Low genetic diversity in Clarias macrocephalus Günther, 1864 (Siluriformes: Clariidae) populations in the Philippines and its implications for conservation and management

Main Article Content

Marc Timothy C. Tan
Joycelyn C. Jumawan
Jonas P. Quilang


Clarias macrocephalus Günther, 1864 is a Near Threatened freshwater catfish found in the Philippines and other Southeast Asian countries.  Its numbers have dwindled over the past few years because of habitat loss and competition.  This study examined the genetic diversity of the remaining viable populations of C. macrocephalus in the Philippines.  Primers were designed to amplify via polymerase chain reaction (PCR) the complete mitochondrial DNA (mtDNA) control region (870-bp) in 120 specimens collected from three sites: (1) Buguey, Cagayan; (2) Camalaniugan, Cagayan; and (3) Agusan del Sur.  Of the 120 sequences generated, only three haplotypes and two polymorphic sites were found. Overall haplotype and nucleotide diversity (h=0.479, π=0.00058) were alarmingly low, consistent with populations of other freshwater fishes that have experienced a genetic bottleneck.  The overall FST value was 0.80050, indicative of large genetic differentiation between populations.  The very low genetic variation found in all three C. macrocephalus populations calls for conservation and management efforts for the protection of the remaining populations of this economically important species.

Article Details

How to Cite
Tan, M.T.C., Jumawan, J.C. and Quilang, J.P. 2016. Low genetic diversity in Clarias macrocephalus Günther, 1864 (Siluriformes: Clariidae) populations in the Philippines and its implications for conservation and management. Journal of Threatened Taxa. 8, 6 (Jun. 2016), 8849–8859. DOI:https://doi.org/10.11609/jott.2261.8.6.8849-8859.
Author Biographies

Marc Timothy C. Tan, Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, Philippines

Marc Timothy C. Tan is a graduate of BS Biology at the University of the Philippines Diliman. During his undergraduate degree program, he worked on fish DNA barcoding and population genetics. He is currently taking up Medicine and Master in Business Administration at the Ateneo School of Medicine and Public Health, Ateneo de Manila University. 


Joycelyn C. Jumawan, Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, Philippines Caraga State University-Main Campus, Ampayon, 8600 Butuan City, Philippines

Dr. Joycelyn C. Jumawan is currently an Associate Professor at the Department of Biology, Caraga State University. Her research interest includes fish reproductive biology and genetics. She has been involved in biodiversity conservation research in Agusan Marsh.


Jonas P. Quilang, Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, Philippines

Dr. Jonas P. Quilang is an Associate Professor and Head of the Molecular Population Genetics Laboratory at the Institute of Biology, University of the Philippines Diliman. His research interest includes molecular phylogenetics, molecular population genetics, and DNA barcoding of Philippine fishes.



Aquino, L.M.G., J.M. Tango, R.C. Canoy, I.K.C. Fontanilla, Z.U. Basiao, P.S. Ong & J.P. Quilang (2011). DNA barcoding of fishes of Laguna de Bay, Philippines. Mitochondrial DNA 22: 143–153; http://dx.doi.org/10.3109/19401736.2011.624613

Ardestani, G., D.R.O. Rogelio, R.C. Reyes & R.P. Laude (2014). Genetic diversity of two Philippine freshwater goby species (Perciformes: Gobiidae): implications for conservation. Aquatic Conservation: Marine Freshwater Ecosystems 24: 1–9; http://dx.doi.org/10.1002/aqc.2462

Ayres, R., V. Pettigrove & A. Hoffman (2010). Low diversity and high levels of population genetic structuring in introduced Eastern Mosquitofish (Gambusia holbrooki) in the greater Melbourne area, Australia. Biological Invasions 12: 3727–3744; http://dx.doi.org/10.1007/s10530-010-9766-z

Bandelt, H.-J., P. Forster & A. Röhl (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16: 37–48.

Chen, S.Y., R.D. Zhang, J.G. Feng, H. Xiao, W.X. Li, R.G. Zan & Y.P. Zhang (2009). Exploring factors shaping population genetic structure of the freshwater fish Sinocyclocheilus grahami (Teleostei, Cyprinidae). Journal of Fish Biology 74: 1774–1786; http://dx.doi.org/10.1111/j.1095-8649.2009.02204.x

Conlu, P.V. (1986). Guide to Philippine Flora and Fauna - Vol. 9. Fishes. Quezon City: Natural Resources Management Center, University of the Philippines, 495pp.

Delmendo, M.N. & R.N. Bustillo (1968). Studies on fish population of Laguna de Bay. FAO Occas. Pap. 69/12, IFPC/C68/Technical 30.

Excoffier, L. & H.E.L. Lischer (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 564–567; http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x

Faulks, L.K,, D.M. Gilligan & L.B. Beheregaray (2008). Phylogeography of a threatened freshwater fish (Mogurnda adspersa) in eastern Australia: conservation implications. Marine and Freshwater Research 59: 89–96; http://dx.doi.org/10.1071/MF07167

Fowler, H.W. (1941). Contributions to the biology of the Philippine archipelago and adjacent regions: The fishes of the groups Elasmobranchii, Holocephali, Isospondyli, and Ostariophysi obtained by US Bureau of Fishing Steamer ALBATROSS in 1907 to 1910, chiefly in the Philippine Islands and adjacent seas. Bulletin of the United States National Museum 100: 1–879.

Froese, R. & D. Pauly (2016). FishBase. World Wide Web electronic publication. www.fishbase.org, version (01/2016). Electronic version accessed on 11 May 2016.

Gjerde, B., M. Pante & G. Baeverfjord (2005). Genetic variation for a vertebral deformity in Atlantic Salmon (Salmo salar). Aquaculture 244(1–4): 77–87; http://dx.doi.org/10.1016/j.aquaculture.2004.12.002

Grant, W.S. & B.W. Bowen (1998). Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. Journal of Heredity 89: 415–426; http://dx.doi.org/10.1093/jhered/89.5.415

Herre, A.W.C.T. (1924). Distribution of the true freshwater fishes in the Philippines. II. Philippine Labyrinthici, Clariidae, and Siluridae. Philippine Journal of Science 24(6): 683–709.

Herre, A.W.C.T. (1927). The fisheries of Lake Taal (Bombon), Luzon and Lake Naujan (Mindoro). Philippine Journal of Science 34: 287–315.

Herre, A.W.C.T. (1934). Notes on the fishes in the Zoological Museum of Stanford University. I. The fishes of the Herre Philippine expedition of 1931. The fishes of the Herre 1931 expedition with descriptions of 17 new species. The Newspaper Enterprise, Ltd., Hong Kong, 106pp.

Herre, A.W.C.T. (1953). Checklist of Philippine Fishes. Washington, DC: United States Government Printing Office, 977pp.

Jiang, P., Q. Lang, S. Fang, P. Ding & L. Chen (2005). A genetic diversity comparison between captive individuals and wild individuals of Elliot’s Pheasant (Syrmaticus ellioti) using mitochondrial DNA. Journal of Zhejiang University Science 1–11; http://dx.doi.org/10.1631/jzus.2005.B0413

Juliano, R.O., R.D. Guerrero III & I. Ronquillo (1989). The introduction of exotic aquatic species in the Philippines, pp. 83–90. In: de Silva, S.S. (ed.). Exotic Aquatic Organisms in Asia. Proceedings of the Workshop on Introduction of Exotic Aquatic Organisms in Asia. Asian Fish. Soc. Spec. Publ. 3. Manila, Philippines: Asian Fisheries Society, 154pp.

Kincaid, H. (1976). Inbreeding in Rainbow Trout (Salmo gairdneri). Journal of the Fisheries Research Board of Canada 33 (11): 2420–2426.

Leary, R., F. Allendorf & K. Knudsen (1985). Developmental Instability as an Indicator of Reduced Genetic Variation in Hatchery Trout. Transactions of the American Fisheries Society 114 (2): 230–235; http://dx.doi.org/10.1577/1548-8659(1985)114<230:DIAAIO>2.0.CO;2

Leberg, P. & B. Firmin (2008). Role of inbreeding depression and purging in captive breeding and restoration programmes. Molecular Ecology 17: 334–343; http://dx.doi.org/10.1111/j.1365-294X.2007.03433.x

Librado, P. & J. Rozas (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452; http://dx.doi.org/10.1093/bioinformatics/btp187

Matillano, J.D. (2003). The ichthyofauna of Lake Manguao, Taytay, Palawan, with special reference to endemic species. Proceedings of the First National Congress on Philippine Lakes, 25–28 November 2003, Tagaytay City, Philippines, 340pp.

Mehlis, M., J. Frommen, A. Rahn & T. Bakker (2012). Inbreeding in Three-spined Sticklebacks (Gasterosteus aculeatus L.): effects on testis and sperm traits. Biological Journal of the Linnean Society 107(3): 510–520; http://dx.doi.org/10.1111/j.1095-


Mercene, E.C. (1997). Freshwater fishes of the Philippines, pp. 81–105. In: Guerrero, R. III, A. Calpe, L. Darvin (eds.). Aquatic Biology Research and Development in the Philippines. Proceedings of the First Nat’l Symposium-Workshop on Aquatic Biology R and D, November 28–29, 1995, Los Baños, Laguna. PCAMRD Bk. Ser. 20.

Meyer, A.B. (1885). Catalogo de los peces recolectades en el archipiélago de las Indias Orientales durante los años 1870 á 1873. Anales de la Sociedad Española de Historia Natural Madrid 14: 1–49.

Meyer, A., J.M. Morrissey & M. Schartl (1994). Recurrent origin of a sexually selected trait in Xiphophorus fishes interred from a molecular phylogeny. Nature 368: 539–542; http://dx.doi.org/10.1038/368539a0

Na-Nakorn, U., W. Rangsin & J. Boon-ngam (2004a). Allotriploidy increases sterility in the hybrid between Clarias macrocephalus and Clarias gariepinus. Aquaculture 237: 73–88; http://dx.doi.org/10.1016/j.aquaculture.2004.02.032

Na-Nakorn, U., W. Kamonrat & T. Ngamsiri (2004b). Genetic diversity of Walking Catfish, Clarias macrocephalus, in Thailand and evidence of genetic introgression from introduced farmed C. gariepinus. Aquaculture 240: 145–163; http://dx.doi.org/10.1016/j.aquaculture.2004.08.001

Nazia A., M. Suzan, H. Azhar, T.N. Thuy & M.S. Azizah (2010). No genetic differentiation between geographically isolated populations of Clarias macrocephalus Gunther in Malaysia revealed by sequences of mtDNA Cytochrome b and D-loop gene regions. Journal of Applied Ichthyology 26: 568–570; http://dx.doi.org/10.1111/j.1439-0426.2010.01469.x

Palumbi, S., A. Martin, S. Romano, W.O. Mc Millan, L. Stice & G. Grabowski (2002). The Simple Fool’s Guide to PCR, version 2.0. Honolulu, HI: University of Hawaii, 45pp.

Quilang, J.P. & S.C. Yu (2015). DNA barcoding of commercially important catfishes in the Philippines. Mitochondrial DNA 26(3): 435–444; http://dx.doi.org/10.3109/19401736.2013.855897

Rosagaron, R.P. (2001). Lake Lanao: Its past and present status, pp. 29–39. In: Santiago, C.B., M.L. Cuvin-Aralar & Z.U. Basiao (eds.). Conservation and Ecological Management of Philippine Lakes in Relation to Fisheries and Aquaculture. Southeast Asian Fisheries Development Center, Aquaculture Department, Iloilo, Philippines; Philippine Council for Aquatic and Marine Research and Development, Los Baños, Laguna, Philippines; and Bureau of Fisheries and Aquatic Resources, Quezon City, Philippines, 187pp.

Roxas, H. & C. Martin (1937). A Check List of Philippine Fishes. Manila: Bureau of Printing, 314pp.

Santos, B.S., F.P.C. Vesagas, M.T.C. Tan, J.C. Jumawan & J.P.

Quilang (2015). Status assessment of Clarias species in the Philippines: insights from DNA barcodes. Science Diliman 27(2): 21–40.

Sato, T. (2006). Occurrence of deformed fish and their fitness-related traits in Kirikuchi Charr, Salvelinus leucomaenis japonicus, the southernmost population of the genus Salvelinus. Zoological Science 7: 593–599; http://dx.doi.org/10.2108/zsj.23.593

Senanan W., A.R. Kapunscinski, U. Na-Nakorn & L.M. Miller (2004). Genetic impacts of hybrid catfish farming (Clarias macrocephalus × C. gariepinus) on native catfish populations in central Thailand. Aquaculture 235: 167–184; http://dx.doi.org/10.1016/j.aquaculture.2003.08.020

Southeast Asian Fisheries Development Center (1999). Seed production of the native catfish Clarias macrocephalus (Gunther). Retrieved Dec 27, 2013, from SEAFDEC Philippines: http://repository.seafdec.org.ph/handle/10862/627

Staden, R. (1996). The Staden Sequence Analysis Package. Molecular Biotechnology 5: 233–241; http://dx.doi.org/10.1007/BF02900361

Staden, R., D.P. Judge & J.K. Bonfield (2003). Managing sequencing projects in the GAP4 environment, pp. 327–344. In: Krawetz, S.A. & D.D. Womble (eds.). Introduction to Bioinformatics: A Theoretical and Practical Approach. Human Press Inc., Totawa, NJ 07512, 746pp.

Sudarto & L. Pouyaud (2005). Identification key based on morphological characters of the Southeast Asian species of the Genus Clarias (Pisces: Clariidae). Journal Iktiologi Indonesia 5: 39–47.

Ng, H.H. & M. Kottelat (2008). The identity of Clarias batrachus (Linnaeus, 1758), with the designation of a neotype (Teleostei: Clariidae). Zoological Journal of the Linnean Society of London 153:725–732; http://dx.doi.org/10.1111/j.1096-3642.2008.00391.x

Tamura, K., G. Stecher, D. Peterson, A. Filipski & S. Kumar (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution 30(12): 2725–2729; http://dx.doi.org/10.1093/molbev/mst197

Tayamen, M.M. (2007). Freshwater fish seed resources in the Philippines, pp. 395–424. In: Bondad-Reantaso, M.G. (ed.). Assessment of freshwater fish seed resources for sustainable aquaculture. FAO Fisheries Technical Paper. No. 501. Rome, FAO, 628pp.

Teugels, G.G., R.C. Diego, L. Pouyaud & M. Legendre (1999). Redescription of Clarias macrocephalus (Siluriformes: Clariidae) from South-east Asia. Cybium 23(3): 285–295.

Untergasser, A., H. Nijveen, X. Rao, T. Bisseling, R. Geurts & J.A. Leunissen (2007). Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Research 35(10.1093): W71–W74.

Vallejo, A.N. (1985). Fishes of Laguna de Bay. Natural and Applied Science Bulletin 37: 285–346.

Vasquez-Dominguez, E., A. Hernandez-Valdes, A. Rojas-Santoyo, L. Zambrano (2009). Contrasting genetic structure in two codistributed freshwater fish species of highly seasonal systems. Revista Mexicana de Biodiversidad 80: 181–192.

Vidthayanon, C. & D. Allen (2013). Clarias macrocephalus. The IUCN Red List of Threatened Species 2013: e.T166020A6170044. Accessed on 11 May 2016; http://dx.doi.org/10.2305/IUCN.UK.2011-


von der Heyden S., M. Lipinski & C. Matthee (2010). Remarkably low mtDNA control region diversity in an abundant demersal fish. Molecuar Phylogenetics and Evolution 55: 1183–1188; http://dx.doi.org/10.1016/j.ympev.2009.09.018

Vrijenhoek, R. (1998). Conservation genetics of freshwater fish. Journal of Fish Biology 53: 394–412; http://dx.doi.org/10.1111/j.1095-8649.1998.tb01039.x

Yamamoto, S., K. Morita, R. Yokoyama, K. Miyamoto, M. Sato & K. Maekawa (2013). Incidence of a skeletal deformity (truncated upper jaw) in an isolated population of white-spotted charr Salvelinus leucomaenis. Journal of Icthyology 53(10): 889–893; http://dx.doi.org/10.1134/S0032945213100159

Zajitschek, S. & R. Brooks (2010). Inbreeding depression in male traits and preference for outbred males in Poecilia reticulata. Behavioral Ecology 21: 884–891; http://dx.doi.org/10.1093/beheco/arq077

Zheng, J., J. Xia, S. He & D. Wang (2005). Population genetic structure of the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis): Implications for management and conservation. Biochemical Genetics 43(5–6): 307–320; http://dx.doi.org/10.1007/s10528-005-5222-7