Using camera traps to study the elusive European Wildcat Felis silvestris silvestris Schreber, 1777 (Carnivora: Felidae) in central Germany: what makes a good camera trapping site?

Main Article Content

Harald Wening
Lynne Werner
Matthias Waltert
https://orcid.org/0000-0001-7053-0291
Markus Port
https://orcid.org/0000-0001-6726-4199

Abstract

Camera traping is a widely used method to study the abundance and population density of elusive terrestrial animals.  To make full use of this method, it is necessary to obtain high photographic capture rates of the target species.  We examine what characteristics of camera trapping sites are associated with high photographic capture rates of European Wildcat Felis silvestris silvestris.  We measured Wildcat capture rates across 25 camera trapping sites located in a 20km² study area within an unprotected low mountain range forest in central Germany.  We measured the distance of each trapping site to the forest boundary, to the next watercourse, and to the next human settlement, and broadly defined the type of forest structure the site was located in.  None of these site characteristics, however, predicted wildcat photographic capture success.  We also examined the degree of human disturbance at the site, measured as the photographic capture rate of humans (including vehicles).  Wildcats were detected at similar rates on dirt or gravel roads (heavily used by humans) as on soft-surfaced paths or logging trails (less frequently used by humans), and the degree of human disturbance across sites did not affect wildcat capture success.  We, therefore, suggest that trail features such as course, curvature and width, or vegetation density along the trail are more important determinants of Wildcat capture success than habitat characteristics.  We conclude that for European Wildcats, as for many larger felids, forest roads provide suitable camera trapping sites and that Wildcats are fairly tolerant towards human traffic on these roads.

Article Details

How to Cite
[1]
Wening, H., Werner, L., Waltert, M. and Port, M. 2019. Using camera traps to study the elusive European Wildcat Felis silvestris silvestris Schreber, 1777 (Carnivora: Felidae) in central Germany: what makes a good camera trapping site?. Journal of Threatened Taxa. 11, 4 (Mar. 2019), 13421–13431. DOI:https://doi.org/10.11609/jott.4498.11.4.13421-13431.
Section
Articles

References

Anile, S., B. Ragni, E. Randi, F. Mattucci & F. Rovero (2014). Wildcat population density on the Etna Volcano, Italy: a comparison of density estimation methods. Journal of Zoology 293(4): 252–261.

Beaumont, M., E.M. Barratt, D. Gottelli, A.C. Kitchener, M.J. Daniels, J.K. Pritchard & M.W. Bruford (2001). Genetic diversity and introgression in the Scottish Wildcat. Molecular Ecology 10: 319–336.

Birlenbach, K. & N. Klar (2009). Aktionsplan zum Schutz der Europäischen Wildkatze in Deutschland. Naturschutz und Landschaftsplanung 41: 325–332.

Boitani, L. & J.D.C. Linnell (2015). Bringing large mammals back: large carnivores in Europe, pp67–84. In: Pereira, H.M. & L.M. Navarro (eds.). Rewilding European Landscapes. Springer International Publishing, Cham, xxi+227pp.

Can, Ö.E., İ. Kandemi̇r & İ. Togan (2011). The Wildcat Felis silvestris in northern Turkey: assessment of status using camera-trapping. Oryx 45(1): 112–118.

Chapron, G., P. Kaczensky, J.D.C. Linnell, M. von Arx, D. Huber, H. Andrén, J.V. López-Bao, M. Adamec, F. Ãlvares, O. Anders & L. BalÄiauskas (2014). Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346(6216): 1517–1519.

Denk, M. (2016). Luchshinweise in Hessen. Erfassungsjahr 2015/16. Hessisches Ministerium für Umwelt, Klimaschutz, Landwirtschaft und Verbraucherschutz, Wiesbaden, 24pp.

Di Bitetti, M.S., A. Paviolo & C. De Angelo (2006). Density, habitat use and activity patterns of Ocelots (Leopardus pardalis) in the Atlantic Forest of Misiones, Argentina. Journal of Zoology 270(1): 153–163.

Götz, M., S. Jerosch, O. Simon & S. Streif (2018). Raumnutzung und Habitatansprüche der Wildkatze in Deutschland. Neue Grundlagen zur Eingriffsbewertung einer streng geschützen FFH-Art. Natur und Landschaft 93: 161–169.

Harmsen, B.J., R.J. Foster, E. Sanchez, C.E. Gutierrez-González, S.C. Silver, L.E.T. Ostro, M.J. Kelly, E. Kay & H. Quigley (2017). Long term monitoring of Jaguars in the Cockscomb Basin Wildlife Sanctuary, Belize; implications for camera-trap studies of carnivores. PLoS One 12: e0179505.

Harmsen, B.J., R.J. Foster, S. Silver, L. Ostro & C.P. Doncaster (2010). Differential use of trails by forest mammals and the implications for camera-trap studies: a case study from Belize. Biotropica 42(1): 126–133.

Hartmann, S.A., K. Steyer, R.H.S. Kraus, G. Segelbacher & C. Nowak (2013). Potential barriers to gene flow in the endangered European Wildcat (Felis silvestris). Conservation Genetics 14(2): 413–426.

Hötzel, M., N. Klar, S. Schröder, C. Steffen & C. Thiel (2007). Die Wildkatze in der Eifel: Habitate, Ressourcen, Streifgebiete. Laurenti, Bielefeld, 191pp.

Hupe, K. & O. Simon (2007). Die Lockstockmethode - eine nicht invasive Methode zum Nachweis der Europäischen Wildkatze (Felis s. silvestris). Informationsdienst Naturschutz Niedersachsen 27: 66–69.

Jerosch, S., M. Götz & M. Roth (2017). Spatial organisation of European Wildcats (Felis silvestris silvestris) in an agriculturally dominated landscape in central Europe. Mammalian Biology 82: 8–16.

Karanth, K.U. (1995). Estimating Tiger Panthera tigris populations from camera-trap data using capture-recapture models. Biological Conservation 71(3): 333–338.

Kelly, M.J. & E.L. Holub (2008). Camera-trapping of carnivores: trap success among camera types and across species, and habitat selection by species, on Salt Pond Mountain, Giles County, Virginia. Northeastern Naturalist 15(2): 249–262.

Kéry, M., B. Gardner, T. Stoeckle, D. Weber & J.A. Royle (2011). Use of spatial capture-recapture modeling and DNA data to estimate densities of elusive animals. Conservation Biology 25(2): 356–364.

Kilshaw, K., P.J. Johnson, A.C. Kitchener & D.W. Macdonald (2015). Detecting the elusive Scottish Wildcat Felis silvestris silvestris using camera-trapping. Oryx 49(2): 207–215.

Kitchener, A.C., N. Yamaguchi, J.M. Ward & D.W. Macdonald (2005). A diagnosis for the Scottish Wildcat (Felis silvestris): a tool for conservation action for a critically endangered felid. Animal Conservation 8(3): 223–237.

Klar, N., N. Fernández, S. Kramer-Schadt, M. Herrmann, M. Trinzen, I. Büttner & C. Niemitz (2008). Habitat selection models for European Wildcat conservation. Biological Conservation 141: 308–319.

Klar, N., M. Herrmann & S. Kramer-Schadt (2009). Effects and mitigation of road impacts on individual movement behavior of wildcats. Journal of Wildlife Management 73(5): 631–638.

Lozano, J., E. Virgós, A.F. Malo, D.L. Huertas & J.G. Casanovas (2003). Importance of scrub-pastureland mosaics for wild-living cats occurrence in a Mediterranean area: implications for the conservation of the Wildcat (Felis silvestris). Biodiversity & Conservation 12(5): 921–935.

Macdonald, D.W., N. Yamaguchi, A.C. Kitchener, M. Daniels, K. Kilshaw & C. Driscoll (2010). Reversing cryptic extinction: the history, present and future of the Scottish Wildcat. pp471–492. In: Macdonald, D.W. & A. Loveridge (eds.). The Biology and Conservation of Wild Felids. Oxford University Press, Oxford, 784pp.

Monterroso, P., J.C. Brito, P. Ferreras & P.C. Alves (2009). Spatial ecology of the European Wildcat in a Mediterranean ecosystem: dealing with small radio-tracking datasets in species conservation. Journal of Zoology 279(1): 27–35.

Niethammer, J. & F. Krapp (1982). Handbuch der Säugetiere Europas. Bd. 2/1 Rodentia II (Cricetidae, Arvicolidae, Zapodidae, Spalacidae, Hystricidae, Capromyidae). Akademische Verlagsgesellschaft, Wiesbaden, 649pp.

Nowell, K. & P. Jackson (1996). Wild Cats: Status Survey and Conservation Action Plan. IUCN SSC Cat Specialist Group, Gland, Switzerland, xxiv+384pp.

O’Conell, A.F., J.D. Nichols & K.U. Karanth (eds.) (2010). Camera-traps in Animal Ecology: Methods and Analyses. Springer, Tokyo.

Okarma, H., S. Śnieżko & A. Olszańska (2002). The occurrence of Wildcat in the Polish Carpathian Mountains. Acta Theriologica 47(4): 499–504.

Oliveira, R., R. Godinho, E. Randi, N. Ferrand & P.C. Alves (2008). Molecular analysis of hybridisation between wild and domestic cats (Felis silvestris) in Portugal: implications for conservation. Conservation Genetics 9: 1–11.

Pesenti, E. & F. Zimmermann (2013). Density estimations of the Eurasian Lynx (Lynx lynx) in the Swiss Alps. Journal of Mammalogy 94(1): 73–81.

Piechocki, R. (1990). Die Wildkatze Felis silvestris. Ziemsen, Wittenberg, 232pp.

Pierpaoli, M., Z.S. Birò, M. Herrmann, K. Hupe, M. Fernandes, B. Ragni, L. Szemethy & E. Randi (2003). Genetic distinction of Wildcat (Felis silvestris) populations in Europe, and hybridization with domestic cats in Hungary. Molecular Ecology 12(10): 2585–2598.

Rovero, F. & F. Zimmermann (2016). Camera-trapping for Wildlife Research. Pelagic Publishing, Exeter, UK, 320pp.

Say, L., S. Devillard, F. Léger, D. Pontier & S. Ruette (2012). Distribution and spatial genetic structure of European Wildcat in France. Animal Conservation 15(1): 18–27.

Schröder, F. (2016). Estimation of abundance and density of Eurasian Lynx (Lynx lynx) in central Germany using camera-traps. Master’s Thesis. University of Göttingen, Göttingen, 41pp.

Smith, D.M., B.C. Larson, M.J. Kelty & P.M.S. Ashton (1997). The Practice of Silviculture: Applied Forest Ecology. John Wiley & Sons, New York, 537pp.

Steyer, K., O. Simon, R.H.S. Kraus, P. Haase & C. Nowak (2013). Hair trapping with valerian-treated lure sticks as a tool for genetic Wildcat monitoring in low-density habitats. European Journal of Wildlife Research 59(1): 39–46.

Steyer, K., R.H.S. Kraus, T. Mölich, O. Anders, B. Cocchiararo, C. Frosch, A. Geib, M. Götz, M. Herrmann, K. Hupe & A. Kohnen (2016). Large-scale genetic census of an elusive carnivore, the European Wildcat (Felis s. silvestris). Conservation Genetics 17(5): 1183–1199.

Thiel-Bender, C. (2015). Die Wiederausbreitung der Europäischen Wildkatze in Deutschland. Zeitschrift des Kölner Zoos 58: 139–148.

Trolle, M. & M. Kéry (2005). Camera-trap study of Ocelot and other secretive mammals in the northern Pantanal. Mammalia 69(3–4): 409–416.

Velli, E., M.A. Bologna, C. Silvia, B. Ragni & E. Randi (2015). Non-invasive monitoring of the European Wildcat (Felis silvestris silvestris Schreber, 1777): comparative analysis of three different monitoring techniques and evaluation of their integration. European Journal of Wildlife Research 61(5): 657–668; https://doi.org/10.1007/s10344-015-0936-2

Weingarth, K., T. Zeppenfeld, C. Heibl, M. Heurich, L. Bufka, K. Daniszová & J. Müller (2015). Hide and seek: extended camera-trap session lengths and autumn provide best parameters for estimating Lynx densities in mountainous areas. Biodiversity and Conservation 24: 2935–2952.

Yamaguchi, N., A. Kitchener, C. Driscoll & B. Nussberger (2015). Felis silvestris. In: The IUCN Red List of Threatened Species: e.T60354712A50652361. Accessed on 15 August 2018; https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T60354712A50652361.en

Zimmermann, F. & D. Foresti (2016). Capture-recapture methods for density estimation, pp95–141. In: Rovero, F. & F. Zimmermann (eds.). Camera-trapping for Wildlife Research. Pelagic Publishing, Exeter, UK, 320pp.