Identification of confiscated pangolin for conservation purposes through molecular approach

Main Article Content

Wirdateti
https://orcid.org/0000-0002-9224-1017
R. Taufiq P. Nugraha
https://orcid.org/0000-0003-4811-0332
Yulianto
Gono Semiadi
https://orcid.org/0000-0002-9351-9746

Abstract

Over the past decade, the pangolin has emerged as one of the most prominent illegally traded mammals, and high extraction rates of Manis javanica from Indonesia have become a world concern. With the rise of the illegal trade, tools for uncovering the origins of pangolins for law enforcement are needed. Use of genetic markers for species and population identification has become a versatile tool in law enforcement efforts related to illegal wildlife trade and the management of endangered species. This study aims to uncover the origin of confiscated pangolins via a molecular approach using COI mtDNA markers. Forty-eight samples came from confiscated pangolins in Jakarta, Surabaya, Jember, Pangkalan Bun, Medan, Lampung, Riau, and Palembang, as well as four samples from the wild population in Riau, Pangkalan Bun, and East Java. Grouping using phylogenetic trees showed two groups with a bootstrap value of 90% based on wild samples. The first group consists of Sumatra and Kalimantan populations, while the second group consists of a Javan population. From a total of 44 confiscated samples, 12 were identified as Javan, nine from Kalimantan, and 23 from Sumatra. Genetic distance value (d) among individuals was d= 0.012 ± 0.002, with haplotype diversity (Hd) 0.864 ± 0.0444. The analysis of molecular variance (AMOVA) shows a clear genetic difference among populations (75%) and within populations (25%). The results showed that animals confiscated in one location may come from several different populations. These results can be used to track the flow of the pangolin trade in Indonesia, and support conservation management for the release of confiscated animals.

Article Details

Section
Articles

References

Alacs, E.A., A. Georges, N.N. FitzSimmons & J. Robertson (2009). DNA detective: a review of molecular approaches to wildlife forensics. Forensic Science, Medicine, and Pathology 6: 180–194. https://doi.org/10.1007/s12024-009-9131-7

Ballar, J.W.O. & M.C. Whitlock (2004). The incomplete natural history of mitochondria. Molecular Ecology 13(4): 729–744

Boakye, M., D. Pietersen, D.A. Kotze, D. Dalton & R. Jansen (2004). Ethno medicinal use of African pangolins by traditional medical practitioners in Sierra Leone. Journal of Ethnobiology and Ethnomedicine 10: 76.

Challender, D.W.S., S.R. Harrop & D.C. MacMillan (2015). Understanding markets to conserve trade-threatened species in CITES. Biological Conservation 187: 249–259. https://doi.org/10.1016/j.biocon.2015.04.015

Challender, D.W.S. (2011). Asian pangolins: increasing affluence driving hunting pressure. TRAFFIC Bulletin 23: 92–93.

Choo, S.W., M. Rayko, T.K. Tan, R. Hari, A. Komissarov, W.Y. Wee, A.A. Yurchenko, S. Kliver, G. Tamazian, A. Antunes, R.K. Wilson, WC. Warren, KP. Koepfli, P. Minx, K. Krasheninnikova, A. Kotze, DL. Dalton, E. Vermaak, I.C. Paterson, P. Dobrynin, F.T. Sitam, J.J. Rovie-Ryan, W.E. Johnson, A.M. Yusoff, S.J. Luo, K.V. Karuppannan, G. Fang, D. Zheng, M.B. Gerstein, L. Lipovich, S.J. O’Brien & G.J. Wong (2016). Pangolin genomes and the evolution of mammalian scales and immunity. Genome Research 26: 1312–1322.

DeSalle, R., A.L. Williams & M. George (1993). Isolation and characterization of animal mitochondrial DNA. Methods in Enzymology 224: 176–204.

Excoffier, L. & H.E. Lischer (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and windows. Molecular Ecology Resources 10: 564–567.

Feiler, A. (1998). Das Philippinen-Schuppentier, Manis culionensis ELERA, 1915, eine fast vergessene Art (Mammalia: Pholidota: Manidae). Zoologische Abhandlungen (Staatliches Museum fürTierkunde Dresden) 50: 161–164.

Gaubert, P. & A. Antunes (2015). What’s behind these scales? Comments to “The complete mitochondrial genome of Temminck’s ground pangolin (Smutsiatemminckii; Smuts, 1832) and phylogenetic position of the Pholidota (Weber, 1904). Gene 563: 06-108.

Gaubert, P., A. Antunes, H. Meng, L. Miao, S. Peigne, F. Justy, F Njiokou, S. Dufour, E. Danquah, J. Alahakoon, E. Verheyen, W.T. Stanley, S.J. O’Brien, W.E. Johnnson & S.J. Luo. (2018). The complete phylogeny of pangolin: Scaling up resources for the molecular tracing of the most trafficked mammals on earth. Journal of Heredity 109(4): 347–359

Gaubert, P. & A. Antunes (2005). Assessing the taxonomic status of the Palawan Pangolin Manis culionensis (Pholidota) using discrete morphological characters. Journal of Mammalogy 86: 1068–1074

Gerstein, L., S.J. Lipovich, O’Brien & G.J. Wong (2016). Pangolin genomes and the evolution of mammalian scales and immunity. Genome Research 26: 1312–1322.

Guha, S. & V.K. Kashyap (2006). Molecular identification of lizard by RAPD and FINS of mitochondrial 16S rRNA gene. Legal Medicine 8: 5–10.

Hassanin, A., J.P. Hugot & B.J. van Vuuren (2015). Comparison of mitochondrial genome sequences of pangolins (Mammalia, Pholidota). Comptes Rendus Biologies 338: 260–265.

Hedgecock, D., S. Launey, A. Pudovkin, Y. Naciri & S. Lapegue. (2007). Small effective number 667 of parents (nb) inferred for a naturally spawned cohort of juvenile European flat oysters Ostrea 668 edulis. Marine Biology 150: 1173–1182

Hoang, D.T., C. Olga, V.h. Arndt, Q.M. Bui & V. Le Sy (2018). UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution 35: 518–522.

Hsieh, H.M., H.L. Chiang, L.C. Tsai, N.E. Huang, A. Linacre & L.C. Lee (2001). Cytochrome b gene for species identification of the conservation animals. Forensic Science International 122: 7–18.

Huelsenbeck, J.P. & D.M. Hillis (1993). Success of Phylogenetic methods in the four-taxon case. Systematic Biology 42(3): 247-264

Kalyaanamoorthy, S., B.Q. Minh, T.K.F Wong, V.H. Arndt & S.J. Lars (2017). ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589.

Kocher, T.D., W.K. Thomas, A. Meyer, S.V. Edwards, S. Pääbo, F.X. Villablanca & A.C. Wilson (1989). Dynamics of mitochondrial DNA evolution in animals: Amplification and Sequencing with Conserved Primers. Proceedings of the National Academy of Sciences USA 86: 6196– 6200. https://doi.org/10.1073/pnas.86.16.6196

Kumar, V.P., A. Rajpoot, M. Thakur, M. Shukla, D. Kumar & S.P. Goyal (2016). Illegal trade of Indian pangolin (Manis crassicaudata): genetic study from scales based on mitochondrial genes. Egyptian Journal of Forensic Sciences 6: 524–534.

Kumar, V.P., A. Rajpoot, M. Shukla, P. Nigam & S.P. Goyal (2018a). Inferring the molecular affinity of Indian pangolin with extant Manidae species based on mitochondrial genes: a wildlife forensic perspective. Mitochondrial DNA Part B: Resources 3(2): 640–644.

Kumar, V.P., A. Rajpoot, A. Shrivastav, K. Kumar, P. Nigam, A. Madhanraj & S.P. Goyal (2018). Phylogenetic relationship and molecular dating of Indian Pangolins (Manis crassicaudata) with other extant Pangolins species based on complete cytochrome b mitochondrial gene. Mitochondria Part A. 29:1–6.

Li, H. & H. Wang (1999). Wildlife trade in Yunnan Province, China, at the border with Vietnam. TRAFFIC Bulletin 18: 21–30.

Librado, P.J.R. & J. Rozas (2009). DnaSP v5: A Software for Comprehensive Analysis of DNA Polymorphism Data. Bioinformatics 25(11): 1451-2.

Mahmood, T., R. Hussain, N. Irshad, F. Akrim & M.S. Nadeem (2012). Illegal mass killing of Indian pangolin (Manis crassicaudata) on Potohar Region, Pakistan. Pakistan Journal of Zoology 44: 1457–1461.

Mwale, M., D.L. Dalton, R. Jansen, M.D. Bruyn, D. Pietersen, P.S. Mokgokong & A. Kotze (2017). Forensic application of DNA barcoding for identification of illegally traded African pangolin scales. Genome 60: 272–284.

Nash, H.C., Wirdateti, G.W. Low, S.W. Choo, J.L. Chong, G. Semiadi, R. Hari, M.H. Sulaiman, S.T. Turvey, T.A. Evans & F.E. Rheind (2018). Conservation genomics reveals possible illegal trade routes and admixture across pangolin lineages in Southeast Asia. Conservation Genetics 19: 1083–1095

Nijman, V. (2015). Pangolin seizure data reported in the Indonesian media. TRAFFIC Bulletin 27(2): 43–46.

Nguyen, L.T., H.A. Schmidt, A. von Haeseler & B.Q. Minh (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution 32: 268–274.

Ogden, R., N. Dawnay & R. McEwing (2009). Wildlife DNA forensics - bridging the gap between conservation genetics and law enforcement. Endangered Species Research 9: 179–195.

Pantel. S. & S.Y. Chin (2009) In: Proceedings of the workshop on trade and conservation of pangolins native to South and Southeast Asia. TRAFFIC Southeast Asia. Petaling Jaya, Selangor

Posada, D. & T.R. Buckley (2004). Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53: 793–808.

Raymond, M and F. Rousset (1995). An Test Exact Test for Population differentiation. Evolution 49(6): 1280–1283.

Rajpoot, A., K.P. Kumar, A. Bahuguna & D. Kumar (2016). Forensically informative nucleotide sequencing (FINS) for the first time authentication of Indian Varanus species: implication in wildlife forensics and conservation. Mitochondria DNA Part A. 27: 1–9.

Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar (2013). MEGA 6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology Evolution 30(12): 2725–2729.

Thomson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin & D.G. Higgins (1997). The Clustal_X Windows Interface: Flexible Strategies for Mutiple Sequence Alignment Aided by Quality Analysis. Nucleid Acids Research 25(24): 4876–4882.

Wei, B. & C. Cockerham (1984). Estimating F-statistics for the analysis of population structure. Evolution 38: 1358–1370. http://www.jstor.org/stable/2408641

Wirdateti, G.S. (2017). Genetic variation of confiscated pangolins of Sumatra, Java, and Kalimantan based on control region mitochondrial DNA. Jurnal Veteriner 18(2): 181–191

Wirdateti, G.S. & Yulianto (2013). IdentifikasiTrenggiling (Manis javanica) MenggunakanPenanda Cytochrome B Mitokondria DNA (Identification Of Pangolin (Manis javanica Desmarest, 1822) Using Cytochrome B mtDNA Marker). Jurnal Veteriner 14(4): 467–474.

Wright, S. (1931). Evolution in Mendelian populations. Genetics 16: 97–159.

Xing, S., T.C. Bonebrake, W. Cheng, M. Zhang, G. Ades, D. Shaw & Y. Zhou (2020). Chapter 14 - Meat and medicine: historic and contemporary use in Asia, pp. 227–239. In: Challender, DW.S., H.C. Nash & C. Waterman (eds.), Pangolins. Academic Press.

Yang, C.W., S. Chen, C. Chang, M.F. Lin, E. Block, R. Lorentsen, J.S.C. Chin & E.S. Dierenfeld (2007). History and husbandry of pangolins in captivity. Zoo Biology 26: 223–230.

Zhang, H., M.P. Miller, F. Yang, H.K. Chan, P. Gaubert, G. Ades & G.A. Fischer (2015). Molecular tracing of confiscated pangolin scales for conservation and illegal trade monitoring in Southeast Asia. Global Ecology and Conservation 4: 414–422.