Physiological validation of enzyme immunoassay of fecal glucocorticoid metabolite levels and diurnal variation measured in captive Black-tufted Marmoset Callithrix penicillata (Mammalia: Primates: Callitrichidae)

Main Article Content

Cristiane Schilbach Pizzutto
Manuela Gonçalves Fraga Geronymo Sgai
Cláudia Pereda Francischini
Priscila Viau
Cláudio Alvarenga de Oliveira
Marcelo Alcindo de Barros Vaz Guimarães

Abstract

Measuring stress responses is an important aspect for the conservation of endangered wild species.  Non-invasive measuring of glucocorticoid metabolite levels has become an important tool to measure stress intensity.  The aims of the present study were as follows: to validate the enzyme immunoassay to measure the concentration of fecal metabolites of glucocorticoids (FGM) after stressful stimuli and to determine whether FGM concentrations fluctuate diurnally in Black-tufted Marmosets Callithrix penicillata in captivity.  Eight captive healthy adult Black-tufted Marmosets (four males and four females) were included in the study.  The animals were subjected to three treatments: (1) hormone challenge with adrenocorticotropic hormone (ACTH), (2) saline administration and (3) control treatment to monitor diurnal changes of FGM.  Fecal samples were collected on days -1, 0, +1 and +2, with intramuscular administration of ACTH and saline performed on day 0.  To control diurnal variations, all feces from all animals were collected over six consecutive days and identified using the time of defecation and animal identification number. There were four designated two-hour periods per day (8–10 h, 10–12 h, 12–14 h and 14–16 h), and the samples were grouped for each two-hour period to obtain a representative pool.  The samples were frozen, and the metabolite concentrations were measured by enzyme immunoassay following extraction.  The results show that immunoassay measurements of FGM concentrations in C. penicillata can be validated physiologically.  Diurnal variation of the FGM concentration was observed, with significantly increased FGM levels in the early afternoon in both sexes.  The mean FGM concentration was higher in captive females than in males.  Physical restraint followed by saline administration led to adrenocortical stimulation similar to that observed following ACTH hormone challenge, a finding that has not previously been reported in C. penicillata.  Our results show immunoassay measurements of FGM concentrations provide a valuable tool for the non-invasive study of the endocrine correlates of behavior and well-being of this species.

 

Article Details

How to Cite
[1]
Pizzutto, C.S., Sgai, M.G.F.G., Francischini, C.P., Viau, P., de Oliveira, C.A. and Guimarães, M.A. de B.V. 2015. Physiological validation of enzyme immunoassay of fecal glucocorticoid metabolite levels and diurnal variation measured in captive Black-tufted Marmoset Callithrix penicillata (Mammalia: Primates: Callitrichidae). Journal of Threatened Taxa. 7, 6 (May 2015), 7234–7242. DOI:https://doi.org/10.11609/JoTT.o4099.7234-42.
Section
Communications
Author Biographies

Cristiane Schilbach Pizzutto, Department of Animal Reproduction - Faculty of Veterinary Medicine and Zootechny - University of São Paulo - Brazil. Avenida Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP 055508-270, Brazil

Cristiane Schilbach Pizzutto is veterinary post doctoral from University of São Paulo and works with animal welfare and environmental enrichment; she is coordinator of the Regional from The Shape of Enrichment (Shape Brasil).  

 

Manuela Gonçalves Fraga Geronymo Sgai, Department of Animal Reproduction - Faculty of Veterinary Medicine and Zootechny - University of São Paulo - Brazil. Avenida Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP 055508-270, Brazil

Manuela Gonçalves Fraga Geronymo Sgai is veterinary with doctoral from University of São Paulo; 

 

Cláudia Pereda Francischini, Department of Animal Reproduction - Faculty of Veterinary Medicine and Zootechny - University of São Paulo - Brazil. Avenida Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP 055508-270, Brazi

Claudia Pereda Francschini is biomedical with doctoral from Chemistry Institute from University of São Paulo; 

 

Priscila Viau, Department of Animal Reproduction - Faculty of Veterinary Medicine and Zootechny - University of São Paulo - Brazil. Avenida Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP 055508-270, Brazil

Priscila Viau is veterinary and she is technical from hormonal dosage laboratory at veterinary medicine school from University of São Paulo; 

 

Cláudio Alvarenga de Oliveira, Department of Animal Reproduction - Faculty of Veterinary Medicine and Zootechny - University of São Paulo - Brazil. Avenida Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP 055508-270, Brazil

Claudio Alvarenga de Oliveira is veterinary, professor and coordinator from  hormonal dosage laboratory at Department of Animal Reproduction - Faculty of Veterinary Medicine and Zootechny - University of São Paulo; 

 

Marcelo Alcindo de Barros Vaz Guimarães, Department of Animal Reproduction - Faculty of Veterinary Medicine and Zootechny - University of São Paulo - Brazil. Avenida Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo, SP 055508-270, Brazil

Marcelo Alcindo de Barros Vaz Guimarães is veterinary and professor of wild animals reproduction at Department of Animal Reproduction - Faculty of Veterinary Medicine and Zootechny - University of São Paulo

 

References

Bahr, N.I., R, Palme, U, Möhle, J.K. Hodges & M. Heistermann (2000). Comparative aspects of the metabolism and excretion of cortisol in three individual nonhuman primates. General and Comparative Endocrinology 117: 427–438; http://dx.doi.org/10.1006/gcen.1999.7431

Belz, E.E., J.S. Kennell, R.K. Czambel, R.T. Rubin & M.E. Rhodes (2003). Environmental enrichment lowers stress-responsive hormones in singly housed male and female rats. Pharmacology,

Biochemistry and Behavior 76: 481–486; http://dx.doi.org/10.1016/j.pbb.2003.09.005

Brown, J.L., C.M. Wemmer & J. Lehnhardt. (1995). Urinary cortisol analysis for monitoring adrenal activity in elephants. Zoo Biology 14: 533–542; http://dx.doi.org/10.1002/zoo.1430140606

Coe, C.L. & S. Levine (1995). Diurnal and annual variation of adrenocortical activity in the squirrel monkey. American Journal of Primatology 35: 283–292;

http://dx.doi.org/10.1002/ajp.1350350404

Goldin, B.R., H. Adlercreutz, S.L. Gorbach, J.H. Warram, J.T. Dwyer, L. Swenson & M. Woods (1982). Estrogen excretion patterns and plasma levels in vegetarian and omnivorous women. The New England Journal of Medicine 307(25): 1542–1547.

Heintz, M.R., R.M. Santymire, L.A. Parr & E.V. Lonsdorf (2011). Validation of a Cortisol Enzyme Immunoassay and Characterization of Salivary Cortisol Circadian Rhythm in Chimpanzees (Pan troglodytes). American Journal of Primatology 73: 903-908; http://dx.doi.org/10.1002/ajp.20960

Heistermann, M., R. Palme & A. Ganswindt (2006). Comparison of different enzymeimmunoassays for assessment of adrenocortical activity in primates based on fecal analysis. American Journal of Primatology 68: 257–273; http://dx.doi.org/10.1002/ajp.20222

Higham, J.P., A.B. Vitale, A.M. Rivera, J.E. Ayala & D. Maestripieri (2010). Measuring salivary analytes from free-ranging monkeys. Physiology and Behavior 101: 601–607; http://dx.doi.org/10.1016/j.physbeh.2010.09.003

Moberg, G.P. (1985). Animal Stress. American Physiological Society: Distributed by Williams & Wilkins, Bethesda, Md., Baltimore, viii+324pp.

Munro, C. & G. Stabenfeldt (1984). Development of microtitre plate enzyme-immunoassay for the determination of progesterone. Journal of Endocrinology 101: 41–49.

Natelson, B.H., D. Creigghton, R. MC Carty, W.N. Tapp, D. Pitman & J.E. Ottenweiler (1987). Adrenal hormonal indices of stress in laboratory rats. Physiology and Behavior 39: 117–125; http://dx.doi.org/10.1016/0031-9384(87)90408-2

Ohl, F. & E. Fuchs (1999). Differential effects of chronic stress an memory processes in the three shrew. Cognitive Brain Research 7: 379–387; http://dx.doi.org/10.1016/S0926-6410(98)00042-1

Palme, R., S. Rettenbacher, C. Touma, S.M. El-Bahr & E. Mostl (2005). Stress hormones in mammals and birds: Comparative aspects regarding metabolism, excretion and non- invasive measurement in fecal samples. Annals New York Academy of Sciences 1040: 162–171.

Pizzutto, C.S., M.G.F.G. Sgai, P. Viau, M.O.M. Chelini, C.A. Oliveira & M.A.B.V. Guimarães (2008a). Validação laboratorial e fisiológica de conjunto comercial para a quantificação de corticoides fecais em chimpanzé (Pan troglodytes) e orangotango (Pongo pygmaeus), cativos e submetidos a enriquecimentos ambientais. Brazilian Journal of Veterinary Research and Animal Science 45: 104–110; http://dx.doi.org/10.1590/S1413-95962008000700015

Pizzutto, C.S., M. Nichi, M.G.F.G. Sgai, S.H.R. Correa, P. Viau, A.M. Beresca, C.A. Oliveira, R.C. Barnabe & M.A.B.V. Guimarães (2008b). Effect of environmental enrichment on behavioral and endocrine aspects of captive Orangutan (Pongo pygmaeus). Laboratory Primate Newsletter 47: 10–14.

Pizzutto, C.S., M.G.F.G. Sgai, S.H.R. Correa, A.M. Beresca, P.V. Furtado, C.A. Oliveira, M. Nichi & M.A.B.V. Guimarães (2010). Enriquecimento ambiental e condicionamento operante com reforço positivo no retorno da ciclicidade ovariana de uma fêmea de chimpanzé (Pan troglodytes) - relato de caso. Clínica Veterinária 85: 66–72.

Reeder, D.M. & K.M. Kramer (2005). Stress in free-ranging mammals: integrating physiology, ecology, and natural history. Journal of Mammalogy 86: 225–235; http://dx.doi.org/10.1644/BHE-003.1

Rimbach, R., E.W. Heymann, A. Link & M. Heistermann (2013). Validation of an enzyme immunoassay for assessing adrenocortical activity and evaluation of factors that affect levels of fecal glucocorticoid metabolites in two New World primates. General and Comparative Endocrinology 191: 13–23; http://dx.doi.org/10.1016/j.ygcen.2013.05.010

Romano, M.C., A.Z. Rodas, R.A. Valdez, S.E. Hernandez, F. Galindo, D. Canales & D.M. Brousset (2010). Stress in wildlife species: noninvasive monitoring of glucocorticoids. Neuroimmunomodulation 17: 209–212;

http://dx.doi.org/10.1159/000258726

Romero, L.M. (2004). Physiological stress in ecology: lessons from biomedical research. Trends in Ecology & Evolution 19: 249–255; http://dx.doi.org/10.1016/j.tree.2004.03.008

Sapolsky, R.M. (2002). Endocrinology of the stress-response, pp. 409–450. In: Becker, J.B., S.M. Breedlove, D. Crews, M.M. McCarthy (eds.). Behavioral Endocrinology. MIT Press, Cambridge, xxvi+806pp.

Schwarzenberger, F., E. Mostl, R. Palme & E. Bamberg (1996). Faecal steroid analysis for non-invasive monitoring of reproductive status in farm, wild and zoo animals. Animal Reproduction Science 42: 515–526; http://dx.doi.org/10.1016/0378-4320(96)01561-8

Sheriff, M.J., B. Dantzer, B. Delehanty, R. Palme & R. Boonstra (2011). Measuring stress in wildlife: techniques for quantifying glucocorticoids in wildlife. Oecologia 166: 869–887; http://dx.doi.org/10.1007/s00442-011-1943-y

Smith, T.E. & J.A. French (1997). Psychosocial stress and urinary cortisol excretion in Marmoset Monkeys (Callithrix kuhli). Physiology and Behavior 62: 225–232; http://dx.doi.org/10.1016/S0031-9384(97)00103-0

Sousa, M.B.C. & T.E. Ziegler (1998). Diurnal variation on the excretion patters of fecal steroids in Common Marmoset (Callithrix jacchus) females. American Journal of Primatology 46: 105–117; http://dx.doi.org/10.1002/(SICI)1098-2345(1998)46:2<105::AID-

AJP1>3.0.CO;2-#

Strier, K.B. & T.E. Ziegler (1994). Insights into ovarian function in wild Muriqui Monkeys (Brachyteles arachnoides). American Journal of Primatology 32: 31–40; http://dx.doi.org/10.1002/ajp.1350320104

Strier, K.B. & T.E. Ziegler (1997). Behavioral and endocrine characteristics of the reproductive cycle in wild Muriqui Monkeys, Brachyteles arachnoids. American Journal of Primatology 42: 299–310; http://dx.doi.org/10.1002/(SICI)1098-2345(1997)42:4<299::AID-AJP5>3.0.CO;2-S

Touma C., N. Sachser, E. Möstl & R. Palme (2003). Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice. General and Comparative Endocrinology 130: 267–278; http://dx.doi.org/10.1016/S0016-6480(02)00620-2

Touma C. & R. Palme (2005). Measuring fecal glucocorticoid metabolites in mammals and birds: the importance of validation, pp. 54–74. In: Bauchinger U., W. Goymann & S.J. Eiermann (eds.). Bird Hormones and Bird Migrations: Analyzing Hormones in Droppings and Egg Yolks and Assessing Adaptations in Long-distance migration. Annals of the New York Academy of Sciences (1046), 246pp.

Wasser, S.K., R. Thomas, P.P. Nair, C. Guidry, J. Southers, J. Lucas, D.E. Wildt & S.L. Monfort (1993). Effects of dietary fibre on faecal steroid measurements in Baboons (Papio cynocephalus). Journal of Reproduction and Fertility 97(2): 569–574.

Wasser, S.K., K.E. Hunt, J.L. Brown, K. Cooper, C.M. Crockett, U. Bechert, J.J. Millspaugh, S. Larson & S. Monfort (2000). A generalized fecal glucocorticoid assay for use in a diverse array of nondomestic mammalian and avian species. General and Comparative Endocrinology 120(3): 260–275;

http://dx.doi.org/10.1006/gcen.2000.7557

Whitten, P.L., R. Stavisky, F. AurelI & E. Russell (1998). Response of fecal cortisol to stress in captive Chimpanzees (Pan troglodytes). American Journal of Primatology 44: 57–69; http://dx.doi.org/10.1002/(SICI)1098-2345(1998)44:1<57::AID-AJP5>3.0.CO;2-W

Wielebnowski, N.C., K. Ziegler, D.E. Wildt, J. Lukas & J.L. Brown (2002). Impact of social management on reproductive, adrenal and behavioural activity in the Cheetah (Acinonyx jubatus). Animal Conservation 5: 291–301; http://dx.doi.org/10.1017/S1367943002004043

Wingfield, J.C. (2005). The concept of allostasis: coping with a capricious environment. Journal of Mammalogy 86: 248–254; http://dx.doi.org/10.1644/BHE-004.1

Wingfield, J.C. & R.M. Sapolsky (2003). Reproduction and resistance to stress: when and how. Journal of Neuroendocrinology 15: 711–724; http://dx.doi.org/10.1046/j.1365-2826.2003.01033.x

Ziegler, T.E., C.T. Snowdon, D.H. Abbott, G. Scheffer, D.J. Wittwer & N.J. Schultz-Darken (1996). The metabolism of reproductive steroids during the ovarian cycle in two species of Callithrichids, Saguinus oedipus and Callithrix jacchus and estimation of the ovulatory period from fecal steroids. Biology of Reproduction 54: 91–99.

Ziegler, T.E., C.V. Santos, A. Pissinati & K.B. Strier (1997). Steroid excretion during the ovarian cycle in captive and wild Muriqui (Brachyteles arachnoids). American Journal of Primatology 42: 311-321; http://dx.doi.org/10.1002/(SICI)1098-2345(1997)42:4<311::AID-AJP6>3.0.CO;2-#

Ziegler, T.E., K.B. Strier & S. van Belle (2009). The reproductive ecology of South American primates: eco- logical adaptations in ovulation and conception, pp. 191–210. In: Garber, P.A., A. Estrada, J.C. Bicca-Marques, E.W. Heymann & K.B. Strier, (eds.). South American Primates. Comparative Perspectives in the Study of Behavior, Ecology, and Conservation, New York, Springer, New York, xvi+564pp.

Most read articles by the same author(s)