Journal 22(7): 2752–2758. https://dx.doi.org/10.11609/JoTT.ZPJ.1563.2752-8

Kunz, T.H. & L.F. Lumsden (2005). Ecology of cavity and foliage roosting bats, pp. 3–89. In: Kunz, T.H & M.B. Fenton (eds.).Bat Ecology. The University of Chicago Press,Chicago, 779pp.

Lavoie, K.H., K.L. Helf & T.L. Poulson (2007). The biology and ecology of North American cave crickets. Journal of Cave and Karst Studies 69(1): 114–134.

Lunghi, E., C. Corti, M. Mulargia, Y. Zhao, R. Manenti, G.F. Ficetola & M. Veith (2020). Cave morphology, microclimate and abundance of five cave predators from the Monte Albo (Sardinia, Italy). Biodiversity Data Journal 8: e48623. https://doi.org/10.3897/BDJ.8.e48623

Mammola, S. (2019). Finding answers in the dark: caves as models in ecology fifty years after Poulson and White. Ecography 42(7): 1331–51. https://doi.org/10.1111/ecog.03905

Mazebedi, R. & T. Hesselberg (2020). A preliminary survey of the abundance, diversity and distribution of terrestrial macroinvertebrates of Gcwihaba cave, northwest Botswana. Subterranean Biology 35: 49–63. https://doi.org/10.3897/subtbiol.35.51445

Mitchell, R.W., W.H. Russell & W.R. Elliott (1977). Mexican Eyeless Characin Fishes, Genus Astyanax: Environment, Distribution, and Evolution. The Museum Texas Tech University 12: 1-89.

Moseley, M. (2009). Estimating diversity and ecological status of cave invertebrates. Some lessons and recommendations from Dark Cave (Batu Caves, Malaysia). Cave and Karst Science 35(1): 47–52.

Papaioannou, H., S. Sgardelis, B. Chondropoulos, D. Vassilakis, V. Kati & P. Dimopoulos (2015). Demographic characteristics, seasonal range and habitat topography of Balkan chamois population in its southernmost limit of its distribution (Giona mountain, Greece). Journal of Natural History 48: 327–345. https://doi.org/10.1080/00222933.2013.869365

Parzefall, J. (1983). Field observation in epigean and cave populations of the Mexican characid Astyanaxmexicanus (Pisces, Characidae). Mémoiresbiospéologie 10: 171–176.

Ricklefs, R.E. & D. Schluter (Eds.) (1993). Species Diversity in Ecological Communities: Historical and Geographical Perspectives. University of Chicago Press, 414pp.

Sawant, N. & T. Jadhav (2014). Island Biodiversity Goa. Goa State Biodiversity Board, Goa, 90pp.

Schneider, K. & D.C. Culver (2004). Estimating subterranean species richness using intensive sampling and rarefaction curves in a high density cave region in West Virginia. Journal of Cave and Karst Studies 66(2): 39–45.

Seebacher, F. & R.A. Alford (2002). Shelter microhabitats determine body temperature and dehydration rates of a terrestrial amphibian (Bufo marinus). Journal of Herpetology 36(1):69–75. https://doi.org/10.2307/1565804

Sheldon K.S. & J.J. Tewksbury (2014).The impact of seasonality in temperature on thermal tolerance and elevational range size. Ecology 95(8): 2134–2143. https://doi.org/10.1890/13-1703.1

Sinha, Y.P. (1999). Bats of the Siju Cave, South Garo Hills district, Meghalaya, India: Taxonomy and bionomics. Records of Zoological Survey of India 97(1): 101–122.

Srinivasulu, C., P.A. Racey & S. Mistry (2010). A key to the bats (Mammalia: Chiroptera) of South Asia. Journal of Threatened Taxa 2(7): 1001–1076. https://doi.org/10.11609/JoTT.o2352.1001-76

Tanalgo, K., D. Waldien, N. Monfort & A. Hughes (2020). Attacked from above and below: new ethologoical evidence on the predation strategies of corvid and varanid on a cave roosting bat. Ethology Ecology & Evolution 32(6): 596–610. https://doi.org/10.1080/03949370.2020.1771773

Turbanov, I.S., O.V. Kukushkin & R.S. Vargovitsh (2019). Amphibians and reptiles in the subterranean cavities of the Crimean mountains. Russian Journal of Herpetology 26(1): 29–53.

Vandel, A. (1965). Biospeloeology: the biology of caverniculous animals. Pergamon Press, New York, 524pp.

Vermeulen, J. & T. Whitten (1999). Biodiversity and cultural property in the management of limestone resources: lessons from East Asia. The World Bank, Washington, D.C, 120pp.

Walkley, A. & I.A. Black (1934). An examination of the Degtjareff Method for Determining Soil Organic Matter, and a proposed Modification of the Chromic Acid Titration Method. Soil Science 37(1): 29–38.

Whitaker, R. (2006). Common Indian Snakes: A Field Guide. MacMillan India Limited, 138pp.