Hazards of wind turbines on avifauna - a preliminary appraisal within the Indian context

Main Article Content

Himika Deb
https://orcid.org/0000-0001-9798-5990
Tanmay Sanyal
https://orcid.org/0000-0002-0046-1080
Anilava Kaviraj
https://orcid.org/0000-0003-4843-8450
Subrata Saha
https://orcid.org/0000-0002-5118-1548

Abstract

Wind farms are substantial sources of renewable energy in India; however, their spread across the country potentially present new hazards to local and migratory birds.  This study explored the risk of electrocution and collision of birds with wind turbines close to eco-sensitive zones in India, including Bakkhali, a UNESCO World Heritage site.  Geographic information system and remote sensing technology were used.  The results indicate vulnerability of local bird species such as barn owl, Indian Scops Owl, Blue Rock Pigeon, Asian Koel, House Crow, Common Sandpiper, Common Snipe, Ruddy Shelduck, Lesser Whistling Duck, Cattle Egret, Great Egret, and Pond Herons, as well as migratory species such as Bar-headed Goose, Red-crested Pochard, and American Black Duck.  Modification of wind turbine design and location were considered determinant factors to reduce risk of bird collisions.

Article Details

Section
Reviews

References

Arnett, E.B. & R. F. May (2016). Mitigating wind energy impacts on wildlife: approaches for multiple taxa. Human Wildlife Interactions 10(1):28–41. https://doi.org/10.26077/1jeg-7r13

Aschwanden, J., H. Stark, D. Peter, T. Steuri, B. Schmid & F. Liechti (2018). Bird collisions at wind turbines in a mountainous area related to bird movement intensities measured by radar. Biological Conservation 220: 228–236. https://doi.org/10.1016/j.biocon.2018.01.005 DOI: https://doi.org/10.1016/j.biocon.2018.01.005

Arikan, K. & S.L. Turan (2017). Estimation of bird fatalities caused by wind turbines in Turkey. Fresenius Environmental Bulletin 26(11): 6543–6550.

Arnett, E.B., W.K. Brown, W.P. Erickson, J.K. Fiedler, B.L. Hamilton, T.H. Henry, A. Jain, G.D. Johnson, J.Kerns, R.R. Koford, C.P. Nicholson, T.J. O’Connell, M.D. Piorkowski & R.D. Tankersley (2008). Patterns of bat fatalities at wind energy facilities in North America. Journal of Wildlife Management 72: 61–78. https://doi.org/10.2193/2007-221 DOI: https://doi.org/10.2193/2007-221

Anoop, V., P.R. Arun & R. Jayapal (2018). Do Black-naped Hares Lepus nigricollis (Mammalia: Lagomorpha: Leporidae) have synanthropic association with wind farms? Journal of Threatened Taxa 10(7): 11925–11927. http://doi.org/10.11609/jott.3411.10.7.11925-11927 DOI: https://doi.org/10.11609/jott.3411.10.7.11925-11927

Bach, L. & U. Rahmel (2004). Summary of wind turbine impacts on bats—assessment of a conflict. Bremer BeiträgefürNaturkunde und Naturschutz 7: 245–252.

Barclay, R.M., E.F. Baerwald & J.C. Gruver (2007). Variation in bat and bird fatalities at wind energy facilities: assessing the effects of rotor size and tower height. Canadian Journal of Zoology 85(3): 381–387. https://doi.org/10.1139/Z07-011 DOI: https://doi.org/10.1139/Z07-011

Bose, A., T. Dürr, R.A. Klenke & K. Henle (2018). Collision sensitive niche profile of the worst affected bird-groups at wind turbine structures in the Federal State of Brandenburg, Germany. Scientific Reports 8(1): 3777. https://doi.org/10.1038/s41598-018-22178-z DOI: https://doi.org/10.1038/s41598-018-22178-z

Beston, J.A., J.E. Diffendorfer, S.R. Loss & D.H. Johnson (2016). Prioritizing avian species for their risk of population-level consequences from wind energy development. PloS One 11(3): e0150813. https://doi.org/10.1371/journal.pone.0150813 DOI: https://doi.org/10.1371/journal.pone.0150813

Cao, J. & G. Wang (2008). The structure of uniform B-spline curves with parameters, Progress in Natural Science 18(3): 303–308. https://doi.org/10.1016/j.pnsc.2007.09.005 DOI: https://doi.org/10.1016/j.pnsc.2007.09.005

Chitale, V.S., M.D. Behera,& P.S. Roy (2014). Future of endemic flora of biodiversity hotspots in India. PloS One 9(12): e115264. https://doi.org/10.1371/journal.pone.0115264 DOI: https://doi.org/10.1371/journal.pone.0115264

Chaurasiya, P.K., V. Warudkar & S Ahmed (2019). Wind energy development and policy in India: A review. Energy Strategy Reviews 24: 342–357. https://doi.org/10.1016/j.esr.2019.04.010 DOI: https://doi.org/10.1016/j.esr.2019.04.010

Dasgupta, S. (2017). Critically Endangered Great Indian Bustards burn up on power lines. Date of download 17-05-2018. https://india.mongabay.com/2017/12/27/video-critically-endangered-great-indian-bustards-burn-up-on-power-lines/

De Lucas, M., M. Ferrer & G.F. Janss (2012). Using wind tunnels to predict bird mortality in wind farms: the case of griffon vultures. PloS One 7(11): e48092. https://doi.org/10.1371/journal.pone.0048092 DOI: https://doi.org/10.1371/journal.pone.0048092

Dürr, T. & L. Bach (2004). Bat deaths and wind turbines: a review of current knowledge, and of the information available in the database for Germany. Bremer Beiträge für Naturkunde und Naturschutz 7: 253–264.

Eilers, P.H. & B.D. Marx (1996). Flexible smoothing with B-splines and penalties. Statistical Science 1: 89–102. https://doi.10.1214/ss/1038425655 DOI: https://doi.org/10.1214/ss/1038425655

Effat, H.A. (2014). Spatial modeling of optimum zones for wind farms using remote sensing and geographic information system, application in the Red Sea, Egypt. Journal of Geographic Information System 6: 358–374. https://doi.org/10.4236/jgis.2014.64032 DOI: https://doi.org/10.4236/jgis.2014.64032

Erickson, W.P., M.M. Wolfe, K.J. Bay, D.H. Johnson & J.L. Gehring (2014). A comprehensive analysis of small-passerine fatalities from collision with turbines at wind energy facilities. PLoS One 9(9): e107491.

https://doi.org/10.1371/journal.pone.0107491 DOI: https://doi.org/10.1371/journal.pone.0107491

Everaert, J. & E.W. Stienen (2006). Impact of wind turbines on birds in Zeebrugge (Belgium). Biodiversity and Conservation 16: 3345–3359. https://doi.org/10.1007/s10531-006-9082-1 DOI: https://doi.org/10.1007/s10531-006-9082-1

Ferreira, D., C. Freixo, J. Cabral, R. Santos & M. Santos (2015). Do habitat characteristics determine mortality risk for bats at wind farms? Modelling susceptible species activity patterns and anticipating possible mortality events. Ecological Informatics 28: 7–18. https://doi.org/10.1016/j.ecoinf.2015.04.001 DOI: https://doi.org/10.1016/j.ecoinf.2015.04.001

Graff, B.J., J.A. Jenks, J.D. Stafford, K.C. Jensen & T.W. Grovenburg (2016). Assessing spring direct mortality to avifauna from wind energy facilities in the Dakotas. Journal of Wildlife Management 80(4): 736–745. https://doi.org/10.1002/jwmg.1051 DOI: https://doi.org/10.1002/jwmg.1051

Hull, C.L., E.M. Stark, S. Peruzzo & C.C. Sims (2013). Avian collisions at two wind farms in Tasmania, Australia: taxonomic and ecological characteristics of colliders versus non colliders. New Zealand Journal of Zoology 40(1): 47–62. https://doi.10.1080/03014223.2012.757243 DOI: https://doi.org/10.1080/03014223.2012.757243

Jcngsma, D., J.M. Woodside, W. Huson, S. Suparka & D. Kadarisman (1989). Geophysics and tentative late cenozoic seismic stratigraphy of the Banda arc-Australian continent collision zone along three transects. Netherlands Journal of Sea Research 24(2/3): 205–229. https://doi.org/10.1016/0077-7579(89)90150-6 DOI: https://doi.org/10.1016/0077-7579(89)90150-6

Johnson, G.D. (2005). A review of bat mortality at wind-energy developments in the United States. Bat Research News 46: 45–49.

Kemp, M.U., J. Shamoun-Baranes, H. van Gasteren, W. Bouten & E.E. van Loon (2010). Can wind help explain seasonal differences in avian migration speed? Journal of Avian Biology 41: 672–677. https://doi.org/10.1111/j.1600-048X.2010.05053.x DOI: https://doi.org/10.1111/j.1600-048X.2010.05053.x

Kitano, M. & S. Shiraki (2013). Estimation of bird fatalities at wind farms with complex topography and vegetation in Hokkaido, Japan. Wildlife Society Bulletin 37(1): 41–48. https://doi.org/10.1002/wsb.255 DOI: https://doi.org/10.1002/wsb.255

Korner-Nievergelt, F., R. Brinkmann, I. Niermann & O. Behr (2013). Estimating bat and bird mortality occurring at wind energy turbines from covariates and carcass searches using mixture models. PloS One 8(7): p.e67997. https://doi.10.1371/journal.pone.0067997 DOI: https://doi.org/10.1371/journal.pone.0067997

Krijgsveld, K.L., K. Akershoek, F. Schenk, F. Dijk & S. Dirksen (2009). Collision risk of birds with modern large wind turbines. Ardea 97(3): 357–366. https://doi.org/10.5253/078.097.0311 DOI: https://doi.org/10.5253/078.097.0311

Kumar, S.R., V.K. Anoop, P.R. Arun, R. Jayapal & A.M. Ali (2019). Avian mortalities from two wind farms at Kutch, Gujarat and Davangere, Karnataka, India. Currrent Science 116(9): 1587–1592. https://doi.10.18520/cs/v116/i9/1587-1592 DOI: https://doi.org/10.18520/cs/v116/i9/1587-1592

Larsen, J.K. & M. Guillemette (2017). Effects of wind turbines on flight behaviour of wintering common eiders: implications for habitat use and collision risk. Journal of Applied Ecology 44: 516–522. https://doi.org/10.1111/j.1365-2664.2007.01303.x DOI: https://doi.org/10.1111/j.1365-2664.2007.01303.x

Lehnert, L.S., S. Kramer-Schadt, S. Schönborn, O. Lindecke, I. Niermann & C.C. Voigt (2014). Wind farm facilities in Germany kill noctule bats from near and far. PloS One 9(8): p.e103106. https://doi.10.1371/journal.pone.0103106 DOI: https://doi.org/10.1371/journal.pone.0103106

Lin, S.C. (2017). A survey and study of tower kills and wind turbine kills. Applied Ecology and Environmental Research 15(1): 589–607. https://doi.10.15666/aeer/1501_589607 DOI: https://doi.org/10.15666/aeer/1501_589607

Loss, S.R., T. Will & P.P. Marra (2013). Estimates of bird collision mortality at wind facilities in the contiguous United States. Biological Conservation 168: 201–209. https://doi.org/10.1016/j.biocon.2013.10.007 DOI: https://doi.org/10.1016/j.biocon.2013.10.007

Lu, X., M.B. McElroy & J. Kiviluoma (2009). Global potential for wind-generated electricity. Proceedings of the National Academy of Sciences 106(27): 10933–10938. https://doi.org/10.1073/pnas.0904101106 DOI: https://doi.org/10.1073/pnas.0904101106

Mazumdar, S., K. Mookherjee & G.K. Saha (2007). Migratory water birds of wetlands of southern West Bengal, India. Indian Birds 3(2): 42–45.

Marques, A.T., H. Batalha, S. Rodrigues, H. Costa, M.J.R. Pereira, C. Fonseca, M. Mascarenhas & J. Bernardino (2014). Understanding bird collisions at wind farms: An updated review on the causes and possible mitigation strategies. Biological Conservation 179: 40–52. https://doi.org/10.1016/j.biocon.2014.08.017 DOI: https://doi.org/10.1016/j.biocon.2014.08.017

May, R.F. (2015). A unifying framework for the underlying mechanisms of avian avoidance of wind turbines. Biological Conservation 190: 179–187. https://doi.org/10.1016/j.biocon.2015.06.004 DOI: https://doi.org/10.1016/j.biocon.2015.06.004

Morinha, F., P. Travassos, F. Seixas, A. Martins, R. Bastos, D. Carvalho, P. Magalhães, M. Santos, E. Bastos & J.A. Cabral (2014). Differential mortality of birds killed at wind farms in Northern Portugal. Bird Study 61(2): 255–259. https://doi.org/10.1080/00063657.2014.883357 DOI: https://doi.org/10.1080/00063657.2014.883357

Nazir, M.S., A.J. Mahdi, M. Bilal, H.M. Sohai, N. Ali & Iqbal (2019). Environmental impact and pollution-related challenges of renewable wind energy paradigm – A review. Science of the Total Environment 683: 436–444. https://doi.org/10.1016/j.scitotenv.2019.05.274 DOI: https://doi.org/10.1016/j.scitotenv.2019.05.274

Nichols, K.S., T. Homayoun, J. Eckles & R.B. Blair (2018). Bird-building collision risk: an assessment of the collision risk of birds with buildings by phylogeny and behavior using two citizen science datasets. PLoS One 13(8): e0201558. https://doi.10.1371/journal.pone.0201558 DOI: https://doi.org/10.1371/journal.pone.0201558

Pande, S., A. Padhye, P. Deshpande, A. Ponkshe, P. Pandit, A. Pawashe, S. Pednekar & R. Pandit (2013). Avian collision threat assessment at Bhambarwadi Wind Farm Plateau in northern Western Ghats, India. Journal of Threatened Taxa 5(1): 3504–3515. https://doi.10.11609/JoTT.o3096.210 DOI: https://doi.org/10.11609/JoTT.o3096.210

Péron, G., J.E. Hines, J.D. Nichols, W.L. Kendall, K.A. Peters & D.S. Mizrahi (2013). Estimation of bird and bat mortality at wind-power farms with superpopulation models. Journal of Applied Ecology 50(4): 902–911. https://doi.org/10.1111/1365-2664.12100 DOI: https://doi.org/10.1111/1365-2664.12100

Pescador, M., J.I.G. Ramírez & S.J. Peris (2019). Effectiveness of a mitigation measure for the Lesser Kestrel (Falco naumanni) in wind farms in Spain. Journal of Environmental Management 231: 919–925. https://doi.org/10.1016/j.jenvman.2018.10.094 DOI: https://doi.org/10.1016/j.jenvman.2018.10.094

Plonczkier, P. & I.C. Simms (2012). Radar monitoring of migrating Pink-footed Geese: behavioural responses to offshore wind farm development. Journal of Applied Ecology 49: 1187–1194. https://doi.org/10.1111/j.1365-2664.2012.02181.x DOI: https://doi.org/10.1111/j.1365-2664.2012.02181.x

Powlesland, R. (2009). Impact of wind farms on birds: a review. Science for Conservation 289: 5–41. Retrieved on 03/05/2018 from www.doc.govt.nz/Documents/science-and-technical/sfc289entire.pdf

Roeleke, M., T. Blohm, S. Kramer-Schadt, Y. Yovel & C.C.Voigt (2016). Habitat use of bats in relation to wind turbines revealed by GPS tracking. Scientific Reports 6: 28961. https://doi.10.1038/srep28961 DOI: https://doi.org/10.1038/srep28961

Rothery, P., I. Newton & B. Little (2009). Observations of seabirds at offshore wind turbines near Blyth in northeast England. Bird Study 56(1): 1–14. https://doi.org/10.1080/00063650802648093 DOI: https://doi.org/10.1080/00063650802648093

Saha, S., G.C. Paul, & T.K. Hembram (2019). Classification of terrain based on geo-environmental parameters and their relationship with land use/land cover in Bansloi River basin, eastern India: RS-GIS approach. Applied Geomatics 12: 55–71: https://doi.org/10.1007/s12518-019-00277-4 DOI: https://doi.org/10.1007/s12518-019-00277-4

Singh, K., E.D. Baker & M.A. Lackner (2015). Curtailing wind turbine operations to reduce avian mortality. Renewable Energy 78: 351–356. https://doi.org/10.1016/j.renene.2014.12.064 DOI: https://doi.org/10.1016/j.renene.2014.12.064

Rydell J., L. Bach, M. Dubourg-Savage, M. Green, L. Rodrigues & A. Hedenström (2010). Bat mortality at wind turbines in northwestern Europe. Acta Chiropterologica 12(2): 261–274. https://doi.10.3161/150811010X537846 DOI: https://doi.org/10.3161/150811010X537846

Sivakumar, R. & S. Ghosh (2017). Determination of threshold energy for the development of seismic energy anomaly model through integrated geotectonic and geoinformatics approach. Natural Hazards 86(2): 711–740. https://doi.10.1007/s11069-016-2713-2 DOI: https://doi.org/10.1007/s11069-016-2713-2

Smales, I., S. Muir, C. Meredith & R. Baird (2013). A description of the biosis model to assess risk of bird collisions with wind turbines. Wildlife Society Bulletin 37(1): 59–65 https://doi.org/10.1002/wsb.257 DOI: https://doi.org/10.1002/wsb.257

Thaxter C.B., G.M. Buchanan, J. Carr, S.H. Butchart, T. Newbold, R.E. Green, J.A. Tobias, W.B. Foden, S. O’Brien, J.W. Pearce-Higgins (2017). Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proceedings of the Royal Society B: Biological Sciences 284(1862): 20170829. https://doi.org/10.1098/rspb.2017.0829 DOI: https://doi.org/10.1098/rspb.2017.0829

Tucker, M.A., K. Böhning-Gaese, W.F. Fagan, J. M. Fryxell, B. Van Moorter, S.C. Alberts, A.H. Ali, A.M. Allen, N. Attias, T. Avgar & H .Bartlam-Brooks (2018). Moving in the anthropocene: global reductions in terrestrial mammalian movements. Science 359(6374): 466–469. https://doi.10.1126/science.aam9712 DOI: https://doi.org/10.1126/science.aam9712

Xie, H., G. Yao & G Liu (2015). Spatial evaluation of the ecological importance based on GIS for environmental management: a case study in Xingguo county of China. Ecological Indicators 51: 3–12. https://doi.org/10.1016/j.ecolind.2014.08.042 DOI: https://doi.org/10.1016/j.ecolind.2014.08.042

Wald, L. & T. Ranchin (1995). Fusion of images and raster-maps of different spatial resolutions by encrustation: an improved approach. Computers, Environment and Urban Systems 19(2): 77–87. https://doi.org/10.1016/0198-9715(95)00014-Y DOI: https://doi.org/10.1016/0198-9715(95)00014-Y

Wellig, S.D., S. Nussle, D. Miltner, O. Kohle, O. Glaizot, V. Braunisch, M.K. Obrist & R. Arlettaz (2018). Mitigating the negative impacts of tall wind turbines on bats: vertical activity profiles and relationships to wind speed. PLoS One 13(3): e0192493. https://doi.org/10.1371/journal.pone.0192493 DOI: https://doi.org/10.1371/journal.pone.0192493

Zimmerling, J.R., A. Pomeroy, M. d’Entremont & C.M. Francis (2013). Canadian estimate of bird mortality due to collisions and direct habitat loss associated with wind turbine developments. Avian Conservation and Ecology 8(2): 10. https://doi.org/10.5751/ACE-00609-080210 DOI: https://doi.org/10.5751/ACE-00609-080210