The population trend of the largest breeding colony of the Indian Swiftlet Aerodramus unicolor: is it on the verge of extinction?

Main Article Content

Dhanusha kawalkar
https://orcid.org/0000-0002-6478-7522
Shirish S. Manchi
https://orcid.org/0000-0002-7540-2616

Abstract

Fluctuations in animal populations are indicators of environmental change. Populations of the Indian Swiftlet Aerodramus unicolor on the Burnt and Old Lighthouse islands of Vengurla rocks, Sindhudurg district, Maharashtra were assessed using the logistic growth model. The study used secondary literature and primary surveys to estimate breeding population sizes on both islands. To understand population dynamics, we calculated the carrying capacity (K) using the Verhulst population growth model, and the percent rate of change in populations. Swiftlet populations on both islands are considered to be the maximum size their habitat can sustain, not exceeding 5,000 and 246 birds on Burnt and Old Lighthouse islands, respectively. These populations were observed to fluctuate between 2020 and 2023, with change rates of 5.5% on Burnt Island, and -53% on Old Lighthouse Island. The logistic growth model indicates that these Indian Swiftlet populations are fluctuating near the carrying capacities of their habitats, which could gradually lead to extinction. This highlights the urgent need for conservation and regular monitoring of these populations in Vengurla rocks.

Article Details

Section
Articles
Author Biographies

Dhanusha kawalkar, Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India; and Division of Conservation Ecology Sálim Ali Centre for Ornithology and Natural History (South India Centre of Wildlife Institute of India), Anaikatty P.O., Coimbatore, Tamil Nadu 641108, India.

.

Shirish S. Manchi, Division of Conservation Ecology Sálim Ali Centre for Ornithology and Natural History (South India Centre of Wildlife Institute of India), Anaikatty P.O., Coimbatore, Tamil Nadu 641108, India.

.

Funding data

References

Abdulali, H. (1940). Swifts and Terns at Vengurla Rocks. Journal of the Bombay Natural History Society 41(3): 661–665.

Abdulali, H. (1962). An ornithological trip to the Gulf of Kutch. Journal of the Bombay Natural History Society 59(2): 655–658.

Badino, G. (2010). Underground meteorology- “What’s the weather underground?”. Acta Carsologica 39(3): 427–448. https://doi.org/10.3986/ac.v39i3.74 DOI: https://doi.org/10.3986/ac.v39i3.74

Bhanti, R.K. (2000). Indian Lighthouses- An Overview, n/n (web version). http://www.dgll.nic.in/WriteReadData/Publication/Publication_Pdf_File/LighthousesofIndia(2).pdf.

Blomqvist, S. & M. Peterz (1984). Cyclones and pelagic seabird movements. Marine Ecology Progress Series 20(1): 85–92. DOI: https://doi.org/10.3354/meps020085

Brühl, C.A. & T. Eltz (2010). Fueling the biodiversity crisis: species loss of ground-dwelling forest ants in oil palm plantations in Sabah, Malaysia (Borneo). Biodiversity and Conservation 19: 519–529. https://doi.org/10.1007/s10531-009-9596-4 DOI: https://doi.org/10.1007/s10531-009-9596-4

Campos-Cerqueira, M., W.D. Robinson, G.A. Leite & T.M. Aide (2021). Bird occupancy of a neotropical forest fragment is mostly stable over 17 years but influenced by forest age. Diversity 13(2): 50. https://doi.org/10.3390/d13020050 DOI: https://doi.org/10.3390/d13020050

Caughley, G. (1994). Directions in conservation biology. Journal of Animal Ecology 63(2): 215–244. https://doi.org/10.2307/5542 DOI: https://doi.org/10.2307/5542

Chamberlain, D.E. & R.J. Fuller (1999). Density-dependent habitat distribution in birds: issues of scale, habitat definition and habitat availability. Journal of Avian Biology 30(4): 427–436. https://doi.org/10.2307/3677015 DOI: https://doi.org/10.2307/3677015

Chantler, P. & G. Driessens (1999). Swifts: A Guide to the Swifts and Treeswifts of the World. Pica Press, Sussex, 267 pp.

Chantler, P. & G.M. Kirwan (2020). Indian Swiftlet (Aerodramus unicolor), version 1.0. In: del Hoyo, J., A. Elliott, J. Sargatal, D.A. Christie & E. de Juana (eds). Birds of the World. Cornell Lab of Ornithology, Ithaca, NY, USA. https://doi.org/10.2173/bow.indswi1.01 DOI: https://doi.org/10.2173/bow.indswi1.01

Cigna, A.A. (1968). An analytical study of air circulation in caves. International Journal of Speleology 3(1): 3. https://doi.org/10.5038/1827-806X.3.1.3 DOI: https://doi.org/10.5038/1827-806X.3.1.3

Cresswell, W. (2011). Predation in bird populations. Journal of Ornithology 152(1): 251–263. https://doi.org/10.1007/s10336-010-0638-1 DOI: https://doi.org/10.1007/s10336-010-0638-1

Del Monte‐Luna, P., B.W. Brook, M.J. Zetina‐Rejón & V. H. Cruz‐Escalona (2004). The carrying capacity of ecosystems. Global Ecology and Biogeography 13(6): 485–495. https://doi.org/10.1111/j.1466-822X.2004.00131.x DOI: https://doi.org/10.1111/j.1466-822X.2004.00131.x

Dolman, P.M. & W.J. Sutherland (1995). The response of bird populations to habitat loss. Ibis 137: S38–S46. https://doi.org/10.1111/j.1474-919X.1995.tb08456.x DOI: https://doi.org/10.1111/j.1474-919X.1995.tb08456.x

Dunn, E.H. (2002). Using decline in bird populations to identify needs for conservation action. Conservation Biology 16(6): 1632–1637. https://doi.org/10.1046/j.1523-1739.2002.01250.x DOI: https://doi.org/10.1046/j.1523-1739.2002.01250.x

Elkins, N. & R. Johnson (2005). Weather and bird migration. British Birds 98(5): 238–256.

Fagan, W.F. & E. Holmes (2006). Quantifying the extinction vortex. Ecology letters 9(1): 51–60. https://doi.org/10.1111/j.1461-0248.2005.00845.x DOI: https://doi.org/10.1111/j.1461-0248.2005.00845.x

Ferraz, G., G.J. Russell, P.C. Stouffer, R.O. Bierregaard Jr, S.L. Pimm & T.E. Lovejoy (2003). Rates of species loss from Amazonian forest fragments. Proceedings of the National Academy of Sciences 100(24): 14069–14073. https://doi.org/10.1073/pnas.233619510 DOI: https://doi.org/10.1073/pnas.2336195100

Gregory, R.D., S.G. Willis, F. Jiguet, P. Voříšek, A. Klvaňová, A. van Strien, B. Huntley, Y.C. Collingham, D. Couvet & R.E. Green (2009). An indicator of the impact of climatic change on European bird populations. PloS one 4(3): p.e4678. https://doi.org/10.1371/journal.pone.0004678 DOI: https://doi.org/10.1371/journal.pone.0004678

Gurjarpadhye, P., D. Kawalkar, R.P. Singh & S. Manchi (2021). Stay or shift: does breeding success influence the decision in a cave-dwelling swiftlet?. Journal of Ornithology 162(2): 369–379. https://doi.org/10.1007/s10336-020-01849-7 DOI: https://doi.org/10.1007/s10336-020-01849-7

ICMAM-PD(2001). Critical habitat information system of Malvan, Maharashtra, India. Integrated Coastal and Marine Area Management, Project Directorate, Chennai, India, 29pp. https://www.nccr.gov.in/sites/default/files/Malvan.PDF

Inchausti, P. & J. Halley (2003). On the relation between temporal variability and persistence time in animal populations. Journal of Animal Ecology 72(6): 899–908. https://doi.org/10.1046/j.1365-2656.2003.00767.x DOI: https://doi.org/10.1046/j.1365-2656.2003.00767.x

James, E.W., J.L. Banner & B. Hardt (2015). A global model for cave ventilation and seasonal bias in speleothem paleoclimate records. Geochemistry, Geophysics, Geosystems 16(4): 1044–1051. https://doi.org/10.1002/2014GC005658 DOI: https://doi.org/10.1002/2014GC005658

Jerdon, T.C. (1862). The Birds of India, Vol 1. Military Orphan Press, Calcutta.

Jessel, H.R., S. Chen, S.S. Osovski, D.S. Efroni, D. Rittel & I. Bachelet (2019). Design principles of biologically fabricated avian nests. Scientific Reports 9(1): 4792. https://doi.org/10.1038/s41598-019-41245-7 DOI: https://doi.org/10.1038/s41598-019-41245-7

Koh, L.P. (2008). Can oil palm plantations be made more hospitable for forest butterflies and birds?. Journal of Applied Ecology 45(4): 1002–1009. https://doi.org/10.1111/j.1365-2664.2008.01491.x DOI: https://doi.org/10.1111/j.1365-2664.2008.01491.x

Lande, R. (1993). Risks of population extinction from demographic and environmental stochasticity and random catastrophes. The American Naturalist 142(6): 911–927. https://doi.org/10.1086/285580 DOI: https://doi.org/10.1086/285580

Langham, N. (1980). Breeding biology of the Edible‐nest swiftlet Aerodramus fuciphagus. Ibis 122(4): 447–461. https://doi.org/10.1111/j.1474-919X.1980.tb00900.x DOI: https://doi.org/10.1111/j.1474-919X.1980.tb00900.x

Lourie, S.R & D.M. Tompkins (2000). The Diets of Malaysian Swiftlets. Ibis 142(4): 596–602. https://doi.org/10.1111/j.1474-919X.2000.tb04459.x DOI: https://doi.org/10.1111/j.1474-919X.2000.tb04459.x

Luther, D., J.C. Skelton, C. Fernandez & J. Walters (2016). Conservation action implementation, funding, and population trends of birds listed on the Endangered Species Act. Biological Conservation 197: 229–234. https://doi.org/10.1016/j.biocon.2016.03.019 DOI: https://doi.org/10.1016/j.biocon.2016.03.019

Mahabal, A., S. Pande, R.M. Sharma & S.N. Pednekar (2007). Status Survey of Endangered Species, Status Survey of Indian Edible-nest Swiftlet Collocalia unicolor (Jerdon,1840) in the Western Ghats, West Coast and Island in the Arabian Sea, India. Zoological Survey of India, Kolkata, India, 52 pp.

Manchi, S. & R. Sankaran (2009). Predators of swiftlets and their nests in the Andaman & Nicobar Islands. Indian Birds 5(4): 118–120.

Manchi, S. & R. Sankaran (2011). Breeding Habitat requirements of the Edible-nest Swiftlet in North and Middle Andaman Islands. In International Conference & Training on Swiftlet Ranching, 17th to 19th July 2011, Kuala Terengganu, Terengganu, Malaysia.

Manchi, S. & R. Sankaran (2014). Protection of the White-nest Swiftlet (Aerodramus fuciphagus) in the Andaman Islands, India: an assessment. Oryx 48(2): 213–217. https://doi.org/10.1017/S0030605311000603 DOI: https://doi.org/10.1017/S0030605311000603

Manchi, S. (2009). Breeding ecology of the Edible-nest Swiftlet (Collocalia fuciphaga) and the Glossy Swiftlet (Collocalia esculenta) in the Andaman Islands India. PhD Thesis. Bharathiar University, Coimbatore, India, 131 pp.

Manchi, S., G. Quadros & D.J. Kawalkar (2022). Mapping biological diversity in the caves of Vengurla Rocks Archipelago, Sindhudurg, Maharashtra. Sálim Ali Centre for Ornithology and Natural History, Coimbatore, India, 57 pp.

Manchi, S., D. Kawalkar, P. Gurjarpadhye, A. Dhamorikar & S.K. Jena (2022). In-situ and Ex-situ conservation of Endemic Andaman Edible-nest Swiftlet in the Andaman and Nicobar Islands. Sálim Ali Centre for Ornithology and Natural History, Coimbatore, India, 104 pp.

Morris, W.F. & D.F. Doak (2002). Quantitative Conservation Biology: Theory and Practice of Population Viability Analysis. Sinauer Associates, Sunderland, Massachusetts, USA.

Morrison, M.L. (1986). Bird Populations as Indicators of Environmental Change, pp. 429–451. In: Johnston, R.F. (ed.). Current Ornithology, Vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6784-4_10 DOI: https://doi.org/10.1007/978-1-4615-6784-4_10

Mujib, Mardiyah, Suherman, R.M. Rakhmawati, S. Andriani, Mardiyah, H. Suyitno, Sukestiyarno & I. Junaidi (2019). The application of differential equation of Verhulst population model on estimation of Bandar Lampung population. Journal of Physics: Conference Series 1155(1): 012017. https://doi.org/10.1088/1742-6596/1155/1/012017 DOI: https://doi.org/10.1088/1742-6596/1155/1/012017

Mursidah, M., A.M. Lahjie, M. Masjaya, Y. Rayadin & Y. Ruslim (2020). The ecology, productivity and economic of swiftlet (Aerodramus fuciphagus) farming in Kota Bangun, East Kalimantan, Indonesia. Biodiversitas Journal of Biological Diversity 21(7): 3117–3126. https://doi.org/10.13057/biodiv/d210732 DOI: https://doi.org/10.13057/biodiv/d210732

Nguyên, Q.P., Y. Quang & J.F. Voisin (2002). The White-nest Swiftlet and the Black-nest Swiftlet: A Monograph. Society Nouvelle des Editions Boubee, Paris, 297 pp.

Nituda, C.J.P. & O.M. Nuneza (2016). Diet composition of two species of swiftlets from caves of Northern Mindanao, Philippines. Bulletin of Environment, Pharmacology and Life Sciences 5: 48–52.

Öberg, M., D. Arlt, T. Pärt, A.T. Laugen, S. Eggers & M. Low (2015). Rainfall during parental care reduces reproductive and survival components of fitness in a passerine bird. Ecology and Evolution 5(2): 345–356. https://doi.org/10.1002/ece3.1345 DOI: https://doi.org/10.1002/ece3.1345

Pande, S. (2001). The clandestine trade of nests of the Edible-nest Swiftlets at Vengurla Rocks. Pitta 121: 1.

Pearce‐Higgins, J.W., S.M. Eglington, B. Martay & D.E. Chamberlain (2015). Drivers of climate change impacts on bird communities. Journal of Animal Ecology 84(4): 943–954. https://doi.org/ 10.1111/1365-2656.12364 DOI: https://doi.org/10.1111/1365-2656.12364

Petkliang, N. (2017). Foraging Habitat Selection and Seasonality of Breeding in Germain’s Swiftlet (Aerodramus inexpectatus germani) in Southern Thailand. PhD Thesis. Prince of Songkla University, Thailand, 130 pp.

Pimm, S.L., H.L. Jones & J. Diamon (1988). On the risk of extinction. American Naturalist 132(6): 757–785. https://doi.org/10.1086/284889 DOI: https://doi.org/10.1086/284889

Porter, R. & S. Aspinall (2013). Birds of the Middle East. Bloomsbury Publishing, United Kingdom, 202 pp.

Raju, S.L.V., K.S. Krishna & A.K. Chaubey (1991). Buried Late Pleistocene Fluvial Channels on the Inner Continental Shelf off Vengurla, West Coast of India. Journal of Coastal Research 7(2): 509–516.

Ramírez‐Cruz, G.A., I. Solano‐Zavaleta, M. Méndez‐Janovitz & J.J. Zúñiga‐Vega (2020). Demographic and spatial responses of resident bird populations to the arrival of migratory birds within an urban environment. Population Ecology 62(1): 105–118. https://doi.org/10.1002/1438-390X.12032 DOI: https://doi.org/10.1002/1438-390X.12032

Rigal, S., V. Dakos, H. Alonso, A. Auniņš, Z. Benkő, L. Brotons & V. Devictor (2023). Farmland practices are driving bird population decline across Europe. Proceedings of the National Academy of Sciences 120(21): e2216573120. https://doi.org/10.1073/pnas.2216573120 DOI: https://doi.org/10.1073/pnas.2216573120

Roark, E., J. Guilbert, Kohler, J. Atalig & L. Sablan (2022). A rapid assessment of cave occupancy for Pacific sheath-tailed bats (fanihin ganas, Emballonura semicaudata rotensis) and Mariana swiftlets (Cchachaguak, Aerodramus bartschi) on Aguiguan, Mariana Islands. Micronesica 2: 1–10.

Rodríguez, J.P. (2002). Range contraction in declining North American bird populations. Ecological Applications 12(1): 238–248. https://doi.org/10.1890/1051-0761(2002)012[0238:RCIDNA]2.0.CO;2 DOI: https://doi.org/10.1890/1051-0761(2002)012[0238:RCIDNA]2.0.CO;2

Rolstad, J. (1991). Consequences of forest fragmentation for the dynamics of bird populations: conceptual issues and the evidence. Biological Journal of the Linnean Society 42(1–2): 149–163. https://doi.org/10.1111/j.1095-8312.1991.tb00557.x DOI: https://doi.org/10.1111/j.1095-8312.1991.tb00557.x

Sæther, B.E. & S. Engen (2003). Routes to extinction, pp. 218–236. In: Blackburn, T. & K. Gaston (eds.). Macroecology. Blackwell Publishing, Oxford, UK.

Sæther, B.E., S. Engen, A.P. Møller, M.E. Visser, E. Matthysen, W. Fiedler, M.M. Lambrechts, P.H. Becker, J.E. Brommer, J. Dickinson & C. Du Feu (2005). Time to extinction of bird populations. Ecology 86(3): 693–700. https://doi.org/10.1890/04-0878 DOI: https://doi.org/10.1890/04-0878

Sankaran, R. & S. Manchi (2008). Conservation of the Edible-nest Swiftlet in the Andaman and Nicobar Islands, Sálim Ali Centre for Ornithology and Natural History, Coimbatore, India.

Sankaran, R. (2001). The status and conservation of the Edible-nest Swiftlet in the Andaman and Nicobar Islands. Biological Conservation 97(3): 283–294. https://doi.org/10.1016/S0006-3207(00)00124-5 DOI: https://doi.org/10.1016/S0006-3207(00)00124-5

Schoener, T.W., J. Clobert, S. Legendre & D.A. Spiller (2003). Life-history models of extinction: a test with island spiders. American Naturalist 162(5): 558–573. https://doi.org/10.1086/378693 DOI: https://doi.org/10.1086/378693

Sicurella, B., M. Caffi, M. Caprioli, D. Rubolini, N. Saino & R. Ambrosini (2015). Weather conditions, brood size and hatching order affect Common Swift Apus apus nestlings’ survival and growth. Bird Study 62(1): 64–77. https://doi.org/10.1080/00063657.2014.989193 DOI: https://doi.org/10.1080/00063657.2014.989193

Simberloff, D. (1992). Does species–area curves predict extinction in fragmented forest? pp. 75–89. In: Whitmore, T.C. & J.A. Sayer (eds.). Tropical Deforestation and Species Extinction. Chapman and Hall, London, United Kingdom, 156 pp.

Stimpson, C.M. (2013). A 48,000 year record of swiftlets (Aves: Apodidae) in north-western Borneo: Morphometric identifications and palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology 374: 132–143. https://doi.org/10.1016/j.palaeo.2013.01.011 DOI: https://doi.org/10.1016/j.palaeo.2013.01.011

Tarburton, M.K. (1986). The food of the White-rumped Swiftlet (Aerodramus spodiopygius) in Fiji. Notornis 33(1): 1–16

Tarburton, M.K. & S.R. Tarburton (2013). Colony stability of cave-nesting Australian Swiftlets in Queensland: What are the impacts of severe weather events?. Australian Field Ornithology 30(3): 131–151. https://doi.org/10.3316/informit.799114793899638

Temple, S.A. & J.A. Wiens (1989). Bird populations and environmental changes: can birds be bio-indicators. American Birds 43(2): 260–270.

Thorburn, C. (2014). The Edible Birds’ Nest boom in Indonesia and Southeast Asia. Food, Culture & Society 17(4): 535–553. https://doi.org/10.2752/175174414X14006746101439 DOI: https://doi.org/10.2752/175174414X14006746101439

Timeneno, H.M. & H.S. Utomo (2008). Model Pertumbuhan Logistik dengan Waktu Tunda. Matematika 11(1): 43–51.

Tompkins, D.M. (1999). Impact of nest‐harvesting on the reproductive success of black‐nest swiftlets Aerodramus maximus. Wildlife Biology 5(1): 33–36. https://doi.org/10.2981/wlb.1999.006 DOI: https://doi.org/10.2981/wlb.1999.006

Wilson, A.M. & R.J. Fuller (2001). Bird population and environmental change. British Trust of Ornithology. Research Report Number 263, 116 pp.