Detection of hemoparasites in bats, Bangladesh

Authors

DOI:

https://doi.org/10.11609/jott.5466.12.10.16245-16250

Keywords:

Babesia, Bangladesh, Bat, Hemoprotozoa, Hepatocystis, prevalence

Abstract

A cross sectional study was conducted (2010–2013) to determine the diversity of hemoprotozoa among bats of Bangladesh.  Microscopic examination of blood smears (N=533; Pteropus medius (377), Rousettus leschenaultii (111), Megaderma lyra (45)) revealed 9% of bats (95% confidence interval CI: 7–12%) were positive for hemoprotozoa.  The overall prevalence of hemoparasites among P. medius was 5% (n=20, 95% CI: 3–8%); where Babesia sp. was 3% (n=12, 95% CI: 2–5%) and Hepatocytis sp. was 2% (n=8, 95% CI: 1–4%).  Moreover, 13% of R. leschenaultii were positive (n=14, 95% CI: 7–20%) where prevalence of Babesia sp. was 10% (n=11, 95% CI: 5–17%) and prevalence of Hepatocystis sp. was 3% (n=3, 95% CI: 1–8%).  Twenty-nine percent (n=13, 95% CI: 16–44%) of M. lyra harbored hemoparasites, among which 20% (n=9, 95% CI: 10–35%) were Babesia sp. and 9% (n=4, 95% CI: 2–21%) were Hepatocystis sp.  The study indicates bats remain important hosts for various zoonotic parasites and suggests further research.

References

Calisher, C.H., J.E. Childs, H.E. Field, K.V. Holmes & T. Schountz (2006). Bats: important reservoir hosts of emerging viruses. Clinical Microbiology Review 19(3): 531–545.

Christe, P., R. Arlettaz & P. Vogel (2000). Variation in intensity of a parasitic mite (Spinturnix myoti) in relation to the reproductive cycle and immunocompetence of its bat host (Myotis myotis). Ecology Letters 3(3): 207–212.

Christensson, D.A. (1989). Inverse age resistance to experimental Babesia divergens infection in cattle. Acta Veterinaria Scandinavica 30(4): 453–464.

Gardner, R.A. & D.H. Molyneux (1987). Babesia vesperuginis: natural and experimental infections in British bats (Microchiroptera). Parasitology 95(3): 461–469.

Godfrey, Jr. R.D., A.M. Fedynich & D.B. Pence (1987). Quantification of hematozoa in blood smears. Journal of Wildlife Disease 23(4): 558–565.

Epstein, J.H., V. Prakash, C.S. Smith, P. Daszak, A.B. McLaughlin, G. Meehan, H.E. Field & A.A. Cunningham (2008). Henipavirus infection in fruit bats (Pteropus giganteus), India. Emerging Infectious Diseases 14: 1309.

Hornok, S., P. Estok, D. Kovats, B. Flaisz, N. Takacs & K. Szoke (2015). Screening of bat feces for arthropod-borne apicomplexan protozoa: Babesia canis and Besnoitia besnoiti-like sequences from Chiroptera. Parasites & Vectors 8(1): 441.

Khan, M.A.R. (2001). Status and distribution of bats in Bangladesh with notes on their ecology. Zoos’ Print Journal 16(5): 479–483. https://doi.org/10.11609/JoTT.ZPJ.16.5.479-83

Lord, J.S. (2010). Micro and macroparasites of bats (Chiroptera). PhD Thesis, University of Salford, Manchester. http://usir.salford.ac.uk/id/eprint/9737/

Manwell, R.D. & R.E. Kuntz (1966). Hepatocystis in Formosan mammals with a description of a new species. Journal of Protozoology 13(4): 670–672.

Marinkelle, C.J. (1996). Babesia sp. in Colombian bats (Microchiroptera). Journal of Wildlife Disease 32(3): 534–535.

Nartey, N.A.N. (2015). Common parasites of fruit-eating bats in Southern Ghana: MPhil Thesis. Department of Animal Biology and Conservation Science, University of Ghana, XV+144pp. http://ugspace.ug.edu.gh/handle/123456789/8892

Olival, K.J., E.O. Stiner & S.L. Perkins (2007). Detection of Hepatocystis sp. in Southeast Asian flying foxes (Pteropodidae) using microscopic and molecular methods. Journal of Parasitology 93(6): 1538–1540.

PREDICT One Health Consortium (2017). PREDICT operating procedures: Bat sampling methods, 1–13pp. https://ohi.sf.ucdavis.edu/sites/g/files/dgvnsk5251/files/files/page/predict-sop-bat-sampling-2017.pdf

Rahman, M.A., M.J. Hossain, S. Sultana, N. Homaira, S.U. Khan, M. Rahman, E.S. Gurley, P.E. Rollin, M.K. Lo, J.A. Comer & L. Lowe. (2012). Date palm sap linked to Nipah virus outbreak in Bangladesh, 2008. Vector-Borne and Zoonotic Diseases 12(1): 65–72.

Schaer. J., D.M. Reeder, M.E. Vodzak, K.J. Olival, N. Weber & F. Mayer (2015). Nycteria parasites of Afrotropical insectivorous bats. International Journal of Parasitology 45(6): 375–384.

Schaer, J., S.L. Perkins, J. Decher, F.H. Leendertz, J. Fahr & N. Weber (2013). High diversity of West African bat malaria parasites and a tight link with rodent Plasmodium taxa. Proceedings of the National Academy of Sciences 110(43): 17415–17419.

Schaer, J., S.L. Perkins, I. Ejotre, M.E. Vodzak, K. Matuschewski & D.M. Reeder (2017). Epauletted fruit bats display exceptionally high infections with a Hepatocystis species complex in South Sudan. Scientific Reports 7(1): 6928.

Thurber, M.I., R.R. Ghai, D. Hyeroba, G. Weny, A. Tumukunde & C.A. Chapman (2013). Co-infection and cross-species transmission of divergent Hepatocystis lineages in a wild African primate community. International Journal of Parasitology 43(8): 613–619.

Wilson, K.R., O.N. Bjornstad, A.P. Dobson, S. Merler, G. Poglayen, S.E. Randolph, A.F. Read & A. Skorping (2002). Heterogeneities in macro-parasite infections: patterns and processes, 6–44. In: Hudson P.J., A. Rizzoli, B.T. Grenfell, H. Heesterbeek, A.P. Dobson (eds.) The Ecology of Wildlife Diseases. Oxford University Press, New York, 216pp.

Zhang, Y.Z. & E.C. Holmes. (2020). A genomic perspective on the origin and emergence of SARS-CoV-2. Cell 26.

Downloads

Published

26-07-2020

Issue

Section

Communications

Most read articles by the same author(s)