

Building evidence for conservation globally

Journal of Threatened Taxa

10.11609/jott.2025.17.2.26443-26570

www.threatenedtaxa.org

26 February 2025 (Online & Print)

17(2): 26443-26570

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

zooreach @ 40

Open Access

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India

Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Ph: +91 9385339863 | www.threatenedtaxa.org

Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Deputy Chief Editor

Dr. Neelesh Dahanukar

Noida, Uttar Pradesh, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Editorial Board

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors

Mrs. Mira Bhojwani, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhu Stothra Bhashyam**, Hyderabad, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting

Mrs. Radhika, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India

Fundraising/Communications

Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2021–2023

Fungi

Dr. B. Shivaraju, Bengaluru, Karnataka, India

Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India

Dr. Vatsavaya S. Raju, Kakatiya University, Warangal, Andhra Pradesh, India

Dr. M. Krishnappa, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India

Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India

Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India

Dr. Kiran Ramchandra Ranadive, Annasaheb Magar Mahavidyalaya, Maharashtra, India

Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India

Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India

Dr. Shonil Bhagwat, Open University and University of Oxford, UK

Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India

Dr. Ferdinand Boero, Università del Salento, Lecce, Italy

Dr. Dale R. Calder, Royal Ontario Museum, Toronto, Ontario, Canada

Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines

Dr. F.B. Vincent Florens, University of Mauritius, Mauritius

Dr. Merlin Franco, Curtin University, Malaysia

Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India

Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India

Dr. Pankaj Kumar, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA

Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India

Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Vijayasankar Raman, University of Mississippi, USA

Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantapur, India

Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India

Dr. Aparna Watve, Pune, Maharashtra, India

Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China

Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia

Dr. M.K. Vasudeva Rao, Shiv Ranjan Housing Society, Pune, Maharashtra, India

Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Manda Datar, Agharkar Research Institute, Pune, Maharashtra, India

Dr. M.K. Janarthanam, Goa University, Goa, India

Dr. K. Karthigeyan, Botanical Survey of India, India

Dr. Errol Vela, University of Montpellier, Montpellier, France

Dr. P. Lakshminarasiham, Botanical Survey of India, Howrah, India

Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA

Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India

Dr. Analinda Manila-Fajard, University of the Philippines Los Banos, Laguna, Philippines

Dr. P.A. Siru, Central University of Kerala, Kasaragod, Kerala, India

Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India

Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India

Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA

Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India

Dr. A.G. Pandurangan, Thiruvananthapuram, Kerala, India

Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India

Dr. Kannan C.S. Warrier, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India

Dr. D.B. Bastawade, Maharashtra, India

Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India

Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India

Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa

Dr. Rory Dow, National Museum of natural History Naturalis, The Netherlands

Dr. Brian Fisher, California Academy of Sciences, USA

Dr. Richard Gallon, Llandudno, North Wales, LL30 1UP

Dr. Hemant V. Ghate, Modern College, Pune, India

Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Tamil Lacewing *Cethosia nietneri* with colour pencils and watercolours for the background; detailing with fine liners by Elakshi Mahika Molur.

Culture and provisioning: the case of Human-Long-tailed Macaque *Macaca fascicularis* (Raffles, 1821) interactions in Sumile, Butuan City, Philippines

Fritche H. Lapore¹, Debbie S. Aseñas² & Sherry L. Paz³

^{1,2,3}College of Forestry and Environmental Sciences, Caraga State University-Main Campus, Ampayon, Butuan City, Philippines.

¹fritchefaih@gmail.com, ²asenasdebbie@gmail.com, ³slpaz@carsu.edu.ph (corresponding author)

Abstract: Understanding human-macaque interactions is crucial for species conservation and management. Hence, this study investigated the Human-Long-tailed Macaque *Macaca fascicularis* (Raffles 1821) interactions in Sumile, Butuan City from July 2022 to April 2023 through one-on-one interviews. A total of 271 randomly selected respondents were surveyed to determine their demographic and socioeconomic profiles. Their knowledge, attitudes, and perceptions of human-macaque interactions such as provisioning, regulation measures, and associated factors were also determined. Most of them were aware of the cultural importance of macaques (86.35%). The majority were not aware of the ecological (73.43%) and socioeconomic importance of macaques (52.03%), as well as RA 9147 or Wildlife Act (61.26%). Most residents provisioned macaques (99.26%). Macaque behaviors were household food foraging (94.84%), crop foraging (31.78%), trash consumption (69.37%), and trash dropping (30.63%). Most residents did nothing to food foraging in households (53.51%) or crop foraging (58.30%) while some resorted to throwing hard objects, hand clapping, or dog chasing. Educational attainment was the most common factor significantly associated with residents' knowledge. Length of residency and educational attainment were significantly associated with provisioning frequency while length of residency and occupation were associated with the prohibition of provisioning to avoid negative human-macaque interaction. This study implies that cultural factors influence rampant macaque provisioning. If uncontrolled, provisioning may lead to economic and health losses and negative attitudes toward macaques and conservation efforts. The top three human-macaque regulation measures suggested by most residents were government action, effective waste disposal, and increasing the food base in the forest. Researchers further recommend local conservation area establishment; culture-sensitive and controlled provisioning; and community-based conservation. This also entails educating the public on the adverse impacts of uncontrolled provisioning. Furthermore, periodic monitoring of macaque populations and conservation management strategies that balance ecological, socio-economic, and cultural considerations for human-macaque co-existence is necessary.

Keywords: Conservation, crop foraging, cultural belief, Elijah Park, foraging behavior, local communities, management, monkey feeding, perceptions, regulation measures.

Editor: Joseph Erinjery, Kannur University, Wayanad, India.

Date of publication: 26 February 2025 (online & print)

Citation: Lapore, F.H., D.S. Aseñas & S.L. Paz (2025). Culture and provisioning: the case of Human-Long-tailed Macaque *Macaca fascicularis* (Raffles, 1821) interactions in Sumile, Butuan City, Philippines. *Journal of Threatened Taxa* 17(2): 26443-26458. <https://doi.org/10.11609/jott.9473.17.2.26443-26458>

Copyright: © Lapore et al. 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: None.

Competing interests: The authors declare no competing interests.

Author details: FRITCHE H. LAPORE has just graduated BS in Environmental Science from Caraga State University. She is currently working in Mt. Apo Protected Natural Park, Protected Area Management Office as a Carrying Capacity Analyst. Her research interests are human-wildlife conflict studies and natural resources management. DEBBIE ASEÑAS has just graduated BS in Environmental Science from Caraga State University. She is currently looking for a job. Her research interests are human-wildlife conflict studies and environmental planning and management. DR. SHERRY L. PAZ is a professor in the College of Forestry and Environmental Science of Caraga State University. She graduated PhD in Environmental Science from the University of the Philippines Los Baños (UPLB). Her research interests include human-wildlife conflict, terrestrial wildlife conservation, and terrestrial wildlife ecology.

Author contributions: FHL, DSA & SLP conceptualized & designed the research, wrote the paper, reviewed, edited, and approved the submission of the final paper. FHL & DSA performed the surveys and field work activities and analysed the data.

Filipino abstract: See end of this article.

Acknowledgements: We express our gratitude to the local government officials of Sumile who allowed us to conduct the surveys in their communities. We are also grateful for the assistance and significant information from the Elijah Park caretakers and the local government head. Most of all, we highly appreciated the contribution of the mentors and the advisory committee of Fritche H. Lapore and Debbie S. Aseñas as this paper is part of their undergraduate thesis.

INTRODUCTION

Long-tailed Macaques *Macaca fascicularis* (Raffles, 1821) are found across southeastern Asia (Eudey et al. 2020) and are now classified as 'Endangered' due to habitat destruction and exploitation (Hansen et al. 2022). One of the 10 subspecies of *M. fascicularis* is found in the Philippines, which is *M. fascicularis philippinensis* (Grunstra et al. 2023), specifically known as the Philippine Long-tailed Macaque. Macaques often share space and food with humans which is an important aspect of the human-primate interface (Fuentes et al. 2007). The adaptability, flexibility, and synanthropic nature of Long-tailed Macaques enable them to inhabit diverse habitats including anthropogenic areas (Gumert et al. 2011), and consume various foods including human food (Sha & Hanya 2013). The macaque's adaptability to human-modified landscapes, their crop-foraging behavior, and the complex cultural and religious associations have made them particularly challenging for wildlife managers. The Long-tailed Macaques are often subject to culling despite being recently elevated to Endangered status on the IUCN Red list due to negative human-macaque interactions (Gamalo et al. 2023). The endemic Toque Macaque *Macaca sinica* in Sri Lanka is considered both endangered and nuisance species in certain habitats due to increased interactions with humans and crop foraging (Jayapali et al. 2023). In Nepal, negative Human-Rhesus Macaques *Macaca mulatta* interactions resulted from expanding monocultures, forest fragmentation, and habitat degradation (Koirala et al. 2021).

Long-tailed Macaques are frequently observed in roadsides, temples, towns, tourist sites, and agricultural areas (Muroyama & Eudey 2004; Lee & Priston 2005; Gumert et al. 2011). In these human-dominated areas, macaques are often provisioned by humans. Multiple factors contribute to macaque provisioning. Sengupta & Radhakrishna (2018) found that human attitudes significantly influence the degree of human-primate interaction. Their study highlighted the cyclical pattern where macaques are attracted to areas with food provided by humans, who in turn are motivated to feed them due to their behavior. Research in China and India showed that macaque provisioning was mainly due to concerns about wildlife food scarcity, desire for close observation, cultural factors, and religious beliefs (Zhao 2005; Sengupta & Radhakrishna 2018, 2020).

Macaque provisioning is prevalent in anthropogenic areas of the Philippines, including parks and human settlements adjacent to forests. Food provisioning was observed to be common in Puerto Princesa Subterranean

River National Park in Palawan (Gamalo et al. 2019), and Subic Bay. In Butuan City, particularly in Barangay Sumile, food provisioning for the Philippine Long-tailed Macaques is frequently observed. These macaques inhabit Elijan Park in proximity to human settlement. Elijan Park is governed by a quasi-religious organization, the Knights of Rizal Agricultural Endeavor Foundation Incorporated (KRAEFI), and was established by tribal chieftain or Datu Santiago B. Ecleo, Sr. (Dominador Paglinawan pers. comm. 20.i.2022). The majority of residents in Sumile are affiliated with the KRAEFI organization. Most residents perceived macaque provisioning as an act of benevolence. KRAEFI members typically provide corn, bananas, and other human food items to macaques inside and outside the park boundaries. Elijan Park caretakers were also observed permitting tourists to provision the macaques.

Food provisioning can aid macaque survival (Kurita 2014). Macaques may consume human food during periods of natural food shortages to supplement their diet (McKinney 2010) which could similarly benefit macaques in Sumile during a food crisis. Food provisioning may also have negative consequences such as the attenuation of macaque natural survival instinct (Dubois & Fraser 2013), increased risks of human-macaque infectious disease transmission (Chapman et al. 2005), restriction of ecological functions, e.g., seed dispersal capabilities (Sengupta 2015), alterations in habitat use (Sengupta & Radhakrishna 2018), changes in macaque behavior (Hsu & Kao 2009) and abrupt increase in reproduction and population size (Sengupta & Radhakrishna 2020).

Macaques adapt to provisioning, and subsequently exhibit a preference for and actively seek human-provided food (Lee & Priston 2005). This often leads to an overabundance of macaques in human settlements, resulting in negative human-macaque interaction (Sengupta & Radhakrishna 2020) such as foraging in kitchens or refuse containers (Unwin & Smith 2010) and consuming crops (Agyei et al. 2019; Li & von Essen 2021). Crop and refuse foraging are linked to food provisioning issues in Puerto Princesa Subterranean River National Park, Palawan (Gamalo et al. 2019). Similarly, in Sumile, macaques forage in households, nearby farms, and refuse disposal sites. These are perceived as a consequence of macaque adaptation to provisioning.

Without regulation, provisioning in Sumile could lead to an overabundance of macaques and negative human-macaque interactions, fostering negative perceptions among residents (Muroyama & Eudey 2004; Matheson et al. 2006; Kuswanda & Hutapea 2023), and hindering conservation efforts. Identifying sociocultural predictors

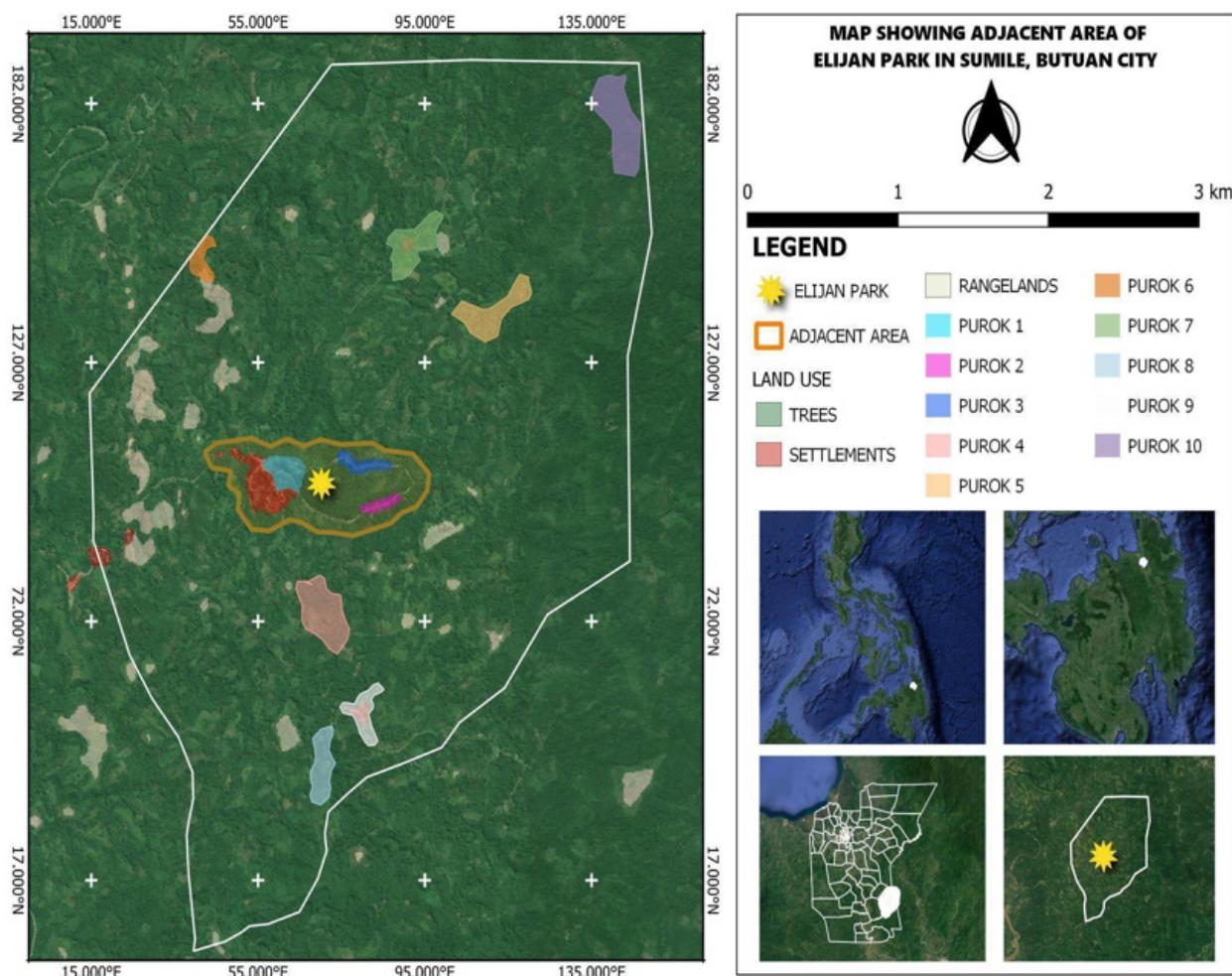
of human-macaque interactions is crucial for developing adaptive conservation plans for Long-tailed Macaques in Sumile (Humle & Hill 2016). Education programs, targeted behavior management, and consideration of cultural contexts are crucial components of such plans.

Therefore, the study aimed to assess the socioeconomic and cultural background of the respondents; knowledge of macaque significance and relevant legislation; perceptions and attitudes toward macaque provisioning and other human-macaque interactions, management measures, and conservation strategies; and associated socio-economic factors. This research aimed to prove if all Sumile residents engaged in provisioning and whether educational attainment, length of residency, and income negatively correlated with the provisioning frequency and positively correlated with its prohibition as a management measure alongside cultural factors. Studies like this are important, particularly in areas where sociocultural factors play a complex and important role in shaping human-macaque interactions. According to Priston & McLennan (2012) and Dacks et al. (2019), it is essential to incorporate sociocultural indicators, alongside ecological ones for developing holistic conservation strategies in human-dominated landscapes where macaques reside. The findings will furnish critical information to aid policymakers in developing adaptive management measures and conservation interventions that respect cultural and socio-economic values. This research can guide information, education, and communication initiatives in Sumile, particularly concerning the ecological significance of macaques, protective laws, specific threats, and the importance of human-macaque co-existence. Additionally, it will provide baseline data for future studies on human-macaque interactions and related primate behavior.

METHODS

Study site

Sumile is located in Butuan City, Agusan del Norte, Mindanao Island, Philippines, at 8.826°N, 125.626°E with an elevation of 116.3 m (381.6 ft) (Image 2). It was declared as “barangay” on 30 May 30 1986, under Ordinance No. 450–85. It has a population of 2,271, which comprises 0.64% of Butuan’s total population. Its population has increased by 585 individuals from 1,814 in 1990 to 2,399 in 2020.


One subspecies, *Macaca fascicularis philippensis* (Grunstra et al. 2023) is endemic to the Philippine

archipelago and also inhabits Sumile, Butuan City, particularly in Elijan Park, known as the KRAEFI-Sumile Botanical & Zoological Garden (Image 1). Elijan Park is named after the first settlers in the area “Elijan” — individuals residing near the site since the 1960s (Dominador Paglinawan pers. comm. 20.i.2022). The macaque population is estimated at approximately 500 and is divided into three troops according to park caretakers. The Knights of Rizal Agricultural Endeavor Foundation, Inc. (KRAEFI) organization currently manages Elijan Park (Dominador Paglinawan pers. comm. 20.i.2022). Numerous tourists visit Elijan Park primarily due to the presence of macaques. The tourists do not pay entrance fees as the local government still complies with the necessary documents to officially designate the park as tourism destination (Dominador Paglinawan pers. comm. 20.i.2022).

Elijan Park was part of the extensive forest in Sumile during the 1970s (Dominador Paglinawan pers. comm. 20.i.2022). This park consists of primary and secondary forests with 28 species. The botanical garden is dominated by *Gmelina arborea*, followed by *Swietenia macrophylla*, *Artocarpus blancoi*, and *Shorea contorta* (Glenn Mary Daulat in litt. 20 June 2022). In 2016, the DENR-Caraga also established a dipterocarp (White Lauan) plantation in the area. Sumile has 10 Puroks. Puroks 1,2, & 3, being the closest to Elijan Park, were selected for this research.

Image 1. KRAEFI-SUMILE Botanical & Zoological Garden (Elijan Park). © Fritche Lapore.

Image 2. Map of Sumile showing Elijan Park and its adjacent areas (four smaller pictures on the lower right show the location of Elijan Park in the Philippines, Mindanao Island, Caraga, and Sumile perspectives). Source: Butuan City Local Government Unit.

Study design, questionnaire, and research ethics

The researchers secured research authorization from Sumile Local Government, KRAIFI, and the City Environment and Natural Resources Office (CENRO-Butuan) prior to initiating the study. A preliminary site visit was conducted for area familiarization, followed by a pilot test of the questionnaire with 15 respondents to gather feedback for revisions. The questions underwent review and validation by subject matter experts. Subsequently, the actual surveys were conducted in three Puroks (Purok 1,2 & 3) of Barangay Sumile, involving 271 randomly selected respondents: 82 in Purok 1, 96 in Purok 2, and 93 in Purok 3. Although the questionnaire was in English, it was translated into Visayan. During one-on-one interviews, respondents provided socio-demographic and economic information (first part of the questionnaire), including gender, civil status, age, length of residency, religion, ethnicity, household size,

education, KRAIFI membership, occupation, and income (Appendix 1). The second part of the questionnaire assessed knowledge of macaque importance and conservation legislation and examined perceptions and attitudes toward provisioning, other human-macaque interactions, management, and conservation measures.

Data analysis

Data were organized, coded, and analyzed utilizing descriptive and inferential statistics from jamovi version 2.3.28. Frequencies and percentages were calculated. The results are subsequently presented using tables, graphs, and qualitative descriptions. The chi-square test of association was used to determine the socioeconomic factors linked to knowledge (RA 9147 and importance of macaques — ecological, socio-economic, and cultural), attitudes (provisioning frequency, and deterrent actions to household food and crop foraging), and

perceptions (potential management strategies such as the prohibition of provisioning, translocation, and dog patrolling) of the respondents. All reported statistical tests were conducted at a 95% confidence level.

RESULTS

Demographic and socio-economic profile of respondents

The majority of respondents were female (79.34%, n = 215) (Table 1) and married (80.07%, n = 217). The predominant age group was 26–45 years old (53%, n = 143), while the least represented age range was over 66 years (2%, n = 7). More than half of the participants had resided in the area for 16–35 years (57.94%, n = 157). Iglesia Filipina Independiente (IFI) was the dominant religious affiliation (83.13%, n = 225). Regarding ethnicity, only two respondents were indigenous: Higaonon (0.74%). The majority of the respondents were Bisaya (48.34%, n = 131). Most households had 1–5 members (56.45%, n = 153). Nearly half of the respondents had attained Junior High School education without completion (44.28%, n = 120). In terms of organization affiliation, 87.82% of the respondents (n = 238) were members of the KRAEFI.

Nine occupations were identified in this study (Table 2), with housewives being the largest occupational group (60.53%, n = 164). The majority of respondents (83.76%, n = 227) had only one employed family member, and more than half of the respondents had no supplementary income sources (60.53%, n = 164). A small proportion of the remaining respondents earned from businesses (sari-sari store, ready-to-wear store, manicure/pedicure services) (3.69%, n = 10) and employment as government employees (8.49%, n = 18). The monthly income for most respondents (83.76%, n = 227) ranged from PHP1,000 to PHP5,000 per month. The primary sustenance came from farm produce such as vegetables, fruits, and root crops.

Knowledge of respondents: macaque importance and related legislation

Approximately 26.57% (n = 72) of respondents considered macaques ecologically significant, while the majority (73.43%, n = 199) did not (Figure 1). Of those recognizing the ecological importance of macaques, 15.87% (n = 43) identified them as seed dispersers aiding tropical forest diversity. A few respondents (2.21%, n = 6) recognized macaques as important in maintaining forest balance while 1.11% (n = 3) linked them to preserving

Table 1. Socio-demographic characteristics of the respondents in Sumile, Butuan City.

Socio-demographic characteristics	Frequency	Percentage
Sex		
Female	215	79.34
Male	56	20.66
Civil status		
Single	51	18.82
Married	217	80.07
Widowed	3	1.11
Age		
18–25	59	21.77
26–45	143	52.77
46–65	62	22.88
66 above	7	2.58
Length of residency		
1–5	8	2.95
6–15	34	12.54
16–25	74	27.31
26–35	83	30.63
36+	72	26.57
Religion		
Iglesia Filipina Independiente (IFI)	225	83.03
Roman Catholic	37	13.65
Born Again Christian	9	3.32
Ethnicity		
Higaonon	2	0.74
Masbatenio	73	26.94
Leytenio	11	4.05
Bisaya	131	48.34
Number of household members		
1–5	153	56.45
6–10	114	42.07
11–15	4	1.48
Educational attainment		
Elementary Undergraduate	22	8.12
Elementary Graduate	35	12.92
Junior High School Undergraduate	120	44.28
Junior High School Graduate	51	18.82
Senior High School Undergraduate	1	0.37
Senior High School Graduate	3	1.10
College Undergraduate	19	7.01
College Graduate	19	7.01
Vocational	1	0.37
KRAEFI membership		
Non-Member	33	12.18
Member	238	87.82

forest diversity.

Most respondents (52.03%, $n = 141$) did not recognize macaques as socioeconomically important, whereas 47.97% ($n = 130$) did, primarily in relation to tourism. These respondents believed macaques could significantly boost Sumile's tourism revenue. Although Elijan Park has no mandatory entrance fee, visitors can make voluntary donations that can be utilized for park maintenance and community support. Majority of the respondents (86.35%; $n = 234$) regarded macaques as culturally important. Half of the respondents (51.29%, $n = 139$) viewed macaques as symbols of unity while 27.68% ($n = 75$) considered macaques sacred, and 7.38% ($n = 20$) believed that mistreating them could lead to negative karmic consequences.

More than half of the respondents (61.26%; $n = 166$) were unaware of the Wildlife Resources Conservation and Protection Act or Republic Act No. 9147, while 38.38% of the respondents ($n = 104$) were familiar with it. Among those aware of RA 9147, 17.71% ($n = 48$) identified it as wildlife protection legislation. Twenty-five respondents (9.23%) specifically mentioned macaque protection. Twenty-one respondents (7.75%) referred to it as providing wildlife handling guidelines, and 11 respondents (4.06%) recognized its role in wildlife

conservation.

A chi-square test was employed to examine the association between socioeconomic factors and knowledge of macaque importance and RA 9147, with results in Table 3. There was a significant association between age ($\chi^2 = 31.0$, $p = 0.011$) and the knowledge of macaques' ecological importance. Educational attainment ($\chi^2 = 30.0$, $p < 0.01$), income ($\chi^2 = 13.2$, $p = 0.021$), and occupation ($\chi^2 = 46.6$, $p < 0.01$) were also significantly associated with this knowledge. Younger residents (18–45 years old), individuals with higher educational attainment, and those with higher monthly incomes were more likely to know the ecological significance of macaques. Local government officials and educators exhibited a higher level of knowledge concerning this information.

Significant associations with length of residency ($\chi^2 = 14$, $p = 0.007$), education ($\chi^2 = 30.8$, $p < 0.01$), income ($\chi^2 = 18.5$, $p = 0.002$), and occupation ($\chi^2 = 46.6$, $p < 0.001$) were also observed when respondents were asked about their knowledge of the socio-economic importance of macaques. Long-term residents, individuals who attained higher educational levels, and those with higher monthly incomes were more likely to be knowledgeable about the socioeconomic importance of macaques. Similarly, local government officials, teachers, and students were more likely to be knowledgeable about this information.

Additionally, the length of stay ($\chi^2 = 17.2$, $p = 0.002$) and education ($\chi^2 = 25.2$, $p < 0.001$) were significantly linked to knowledge of macaque's cultural importance.

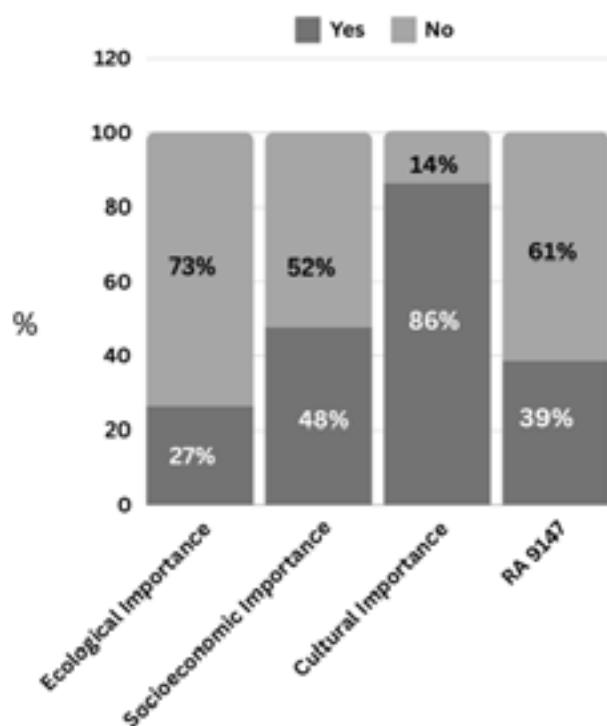


Figure 1. Knowledge of respondents on the ecological, socio-economic, and cultural importance of macaques and RA 9147 or Wildlife Resources Conservation and Protection Act in Sumile, Butuan City.

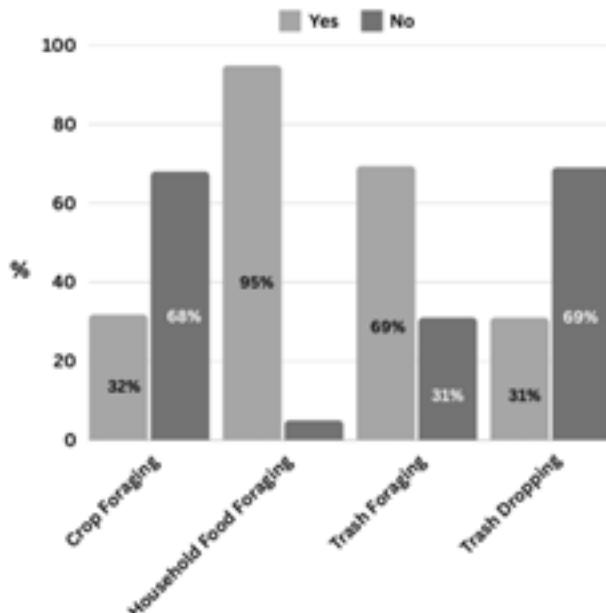


Figure 2. Observed macaque behavior in Sumile, Butuan City.

Long-term residents and individuals who attained higher educational levels demonstrated greater knowledge regarding the cultural significance of macaques. Age ($X^2 = 31.0$, $p < 0.01$), length of residency in the village ($X^2 = 20.4$, $p < 0.01$), educational attainment ($X^2 = 44.6$, $p < 0.01$), income ($X^2 = 26.3$, $p < 0.01$) and occupation ($X^2 = 50.6$, $p < 0.01$) were significantly associated with knowledge of RA 9147. Individuals who were younger had a shorter-term residency, possessed higher educational attainment, and reported higher incomes demonstrated greater knowledge of RA 9147. Additionally, educators and students exhibited a higher level of familiarity with this legislation.

Perceptions and attitudes of respondents toward human-macaque interactions and management

Macaque provisioning

Nearly all respondents (99.26%, $n = 269$) engaged in macaque provisioning, while only two (0.74%) abstained due to perceived harm to macaques. A significant proportion of the respondents (71.59%, $n = 194$) provisioned macaques out of respect, 18.08% ($n = 49$) regarded macaque provisioning as a cultural practice, and 9.59% ($n = 26$) participated in macaque provisioning out of concern for macaque survival. Conversely, one respondent (0.36%) avoided provisioning to encourage natural foraging, and another respondent (0.36%) believed that provisioning does not provide macaques with a natural diet.

The five primary food items frequently provided to macaques in Sumile were Bananas *Musa acuminata*, Sweet Potatoes *Ipomoea batatas*, Corn *Zea mays*, Taro *Colocasia esculenta*, and biscuits. Bananas were the most common (35.42%, $n = 96$), followed by Sweet Potatoes (18.08%, $n = 49$), Corn (17.71%, $n = 48$), biscuits (17.71%, $n = 48$), and Taro (11.44%, $n = 31$). Additional foods included bread, vegetables (e.g., squash, eggplants, vegetable pear), root crops (cassava, other taro species, gabi, and ube), and fruits (cacao and jackfruit). Some respondents shared portions of their crop harvests with macaques.

More than half of the respondents 65.68% ($n = 178$) engaged in macaque provisioning during "community service" time in Elijan Park. Others (22.88%, $n = 62$) provisioned macaques upon encountering them within the village, during the recreational visits to Elijan Park (10.70%, $n = 29$), or deliberately prepared food for them (0.71%, $n = 2$). The majority of the respondents (60.15%, $n = 163$) provisioned macaques sometimes, while 38.38% ($n = 104$) always did, and 1.48% ($n = 4$) seldom

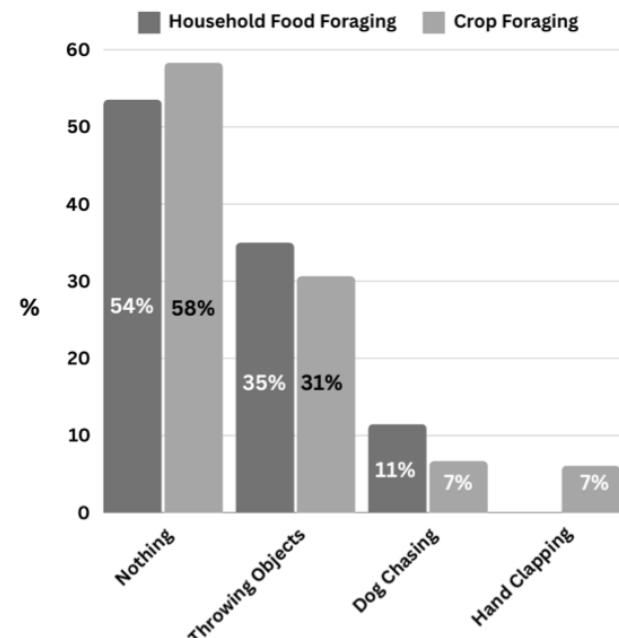


Figure 3. Deterrent actions of the respondents to household food and crop foraging by macaques in Sumile, Butuan City.

Table 2. Socio-economic characteristics of the respondents in Sumile, Butuan City.

Socio-demographic characteristics	Frequency	Percentage
Occupation of respondents		
Housewife	164	60.53
Farmer	14	5.17
Local government employees	23	8.49
Teacher	18	6.64
Engineer	2	0.74
Social Worker	1	0.37
Information technologist	1	0.37
Student	38	14.02
Businessman	10	3.69
Monthly income		
1,000–5,000	227	83.76
5,001–10,000	19	7.01
10,001–15,000	2	0.74
15,001–20,000	3	1.11
20,001–25,000	17	6.27
25,001–30,000	3	1.11

provisioned macaques.

There was a significant association between age ($X^2 = 25.2$, $p < 0.001$) and frequency of macaque provisioning. Other factors significantly associated included length of residency ($X^2 = 42.3$, $p < 0.001$), education ($X^2 = 73.6$, $p < 0.001$), and income ($X^2 = 24.6$, $p = 0.006$) (Table 3).

Table 3. Factors associated with the knowledge, attitudes, and perceptions of residents towards human-macaque interactions and management strategies in Sumile, Butuan City.

Variables knowledge	Age	Length of residency	Educational attainment	Monthly income	Occupation
RA 9147	$\chi^2 (3, N = 271) = 31.0, p < 0.01$	$\chi^2 (4, N = 271) = 20.4, p < 0.01$	$\chi^2 (8, N = 271) = 44.6, p < 0.01$	$\chi^2 (5, N = 271) = 26.3, p < 0.01$	$\chi^2 (8, N = 271) = 50.6, p < 0.01$
Ecological importance of macaques	$\chi^2 (3, N = 271) = 11.2, p = 0.011$	$\chi^2 (4, N = 271) = 6.03, p = 0.197$	$\chi^2 (8, N = 271) = 30.0, p < 0.01$	$\chi^2 (5, N = 271) = 13.2, p = 0.021$	$\chi^2 (8, N = 271) = 46.6, p < 0.01$
Socio-economic importance of macaques	$\chi^2 (3, N = 271) = 5.92, p = 0.153$	$\chi^2 (4, N = 271) = 14, p = 0.007$	$\chi^2 (8, N = 271) = 30.8, p < 0.001$	$\chi^2 (5, N = 271) = 18.5, p = 0.002$	$\chi^2 (8, N = 271) = 46.6, p < 0.001$
Cultural importance of macaques	$\chi^2 (3, N = 271) = 5.92, p = 0.115$	$\chi^2 (4, N = 271) = 17.2, p = 0.002$	$\chi^2 (8, N = 271) = 25.2, p = 0.001$	$\chi^2 (5, N = 271) = 7.67, p = 0.176$	$\chi^2 (8, N = 271) = 10.9, p = 0.208$
Attitudes					
Provisioning frequency	$\chi^2 (6, N = 271) = 25.2, p < 0.001$	$\chi^2 (8, N = 271) = 42.3, p < 0.001$	$\chi^2 (16, N = 271) = 73.6, p < 0.001$	$\chi^2 (10, N = 271) = 24.6, p = 0.006$	$\chi^2 (16, N = 271) = 21.8, p = 0.148$
Deterrent Action (Household Foraging)	$\chi^2 (6, N = 271) = 25.5, p < 0.001$	$\chi^2 (8, N = 271) = 36, p < 0.001$	$\chi^2 (16, N = 271) = 80.7, p < 0.001$	$\chi^2 (10, N = 271) = 38.1, p < 0.001$	$\chi^2 (16, N = 271) = 45.7, p < 0.001$
Deterrent Action (Crop Foraging)	$\chi^2 (9, N = 271) = 29.7, p < 0.001$	$\chi^2 (12, N = 271) = 48.4, p < 0.001$	$\chi^2 (24, N = 271) = 107, p < 0.001$	$\chi^2 (15, N = 271) = 39.7, p < 0.001$	$\chi^2 (24, N = 271) = 39.7, p = 0.015$
Perceptions					
Prohibit Provisioning	$\chi^2 (3, N = 271) = 6.59, p = 0.086$	$\chi^2 (4, N = 271) = 23.3, p < 0.001$	$\chi^2 (8, N = 271) = 12.4, p = 0.136$	$\chi^2 (5, N = 271) = 3.18, p = 0.672$	$\chi^2 (8, N = 271) = 31.3, p < 0.001$
Translocation of macaques	$\chi^2 (3, N = 271) = 7.11, p = 0.068$	$\chi^2 (4, N = 271) = 4.95, p = 0.292$	$\chi^2 (8, N = 271) = 25, p = 0.002$	$\chi^2 (5, N = 271) = 15.3, p = 0.009$	$\chi^2 (8, N = 41.5) = 19.7, p = 0.012$
Dog patrolling	$\chi^2 (3, N = 271) = 3.94, p = 0.268$	$\chi^2 (4, N = 271) = 35.3, p < 0.001$	$\chi^2 (8, N = 271) = 25, p = 0.002$	$\chi^2 (5, N = 271) = 16.7, p = 0.005$	$\chi^2 (8, N = 41.5) = 28.7, p < 0.001$

Individuals aged 25–45 years, long-term residents, those with lower educational attainment, and those with higher monthly incomes exhibited increased provisioning frequency.

Other human-macaque interactions

Macaque behaviors in Sumile included crop foraging (31.78%), household food foraging (94.84%), trash foraging (69.37%), and trash dropping (30.63%) (Figure 2). Macaques were observed foraging most of their crops including Gabi *Xanthosoma sagittifolium*, Corn, Coconuts *Cocos nucifera*, Sweet Potatoes, Peanuts *Arachis hypogaea*, Chayotes *Sechium edule*, Bananas *Musa* spp., Cassava *Manihot esculenta*, and Eggplant *Solanum melongena*. All respondents (100%, n = 271) reported that macaques did not take non-food items from their households, and only one reported a monkey attack in 2013 near a stream in Sumile.

Most respondents did not intervene when macaques foraged household food (53.51%) and their crops (58.30%, n = 158). Deterrent actions in response to household food foraging included throwing hard objects e.g. slippers or stones (34.97%) and using a dog (11.44%) (Figure 3). Actions taken to deter crop foraging included throwing hard objects e.g. slippers or stones (30.62%), hand clapping (6.64%), and dog chasing (6.64%). Other preventive measures also involved closing doors and windows and installing nettings and fences.

Chi-square tests showed that age ($\chi^2 = 25.5, p < 0.001$), length of residency ($\chi^2 = 36, p < 0.001$), education ($\chi^2 = 80.7, p < 0.001$), income ($\chi^2 = 38.1, p = 0.004$), and occupation ($\chi^2 = 45.7, p < 0.001$) were significantly associated with deterrent actions on household food foraging (Table 3). Younger residents (18–45 years old), long-term residents, respondents with college-level education, and those with higher incomes were more likely to ignore household food foraging. In contrast, older respondents (46–65 years old), short-term residents, individuals with lower educational attainment, and those with lower incomes demonstrated positive responses to throwing objects and allowing dogs to chase the macaques. Local government officials and teachers were more likely to disregard the food-foraging macaques, while students were more likely to throw objects and allow dogs to chase the macaques.

Similarly, for crop foraging deterrence, significant associations were found with age ($\chi^2 = 25.2, p < 0.001$), length of residency ($\chi^2 = 25.2, p < 0.001$), education ($\chi^2 = 25.2, p < 0.001$), income ($\chi^2 = 25.2, p < 0.001$) and occupation ($\chi^2 = 25.2, p < 0.001$). Residents aged 26–45 years old, long-term residents (over 36 years), college graduates, and residents with higher incomes were more likely to ignore crop-foraging macaques. Older residents (46–65 years old), those with lower education levels, and those with lower incomes were more likely to throw objects to deter macaques. Local government

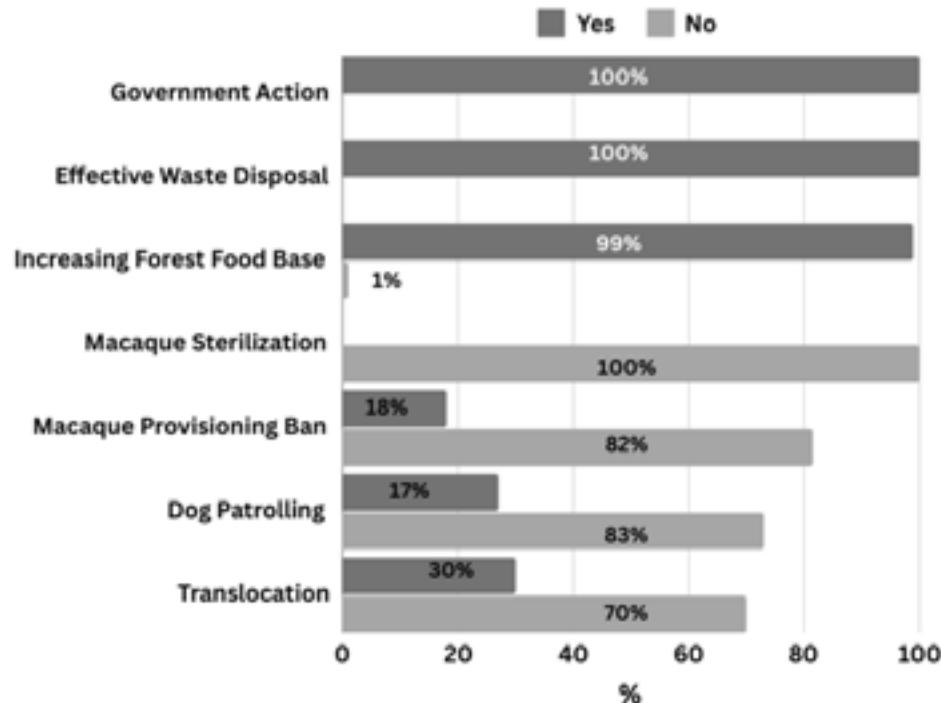


Figure 4. Measures selected by the respondents to manage human-macaque interactions in Sumile, Butuan City.

officials and teachers were more likely to disregard crop foraging, while housewives and students were more inclined to throw objects, use dogs, and hand clapping to deter macaques.

Human-macaque interaction management measures

All the respondents (100%) reported absence of management measures for negative human-macaque interactions in Sumile, allowing macaques to interact freely with humans. The three most suggested measures (Figure 4) were: (i) Government intervention to address negative human-macaque interactions (100%), with respondents emphasizing its importance for both macaques and human welfare. (ii) Effective waste disposal (100%), as macaques were seen foraging and dropping trash in the village. (iii) Increasing the food base in the forest (98.89%, $n = 268$), linked to observed household food foraging during food scarcity in Elijan Park. Respondents opposed measures such as sterilization (100%), culling of monkeys (100%), prohibition of monkey feeding (81.55%), patrolling by dogs (73%), and translocation (70%) due to cultural reasons.

The length of stay in the village ($X^2 = 23.3$, $p < 0.001$) and occupation ($X^2 = 31.3$, $p < 0.001$) are significantly associated with the respondents' perception of prohibiting macaque provisioning as a measure. Short-

term residents, students, housewives, teachers, and local government officials were less likely to favor the prohibition of macaque provisioning. Perceptions of macaque translocation as a measure were significantly associated with education ($X^2 = 25$, $p = 0.002$), income ($X^2 = 15.3$, $p = 0.009$), and occupation ($X^2 = 41.5$, $p = 0.012$). Residents with lower education attainment and those with lower incomes were more in favor of translocation. Students, teachers, local government officials, and housewives were likely not in favor of translocation. Perceptions of dog patrolling as a management measure were significantly associated with the length of stay ($X^2 = 35.3$, $p < 0.001$), education ($X^2 = 25$, $p = 0.002$), income ($X^2 = 16.7$, $p = 0.005$), and occupation ($X^2 = 28.7$, $p < 0.001$). Short-term residents, individuals with lower educational attainment, and those with higher incomes were less likely to favor dog patrolling as a measure.

DISCUSSION

The study indicates that the majority of Sumile residents engaged in macaque provisioning which could be attributed to their reverence for macaques, cultural beliefs, and concern for macaque survival. Most of the respondents were KRAIFI members who considered macaques sacred, reflecting traditional reverence for

macaques common in southeastern Asia (Nahallage & Huffman 2013) including the Philippines.

The KRAEFL organization that governed Elijan Park encouraged weekly macaque provisioning in the park as "community service". More than half of the respondents also mentioned that most of their provisioning activity occurred during "community service" while others did so opportunistically around the village. The primary foods used for provisioning were bananas, sweet potatoes, corn, and biscuits, with some respondents preparing food specifically for macaques or sharing crop harvests.

This study did not include tourist interviews. Tourists were observed provisioning macaques when Elijan Park was open to the public, with KRAEFL and caretakers encouraging this behavior to habituate macaques to human presence and attract visitors. Frequent provisioning has resulted in the frequent observation of macaques in Elijan Park and adjacent communities, demonstrating their synanthropic behavior and adaptability to human environments and food (Gumert et al. 2011; Sha & Hanya 2013). Macaques foraging household food, crops, and refuse highlights their adaptation to human settlements in Sumile, especially during food scarcity in Elijan Park. Consistent with Suwannarong et al. (2023), cultural beliefs in Sumile prevented macaque killings, as harming them was believed to bring misfortune. The act of harming monkeys was perceived to incur misfortune. Consequently, most residents did not act against household food and crop foraging, using non-aggressive deterrents like dog chasing, throwing slippers or wood, and hand clapping.

The fear of spiritual retribution for killing macaques is the main reason for the taboo against hunting, trading, and consuming them in Sumile. Most residents fear spiritual consequences similar to those in Bali, Indonesia, where harming monkeys is believed to bring misfortune (Peterson & Riley 2017). In Sumile, locals cited instances of neighbors falling ill and dying after persecuting macaques. The residents' reverence for macaques helps protect the threatened Long-tailed Macaques from exploitation and harm.

The residents' affection and respect for macaques, demonstrated through provisioning, indicate a significant human-macaque relationship in Sumile. Many residents mistakenly view provisioning as a conservation measure, which may undermine long-term conservation efforts. Unregulated provisioning may lead to a substantial increase in the macaque population and adverse behavioral changes (Fa 1981; Newsome & Rodger 2008; Knight 2017; Sengupta & Radhakrishna 2020; Cui et al. 2021) in areas of sympatry (Dittus et al. 2019). If

unchecked in Sumile, this could result in negative human-macaque interactions due to the growing macaque population's dependence on human food, similar to situations in western Sumatra, Indonesia (Ilham et al. 2017), and Hainan, China (Cui et al. 2021). Macaques in the Palawan Subterranean River National Park in the Philippines also exhibited problematic behaviors linked to widespread food provisioning (Gamalo et al. 2019). In Elijan Park, macaques displayed intraspecific conflict during provisioning. Despite prohibitions against harassing monkeys, some tourists disturb and provoke them, leading to macaque aggression, like Berman & Li's findings (2002).

Macaque adaptation to human food can reduce natural feeding and forest habitat use (O-Leary & Fa 1993; Sha & Hanya 2013; Sengupta et al. 2015; Sengupta & Radhakrishna 2018). Extensive provisioning and culturally influenced macaque tolerance in Sumile and Elijan Park may increase foraging on household food, crops, and waste. If unaddressed, these behaviors can escalate, leading to socio-economic and health issues, fostering hostility, and resulting in retaliatory actions against macaques. Negative attitudes toward macaques due to socioeconomic losses (Hill & Webber 2010) can undermine community support for conservation and human-macaque management, complicating human-wildlife interactions (Frank et al. 2019).

According to Pontzer (2023), macaques' dependence on human food and loss of natural foraging behavior can lead to health issues such as increased body size, higher stress, and alopecia in males (Maréchal et al. 2016). Physical contact during provisioning raises mutual disease transmission risks which is detrimental to macaque health and populations (Jones-Engel et al. 2005; Muehlenbein & Wallis 2014). For instance, provisioning by tourists and locals in Elijan Park and Sumile often follows bites, facilitating disease spread via fluid exchange.

In Sumile, food provisioning also leads to waste consumption and dispersion. Frequent provisioning habituates macaques to anthropogenic food sources in refuse areas (Bempah et al. 2021). The lack of proper waste receptacles exacerbates this behavior, potentially impacting human and primate health. Waste foraging can attract enteroparasites (Baloria et al. 2022), disease-carrying insects, and rodents, heightening disease transmission risks. Effective waste management and public awareness about provisioning risks and proper disposal practices can minimize refuse dispersion and reduce negative interactions.

The strong human-macaque connections in Sumile

and the potential adverse effects of uncontrolled provisioning indicate a need to balance socio-cultural and ecological factors. Completely prohibiting provisioning may not be an optimal solution, as most residents did not support measures like prohibition, sterilization, translocation, and dog patrolling for managing human-macaque interactions. A bottom-up approach involving residents, KRAEFI leaders, local government officials, and other stakeholders in management planning is recommended. Decision-making should be culture-sensitive, participatory, and community-based to develop adaptive strategies for human-macaque coexistence.

The findings show that residents' educational level and occupation were significantly associated with knowledge of the ecological, socio-economic, and cultural importance of macaques, as well as RA 9147. More positive responses were seen from individuals with higher educational attainment, local government officials, teachers, and students. Education and length of stay in the village were also significantly linked to provisioning frequency. This underscores the need for comprehensive education and social media campaigns to raise public awareness of the ecological and health implications of uncontrolled macaque provisioning. In addition to local government officials, teachers, and students, it is crucial to educate local communities, KRAEFI officials, Elijan Park caretakers, and tourists on the conservation status of Long-tailed Macaques, their threats, behavior, ecological and socio-economic services, the importance of natural foraging behavior, conservation laws like RA 9147, and macaque-friendly management strategies. Engaging local religious leaders to include conservation messages in religious teachings and promote responsible macaque interaction is also recommended.

Results indicated that lower-income residents were more likely to throw objects and let dogs chase household food and crop-foraging macaques. This suggests that economically disadvantaged communities who are reliant on subsistence, may use deterrent tactics against macaques. A study on Buton Island, Indonesia, showed that lower-income communities employed violent control methods more frequently than wealthier ones, even when crop raiding was less severe (Hardwick et al. 2017). Although most Sumile residents did not act against foraging macaques and only a few used non-aggressive deterrents, this situation could change. Disadvantaged residents might develop negative attitudes if unregulated provisioning worsens macaque foraging behavior, potentially leading to

conservation issues. Thus, a holistic approach combining education, coexistence incentives, macaque-friendly deterrents, and economic support is necessary. Wildlife managers, local governments, and communities need to collaborate on context-sensitive solutions to balance macaque conservation with community well-being (Koirala et al. 2021).

Macaque conservation should prioritize habitat restoration and natural food provision through science-based and community-driven establishment of local conservation areas. Multi-sectoral participation in the planning and implementation of local conservation areas should be encouraged. Volunteer programs for habitat restoration, observation, and education may be organized. Government officials and residents should develop culture-sensitive provisioning regulations alongside habitat rehabilitation and public education. In extreme cases, like during a food crisis, controlled provisioning supervised by wildlife professionals may be necessary. Proper waste management is also crucial to prevent macaques from consuming food remnants from refuse containers and other health issues. Instead of a total provisioning ban, a gradual reduction over time could encourage natural foraging behaviors.

Regular monitoring of the macaque population in Sumile is crucial to avoid overestimating their numbers in anthropogenic areas (Kyes et al. 2011), where they are often mistakenly seen as abundant (Eudey et al. 2020). Comprehensive and extensive research on macaque behavior, habitat preference, feeding patterns, and reproduction is needed to understand human-macaque-environment dynamics. One of the limitations of this study was that females (79.34%) and housewives (60.53%) constituted the majority of respondents, primarily due to their availability during the one-on-one interview process, as most of the husbands were at work during daytime hours. Therefore, it is recommended that future studies incorporate a balanced representation of male and female respondents. Additional studies on interactions with tourists in Elijan Park and farmers in the village will offer insights for managing human-wildlife interactions, coexistence strategies, and sustainable conservation efforts.

CONCLUSIONS

The research findings indicate that rampant macaque provisioning in Sumile is influenced by cultural beliefs. The reverence for Philippine Long-tailed Macaques may contribute positively to the conservation

of this threatened species. Uncontrolled provisioning in settlements and Elijah Park may potentially lead to population increase, zoonotic disease transmission, behavioral changes, and adverse human-macaque interactions, potentially undermining conservation and coexistence goals. The regulation of provisioning requires balancing cultural and scientific considerations. Culturally sensitive, participatory, and science-based planning and management strategies are recommended to balance the ecological, socioeconomic, and cultural aspects of human-macaque-environment interactions.

REFERENCES

Agyei, F., A. Afrifa & J. Ohemeng (2019). Human-monkey conflict and community wildlife management: the case of Boabeng-fimena monkey sanctuary and fringed communities in Ghana. *International Journal of Biodiversity* 14(6): 302–311. <http://doi.org/10.12692/ijb/14.6.302-311>

Baloria, H.T., E.F. Gamalinda, J.J. Rosal & L.A. Estaño (2022). Determination of enteroparasites in Long-tailed Macaques *Macaca fascicularis* of Barangay Sumile, Butuan City, Philippines. *Asian Journal of Biological and Life Sciences* 11(3): 1–6.

Bempah, G., C. Lu & Y. Yi (2021). Anthropogenic food utilization and seasonal difference in diet of *Cercopithecus lowei* at a community protected forest in Ghana. *Diversity* 13(12): 610. <https://doi.org/10.3390/d13120610>

Berman, C.M. & J.H. Li (2002). Impact of translocation, provisioning and range restriction on a group of *Macaca thibetana*. *International Journal of Primatology* 23: 383–397.

Chapman, C.A., T.R. Gillespie & T.L. Goldberg (2005). Primates and the ecology of their infectious diseases: how will anthropogenic change affect host-parasite interactions? *Evolutionary Anthropology* 14: 134–144.

Cui, Q., Y. Ren & H. Xu (2021). The escalating effects of wildlife tourism on human–wildlife conflict. *Animals* 11: 1378. <https://doi.org/10.3390/ani11051378>

Dacks, R., J. MacCarter, T. Ticktin, S.D. Jupiter, E. Sterling, S. Wongbusarakum, J. Claudet, M. Mejia, P. Fabre, A. Mawyer, P. Pascua & S. Caillou (2019). Developing biocultural indicators for resource management. *Conservation Science and Practice* 1(16). <https://doi.org/10.1111/csp2.38>

Dittus, W.P.J., S. Gunathilake & M. Felder (2019). Assessing public perceptions and solutions to human-monkey conflict from 50 years in Sri Lanka. *Folia Primatologica (Basel)*. 90: 89–108. <https://doi.org/10.1159/000496025>

Dubois, S. & D. Fraser (2013). A framework to evaluate wildlife feeding in research, wildlife management, tourism and recreation. *Animals* 3: 978–994. <https://doi.org/10.3390/ani3040978>

Eudey, A.A., A. Kumar, M. Singh & R. Boonratana (2020). *Macaca fascicularis*. The IUCN Red List of Threatened Species 2020. e.T12551A17949449. Downloaded on 8 September 2020.

Fa, J.E. (1981). Apes on the rock. *Oryx*. 16: 73–76.

Frank, B., J.A. Glikman & S. Marchini (2019). *Human-wildlife interactions: turning conflict into coexistence*. Cambridge University Press, Cambridge, 464 pp. <https://doi.org/10.1017/9781108235730>

Fuentes, A., E. Shaw & J. Cortes (2007). Qualitative assessment of macaque tourist sites in Padangtegal, Bali, Indonesia, and the Upper Rock Nature Reserve, Gibraltar. *International Journal of Primatology* 28: 1143–1158. <https://doi.org/10.1007/s10764-007-9184-y>

Gamalo, L.E., J. Baril, J. Dimalibot, A. Asis, B. Anas, N. Puna & V.G. Paller (2019). Nuisance behaviors of macaques in Puerto Princesa Subterranean River National Park, Palawan, Philippines. *Journal of Threatened Taxa* 11(3): 13287–13294. <https://doi.org/10.11609/jott.4702.11.3.13287-13294>

Gamalo, L.E., S. Paramasivam, B. Aldrich, P. Phiapalath, R. Sweet, A. Fuentes, D.R.K. Nielsen, M.F. Hansen, N. Ruppert, T. Van Bang, T. Ahmed, H. Seiha, K. Ilham, M. Gill, S. Kite, L. Jones-Engel & M.Z. Zainol (2023). Removal from the wild endangers the once widespread Long-tailed Macaque. *American Journal of Primatology* 86(3): e23547. <https://doi.org/10.1002/ajp.23547>

Grunstra, N.D.S., J. Louys & S. Elton (2023). Climate, not quaternary biogeography, explains skull morphology of the Long-tailed Macaque on the Sunda Shelf. *Quaternary Science Reviews* 310: 108121. <https://doi.org/10.1016/j.quascirev.2023.108121>

Gumert, M.D., A. Fuentes & L. Jones-Engel (eds.) (2011). *Monkeys on the Edge: Ecology and Management of Long-Tailed Macaques and their Interface with Humans*. Cambridge University Press, Cambridge, UK, xx + 360 pp.

Hansen, M.F., A. Ang, T.T.H. Trinh, E. Sy, S. Paramasivam, J. Dimalibot, L. Jones-Engel, N. Ruppert, C. Griffioen, R. Gray, P. Phiapalath, K. Doak, S. Kite, V. Nijman, A. Fuentes & M.D. Gumert (2022). *Macaca fascicularis* ssp. *fascicularis* (amended version of 2022 assessment). The IUCN Red List of Threatened Species 2022: e.T19531957A221668305. <https://doi.org/10.2305/IUCN.UK.2022-2.RLTS.T19531957A221668305.en>. Electronic version accessed on 22 March 2024.

Hardwick, J.L., T.E. Martin, A.H. Mustari, N.E.C. Priston, D.G. Tosh & K.E. Abernethy (2017). Community perceptions of the crop-feeding Buton Macaque *Macaca ochreata brunnescens*: an ethnoprimate study on Buton Island, Sulawesi. *International Journal of Primatology* 38(6): 1102–1119. <https://doi.org/10.1007/s10764-017-9999-0>

Hill, C.M. & A.D. Webber (2010). Perceptions of nonhuman primates in human–wildlife conflict scenarios. *American Journal of Primatology* 72(10): 919–924. <https://doi.org/10.1002/ajp.20845>

Hsu, M.J., C.C. Kao & G. Agoramoorthy (2009). Interactions between visitors and Formosan macaques *Macaca cyclopis* at Shou-Shan Nature Park, Taiwan. *American Journal of Primatology* 71: 214–222.

Humle, T. & C.M. Hill (2016). People–primate interactions: implications for primate conservation, pp. 219–240. In: Wich, S.A. & A.J. Marshall (eds.). *An Introduction to Primate Conservation*. Oxford. <https://doi.org/10.1093/acprof:oso/9780198703389.003.0014>

Ilham, K., J. Nurdin & T.Y. Rizaldi (2017). Status of urban populations of the Long-tailed Macaque *Macaca fascicularis* in west Sumatra, Indonesia. *Primates* 58: 295–305.

Jayapali, U., P. Perera, J. Cresswell & N. Dayawansa (2023). Does anthropogenic influence on habitats alter the activity budget and home range size of Toque Macaques *Macaca sinica*? Insight into the human-macaque conflict. *Trees, Forests and People* 13: 100412. <https://doi.org/10.1016/j.tfp.2023.100412>

Jones-Engel, L., G.A. Engel, M.A. Schillaci, A. Rompis, A. Putra, K.G. Suaryana, A. Fuentes, B. Beer, S. Hicks & R. White (2005). Primate-to-human retroviral transmission in Asia. *Emerging Infectious Disease* 11: 1028–1035.

Knight, J. (2017). Wildlife tourism as crop protection? Double-goal provisioning and the transvaluation of the macaque in postwar Japan. *Human Wildlife Interactions* 11: 217–230.

Koirala, S., P.A. Garber, D. Somasundaram, H.B. Katuwal, B. Ren, C. Huang & M. Li (2021). Factors affecting the crop raiding behavior of wild Rhesus Macaques in Nepal: implications for wildlife management. *Journal of Environmental Management* 297: 113331. <https://doi.org/10.1016/j.jenvman.2021.113331>

Kurita, H. (2014). Provisioning and tourism in free-ranging Japanese macaques, pp. 44–56. In: Russon A.E. & J. Wallis (eds.). *Primate Tourism: A Tool for Conservation?* Cambridge University Press, Cambridge.

Kuswanda, W. & J. Hutapea (2023). The endangered Long-tailed Macaque is considered a pest in north Sumatra, Indonesia. *Oryx* 57(1): 9–14. <https://doi.org/10.1017/50030605322001326>

Kyes, R.C., E. Iskandar & J. Pamungkas (2011). Preliminary survey of the Long-tailed Macaques *Macaca fascicularis* on Java, Indonesia:

Distribution and human-primate conflict, pp. 65–69. In: Gumert, M., A. Fuentes & L. Jones-Engel (eds.). *Monkeys on the Edge: Ecology and Management of Long-tailed Macaques and their Interface with Humans*. Cambridge University Press, New York.

Lee, P.C. & N.E.C. Priston (2005). Human attitudes to primates: perceptions of pests, conflict, and consequences for primate conservation, pp. 1–23. In: Paterson, J.D. & J. Wallis (eds.). *Commensalism and Conflict: The Human–Primate Interface*. American Society of Primatology Publications, San Diego.

Li, W. & E.V. Essen (2021). Guarding crops from monkey troops: farmer-monkey interaction near a nature reserve in Guangxi, China. *Environmental Sociology* 7(1): 12–24. <https://doi.org/10.1080/23251042.2020.1811004>

Maréchal, L., S. Semple, B. Majolo & A. MacLarnon (2016). Assessing the effects of tourist provisioning on the health of wild Barbary Macaques in Morocco. *PLoS ONE* 11(5): e0155920. <https://doi.org/10.1371/journal.pone.0155920>

Matheson, M.D., L. K. Sheeran, J.H. Li & R.S. Wagner (2006). Tourist impact on Tibetan Macaques. *Anthrozoös* 19(2): 158–168. <https://doi.org/10.2752/089279306785593810>

McKinney, T (2010). The effects of provisioning and crop-raiding on the diet and foraging activities of human commensal White-faced Capuchins *Cebus capucinus*. *American Journal of Primatology* 71: 1–10.

Muehlenbein, M.P. & J. Wallis (2014). Considering risks of pathogen transmission associated with primate-based tourism, pp. 278–292. In: Russon, A.E. & J. Wallis (eds.). *Primate Tourism: A Tool for Conservation?* Cambridge University Press, Cambridge.

Muroyama, Y. & A.A. Eudey (2004). Do macaque species have a future?, pp. 328–332. In: Thierry, B., M. Singh & W. Kaumanns (eds.). *Macaque Societies: A Model for the Study of Social Organization*. Cambridge University Press, Cambridge.

Nahallage C.A.D. & M.A. Huffman (2013). Macaque-human interactions in past and present-day Sri Lanka, pp. 135–148. In: Radhakrishna, S., M.A. Huffman & A. Sinha (eds.). *The Macaque Connection: Cooperation and Conflict Between Humans and Macaques*. Springer Science and Business Media, New York.

Newsome, D. & K. Rodger (2008). To feed or not to feed: a contentious issue in wildlife tourism, pp. 255–270. In: Lunney, D., A. Munn & W. Meikle (eds.). *Too Close for Comfort: Contentious Issues in Human–Wildlife Encounters*. Royal Zoological Society of New South Wales, Sydney.

O'Leary, H. & J.E. Fa (1993). Effects of tourists on Barbary Macaques at Gibraltar. *Folia Primatologica* 61: 77–91.

Peterson, J. & E. Riley (2017). Sacred monkeys? An ethnographic perspective on macaque sacredness in Balinese Hinduism, pp. 206–218. In: Dore, K.M., E. Riley & A. Fuentes (eds.). *Ethnoprimatology: A Practical Guide to Research at the Human-Nonhuman Primate Interface*. Cambridge University Press, xviii + 308 pp.

Pontzer, H. (2023). The provisioned primate: patterns of obesity across lemurs, monkeys, apes and humans. *Philosophical Transactions of the Royal Society B*. 378: 20220218. <https://doi.org/10.1098/rstb.2022.0218>

Priston, N.E.C. & M.R. McLennan (2012). *Managing Humans, Managing Macaques: Human-Macaque Conflict in Asia and Africa*. Springer, New York. https://doi.org/10.1007/978-1-4614-3967-7_14

Sengupta, A., K.R. McConkey & S. Radhakrishna (2015). Primates, provisioning and plants: impacts of human cultural behaviours on primate ecological functions. *PLoS One* 10: e0140961. <https://doi.org/10.1371/journal.pone.0140961>

Sengupta, A. & S. Radhakrishna (2018). The hand that feeds the monkey: Mutual influence of humans and Rhesus Macaques *Macaca mulatta* in the context of provisioning. *International Journal of Primatology* 39: 817–830. <https://doi.org/10.1007/s10764-018-0014-1>

Sengupta, A. & S. Radhakrishna (2020). Factors predicting provisioning of macaques by humans at tourist sites. *International Journal of Primatology* 41(3): 471–485. <https://doi.org/10.1007/s10764-020-00148-5>

Sha, J.C. & G. Hanya (2013). Diet, activity, habitat use, and ranging of two neighboring groups of food-enhanced long-tailed macaques (*Macaca fascicularis*). *American Journal of Primatology* 75(6): 581–92. <https://doi.org/10.1002/ajp.22137>

Suwannarong, K., K. Balthip, N. Soonthornworasiri, S. Yimsamran, P. Maneekan, S.M.T. Ponlap, C. Saengkul, C. Lantican & K.T.P. Singhasivanon (2023). Love or conflict: a qualitative study of the human-long tailed macaque interface in Nakhon Sawan Province, Thailand. *Acta Tropica* 240: 106861. <https://doi.org/10.1016/j.actatropica.2023.106861>

Unwin, T. & A. Smith (2010). Behavioral differences between provisioned and non-provisioned Barbary Macaques *Macaca sylvanus*. *Anthrozoös* 23: 109–118. <https://doi.org/10.2752/175303710X12682332909855>

Zhao, Q. (2005). Tibetan macaques, visitors, and local people at Mt Emei: problems and countermeasures, pp. 376–399. In: Paterson, J.D. & J. Wallis (eds.). *Commensalism and Conflict: The Human–Primate Interface*. American Society of Primatologists, Norman, Oklahoma, xviii + 483 pp.

Appendix 1. Survey questionnaire.

Human and Philippine Long-tailed Macaque interaction in Sumile, Butuan City

Part 1: Sociodemographic and economic profile

Name of barangay/location: _____

Date of interview: _____

 Male Female LGBTQ+++

1.1. Respondent no: _____

1.3. Age Group: 18–26years old 27–35 36–44 45–53 54–62 63 and above

1.4. How many years have you resided in the village? _____

1.5. Religion: Roman Catholic Muslim Iglesia ni Cristo Seventh Day Adventist Jehovah's Witness Baptist Mormon Born Again Cristian Protestant Rizalian Other: _____1.6. Civil Status: Single Married Widowed Separated Other: _____

1.7. Number of Household member/s: _____

1.8. Highest educational attainment: No formal schooling Elementary level Elementary graduate High school level High school graduate Vocational courses College level College graduate Post graduate level

1.9 Membership in organization (if any) and role

2.0. Family monthly income: 1,000 – 5,000/mo

2.1. Tribal/Ethnic group (if any):

 5,001 – 10,000/mo 10,001 – 15,000/mo 15,001 – 20,000/mo 20,001- 25,000/mo 25,001 – 30,000

2.1. Occupation of respondents:

 Housewife Farmer Student Teacher Local government employee Social worker Self-employed Others, specify: _____

Part 2: Knowledge of macaque importance and RA 9147

	Yes	No
Do you know about the ecological importance of macaques?		
If yes, what do you know about the ecological importance of macaques?		
Do you know about the socio-economic importance of macaques?		
If yes, what do you know about the socio-economic importance of macaques?		
Do you know about the cultural importance of macaques?		
If yes, what do you know about the cultural importance of macaques?		
Do you know about the Wildlife Resources Conservation and Protection Act or Republic Act No. 9147 ?		
If yes, what do you know about RA 9147?		

Part 3: Perceptions and attitudes toward human-macaque interactions and management measures

	Yes	No
Do macaques forage food in your household?		
Aside from food, what else did macaques get from your households?		
What did you do when macaques forage food in your households?		
Do macaques forage your crops?		
What crops did they forage?		
What did you do when macaques forage your crops?		
Have you observed the macaques foraging in the trash bin?		
Have you observed the macaques dropping trash in the village?		
Have you experienced hunting macaques?		
If yes, when? _____		
How often? _____ How many were hunted? _____		
Purpose of hunting? _____ Where? _____		
Have you experienced trading macaques?		
Yes If yes, when? _____		
How often? _____ How many were sold? Price per piece _____		
Purpose of trading? _____		
Who bought the macaques? _____		
Have you eaten monkey meat?		
If yes, when? _____ How often? _____		
What does it taste like? _____		
Have you been attacked or bitten by a monkey?		
If yes, when? _____ how often? _____ where? _____		
Have you experienced provisioning macaques?		
Do you think provisioning is right?		
If yes, why?		
What type of food did you provide to macaques?		
When did you usually engage in provisioning?		
How often did you provision macaques?		
Not at all Seldom Sometimes Always		
Please identify the observed behavior of macaques in Sumile. (Please check any of the following macaque behavior that you observe in Sumile.)		
<input type="checkbox"/> Crop foraging <input type="checkbox"/> Household Food Foraging <input type="checkbox"/> Foraging Trash <input type="checkbox"/> Dropping Trash <input type="checkbox"/> Others, specify: _____		

Were there any management measures for human-macaque interactions implemented in the area?		
If yes, can you name some?		
What do you think are the measures to manage human-macaque interactions in Sumile? (Please check any of the following that you believe is correct)		
<input type="checkbox"/> Sterilization of macaques <input type="checkbox"/> Prohibition on provisioning <input type="checkbox"/> Culling of macaques <input type="checkbox"/> Translocation of macaques <input type="checkbox"/> Patrolling by dogs <input type="checkbox"/> Effective wastage disposal <input type="checkbox"/> Government action <input type="checkbox"/> Increasing food base in forests for macaques		
Can you recommend other human-macaque management measures in Sumile?		
Was there any macaque conservation activity conducted in the area?		
If yes, please specify the conservation activity:		

Thank you for your participation!

Abstrak: Ang pag-unawa sa pakikipag-ugnayan ng tao at unggoy ay mahalaga para sa pangangalaga at pamamahala ng nasabing species. Samakatuwid, sinuri ng pag-aaral na ito ang mga pakikipag-ugnayan ng tao at unggoy sa Sumile, Butuan City mula Hulyo 2022 hanggang Abril 2023 sa pamamagitan ng one-on-one na panayam. May dalawang daan at pitompot isang mga respondente ang random na tinanong upang matukoy ang kanilang mga demograpikong at sosyoekonomikong katanganan. Ang kanilang kaalaman, saloobin, at pang-unawa sa mga pakikipag-ugnayan ng tao at unggoy tulad ng pagpapakain sa mga unggoy, mga hakbang sa regulasyon, at mga kaugnay na kadahilanan ay tinukoy din. Karamihan sa kanila ay may kamalayan sa kultural na kahalagahan ng mga unggoy (86.35%). Gayunpaman, ang karamihan ay hindi alam ang ekolohikal (73.43%) at sosyoekonomikong kahalagahan ng mga ito (52.03%), gayundin ang RA 9147 o Wildlife Act (61.26%). Karamihan sa mga residente ay nagpakin ng mga unggoy (99.26%). Ang mga pag-uugali ng unggoy ay ang kumain ng pagkain sa bayah (94.84%), kumain ng pananim (31.78%), pagkain ng basura (69.37%), at pag-kalat ng basura (30.63%). Karamihan sa mga residente ay wala namang ginawa nang kumain ang mga unggoy ng pagkain sa mga sambahayan (53.51%) o nang kumain sila ng pananim (58.30%) habang ang ilan ay binato ang mga unggoy ng mga matigas na bagay, pumalakpak, o pinahabol nila ang unggoy sa aso. Ang antas ng edukasyon ang pinaka-karaniwang salik na may kaugnayan sa kaalaman ng mga residente. Ang haba ng paninirahan at edukasyon ay may kaugnayan sa dasal ng pagpapakain sa mga unggoy habang ang haba ng paninirahan at uri ng trabaho ay may kaugnayan sa pagbabawal ng pagpapakain bilang isang hakbang upang maiwasan ang negatibong pakikipag-ugnayan ng tao sa mga unggoy. Ipinahihiwatig ng pag-aaral na ito na ang mga pang-kultura na kadahilanan ay nakakaimpluwensiya sa laganap na pagpapakain ng mga unggoy sa Sumile. Gayunman, kung hindi makontrol, ang pagpapakain ng mga unggoy ay maaaring humantong sa suliranin pang ekonomiya at kalusugan na maaaring mag dudulot ng negatibong saloobin ng mga residente sa mga unggoy at sa mga pagsisikap para sa konserbasyon. Ang nangungunang tatlong hakbang sa regulasyon ng pakikipag-ugnayan ng tao sa unggoy na iminungkahi ng karamihan sa mga residente ay ang pagkilos ng pamahalaan, epektibong pag-aalis ng basura, at pagpaparami ng pagkain sa kagubatan. Inirerekомenda pa ng mga mananaliksik ang pagtatatag ng local conservation area; kontrolado na pagpapakain sa mga unggoy na may respeto sa kultura; at pamamaraan ng konserbasyon na nakabatay sa komunidad. Kasama rin dito ang pagtuturo sa publiko tungkol sa masamang epekto ng di-kinokontrol na pagpapakain sa mga unggoy. Bukod dito, kinakailangan ang regular na pagsubaybay sa populasyon ng mga unggoy at mga diskarte sa pagkonserba at pamamahala na nagbabalanse ng mga pang-ekolohikal, sosyo-ekonomiko at pangkultura na pagsasaalang-alang para sa pagpapanatili ng mapayang ugnayan ng tao at unggoy.

Noteworthy comments on birds for mega-diverse Myanmar

Swen C. Renner¹ , Saw Moses² , Lay Win³ , Thein Aung⁴ , Myint Kyaw⁵ , Saw Myat Ohnmar⁶ , Thiri Dae We Aung⁷ , Kay Thwe Myint⁸ , Sai Sein Lin Oo⁹ , Paul J.J. Bates¹⁰ & Marcela Suarez-Rubio¹¹

¹ Ornithology, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria.

^{2,3} No. 002, Bldg 44/56, Kun Chan 2nd Street, Kamayut Township, Yangon, Myanmar.

^{4,5,8} Wild Wings Group, No.10 (A), Yadana Road, Mi Kyaung Kan Ward (3), Thingangyun Township, Yangon, Myanmar.

^{4,6,9} Merchant Road, Myeik, Dawezu quarter, Tanintharyi Region, Myanmar.

⁷ Biodiversity and Nature Conservation Association, Building F, Room 102, Parami Condo, Hlaing Township, Yangon, Myanmar.

⁹ Sao Hsur Wai Library, 06151, Ke Hsi Township, Shan State, Myanmar.

¹⁰ Harrison Institute, Bowerwood House, 15, St Botolph's Road, Sevenoaks, Kent TN13 3AQ, UK.

¹¹ Institute of Zoology, Department of Ecosystem Management, Climate and Biodiversity, BOKU University, Austria.

¹ swen.renner@nhm.at (corresponding author), ² birdpoetha@gmail.com, ³ laywin.wild@gmail.com, ⁴ theinaung58@gmail.com,

⁵ myintkyawpopa@gmail.com, ⁶ ohnmasaw@gmail.com, ⁷ thiridaweiaung@gmail.com, ⁸ kaythwemyint1786@gmail.com,

⁹ seinlinu@gmail.com, ¹⁰ pjjbates2@hotmail.com, ¹¹ marcela.suarezrubio@boku.ac.at

Abstract: Myanmar, recognized for its rich biodiversity in South, Southeast, and East Asia, continues to unveil new avian taxa and record significant species range extensions. This study presents and analyzes bird observations from 2010 to 2023, emphasizing less accessible regions like the Hkakabo Razi Landscape, Shan States, Tanintharyi, and the Ayeyarwady delta. Utilizing audio-visual records, we document 13 bird species, including range extensions and novel sightings. Our findings highlight Myanmar's critical role in avian biodiversity, underscoring the importance of conservation efforts. This research contributes to narrowing the knowledge gap on bird species distributions within Myanmar, revealing a thriving community of bird enthusiasts and the potential for future discoveries.

Keywords: Biodiversity, distributional range extension, lack of information for conservation, new bird records.

Editor: Christoph Zöckler, ArcCona Consulting, Cambridge, UK.

Date of publication: 26 February 2025 (online & print)

Citation: Renner, S.C., S. Moses, L. Win, T. Aung, M. Kyaw, S.M. Ohnmar, T.D.W. Aung, K.T. Myint, S.S.L. Oo, P.J.J. Bates & M. Suarez-Rubio (2025). Noteworthy comments on birds for mega-diverse Myanmar. *Journal of Threatened Taxa* 17(2): 26459-26467. <https://doi.org/10.11609/jott.9317.17.2.26459-26467>

Copyright: © Renner et al. 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: The APC was funded through the Open Science Strategy of the NHM Wien Museum.

Competing interests: The authors declare no competing interests.

Author details: PD DR. SWEN C. RENNER is the head of ornithology and senior scientist at the Natural History Museum Vienna. SAW MOSES is an independent ornithologist and a member of the Myanmar Bird & Nature Society (MBNS). LAY WIN is an independent ornithologist and a member of the executive committee of the Myanmar Bird & Nature Society (MBNS). B.V.S. DR. THEIN AUNG is the chairman of the Wild Wings Group (WWG) and board of directors of Myanmar Biodiversity Fund (MBF) at Yangon, Myanmar. MYINT KYAW is former park ranger of Hkakaborazi National Park, Putao, Kachin State, Myanmar. SAW MYAT OHNMAR, a former lecturer from English Department of Myeik University. THIRI DAE WE AUNG is an ornithologist and works for BANCA. KAY THWE MYINT is an admin and writes articles on bird conservation for the Wild Wings Group (WWG) in Myanmar. SAI SEIN LIN OO is a researcher of Sao Hsur Wai Library in Ke-Hsi Township, Shan State, Myanmar. DR PAUL J.J. BATES is director of the Harrison Institute, UK. PD DR MARCELA SUAREZ-RUBIO is a senior scientist at BOKU University

Author contributions: SCR, MSR wrote the first draft. TA, LW, TDWA, SM, MK, KTM provided information. LW scrutinized Table 1 for errors and revised contents. PJJ, TDWA, SMOM wrote the discussion. Photos were made and provided by TA, MK, LW, SM, Namar Johnsins, Koye, Kyaw Zaw Ya, Sein Myint, Thet Zaw Naing, Thirisandar Zaw, and Ye Htike Soe. We thank the latter photographers for providing the photos and allowing us to publish these.

Acknowledgments: We thank Hans-Martin Berg and Christof Viehauser for confirming and discussing species identification. We would like to thank Namar Johnsins, Bran Shaung, Nay Myo Shwe, and Zayar Zoe for discussions on the birds of Myanmar and particularly the species listed in here.

INTRODUCTION

Myanmar is one of the most biodiverse countries in southern, southeastern, and eastern Asia (Suarez-Rubio et al. 2020; Bates et al. 2021). The country's avian diversity is regularly amended by the discovery of new bird taxa (Rappole et al. 2005, 2008; Renner et al. 2008, 2015, 2017). In addition, species recorded for the first time in Myanmar are frequent, underscoring Myanmar's role for new avian findings (Suarez-Rubio et al. 2016, 2023; Sai Sein Lin Oo et al. 2018, 2019a,b, 2020, 2022; Renner & Bates 2020; Myint Kyaw et al. 2021). Additionally, species' range extensions within Myanmar occur regularly (Rappole et al. 2005, 2008; Renner et al. 2008, 2009; Hla Naing et al. 2015; Thet Zaw Naing 2015; Suarez-Rubio et al. 2016, 2020; Zhang et al. 2017; Sai Sein Lin Oo et al. 2018, 2019a,b, 2020, 2022; Zöckler et al. 2020; Myint Kyaw et al. 2021). Particularly, the easy access to formerly restricted areas turned Myanmar into haven for bird enthusiasts worldwide during the democratic interlude from 2011 to 2021. Consequently, numerous records have emerged, encompassing new descriptions, range extensions, novel sightings of bird species, and observations in specific aspects of ecology and behaviour of birds.

While the compilation of recently added avian species in Myanmar is impressive (Thet Zaw Naing et al. 2020), there remains discoveries and particularly range extensions to be reported. In this context, we present and analyse a series of observations spanning from 2010 to 2023. Our focus lies on regions that have been relatively less accessible due to geographical constraints and administrative limitations. These observations are significant for Myanmar as they either introduce novel records at the species or subspecies level, or provide additional insights into behaviour and other ecological aspects, conservation biology related issues, or species' range distributions within Myanmar and beyond in southeastern Asia. Through this compilation, we aim at narrowing down the existing knowledge gap on bird species and their distributions within Myanmar. These insights reflect a lively community of birders with a profound interest in nature and birds, but also the potential for many more discoveries in the future.

METHODS

The observations reported here are exclusively based on audio-visual records. All records originated after 2010 and are situated within Myanmar's territory (formerly

Burma) but may have relevance for all of Southeast Asia. Each observation is accompanied by photographic evidence, dates, detailed localities including corresponding coordinates. When applicable, additional insights regarding behaviour and observed habitats are provided. Cases in which our species identification was uncertain or not entirely conclusive have been omitted from this report. Additional records, where there was the slightest doubt about the bird identification, were omitted until further information and confirmation is available.

Our surveys were not systematic, but rather focused on regions within Myanmar that have undergone varying degrees of exploration over the past two decades. Our survey focus on ad hoc reports from Myanmar; the areas can be summarized as: (1) the Hkakabo Razi Landscape (as defined by Suarez-Rubio et al. 2020; Bates et al. 2021), including Sagaing and Kachin north of Myitkyina, (2) the Shan States in eastern Myanmar, (3) the Tanintharyi region, and (4) Ayeyarwady delta area in southern Myanmar, extending north to Yangon metropolitan area. Regions more centrally located within Myanmar, such as the metropolitan areas of Mandalay and Bagan, as well as several protected areas (e.g., around Pyin Oo Lwin, Inle Lake, Chatthin Wildlife Sanctuary), have undergone consistent surveying efforts by others. As of now, our dataset lacks any novel records from these central parts of Myanmar.

Note: Some bird species face increased conservation concern since they are facing high hunting pressure or are overwhelmed by intense birdwatching and unethical bird photographers. To protect these species, we have not disclosed exact coordinates or village names. These data are available through the corresponding author on request only.

RESULTS

We present findings concerning 13 species, each with interesting aspects (a summarized compilation of all records is provided in Table 1). For most species we documented notable range extensions within Myanmar. For all species, we provide accounts of any other notable findings in terms of breeding biology or ecology that we encountered.

Our results display a geographical bias within Myanmar, as our access was primarily concentrated on the above-mentioned regions. Consequently, we organize our reporting into distinct blocks, each corresponding to one area: (1) Northern Myanmar with a focus on the

Hkakabo Razi Landscape; (2) Shan States; (3) Tanintharyi (Tenasserim); and (4) the Ayeyarwady delta region. Otherwise we follow a systematic order within each of these three regions. Regarding taxonomy, we follow the IOC version 13.1 (Gill et al. 2023) for scientific names and adjust the English names as recommended.

1. Snow Partridge *Lerwa lerwa* (Image 1) has been found in the Hkakabo Razi Landscape before, but we extend the species range westwards by a new record from the western part of the Hkakabo Razi Landscape, i.e., Hponkan Razi Wildlife Sanctuary (Table 1). This constitutes a rather small-scale distributional range-extension within northern Myanmar (GBIF 2023l). The Putao museum holds a skin from the Tibet staff of the Hkakabo Razi National Park, which means that the specimen is from the higher elevations of the Tahaundam area.

2. Yellow Bittern *Ixobrychus sinensis* (Image 2) constitutes a new record for the Hkakabo Razi Landscape. *I. sinensis* has been found in Myanmar before, the closest record from Myanmar to our knowledge is from Hukaung Valley Wildlife Sanctuary (Tordorf et al. 2007; GBIF 2023m). The record from Hkakabo Razi Landscape is noteworthy (Table 1), because this enigmatic species has not yet been recorded in this area with high incidence of birders and ornithologists for the last nine decades. Moreover, the adequate habitat for the species is regionally abundant.

3. Common Buzzard *Buteo buteo* (Image 3) was found close to Putao between Machanbaw and Naung Mung (Table 1). While recorded before in Myanmar, these 37 records in Myanmar are sparse and occur mostly in the country's centre (GBIF 2023c). With our record, we add probably a vagrant individual to northern Myanmar. Common Buzzards are generally rare in southeastern Asia and have been recorded sparsely from Thailand, and especially from northern Myanmar (King et al. 2001). Birds recorded during two expeditions to northern Myanmar (Burma). While subspecies determination is difficult for many *Buteo* species, we assume we encountered *B. buteo vulpinus* (Dickinson & Christidis 2014).

4. We found Black-naped Oriole *Oriolus chinensis* (Image 4) in the Hponkan Razi part of the Hkakabo Razi Landscape (Table 1), which constitutes a new record for northern Myanmar. *O. chinensis* has been found frequently in Myanmar and within adjacent Arunachal Pradesh (India) as well Yunnan (China), but not yet for Kachin (GBIF 2023k).

5. Crow-billed Drongo *Dicrurus annectens* is a rare bird throughout its range in continental southeastern

Asia (GBIF 2023e). We have recorded the species in Putao (Table 1). Until today we found all other *Dicrurus* species, i.e., *leucophaeus*, *aeneus*, *remifer*, *hottentottus*, *paradiseus* in the Hkakabo Razi Landscape (Renner & Rappole 2011a; Renner et al. 2015), except for *D. annectens*. Nevertheless, we always hypothesized *D. annectens* to occur in the Hkakabo Razi Landscape (e.g., Renner et al. 2015) and can finally confirm the species with photo evidence (Image 5). *D. annectens* is uncommon in northern Myanmar (Tordorf et al. 2007) but common in other parts of southeastern Asia (Thailand, Laos, Vietnam, Malaysia, Singapore, Cambodia).

6. A Warbling White-eye *Zosterops japonicus* was photographed (Image 6) in Ma Khunkan village just north of Putao (Table 1). The species has been recorded once from Maymyo (Pyn Oo Lwin), Myanmar in the 1920s as a skin specimen, today stored in the St. Barbara Museum (GBIF 2023h), but never again from Myanmar. There are other sparse records of *Zosterops montanus* and *Z. japonicus* in Myanmar, and while *Z. palpebrosus* is reported as common throughout the country (Robson 2008), the photo (Image 6) clearly distinguishes *Z. japonicus* (Indian White-eye) as in the Hkakabo Razi Landscape from *Z. palpebrosus*. Hence, the record confirms presence of *Z. japonicus* in Myanmar (Table 1). Other records of the species from southeastern Asia are mainly as winter visitor or resident to Vietnam, Thailand, Laos, or Singapore.

7. We recorded several Golden-crested Myna *Ampeliceps coronatus* (Image 7) from Zeyerdam and Naung Mung (Table 1), which constitutes a range extension. The species is widespread in southeastern Asia, including the southern half of Myanmar (Craig & Feare 2020b; GBIF 2023g). *A. coronatus* has been recorded also from Namdapha National Park in Northeast India bordering to Myanmar, but so far not anywhere north of Indawgyi, Kachin (GBIF 2023g).

8. Daurian Starling *Agropsar sturninus* (Image 8) was recorded several times in the Hkakabo Razi Landscape (Table 1), which is a range extension to Hkakabo Razi Landscape. The record is interesting since several starlings and mynas have been recorded as new for Myanmar recently (e.g., Soe Naing et al. 2016), which is astonishing, since mynas and starlings are relatively large, charismatic and rather in open than in dense habitat. Daurian Starlings are widespread in eastern and southeastern Asia, including sparse records from Bangladesh and India, but have been hardly found in Myanmar so far. Several references, e.g., Craig & Feare (2020a), show the species further east of Myanmar only,

Table 1. New and noteworthy records of birds in Myanmar. The sequence refers and cross-references to the species list in the text. Taxonomy follows IOC (Gill et al. 2023).

English Name	Species	Locality	What's new	Day	Month	Year	North	East
Snow Partridge	<i>Lerwa lerwa</i>	Hkakabo Razi National Park	Range extension	20	March	2016	28.068	97.505
Snow Partridge	<i>Lerwa lerwa</i>	Hkakabo Razi National Park	Range extension	10	January	2004	28.068	97.505
Snow Partridge	<i>Lerwa lerwa</i>	Hkakabo Razi National Park	Range extension	1	January	2019	n/a	n/a
Snow Partridge	<i>Lerwa lerwa</i>	Hkakabo Razi National Park, Madine	2 specimens in Putao museum	23	August	2004	n/a	n/a
Snow Partridge	<i>Lerwa lerwa</i>	Near Mt. Phangram Razi, Hponkan Razi Wildlife Sanctuary	Range extension	10	May	2015	27.607	96.918
Yellow Bittern	<i>Ixobrychus sinensis</i>	Ngarwar field, Hkakabo Razi National Park	Range extension	21	July	2017	27.758	97.818
Common Buzzard	<i>Buteo buteo</i>	Between Machanbaw and Naung Mung	Range extension	7	April	2018	27.281	97.704
Black-naped Oriole	<i>Oriolus chinensis</i>	3 in Myitsone (Ayeyarwady confluence)	Range extension	4	February	2009	25.708	97.497
Black-naped Oriole	<i>Oriolus chinensis</i>	6 in Banbane	Range extension	4	February	2009	25.716	97.860
Black-naped Oriole	<i>Oriolus chinensis</i>	Warsardam, Hponkan Razi Wildlife Sanctuary	Range extension	26	May	2016	27.514	97.195
Crow-billed Drongo	<i>Dicrurus annectens</i>	Putao	Range extension	15	August	2015	27.376	97.402
Warbling White-eye	<i>Zosterops japonicus</i>	Ma Khunkan village	Range extension	9	February	2018	27.643	98.244
Golden-crested Myna	<i>Ampeliceps coronatus</i>	Naung Mung	Range extension	28	November	2017	27.506	97.822
Golden-crested Myna	<i>Ampeliceps coronatus</i>	several records Zyerdam, Hponkan Razi Wildlife Sanctuary	Range extension	23	November	2013	27.579	97.098
Daurian Starling	<i>Agropsar sturninus</i>	several records in Makhwunkan village, Hkakabo Razi Landscape	Range extension	30	April	2012	27.644	98.244
Pin-tailed Parrotfinch	<i>Erythrura rasine</i>	Machanbaw road to Madwe, Upper Mali Raing	Range extension	27	February	2016	27.577	97.371
Oriental Magpie	<i>Pica serica</i>	1 in Hai Sheng, Laihka, Southern Shan; Paddy field, forest	Range extension	31	March	2023	21.241	97.77
Oriental Magpie	<i>Pica serica</i>	1 in Lwae Sai, Namhsan, Northern Shan; Tea plantation, forest at pagoda	Range extension	31	May	2005	22.867	97.229
Oriental Magpie	<i>Pica serica</i>	2 in Keng Tung village, Eastern Shan, Paddy field, forest	Range extension	2	August	2016	21.398	99.627
Oriental Magpie	<i>Pica serica</i>	2 between Weng Kao and Wan Nawngnio, Southern Shan, in forest patches	Range extension	5	June	2023	21.708	98.115
Baikal Bush Warbler	<i>Locustella davidi</i>	A Ma Phya, Grassland, Ayeyarwady delta	Range extension	16	February	2023	16.781	95.25
Baikal Bush Warbler	<i>Locustella davidi</i>	Tat Seik, Grassland, Ayeyarwady delta	Range extension	15	February	2023	16.763	95.257
Baikal Bush Warbler	<i>Locustella davidi</i>	Tat Seik, Grassland, Ayeyarwady delta	Range extension	20	January	2023	16.781	95.25
Baikal Bush Warbler	<i>Locustella davidi</i>	Tat Seik, Grassland, Ayeyarwady delta	Range extension	12	March	2023	16.781	95.25
Blue-and-White Flycatcher	<i>Cyanoptila cyanomelana</i>	Kyauk Taung Camp, Tanintharyi	Range extension	27	March	2012	17.029	96.098
Rufous-bellied Swallow	<i>Cecropis badia</i>	29 individuals at Ngawun Reserve Forest, Tanintharyi	Breeding confirmation	3	September	2020	11.175	99.164
Rufous-bellied Swallow	<i>Cecropis badia</i>	5 females Forest river 27miles village Pyigymandai, Tanintharyi	Breeding confirmation	12	May	2012	11.188	99.159
Rufous-bellied Swallow	<i>Cecropis badia</i>	8 at Lenya Reserve Forest, Bokepyin, Tanintharyi	Breeding confirmation	6	April	2022	11.244	99.184
Rufous-bellied Swallow	<i>Cecropis badia</i>	documentation of the nest	Breeding confirmation	20	May	2012	11.188	99.159
Rufous-bellied Swallow	<i>Cecropis badia</i>	further 5 individuals at Ponekani Camp, Tanintharyi	Breeding confirmation	15	May	2012	11.628	99.259

mainly in Thailand/Indonesia/Malaysia. The species is supposedly wintering and breeding in northeastern China (Craig & Feare 2020a); however, *A. sturninus* has been found all over southern Asia, too. The so far northernmost record in Myanmar was in Chanayethazan, Mandalay (GBIF 2023d). Note: several synonymies are found and these include Purple-backed Starling *Sturnus sturninus*.

9. Pin-tailed Parrotfinch *Erythrura prasina* (Image 9) from Machanbaw is a new record for northern Myanmar (Table 1), possibly for all northern half of Myanmar, since in the Shan-Thai border area the detailed occurrence remains imprecise (Payne 2020; GBIF 2023i). From distribution and plumage, we conclude that our individual photographed is from the subspecies *Erythrura prasina prasina*, occurring in Thailand and southern Myanmar (Tenasserim), Peninsular Malaysia, Cambodia, Laos, Vietnam, Sumatra, and Java. The species was recently recorded in China, specifically southern Yunnan (Sreekar et al. 2014), relatively close to our location, as well as in southern Bhutan (GBIF 2023i). We assume it is a female or immature male based on the plumage (Image 9: if the contrast of the photo is increased, red is visible and hence it should be considered an immature male; tail is relatively short and round, not pointed). The record is a substantial range extension towards north, while the species is considered resident in Tанинtharyi and Thailand, Malaysia, Cambodia, Laos, and Viet Nam.

10. We recorded one Oriental Magpie *Pica serica* (Image 10, Table 1) in Lwae Sai Pagoda in a Tea plantation with forest patches wandering around the pagoda compound and perching on tree top; two individuals in Keng Tung village in paddy fields and some forest flying across from east to west direction (Image 10); one individual in Hai Sheng village in paddy field and some forest; and two individuals between Weng Kao and Wan Nawngnio villages in forest patches around primary school surrounded by paddy field. So far only two records of *P. serica* (Monywa and Maymyo; GBIF records 3243563386 and 3216275901) are known. An additional record from Kutkai in Northern Shan State is a specimen (GBIF record 1039546472) from 1958 (as *P. pica serica* stored in Yale Peabody Museum, 23.517 N 97.95 E). *P. serica* was recognised as a separate species following the revision of the *P. pica* species complex (Lee et al. 2003; Song et al. 2018), mtDNA phylogeny suggests that Eurasian Magpie comprises several potential species including Oriental (Korean) Magpie *P. serica*, Maghreb Magpie *P. mauritanica* and Asir Magpie *P. asirensis*. Oriental (Korean) Magpie should be split to address paraphyly with Nearctic species (Lee et al. 2003; Gill et

al. 2023).

11. We recorded the Baikal Bush Warbler *Locustella davidi* (Image 11) from the Ayeyarwady delta area (Tat Seik and A Ma Phyar; Table 1). It is likely a rare winter visitor to the region. Previously Baikal Bush Warbler have been found in Myanmar, but mainly from central Kachin (Mohnyin and Wara Zup and Shan States (Dhan Ma Kan Wetland, Inle Lake, Pine Hill Resort in Shan (GBIF 2023a)).

12. We found Blue-and-White Flycatcher *Cyanoptila cyanomelana* (Image 12) twice in Kyauk Taung Camp, Tанинtharyi (Table 1). This constitutes a range extension south, since so far the species has been found at Mount Popa (central Myanmar) and two at Hlawga Park just north of Yangon (GBIF 2023b).

13. Rufous-bellied Swallow *Cecropis badia*: Our documentation of the nest is likely the first proof of breeding attempt of *C. badia* in all of Myanmar (Image 13). We recorded five females at the river in the forest at Pyigymandai, further five individuals at Ponekani Camp; 29 individuals at Ngawun Reserve Forest, and further eight at Lenya Reserve Forest (Table 1). The species has been recorded in the border area of Myanmar and Thailand for some time and is likely common in the area (Thet Zaw Naing et al. 2020; Kirwan & Turner 2021; GBIF 2023j).

DISCUSSION

The quantification of bird species within specific territories is often challenging and offers typically a rough approximation rather than an exact number. However, despite this inherent imprecision, general estimates are possible. Myanmar is believed to host bird species ranging from around 1,022 to 1,216 species Naing (Thet Zaw Naing et al. 2020; BirdLife International 2023; GBIF 2023f).

Since the year 2000, noteworthy developments include the addition of several avian taxa to Myanmar's records. The endemic *Napothena naungmungensis*, two new subspecies *Alcippe cinereiceps hkakaboraziensis* and *Malacocincla abbotti kachinensis* (Renner et al. 2015), the taxa splitting of *Cyornis magnirostris* (Renner et al. 2009), *Tesia olivea olivea* (Renner et al. 2008), and first records of Rosy Starling *Pastor roseus* (Sai Sein Lin Oo et al. 2020), and White-throated Laughingthrush *Garrulax albogularis* (Sai Sein Lin Oo et al. 2019a) have added new taxa for Kachin alone. In addition, the Parasitic Jaeger *Stercorarius parasiticus* has been newly recorded in Shan (Sai Sein Lin Oo et al. 2022).

Image 1. Snow Partridge *Lerwa lerwa*, Nama Jason.

Image 2. Yellow Bittern *Ixobrychus sinensis*, Hkakabo Razi.

Image 3. Common Buzzard *Buteo buteo*, Putao.

Image 4. Black-naped Oriole *Oriolus chinensis*, Hponkan Razi.

Image 5. Crow-billed Drongo *Dicrurus aeneus*, Putao.

Image 6. Warbling White-eye *Zosterops japonicus*, Hkakabo Razi.

Image 7. Golden-crested Myna *Ampeliceps coronatus*, Hponkan Razi.

Image 8. Daurian Starling *Agropsar sturninus*, Hkakabo Razi.

The Brahminy Starling *Sturnia pagodarum* (Soe Naing et al. 2016) and 42 other species have been designated as new records for Myanmar between 2005 and 2019 (Thet Zaw Naing et al. 2020). This accumulates to over 51 new recorded taxa since 2000 – an achievement that might be unparalleled globally and possible through the period of roughly 10 years open access to most parts of Myanmar. This achievement holds particular significance considering the scarcity of additions in the temperate regions, whereas in the Global South and the tropical regions, only selected geographic hotspots foster the description of new bird taxa (Renner et al. 2015), with the northern Andes (Colombia/Peru) and the eastern Himalayan, including northern Myanmar, serving as prominent examples (Renner & Rappole 2011b). In light

of this rapid progress, we predict that a substantial part of undetected faunal diversity in Myanmar still is prone for discovery (Päckert et al. 2019).

From 2010 to 2023 we comment on 19 taxa, each with new aspects. Among these, three species stand out as new additions to Myanmar, with one of the three even new to southeastern Asia. While our findings have a strong focus on northern Kachin state, our additional two “hotspots”, namely Shan state and Tanintharyi Region, are very important landscapes because of the diverse ecosystems (Murray et al. 2020). Myanmar’s ecosystem diversity is highest along the Himalayan foothills in the north of Kachin state, where the Shan plateau meets the central dry zone; along the Rakhine range in the west; and much of the Tanintharyi lowlands. These

Image 9. Pin-tailed Parrotfinch *Erythrura prasina*, Machan Baw.

Image 10. Oriental Magpie *Pica serica*, Keng Tung village, Eastern Shan.

Image 11. Baikal Bush Warbler *Locustella davidi*, Ayeyarwady delta area.

Image 13. Rufous-bellied Swallow *Cecropis badia* on 12 May 2012. Payar Dan Cave near Kawthoung (Bokepyin Township), Tanintharyi.

Image 12. Blue-and-White Flycatcher *Cyanoptila cyanomelana*, Putao.

three habitats encompass a rich array of ecosystems and habitats, ranging from mountain conifer forests and montane temperate broadleaf forests to semi-evergreen forests, rainforests, limestone tropical evergreen forests, coastal wetlands, and mangroves. This ecological variety provides a favourable environment for many bird species. Given their irreplaceable nature, these areas warrant prioritized conservation efforts to ensure the protection of both known and potentially undiscovered species.

Among the 19 species considered, 13 were observed in northern Myanmar, predominantly within Kachin's northern parts. An additional six species were identified in the Shan and Tanintharyi Regions. Considering over 1,200 bird species existing within Myanmar (Thet Zaw Naing et al. 2020), 60 are globally threatened (IUCN Red List), 10 are country endemics, 873 land birds, 21 seabirds, 352 migratory (or visiting), and 158 water birds (BirdLife International 2023). Our records comprise approximately 1.6% of the known birds of Myanmar, but still each of our records is important, because each

addition has its own unique habitat preferences and ecological requirements, allowing them to survive in various environments.

The presence of these bird species in a variety of ecosystems in Kachin, Shan states, Tanintharyi Region, and Ayeyarwady region highlights the importance of safeguarding and preserving diverse habitats for maintaining bird biodiversity. Different habitats provide essential resources like food, nesting sites, and shelter, supporting the survival of these bird species throughout their range. Conservation efforts should prioritize the protection of these ecosystems to ensure the continued existence of birds and their contributions to ecological resilience.

Last but not least, it is worth noting that particularly the far north of Myanmar hold potential for new species to be discovered, since not only birds, but also other vertebrates are continuously being added and new descriptions are not rare: species of bats (Soisook et al. 2017) and additions in bat diversity (Bates et al. 2021) are ongoing and several other mammal species such

as the Leaf Deer (Rabinowitz et al. 1999) have been described relatively recently.

REFERENCES

Bates, P.J.J., P. Soisook, S.S.L. Oo, M. Suarez-Rubio, A. Pimsai, A. Dejaradol & S.C. Renner (2021). Intact forests of the Hkakabo Razi Landscape are a hotspot of bat diversity in South-east Asia. *Oryx* 56(3): 390–395. <https://doi.org/10.1017/s0030605320000630>

BirdLife International (2023). Country profile: Myanmar. In: BirdLife International, Cambridge. <http://datazone.birdlife.org/country/myanmar> on 01/08/2023

Craig, A.J.F. & C.J. Feare (2020a). Daurian Starling (*Agropsar sturninus*), version 1.0. In: del Hoyo, J., A. Elliott, J. Sargatal, D.A. Christie & E. de Juana (eds.). *Birds of the World*. Cornell Lab of Ornithology, Ithaca, NY, USA. <https://doi.org/10.2173/bow.dausta1.01>

Craig, A.J.F. & C.J. Feare (2020b). Golden-crested Myna (*Ampeliceps coronatus*), version 1.0. In: del Hoyo, J., A. Elliott, J. Sargatal, D.A. Christie & E. de Juana (eds.). *Birds of the World*. Cornell Lab of Ornithology, Ithaca, NY, USA. <https://doi.org/10.2173/bow.gocmyn1.01>

Dickinson, E.C. & L. Christidis (2014). *The Howard and Moore complete checklist of birds of the world, 4th edition*. Aves Press, Eastborne, UK, 1039 pp.

GBIF (2023a). Baikal Bush Warbler *Locustella davidi* (La Touche, 1923). In: GBIF, editor. <https://doi.org/10.15468/dl.74pbue>, <https://www.gbif.org/species/7515214>

GBIF (2023b). Blue-and-White Flycatcher *Cyanoptila cyanomelana* (Temminck, 1829). In: GBIF, editor. www.gbif.org/occurrence/2698308389

GBIF (2023c). Common Buzzard *Buteo buteo* (Linnaeus, 1758) In: GBIF, editor. Checklist dataset. <https://doi.org/10.15468/39omei>, www.gbif.org/species/2480537

GBIF (2023d). Daurian Starling *Agropsar sturninus* (Pallas, 1776). In: GBIF, editor. www.gbif.org/occurrence/1990436477

GBIF (2023e). *Dicrurus annectans* (Hodgson, 1836) Occurance dataset. In: GBIF, editor. <https://www.gbif.org/species/9715040>

GBIF (2023f). GBIF Occurrence data country porfile Myanmar In: GBIF, Editor. <https://doi.org/10.15468/dl.bqfrnq>

GBIF (2023g). Golden-crested Myna *Ampeliceps coronatus* Blyth, 1842. In: GBIF, editor. www.gbif.org/occurrence/2734459711

GBIF (2023h). Japanese White-eye *Zosterops japonicus* Temminck & Schlegel, 1845 In: GBIF, editor. Checklist dataset. <https://doi.org/10.15468/39omei>, www.gbif.org/species/9300456

GBIF (2023i). Pin-tailed Parrotfinch *Erythrura prasina* (Sparrman, 1788). In: GBIF, editor. www.gbif.org/species/5231416

GBIF (2023j). Rufous-bellied Swallow *Cecropis badia* Cassin, 1853. In: GBIF, editor. www.gbif.org/species/6094981

GBIF (2023k). Slender-billed Oriole *Oriolus tenuirostris* Blyth, 1846. In: GBIF, editor. www.gbif.org/species/2488961

GBIF (2023l). Snow Partridge *Lerwa lerwa* (Hodgson, 1833). In: GBIF, editor. www.gbif.org/species/2474021

GBIF (2023m). Yellow Bittern *Ixobrychus sinensis* (Gmelin, 1789). In: GBIF, editor. www.gbif.org/species/2480848

Gill, F., D. Donsker & P. Rasmussen (2023). IOC World Bird List (v13.1). IOC World Bird List Data Sets <https://doi.org/10.14344/IOC.ML.13.1>

Hla Naing, T.K. Fuller, P.R. Sievert, T.O. Randhir, S.H.T. Po, M. Maung, A.J. Lynam, S. Htun, W.N. Thaw & T. Myint (2015). Assessing large mammal and bird richness from camera-trap records in the Hukaung Valley of Northern Myanmar. *Raffles Bulletin of Zoology* 63: 376–388

King, B.F., H. Buck, R. Ferguson, T. Fisher, C. Goblet, H. Nickel & W. Suter (2001). Birds recorded during two expeditions to North Myanmar (Burma). *Forktail* 17: 29–40

Kirwan, G.M. & A. Turner (2021). Rufous-bellied Swallow (*Cecropis badia*), version 2.0. In *Birds of the World* (B. K. Keeney, Editor).

Cornell Lab of Ornithology, Ithaca, NY, USA. <https://doi.org/10.2173/bow.rubswa1.02>

Lee, S., C. Parr, Y. Hwang, D. Mindell & J. Choe (2003). Phylogeny of magpies (genus *Pica*) inferred from mtDNA data. *Molecular Phylogenetics & Evolution* 29(2): 250–257. [https://doi.org/10.1016/s1055-7903\(03\)00096-4](https://doi.org/10.1016/s1055-7903(03)00096-4)

Murray, N.J., D.A. Keith, A. Duncan, R. Tizard, J.R. Ferrer-Paris, T.A. Worthington, K. Armstrong, H. Nyan, H.W. Thuya, O.A. Htat, Y.K. Zay & H. Grantham (2020). Myanmar's terrestrial ecosystems: Status, threats and conservation opportunities. *Biological Conservation* 252: 108834. <https://doi.org/10.1016/j.biocon.2020.108834>

Myint Kyaw, P.J.J. Bates, M. Suarez-Rubio, B. Shaung, H.N. Zaw, T. Aung, S.S.L. Oo & S.C. Renner (2021). White-bellied Heron *Ardea insignis* in Hkakabo Razi Landscape, northern Myanmar. *Journal of Threatened Taxa* 13(9): 1–3. <https://doi.org/10.11609/jott.7222.13.9.19370-19372>

Päckert, M., C.M. Milensky, J. Martens, M. Kyaw, M. Suarez-Rubio, W.N. Thaw, S.S.L. Oo, H. Wolfgang & S.C. Renner (2019). Pilot biodiversity assessment of the Hkakabo Razi passerine avifauna in northern Myanmar – implications for conservation from molecular genetics. *Bird Conservation International* 30(2): 267–288. <https://doi.org/10.1017/s0959270919000273>

Payne, R.B. (2020). Pin-tailed Parrotfinch (*Erythrura prasina*). In: del Hoyo, J., A. Elliott, J. Sargatal, D. Christie & E. de Juana (eds.), *Birds of the World*, version 1.0 ed. Cornell Lab of Ornithology, Ithaca, NY, USA. <https://doi.org/10.2173/bow.pitpar1.01>

Pipat S., W.N. Thaw, M. Kyaw, S.S.L. Oo, A. Pimsai, M. Suarez-Rubio & S.C. Renner (2017). A new species of *Murina* (Chiroptera: Vespertilionidae) from sub-Himalayan forests of northern Myanmar. *Zootaxa* 4320(1): 159. <https://doi.org/10.11646/zootaxa.4320.1.9>

Rabinowitz, A., T. Myint, S.H. Kaing & S. Rabinowitz (1999). Description of the leaf deer (*Muntiacus putaoensis*), a new species of muntjac from northern Myanmar. *Journal of Zoology* 249(4): 427–435. <https://doi.org/10.1111/j.1469-7998.1999.tb01212.x>

Rappole, J.H., P.C. Rasmussen, T. Aung, C.M. Milensky & S.C. Renner (2008). Observations on a new species: the Naung Mung Scimitar-Babbler *Jabouilleia naungmungensis*. *Ibis* 150(3): 623–627. <https://doi.org/10.1111/j.1474-919X.2008.00815.x>

Rappole, J.H., S.C. Renner, N.M. Shwe & P.R. Sweet (2005). A New Species of Scimitar-Babbler (Timaliidae: *Jabouilleia*) from the Sub-Himalayan Region of Myanmar. *Auk* 122(4): 1064–1069. <https://doi.org/10.1093/auk/122.4.1064>

Renner, S.C. & P.J.J. Bates (2020). Historic changes in species composition for a globally unique bird community. *Scientific Reports* 10: 10739. <https://doi.org/10.1038/s41598-020-67400-z>

Renner, S.C. & J.H. Rappole (2011a). Avifauna of the eastern Himalayas and southeastern sub-Himalayan mountains – center of endemism or many species in marginal habitats? American Ornithologists' Union, Washington, DC, 166 pp.

Renner, S.C. & J.H. Rappole (2011b). Bird diversity, biogeographic patterns, and endemism of the eastern Himalayas and southeastern Sub-Himalayan Mountains, pp. 153–166 In: Morrison, M.L., (ed.). *Ornithological Monographs*. American Ornithologists' Union, Washington, DC.

Renner, S.C., J.H. Rappole, C.M. Milensky, M. Aung, N.M. Shwe & T. Aung (2015). Avifauna of the Southeastern Himalayan Mountains and neighboring Myanmar hill country. *Bonn Zoological Bulletin - Supplementum* 62: 1–75.

Renner, S.C., J.H. Rappole, M. Kyaw, C.M. Milensky & M. Päckert (2017). Genetic confirmation of the species status of *Jabouilleia naungmungensis*. *Journal of Ornithology* 159: 63–71. <https://doi.org/10.1007/s10336-017-1493-0>

Renner, S.C., J.H. Rappole, P.C. Rasmussen, T. Aung, M. Aung, N.M. Shwe, J.P. Dumbacher & R.C. Fleischer (2008). A new subspecies of *Tesia olivea* (Sylviidae) from Chiang Mai province, northern Thailand. *Journal of Ornithology* 149: 439–450. <https://doi.org/10.1007/s10336-008-0277-y>

Renner, S.C., P.C. Rasmussen, J.H. Rappole, T. Aung & M. Aung (2009). Discovery of the Large Blue Flycatcher *Cyornis [banyumas]*

magnirostris breeding in northern Kachin State (Burma/Myanmar) and taxonomic implications for the *Cyornis*-group. *Journal of Ornithology* 150: 671–683. <https://doi.org/10.1007/s10336-009-0395-1>

Robson, C (2008). *A Field Guide to The Birds of Southeast Asia*. Asia Books, Bangkok, 545 pp.

Sai Sein Lin Oo, A.K. Lin, N. Lwin, K. Haung & S.C. Renner (2019a). White-throated Laughingthrush *Garrulax albogularis* in Imawbum, Kachin State: a first record for Myanmar. *BirdingASIA* 31: 110–112

Sai Sein Lin Oo, M. Kyaw, L.C.K. Yun, M.Z. Tun, Y.Z.L. Naung, S.N. Aye & S.C. Renner (2022). First record of Parasitic Jaeger *Stercorarius parasiticus* (Aves: Charadriiformes: Stercorariidae) from inland freshwater Inle Lake, Myanmar. *Journal of Threatened Taxa* 14(1): 20534–20536. <https://doi.org/10.11609/jott.7048.14.1.20534-20536>

Sai Sein Lin Oo, M. Kyaw, K. Meyers & S.C. Renner (2018). Confirmation of the White-winged Duck from the Hkakabo Razi Landscape, Myanmar. *BirdingASIA* 30: 86–87.

Sai Sein Lin Oo, M. Kyaw, N.M. Hlaing & S.C. Renner (2020). New to Myanmar: the Rosy Starling *Pastor roseus* (Aves: Passeriformes) in the Hkakabo Razi Landscape. *Journal of Threatened Taxa* 12(4): 15493–15494. <https://doi.org/10.11609/jott.5045.12.4.15493-15494>

Sai Sein Lin Oo, N.L. Kham & S.C. Renner (2019b). Indication of reproductive success of three critically endangered *Gyps*-vultures in Myanmar. *Journal of Threatened Taxa* 11(10): 14377–14380, <https://doi.org/10.11609/jott.4886.11.10.14377-14380>

Soe Naing, N.L.P. Paw, B. Lanzinger, P. Soisook, M.J. Pearch & P.J.J. Bates (2016). The status of the Brahminy Starling *Sturnia pagodarum* (Gmelin, 1789) (Aves: Passeriformes: Sturnidae) in Southeast Asia. *Journal of Threatened Taxa* 8(13): 9574–9578. <https://doi.org/10.11609/jott.2803.8.13.9574-9578>

Song, G., R. Zhang, P. Alström, M. Irestedt, T. Cai, Y. Qu, P.G. Ericson, J. Fjeldså & F. Lei (2018). Complete taxon sampling of the avian genus *Pica* (magpies) reveals ancient relictual populations and synchronous Late-Pleistocene demographic expansion across the Northern Hemisphere. *Journal of Avian Biology* 49(2): jav-01612. <https://doi.org/10.1111/jav.01612>

Sreekar, R., S.K. Dayananda, J.-B. Zhao, B. Gu, Q. Li, X. Wang & E. Goodale (2014). First record of Pin-tailed Parrotfinch *Erythrura prasina* from China. *BirdingASIA* 22: 116–117

Suarez-Rubio, M., P.J.J. Bates, T. Aung, N.M. Hlaing, S.S.L. Oo, Y.K.Z. Htun, S.M. Ohnmar, A.A. Myint, T.L.L. Wai, P.M. Mo, L. Fehrmann, N. Noelke, C. Kleinn & S. Renner (2023). Bird diversity along an urban to rural gradient in large tropical cities peaks in mid-level urbanization. *PeerJ* 11: e16098. <https://doi.org/10.7717/peerj.16098>

Suarez-Rubio, M., G. Connette, T. Aung, M. Kyaw & S.C. Renner (2020). Hkakabo Razi Landscape as one of the last exemplar of large contiguous forests. *Scientific Reports* 10: 14005. <https://doi.org/10.1038/s41598-020-70917-y>

Suarez-Rubio, M., T. Aung, S.S.L. Oo, N.M. Shwe, N.M. Hlaing, K.M. Naing, T. Oo, M.M. Sein & S.C. Renner (2016). Nonbreeding Bird Communities Along an Urban-Rural Gradient of a Tropical City in Central Myanmar. *Tropical Conservation Science* 9(4): 1–9. <https://doi.org/10.1177/1940082916675961>

Thet Zaw Naing (2015). Distribution and status of Rufous-necked Hornbill *Aceros nipalensis* in Myanmar. *Malayan Nature Journal* 67(2): 158–172.

Thet Zaw Naing, C. Zöckler, K.Z. Tun, L. Win, M. Kyaw, N. Lin, N. Lwin, N.N. Aung, R. Tizard, S. Moses, S.N. Aye, T. Zaw & T.D.W. Aung (2020). New and interesting avifaunal records for Myanmar, 2005–2019. *BirdingASIA* 33: 118–127.

Tordorf, A.W., T. Appelton, J. Eames, K. Eberhardt, H. Hla, K.M.M. Thwin, S.M. Zaw, S. Moses & S.M. Aung (2007). Avifaunal surveys in the lowlands of Kachin State, Myanmar, 2003–2005. *Natural History Bulletin of the Siam Society* 55(2): 235–306.

Zhang, M.X., M. Kyaw, G.G. Li, J.B. Zhao, X.L. Zeng, K. Swa & R.C. Quan (2017). Bird diversity in northern Myanmar and conservation implications. *Zoological Research* 38(5): 264–280. <https://doi.org/10.24272/j.issn.2095-8137.2017.059>

Zöckler, C., N. Lwin, T.Z. Tun, S. Pfützke, F. Momberg, J. van der Ven & S. Delany (2020). Surveys of riverine birds along the Ayeyarwady River in 2017–2019 and conservation implications. *Forktail* 36: 1–15.

ଅନୁର୍ଦ୍ଧବାପ

Ultra-structure of antenna, eye, mouthparts and sensilla of *Cheilomenes sexmaculata* Fabricius, 1781 (Coccinellidae: Coleoptera)

Prakash Ghagargunde¹ & Mandar S. Paingankar²

^{1,2} Zoology Department, Government Science College, Chamorshi Road, Gadchiroli, Maharashtra 442605, India.

¹ Zoology Department, Rashtrapita Mahatma Gandhi College, Saoli, Chandrapur, Maharashtra 441224, India.

¹ pgghagargunde4u@gmail.com, ² mandarpaingankar@gmail.com (corresponding author)

Abstract: *Cheilomenes sexmaculata* Fabricius, 1781 is a well-known ladybird beetle that feeds primarily on aphids, mealy bugs, phytophagous mites, scale insects, and other small insects and is an important bio-control agent of aphids. Evolution in the structure of mouthparts is known to be associated with the composition of food material and feeding behaviour. The sensilla present on mouthparts plays a pivotal role in feeding mechanisms. Feeding mechanism of ladybird beetles will be better understood if the fine structure of mouthparts, modifications in the structures, and presence of different sensilla on the mouthparts of *C. sexmaculata* are understood. Using scanning electron microscopy, the functional morphology of mouthparts of *C. sexmaculata* was studied and compared with the fine structures with those of other Lady Beetles. The labrum, mandibles, maxillae, labium, and hypopharynx make up the mouthpart of *C. sexmaculata*. This study includes a thorough description of each mouthpart and the different kinds of sensilla. In the current study, three types of sensilla chaetica, four types of sensilla basiconica, two types of sensilla styloconica, one type of sensilla placodea, one type of sensilla coeloconica, one type of sensilla campaniformia, and one type of cuticular pore using characters like the length, morphology, and distribution of the sensilla were studied. The structure of the mouthparts and the purposes of the sensilla on them is discussed with reference to other coleopterans. The results obtained in the current study will provide better insights into the functional morphology of lady beetles.

Keywords: Functional morphology, labrum, labium, ladybird beetles, mandible, maxilla, scanning electron microscopy, sensilla.

Editor: Anonymity requested.

Date of publication: 26 February 2025 (online & print)

Citation: Ghagargunde, P. & M.S. Paingankar (2025). Ultra-structure of antenna, eye, mouthparts and sensilla of *Cheilomenes sexmaculata* Fabricius, 1781 (Coccinellidae: Coleoptera). *Journal of Threatened Taxa* 17(2): 26468-26478. <https://doi.org/10.11609/jott.9367.17.2.26468-26478>

Copyright: © Ghagargunde & Paingankar 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: District Planning Committee Gadchiroli, Maharashtra –Grant for Infrastructure development of colleges - Government Science College Gadchiroli (2202-C748-ME-52).

Competing interests: The authors declare no competing interests.

Author details: PRAKASH GHAGARGUNDE is working as assistant professor in Zoology Department, Rashtrapita Mahatma Gandhi College, Saoli, Chandrapur, Maharashtra, India. Passionate about insect biology, focusing on understanding the functional morphology of Coleopteran beetles. DR. MANDAR PAINGANKAR is working as assistant professor, Department of Zoology, Government Science College Gadchiroli, Chamorshi Road Gadchiroli, Maharashtra, India. His research focuses on biodiversity, conservation and molecular phylogeny of fishes and Coleopteran beetles.

Author contributions: PGG, MSP involved in the designing experiments, conduct of experiments, data analysis and manuscript writing. All authors have read and approved the final manuscript.

Acknowledgements: We are thankful to Principal, Government Science College for providing the facilities. We are thankful to District Planning Committee Gadchiroli Maharashtra for providing financial assistant for infrastructure development in Government Science College Gadchiroli.

INTRODUCTION

One environmentally friendly way to combat the threat of pests is through the use of biological control agents (Ayer et al. 1976). The biological control of aphids, mealy bugs, phytophagous mites, and scale insects is attributed to some species of lady beetles (Samways et al. 1997; Sarwar & Saqib 2010; Li et al. 2012). In most coleopterans, mouthparts have evolved for chewing solid food material (Belhouchine et al. 2013). The members of the Coccinellidae family are equipped with chewing mouthparts (Ayer et al. 1976). Several mouthparts, including the mandible, maxilla, labium, and palpi, are significant in feeding behavior (Seo & Youn 2000; Wang et al. 2000; Luo et al. 2006; Wei et al. 2015; Hao et al. 2019). In ladybird beetles, the feeding process is quite complicated, and the maxillary palpi and labial palpi play a crucial role in contact reception and the chewing process (Hao et al. 2019). Most of these structures are generally classified as the labio-maxillary complex and may show differences in type and feature depending on their feeding mechanism. Sensilla, or sensory structures are present in the insect body and are home to neurons responsible for smell, taste, sound, touch, proprioception, and perception of temperature, humidity, and space (Ruschioni et al. 2019). The variation in feeding behavior is mainly influenced by sensilla presented on mouthparts (Brožek & Bourgoin 2013). In addition to aiding in identifying food resources, these sensilla are crucial for determining the precise microhabitat and assessing the quality of food (Ruschioni et al. 2019). Similarly, mouthparts and antennal sensilla help in finding mating partners and in finding suitable oviposition sites on the host plants (Li et al. 2022). In this context, a detailed study of mouthparts is important for understanding the feeding mechanism of bio-control agents and for developing effective management strategies against pests (Rani & Madhavendra 1995, 2005; Hao et al. 2019). Numerous studies have been carried out to comprehend the functional morphology of the mouthparts of beetles earlier (Eilers et al. 2012; Wilhelmi & Krenn 2012; Belhouchine et al. 2013; Moon 2015; Chen et al. 2016).

Very few have described the ultra-structure of the mouthparts of the predatory lady beetles (Thornham et al. 2007; Hao et al. 2019). *C. sexmaculata* Fabricius, 1781 is a member of Coccinellidae and is well known for predating on aphids and small insects (Yilda et al. 2017). Understanding the ultrastructure of mouthparts will provide better insight into the feeding mechanism and will be helpful in designing and implementing an

effective biological control program. To the best of the knowledge, no previous attempts have been made to elucidate the fine structure of mouthparts of *C. sexmaculata* using scanning electron microscopy. In this study, the functional morphology of mouthparts, especially the fine morphology of labrum, labium, mandibles, maxillae, eye, antenna, and various sensilla of *C. sexmaculata*, was studied using the scanning electron microscope. Additionally, the importance of the structure of mouthparts and sensilla in the feeding habit of *C. sexmaculata* were also discussed.

MATERIAL AND METHODS

Collection sites

Cheilomenes sexmaculata adults were collected from Alapalli (19.430 °N, 80.047 °E) and Gadchiroli (20.158 °N, 79.998 °E) areas of central India, eastern Vidarbha region of Maharashtra. The Gadchiroli district's forest includes reserved and protected forest areas measuring 218,529.27 ha excluding 882.22 ha Zudpi jungle (<https://mahaforest.gov.in>). Forest cover mainly consists of dry deciduous miscellaneous forests.

Sample collection

The specimens were collected by net and handpicking and then kept in the laboratory at 4°C after being preserved in 70% ethanol. Voucher specimens are deposited in the Government Science College specimen voucher repository (Accession Number GSC/Zoo/2021/Coleoptera-6).

Sample preparation for scanning electron microscopy

The mouthparts of *Cheilomenes sexmaculata* were dissected using a stereo microscope (Stemi 509, Carl Zeiss, Germany) using fine needles and then cleaned using 70% ethanol. After that, the samples were dehydrated for 30 min each in ethanol grades of 80%, 90%, & 95%; for 45 min in 100% ethanol; and subsequently dried in a desiccator. The dried mouthparts and whole head were glued to aluminium stubs using conducting carbon tape and coated with gold/palladium (40/60) using a high-resolution sputter coater (Quorum, United Kingdom) for a thickness of about 10 nm. The samples were subsequently examined with a Tescan Wega 3 scanning electron microscope (Tescan, Czech Republic) operated at 20 kV using an SE detector. Mouthparts of five males and five females were observed initially under a stereo microscope (Stemi 509 stereomicroscope equipped with camera and imaging software, Zeiss, Germany) and no

clear sex-dependent morphological differences were found in the mouthparts. The description of sensilla was followed as per the nomenclature given by Altner & Prillinger (1980), and Brožek & Bourgoin (2013). Using Tescan Wega threes software, the length, diameter, and distribution of each type of sensilla from 10 adult male and 10 adult female specimens of *Cheiromenes sexmaculata* were measured. Each type of sensilla's length, base, and diameter are measured from 146 microphotographs of various mouthparts, and the results are tabulated as mean \pm SD (Tescan Electron Microscope Software, Wega 3, Tescan Czech Republic) (Table 1).

RESULTS

Mouthparts in *C. sexmaculata* consist of the mandibles, maxillae, labium, labrum, and hypopharynx. Only the labrum and the maxillary palp can be seen on the front of the head when observed dorsally. From the ventral view, part of the mandibles appears below the labrum. The labium is positioned between the left and right maxillae in the central part (Image 1). There is a non-sclerotized hypopharynx on the labium's inner wall. The eyes and antennae are visible from the dorsal side.

Morphology of the labrum.

The anterior border of the anteclypeus has an oval-shaped labrum attached to it. Sensilla chaetica 3 (Sch3) are found arranged in a row close to the frontal margin on the dorsal surface of the labrum, while sensilla chaetica 2 (Sch2) are arranged on the left and right margins (Images 2). Sensilla basiconica 1 and 2 (Sb1, Sb2) and several cuticular pores (cp) are present at the margin (Image 2). Sensilla coeloconica (sco) is observed on the ventral surface of the labrum, close to a row of sensilla chaetica 3 (Image 2). Campaniform sensilla (Sca) are also observed on the ventral surface. The ventral surface of the labrum was concave (Image 2) and covered with different cuticular, spiny (Image 2), and palmate processes (Image 2).

Morphology of mandibles

Left and right mandibles are found attached to the head with dorsal and ventral articulations (Image 3). The inner margin of the mandible is divided into two main regions: the molar region and the incisor region (Image 3). The incisor region possesses pointed teeth apically. The mandible's dorsal view revealed a rough cuticle (Image 3), a lot of cuticular pores (Cp) strewn across

the surface, and sensilla chaetica 1 (Sch1) near the condyle (Image 3). The ventral surface of the mandible also appears rough, and palmate cuticular processes are seen close to the ventral condyle; no other sensilla are noticed (Image 3). Petaloid cuticular processes covered the upper portion of the dorsal condyle (Image 3). Single tubercle forms the molar region (Image 3). On mandibles, a prostheca with short, comb-like setae extends along the incisor margin up to the base of the incisor projection (Image 3). The prostheca has a smooth surface with low cuticular pores (Cp). The articulating surface is hemispheric with a smooth surface ventrally and oval with cuticular processes dorsally (Image 3). Around the ventral condyles, the cuticle is smooth and has many cuticular pores (Cp) (Image 3). On the margin of the ventral region, there is an additional cluster of spiny cuticular processes.

Morphology of maxillae

The paired maxillae are found placed in longitudinal clefts on either side of the labium (Image 1) and show the usual parts: cardo, stipites, galea, lacinia, and maxillary palps (Image 1 & 4). The cuticle of the semicircular cardines (Image 4) has Cp on it. The stipites are flat plates with sensilla chaetica 1 and 2 (sch1, sch2) on the surface (Image 4). The maxilla includes the inner lacinia and outer galea, the two distal lobes (Image 4). The galea is a spoon-like structure, and it is covered with sensilla basiconica 3, 4 (Sb3, Sb4) and cuticular pores (Cp) (Images 4A,B,J,K). A triangular depression is present on the top of the galea (Images 4J,K). Brush-like lacinia is located below the galea, and sensilla basiconica 3 (Sb3) is present at the edge and on the whole apical area of lacinia and sensilla basiconica 4 (Sb4) on the ventral side (Image 4). In *C. sexmaculata*, the maxillary palpi are well developed and comprise four articles that widen gradually; the final article has a somewhat triangular shape (Image 4). Maxillary palpi surfaces are scaly, with cuticular pores (Cp), sensilla chaetica 2 (Sch2), and sensilla basiconica 1 and 2 (sb1 and sb2) dispersed across each segment (Image 4). In the middle region, two main types of sensilla styloconica (Sty1 and Sty2) and sensilla placodea 1 (Sp1) at the margin of the sensory field of the maxillary palp are present (Image 4I).

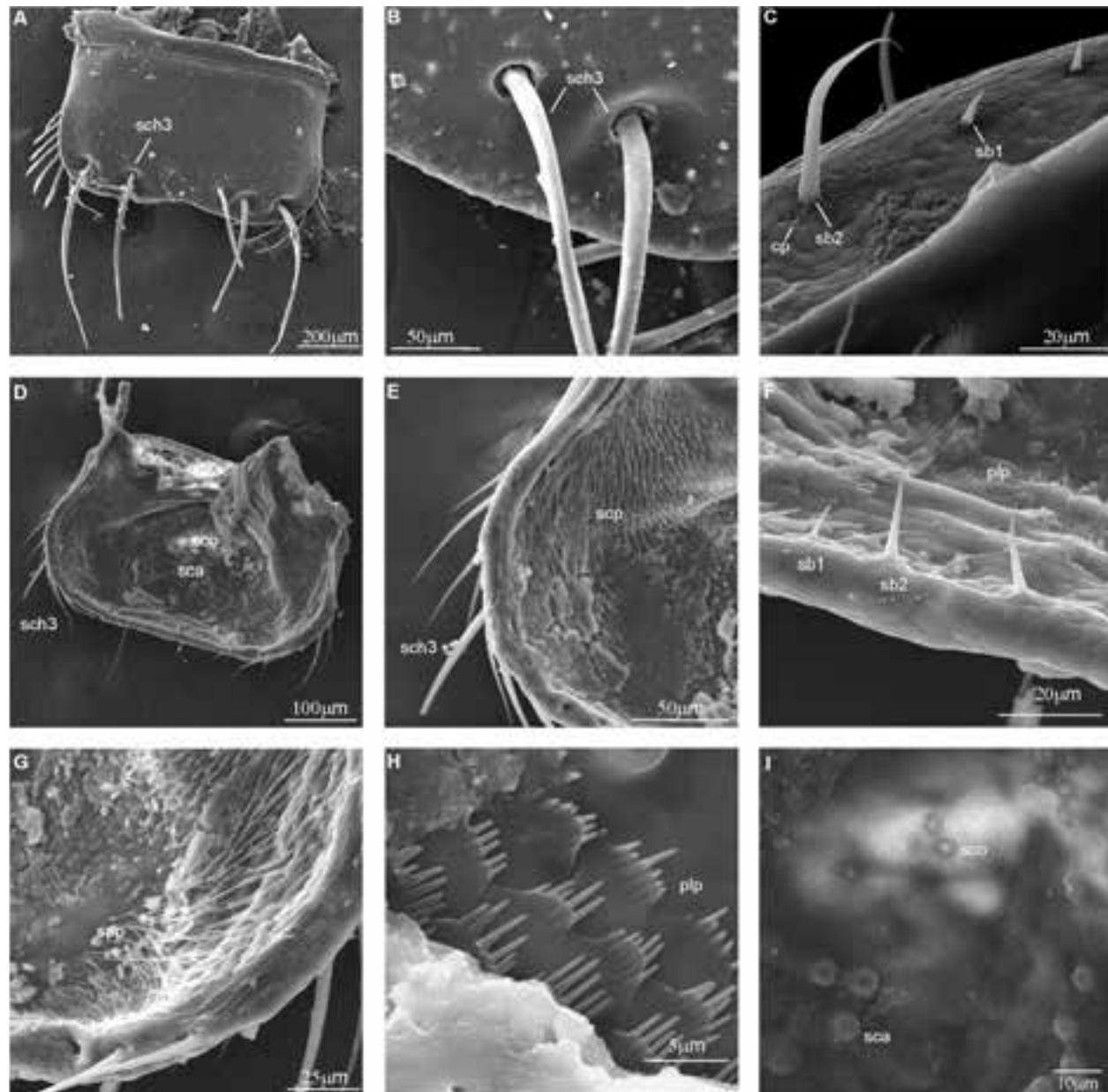
Morphology of labium

In general, the labium of an insect mouthpart is composed of the prementum, postmentum, glossae, paraglossae, and labial palpi. In *C. sexmaculata*, the paraglossa and glossa formed a combined structure named ligula (Image 5). The prementum is wider and

Table 1. Morphology measurements and distribution of sensilla on mouthpart of *Cheiromenes sexmaculata*.

Type	Shape	Socket	Surface	Pore	Length (μm) with average and standard deviation	Basal diameter (μm) with average and standard deviation	Distribution
Sch1	Hair, peg	Concave	Grooved	No	34.02 (6.83)	3.7 (0.75)	lig, mx, mp, antenna, lm
Sch2	Hair	Concave	Grooved	No	62.2 (15.99)	4.47 (0.93)	lm, lig, prm, mp, mx, lp
Sch3	Hair, peg	Concave	Grooved	No	348.54 (137.15)	13.2 (7.45)	lm, lig, mp
Sb1	Peg	Concave	Smooth	No	6.44 (2.25)	2.1 (0.73)	lm, lp, prm, md, mp, mx, gal, lig,
Sb2	Peg	Concave	Smooth	No	15.64 (4.32)	3.27 (1.17)	lm, md, mp, gal, lac, lig, mp, lp
Sb3	Hair, peg	Concave	Smooth	No	34.94 (9.06)	5.41 (0.45)	lm, md, mx, lac, lig
Sb4	Hair, peg	Concave	Smooth	No	67.65 (7.00)	4.55 (0.76)	gal, lac
Sty1	Conical	Convex	Grooved	Tp	3.12 (0.52)	1.61 (0.27)	lp, mp
Sty2	Cylindrical	Convex	Grooved	Tp	2.64 (0.35)	1.99 (0.38)	mp
Sco	Round						lm
Sca	Round						lm
Cp	Round						lm, lig, mx

Sch 1–3—sensilla chaetica I–III | Sb 1–4—sensilla basiconica I–IV | Sty 1–2—sensilla styloconica I–II | Sco—sensilla coeloconica | Sca—sensilla campaniformia | Cp—cuticular pore | Tp—terminal pore | mp—maxillary palp | gal—galea | lac—lacinia | lb—labium | lm—labrum | lp—labial palp | md—mandible | mx—maxillae.

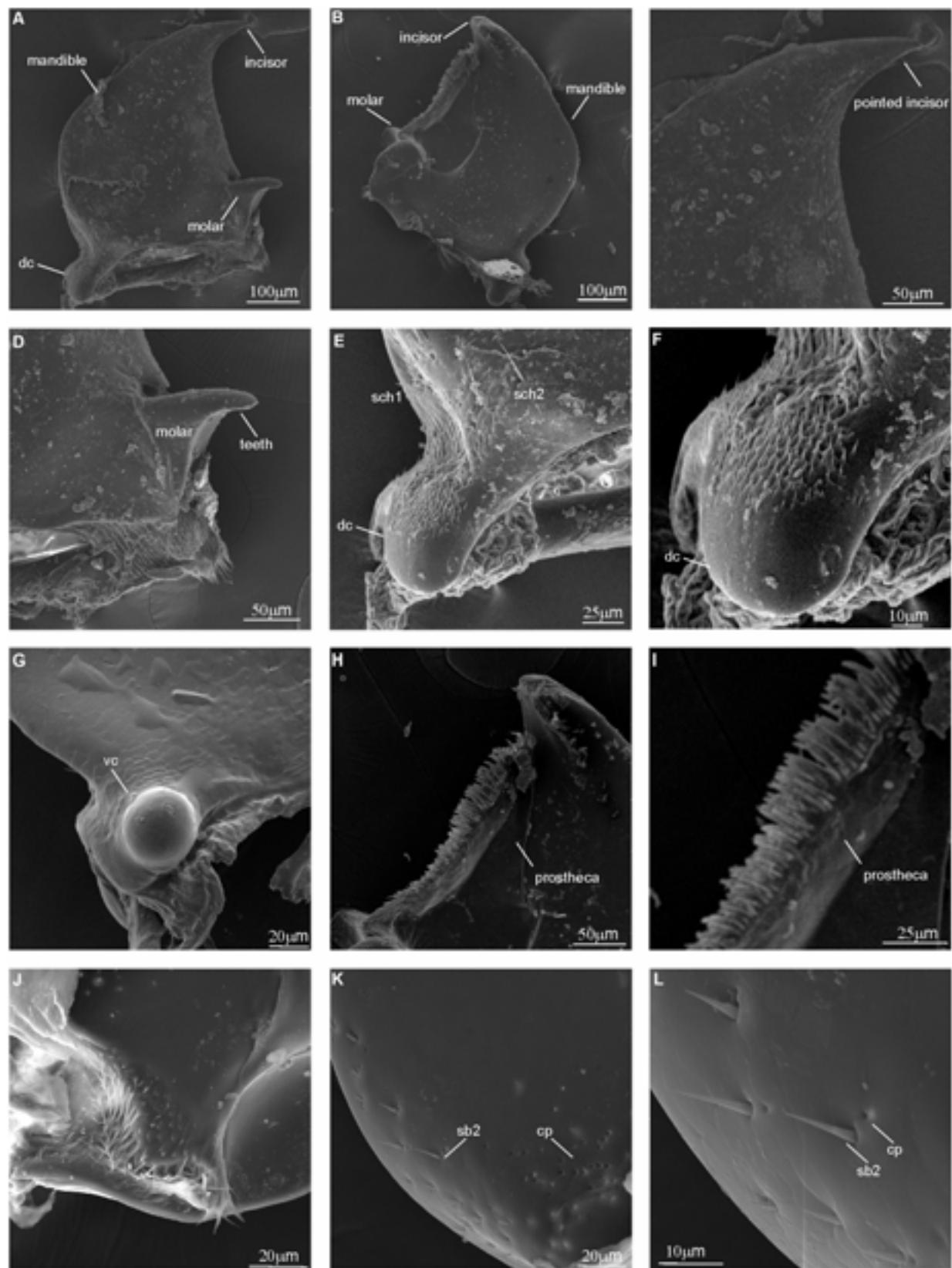

Image 1. Stereo microscope images of adult *Cheiromenes sexmaculata* and scanning electron micrographs of its mouthparts: A—dorsal view | B—ventral view | C—SEM ventral view of head showing the position and morphology of labrum, mandibles, maxillae, maxillary palpi, labium, and labial palpi. © Mandar Paingankar & Prakash Ghagargunde.

elevated at the upmost end while a little narrow and without elevation at the bottom (Image 5). The cuticle of the postmentum is smooth with numerous cuticular pores (Cp) and sensilla chaetica 2 (Sch2) (Images 1 & 5). Two symmetrical labial palpi are present on the ligula, which are inserted into the prementum (Image 5). Sensilla basiconica 2 (Sb2), spiny and palmate processes cover the terminal portion of the ligula (Images 5), while sensilla chaetica 1 and 2 (Sch1, 2) and cuticular pores (Cp) are present in the proximal part (Image 5). The labial palp is elongated and shows three segments. The basal segment is short, bearing almost no sensillum (Image 5). With a reticulated surface, the elongated middle segment progressively widens from base to top

and bears sensilla chaetica 1 (Sch1), sensilla basiconica 1 and 3 (Sb1, Sb3) (Image 5). With a single circular sensory field at the distal end, the final segment has a bullet-like shape (Image 5). In this sensory field, there are 18 sensilla styloconica 1 (Sty1), but no other sensilla or cuticular pore is observed. (Image 5).

Types of sensilla

The mouthparts of *C. sexmaculata* exhibit 13 different subtypes of sensilla in total: these are three types of sensilla chaetica, four types of sensilla basiconica, two types of sensilla styloconica, one type of sensilla placodea, one type of sensilla coeloconica, one type of sensilla campaniformia, and one type of cuticular pore


Image 2. Scanning electron micrographs of the labrum of *Cheiromenes sexmaculata*: A—dorsal view of labrum | B—sensilla chaetica3 (sch3) | C—cuticular pores (cp), sensilla basiconica1 and 2 (sb1,2) at margin | D—ventral view of labrum | E—scaly process on epipharynx | F—sensilla basiconica1,2 (sb1,2) at margin and palmate process on epipharynx | G—spiny process on epipharynx | H—palmate processes | I—sensilla campaniformia (sca), sensilla coeloconica (sco) on epipharynx. © Mandar Paingankar & Prakash Ghagargunde.

(Table 1).

Based on length and diameter, three types of sensilla chaetica, sensilla chaetica 1 (Sch1), sensilla chaetica 2 (Sch2), and sensilla chaetica 3 (Sch3) are observed on the mouthpart surfaces of *C. sexmaculata*. Sensilla chaetica 1 (Sch1) are short, robust sensilla that resemble hair or pegs and are placed into a round, concave socket. They are present on the mandibles, stipites of maxilla, ligula, prementum, and labial palp of labium (Images 3,4,5, I,K). Sensilla chaetica 2 (Sch2) has an external morphology

resembling a peg. They are distributed on the lateral margin of the labrum, mandibles, stipites of the maxilla, ligula, and prementum of the labium (Images 3,4,5,D,I). Sensilla chaetica 3 (Sch3) resembles sensilla chaetica 1 and 2 (Sch1, Sch2) in terms of their morphology and resembles hair or pegs. Sensilla chaetica 3 (Sch3) tapers toward the apical end from a broad base. They are dispersed throughout the ligula of the labium and the outer front margin of the labrum (Images 2 & 5).

Four types of sensilla basiconica, sensilla basiconica

Image 3. Scanning electron micrographs of the mandible of *Cheiromenes sexmaculata*: A—dorsal view | B—ventral view with dorsal and ventral teeth (Dt, Vt) | C—pointed incisor | D—molar teeth | E—dorsal condyle | F—close view of dorsal condyle | G—ventral condyle | H—prostheca | I—setae of prostheca | J—spiny processes close to molar teeth | K—sensilla basiconica 2 (Sb2) and cuticular pores (cp) on mandible | L—sensilla basiconica 2 and cuticular pores. © Mandar Paingankar & Prakash Ghagargunde.

1 (Sb1), sensilla basiconica 2 (Sb2), sensilla basiconica 3 (Sb3), and sensilla basiconica 4 (Sb4) are observed on different mouthparts of *C. sexmaculata*. Sensilla basiconica 1 (Sb1) is inserted into a round, concave socket and is short, straight, thick at the base, and sharp at the tip. Sensilla basiconica 1 (Sb1) has a smooth surface. They are found distributed on the side margin of the labrum, maxillary palp, and labial palp (Images 2,4). Sensilla basiconica 2 (Sb2) is relatively straight and longer than sensilla basiconica 1 (Sb1), has a smooth surface, and is thick at the base while sharp at the tip (Images 2,3). These are distributed on the ventral margin of the labrum and mandibles. Placed in concave sockets, sensilla basiconica 3 (Sb3) is stronger than sensilla basiconica 1 and 2 (Sb1, Sb2). Sensilla basiconica 3 (Sb3) has a smooth exterior devoid of pores. Sensilla basiconica 4 (Sb4) was found to be stronger and longer than the other, hair- and peg-like sensilla with a smooth surface bearing no pores, and they are only present on the galea and lacinia of the maxilla (Images 4).

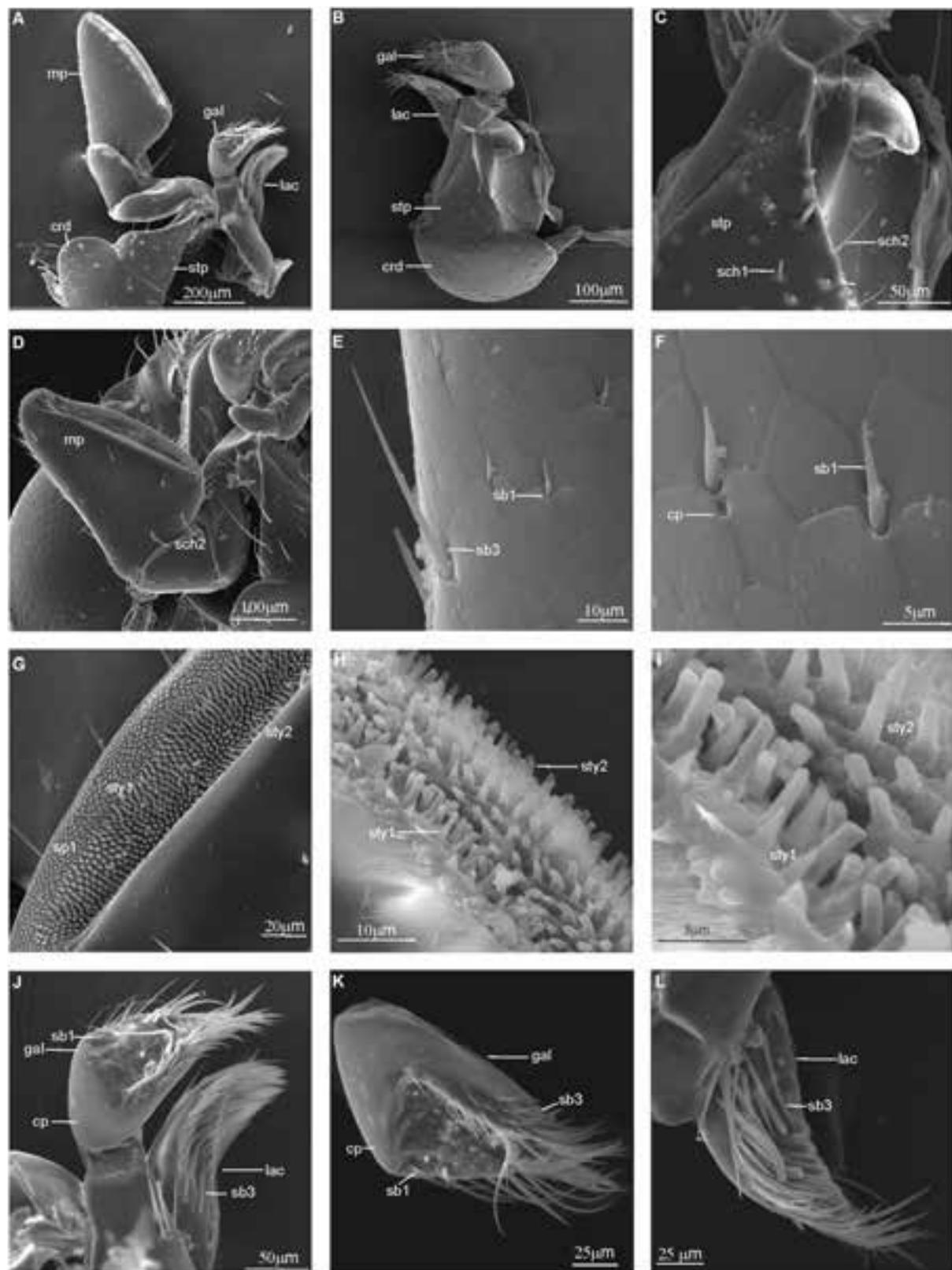
Sensilla styloconica 1 (Sty1) is a conical structure with a petal-shaped convex socket. They are present on the central part of the maxillary palpi and labial palpi (Images 4,5). The cylindrical sensilla styloconica 2 (Sty2) is placed into a convex socket. These sensilla's tips are flat, and their upper surfaces are smooth. They are visible on the central region of the maxillary palpi (Image 4).

At the margin of the sensory field of maxillary palp, spiny, triangular, non-sensory, dentiform cuticular projections are distributed among these circular, slightly convex, rugose sensilla placodea 1 (sp1) found embedded (Images 4H–I).

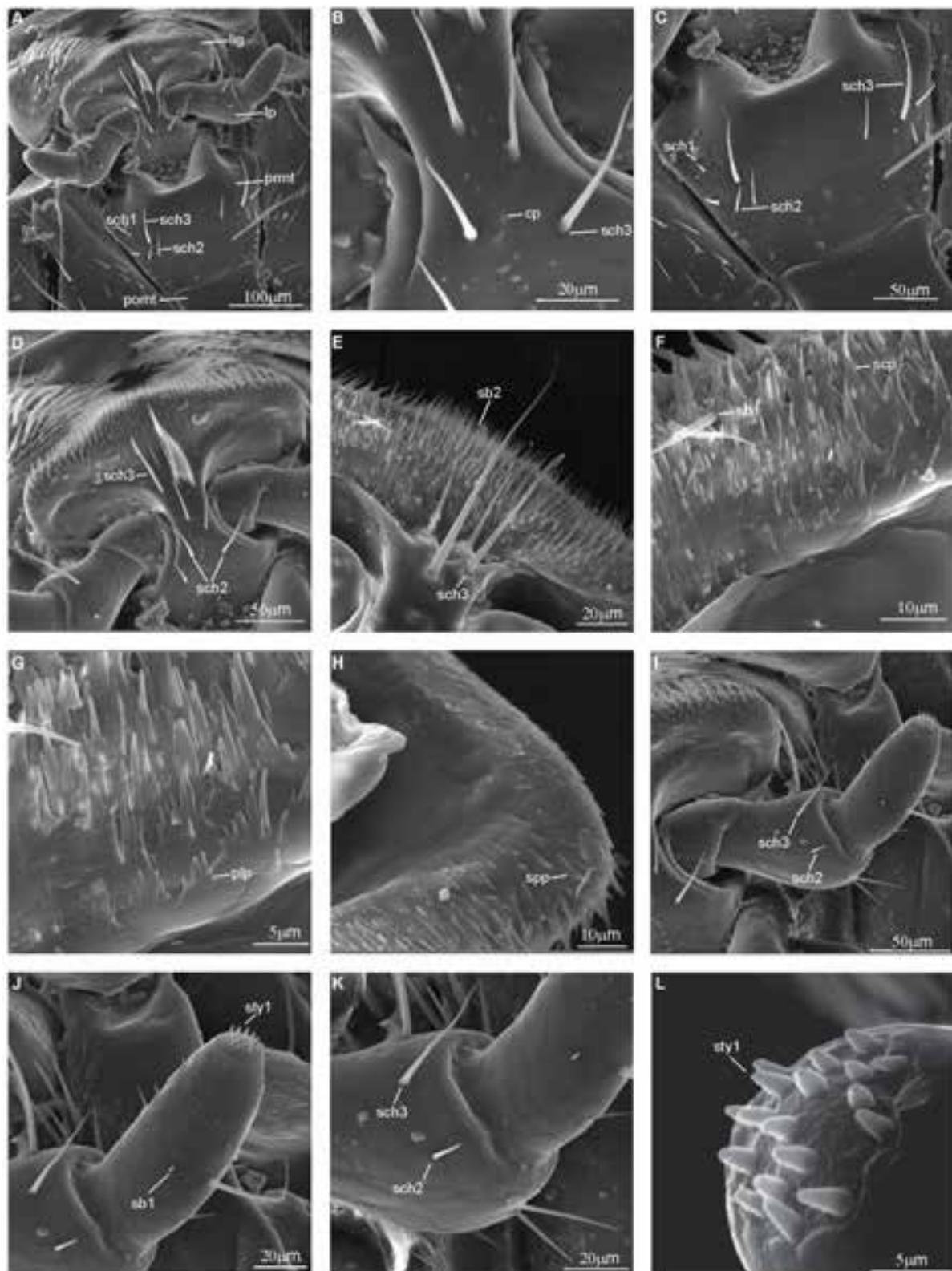
Sensilla coeloconica (Sco) are round structures with bumps in the center that cannot be distinguished clearly. They are present on the ventral surface of the labrum (Image 2).

Sensilla campaniformia (Sca) are round with a circular depression at the center and observed only on the ventral surface of the labrum (Image 2). The labrum, mandibles, maxilla, and labium all have small, round, pores called cuticular pores (Cp) (Images 2,3,4,5).

Morphology of antenna and eye


The antennae of *C. sexmaculata* are made up of a scape, pedicel, and flagellum. There are nine flagellomeres in the flagellum; the first flagellomere has sensilla chaetica 1 and 2 (Sch1, Sch2), while the scape has sensilla chaetica 3 (Sch3). Sensilla basiconica 1 and 2 (Sb1, Sb2) are present on the tip of the ninth flagellomere and lower part of scape (Image 6). *C. sexmaculata* has

compound eyes made up of ommatidia. The surface of the ommatidia is smooth; only a few randomly distributed interommatidial hairs are present (Image 6).


DISCUSSION

Information about the feeding ecology of several insect species has been well documented in the literature; very few studies have been targeted to describe the mouthparts at the ultra-microscopic level (Belhocine et al. 2013; Moon 2015; Chen et al. 2016; Nel et al. 2018; Hao et al. 2019). Ample literature is available on the mouthpart structures and feeding mechanisms of ground beetles, coccinellid beetles, and other coleopterans (Forsythe 1982, 1983; Ricci & Stella 1988; Pradhan 1938; Samways et al. 1997; Moon 2008; Karolyi et al. 2016), very few studies are available on predatory lady beetles. Lady beetles are known as potent bio-control agents, therefore, understanding the ultrastructure of mouthpart morphology will provide better insights into the feeding mechanism of *C. sexmaculata*. The better understanding of the ultrastructure of mouthparts will be helpful in designing and implementing an effective biological control program (Karolyi et al. 2016). One significant aphidophagous predator in Asia is the ladybird *Cheilomenes sexmaculata* (F.) (Agarwala & Yasuda 2000). Aphids such as *Aphis craccivora* (Koch) (Agarwala et al. 2001), *Aphis gossypii* (Glover), *Rhopalosiphum maidis* (Fitch), *Myzus persicae* (Sulzer), *Uroleucon compositae* (Theobald), *Lipaphis erysimi* (Kaltenbach), and *Aphis nerii* (Boyer de Fonscolombe) have all been observed to be among its prey (Omkar & Bind 2004). In high-temperature agroecosystems and greenhouses, its voracity and heat endurance may make it an effective biological control agent (Wang et al. 2013). In the current study, using scanning electron microscopy, the morphology of mouthparts of *C. sexmaculata* was described. This may be the first attempt to comprehensively describe the fine structures and various sensilla present on its mouthparts.

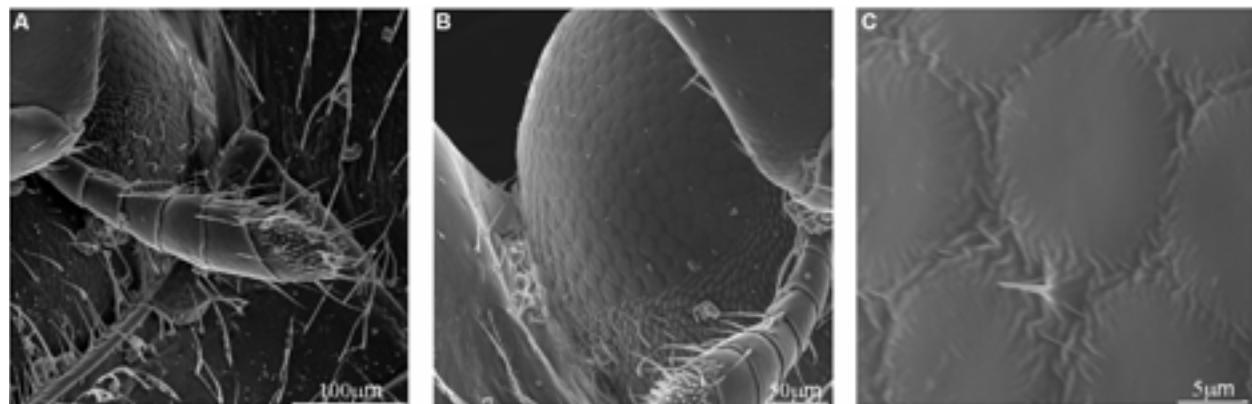

The scanning electron microscopic studies showed typical chewing types of mouthparts of *C. sexmaculata*. The ultrastructure of mouthparts of *C. sexmaculata* showed a resemblance with other ladybird beetles such as *C. transversguttata* and *H. variegata* (Hao et al. 2019). Unlike other zoophagous species, *C. sexmaculata* shares a mandibular morphology with polyphagous species, which are versatile, non-specialized, and lack particular adaptations for crushing or capturing prey (Forsythe 1983). Unlike *C. sexmaculata*, zoophagous species,

Image 4. Scanning electron micrographs of the maxilla of *Cheiromenes sexmaculata*: A—ventral view | B—galea, lacinia, stipes and cardo | C—stipes | D—maxillary palp | E—sensilla basiconica1 and 3 (sb1,3) on maxillary palp | F—sensilla basiconica 1 (sb1) and cuticular pore (cp) close view | G—sensory field of maxillary palp | H—sensory field on maxillary palp | I—sensilla styloconica 1 and 2 (sty1,2) | J—galea, lacinia with sensilla basiconica 1 and 3 (sb1,3) | K—galea showing sensilla basiconica 1, 3 (sb1,3) and cuticular pores (Cp) | L—lacinia showing sensilla basiconica 3, 4 (sb3,4). © Mandar Paingankar & Prakash Ghagargunde.

Image 5. Scanning electron micrographs of the labium of *Cheiromenes sexmaculata*: A—ventral view showing ligula, labial palp, prementum, postmentum | B—sensilla chaetica 3 (sch3) and cuticular pore (cp) on ligula | C—sensilla chaetica 1, 2, 3 (sch1,2,3) on prementum | D—sensilla chaetica 2, 3 (sch2,3) on ligula close view | E—sensilla chaetica 3 (sch3) and sensilla basiconica 2 (sb2) on ligula | F—scaly and palmate processes | G—palmate processes | H—scaly processes | I—sensilla chaetica 2, 3 (sch2,3) on labial palp | J—sensilla styloconica 1 (sty1) on last segment of labial palp | K—sensilla chaetica 2, 3 (sch2,3) on middle segment of labial palp | L—sensilla styloconica 1 (sty1) and sensilla placodea 1 (sp1) at sensory field on top of last segment of labial palp. © Mandar Paingankar & Prakash Ghagargunde.

Image 6. Ultrastructure of the antenna and eye of *Cheilomenes sexmaculata*: A—antenna showing flagellum, scape, and sensilla | B—compound eye | C—hexagonal ommatidia with interommatidial hairs. © Mandar Paingankar & Prakash Ghagargunde.

such as tiger beetles, have mandibles that are trigonal in dorso-ventral aspect (Ball et al. 2011). Phytophagous species ingest plant juices by scraping leaf surfaces with multidentate mandibles, whereas insectivorous species use unidentate or bifid incisors of mandibles for piercing the prey. During the scarcity of natural prey, few insectivorous species feed on pollen as an alternative source (Samways et al. 1997). It was observed that *C. sexmaculata*'s mandibular morphology resembles that of insectivorous beetles like *Coccinella transversoguttata* (Hao et al. 2019). Gut content analysis of *C. sexmaculata* showed the presence of traces of plant material in a few specimens. These observations suggest that when there is limited availability of prey, *C. sexmaculata* might be feeding on plant material. *C. sexmaculata* has a setal row on its prostheca. In scavenger carabids like *Carabus*, *Calosoma*, *Cychrus*, and *Scarites*, a brush of dense setae was present on the ventral surface of each mandible (Evans & Forsythe 1985), but in *C. sexmaculata* it is present between the incisor and molar region. In the submolar region of some mandibulate Carabidae, a tuft of mesally projecting setae and, more posteriorly, a soft flap-like structure was observed (Evans & Forsythe 1985).

A long incisor tooth with two or three terebral teeth has been documented in the majority of Cicindelidae taxa (Ball et al. 2011). Smooth dorsal surface of the mandible with sch1, Cp, bifid incisor, ventral teeth smaller than dorsal teeth, and molars formed by single triangular and sharp teeth are observed in *C. sexmaculata*, which is significantly different from other zoophagous species and indicate the special adaptations for crushing and capturing prey (Forsythe 1983). In this study, two types of sensilla styloconica (Sty1 and Sty2) were found: one type of sensilla placodea (sp1) at the distal end of the maxillary palp and sensilla styloconica (sty1) at the tip of

the labial palps, indicating the role of sensilla in gustatory, mechanical, and contact reception while searching for aphids. The base of sensilla styloconica (sty2) was bigger in size as compared to sty1 in *C. sexmaculata*, which indicates that these sensilla might be olfactory in nature.

In the current study, one type of sensilla placodea, one type of sensilla coeloconica, one type of sensilla campaniformia, three types of sensilla chaetica, four types of sensilla basiconica, two types of sensilla styloconica, and one type of cuticular pore are identified on the various mouthparts of *C. sexmaculata*. Interestingly, the mouthparts of *C. sexmaculata* show similarities with some polyphagous and mixed feeder beetles. The results obtained in this study provide baseline information on the ultrastructure of mouthparts and sensilla of *C. sexmaculata* and provide the basis for further investigations on the role of sensilla and feeding mechanisms in the Coccinellidae family. To comprehend the feeding mechanism and the evolution of the remarkably varied feeding habits in the Coccinellidae, more research into the structural features of mouthparts and their functional significance is necessary.

REFERENCES

Agarwala, B.K., P. Bardhanroy, H. Yasuda & T. Takizawa (2001). Prey consumption and oviposition of the aphidophagous predator *Menochilus sexmaculatus* (Coleoptera: Coccinellidae) in relation to prey density and adult size. *Environmental Entomology* 30: 1182–1187.

Agarwala, B. & H. Yasuda (2000). Competitive ability of ladybird predators of aphids: a review of *Cheilomenes sexmaculata* (Fabr.) (Coleoptera: Coccinellidae) with a worldwide checklist of preys. *Journal of Aphidology* 14: 1–20.

Altner, H. & L. Prillinger (1980). Ultrastructure of invertebrate chemo, thermo, and hygro receptors and its functional significance. *International Review of Cytology-a Survey of Cell Biology* 67: 69–

139. [https://doi.org/10.1016/S0074-7696\(08\)62427-4](https://doi.org/10.1016/S0074-7696(08)62427-4)

Ayer, W.A., M.J. Bennett, L.M. Browne & J.T. Purdham (1976). Defensive substances of *Coccinella transversoguttata* and *Hippodamia caseyi*, ladybugs indigenous to western Canada. *Canadian Journal of Chemistry* 54: 1807–1813. <https://doi.org/10.1139/v76-256>

Ball, G.E., J.H. Acorn & D. Shpeley (2011). Mandibles and labrum, epipharynx of tiger beetles basic structure and evolution (Coleoptera, Carabidae, Cicindelitae). *Zookeys* 147: 39–83. <https://doi.org/10.3897/zookeys.147.2052>

Belhocine, L., R.T. Bouhraoua, E. Prats & J.P. Villar (2013). Fine structure and functional comments of mouthparts in *Platypus cylindrus* (Coleoptera, Curculionidae: Platypodinae). *Micron* 45: 74–82.

Brožek, J. & T. Bourgoin (2013). Morphology and distribution of the external labial sensilla in *Fulgoromorpha* (Insecta: Hemiptera). *Zoomorphology* 132: 33–65.

Chen, F., C.N. Zhang & W. Dai (2016). Fine structure and sensory apparatus of the mouthparts of the maize weevil, *Sitophilus zeamais* Motschulsky (Coleoptera: Curculionoidea: Dryophthoridae). *Annals of the Entomological Society of America* 109(6): 881–889.

Eilers, E.J., G. Talarico, B.S. Hansson, M. Hilker & A. Reinecke (2012). Sensing the underground-ultrastructure and function of sensory organs in root-feeding *Melolontha melolontha* (Coleoptera: Scarabaeinae) larvae. *PLoS ONE* 7(7): e41357. <https://doi.org/10.1371/journal.pone.0041357>

Evans, M.E.G. & T.G. Forsythe (1985). Feeding mechanisms and their variation in form, of some adult ground-beetles (Coleoptera: Carabidae). *Journal the Zoological Society of London (A)* 206: 113–143.

Forsythe, T.G. (1982). Feeding mechanisms of certain ground beetles (Coleoptera: Carabidae). *The Coleopterists Bulletin* 36: 26–73. <https://doi.org/10.2307/4007976>

Forsythe, T.G. (1983). Mouthparts and feeding of certain ground beetles (Coleoptera: Carabidae). *Zoological Journal of the Linnean Society* 79(4): 319–376. <https://doi.org/10.1111/j.1096-3642.1983.tb01170.x>

Hao, Y.N., Y.X. Sun & C.Z. Liu (2019). Functional morphology of the mouthparts of lady beetle *Coccinella transversoguttata* (Coccinellidae, Coleoptera) with reference to their feeding mechanism. *Journal of Morphology* 280: 701–711. <https://doi.org/10.1002/jmor.20976>

Hao, Y.N., Y.X. Sun & C.Z. Liu (2019). Functional morphology of the mouthparts of lady beetle *Hippodamia variegata* (Coleoptera: Coccinellidae), with reference to their feeding mechanism. *Zoomorphology* 139: 199–212. <https://doi.org/10.1007/s00435-019-00474-0>

Karolyi, F., T. Hansal, H.W. Krenn & J.F. Colville (2016). Comparative morphology of the mouthparts of the megadiverse South African monkey beetles (Scarabaeidae: Hopliini): feeding adaptations and guild structure. *PeerJ* 4: e1597. <https://doi.org/10.7717/peerj.1597>

Li, X., D. Chi, Y. Zhu, Z. Zhang & J. Yu (2012). The comparative study on adult surface ultrastructure of *Harmonia axyridis* Pallas (Coleoptera: Coccinellidae). *African Journal of Agricultural Research* 7: 5779–5791. <https://doi.org/10.5897/AJAR11.565>

Li, Y.Y., K.M. Shao, D. Liu & L. Chen (2022). Structure and distribution of antennal sensilla in *Pseudosymmachia flavescent* (Brensker) (Coleoptera: Scarabaeidae: Melolonthinae). *Microscopy Research and Technique* 85(4): 1588–1596. <https://doi.org/10.1002/jemt.24020>

Luo, H.W., J. Huang & Z.H. Wang (2006). Observation of predatory behavior of *Delphastus catalinae* on *Bemisia tabaci*. *Chinese Journal of Biological Control* 22: 14–16.

Moon, M.J. (2015). Microstructure of mandibulate mouthparts in the greater rice weevil, *Sitophilus zeamais* (Coleoptera: Curculionidae). *Entomological Research* 45(1): 9–15. <https://doi.org/10.1111/1748-5967.12086>

Nel, P., S. Bertrand & A. Nel (2018). Diversification of insects since the Devonian: a new approach based on morphological disparity of mouthparts. *Scientific Reports* 8(1): 3516. <https://doi.org/10.1038/s41598-018-21938-1>

Omkar, O. & R.B. Bind (2004). Prey quality- dependent growth, development and reproduction of a biocontrol agent, *Cheiromenes sexmaculata* (Fabricius) (Coleoptera: Coccinellidae). *Biocontrol Science and Technology* 14: 665–673.

Pradhan S. (1938). Neuromuscular study of the mouthparts of *Coccinella septempunctata* with comparison in carnivorous and herbivorous coccinellids. *Records of the Zoological Survey of India* 40(4): 341–358. <https://doi.org/10.26515/rzsi/v40/i4/1938/162243>

Rani, P.U. & S.S. Madhavendra (1995). Morphology and distribution of antennal sense organs and diversity of mouthpart structures in *Odontopus nigricornis* (Stål) and *Nezara viridula* L. (Hemiptera). *International Journal of Insect Morphology and Embryology* 24: 119–132. [https://doi.org/10.1016/0020-7322\(94\)00020-Q](https://doi.org/10.1016/0020-7322(94)00020-Q)

Rani, P.U. & S.S. Madhavendra (2005). External morphology of antennal and rostral sensillae in four hemipteran insects and their possible role in host plant selection. *International Journal of Tropical Insect Science* 25: 198–207. <https://doi.org/10.1079/IJT200577>

Ricci C., & J. Stella (1988). *Relationship between morphology and function in some Palaearctic Coccinellidae*. Ecology and effectiveness of Aphidophaga; Dixon, AFG, Ed; Academic Publishing: The Hague, The Netherland, 21–25 pp.

Ruschioni, S., N. Loreto, N. Isidoro & P. Riolo (2019). Sensory structures on maxillary and labial palps of *Tenebrio molitor*. *Bulletin of Insectology* 72(2): 309–316.

Samways, M.J., R. Osborn & T.L. Saunders (1997). Mandible form relative to the main food type in ladybirds (Coleoptera: Coccinellidae). *Biocontrol Science and Technology* 7(2): 275–286. <https://doi.org/10.1080/09583159730974>

Sarwar, M. & S.M. Saqib (2010). Rearing of predatory seven spotted ladybird beetle *Coccinella septempunctata* L. (Coleoptera: Coccinellidae) on natural and artificial diets under laboratory conditions. *Pakistan Journal of Zoology* 42: 47–51.

Seo, M.J. & Y.N. Youn (2000). The asian ladybird, *Harmonia axyridis*, as biological control agents: I. predacious behavior and feeding ability. *Korean Journal of Applied Entomology* 39(2): 59–72.

Thornham, D.G., M.E. Wakefield, A. Blackwell, K.A. Evans & K.F.A. Walters (2007). Sexual dimorphism in the distribution and biometrics of the palpal sensilla of *Coccinella septempunctata*, and a description of a new sensillum. *Acta Entomologica Sinica* 50: 667–674.

Wang, J.Z., Y. Wang & S.L. Sun (2000). Sequence of predatory behavior of the adult lady bird beetle, *Coccinella septempunctata* L. (Coleoptera: Coccinellidae) on aphids. *Entomological Knowledge* 37: 195–197.

Wang, S., X.L. Tan, X.J. Guo & F. Zhang (2013). Effect of temperature and photoperiod on the development, reproduction, and predation of the predatory ladybird *Cheiromenes sexmaculata* (Coleoptera: Coccinellidae). *Journal of Economic Entomology* 106: 1–9.

Wei, K.J., Z.R. Zhan, B. Lin, L.H. Zhang & C.L. Zhang (2015). Observation on the predatory behavior of *Synonycha grandis* on *Pseudoregma bambusicola*. *Forest Pest and Disease* 4: 26–29.

Wilhelmi, A.P. & H.W. Krenn (2012). Elongated mouthparts of nectar feeding Meloidae (Coleoptera). *Zoomorphology* 131: 325–337. <https://doi.org/10.1007/s00435-012-0162-3>

Yilda, C., D.T. Chirinos, G. Gonzalez, N. Lemos, A. Fuentes, R. Castro & T. Kondo (2017). *Tamarixia radiata* (Waterston) and *Cheiromenes sexmaculata* (Fabricius) as biological control agents of *Diaphorina citri* Kuwayama in Ecuador. *Chilean Journal of Agricultural Research* 77(2): 180–184. <https://doi:10.4067/S0718-58392017000200180>

Morphological characterization and ecological insights of *Pseudonapaeus cf. candelaris* (L. Pfeiffer, 1846) in the Pir Panjal Range of western Himalaya

Hilal Ahmed¹ , Imtiaz Ahmed² & N.A. Aravind³

^{1,2} Fish Nutrition Research Laboratory, Department of Zoology, University of Kashmir, Hazratbal, Srinagar, Jammu & Kashmir 190006, India.

³ SM Sehgal Foundation Centre for Biodiversity and Conservation, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura, Bengaluru, Karnataka 560064, India.

¹ hilalahmed1991@gmail.com, ² imtiazamu1@yahoo.com (corresponding author), ³ aravind@atree.org

Abstract: *Pseudonapaeus cf. candelaris* is a terrestrial snail species belonging to the Enidae family, specifically inhabiting the Pir Panjal Range of the western Himalaya. This species displays a unique shell morphology with prominent features including deep furrows, a smooth outer surface, cylindrical form, gradually tapering apex, spiral bands and axial ribs. This study examines the morphometric characteristics of shell and distinct structural patterns observed in specimens from various sites within the region. By documenting these morphological attributes, the research enhances our taxonomic understanding of *P. cf. candelaris*, addressing aspects of its classification and ecological role. The findings present critical information for conservation efforts aimed at protecting this regionally significant, endemic snail species.

Keywords: Biodiversity, endemic, gastropods, high altitude, molluscs, shell morphology, snail, terrestrial.

Editor: Mandar Paingankar, Government Science College Gadchiroli, Maharashtra, India.

Date of publication: 26 February 2025 (online & print)

Citation: Ahmed, H., I. Ahmed & N.A. Aravind (2025). Morphological characterization and ecological insights of *Pseudonapaeus cf. candelaris* (L. Pfeiffer, 1846) in the Pir Panjal Range of western Himalaya. *Journal of Threatened Taxa* 17(2): 26479–26486. <https://doi.org/10.11609/jott.9156.17.2.26479-26486>

Copyright: © Ahmed et al. 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: The work was supported by Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi with the reference to file number 09/251(0137)/2019-EMR-I for awarding fellowship to Hilal Ahmed, a senior research fellow, Department of Zoology, University of Kashmir.

Competing interests: The authors declare no competing interests.

Author details: HILAL AHMED, a senior research fellow at the Department of Zoology, University of Kashmir has been engaged in fisheries and molluscan studies since 2019. DR. IMTIAZ AHMED, a professor at the Department of Zoology, University of Kashmir focuses his teaching and research efforts on fish diversity, nutrition, physiology and molluscan biodiversity since 2006. DR. NEELAVAR ANANTHARAM ARAVIND, a professor at ATREE, Bengaluru brings 25 years of expertise in land and freshwater molluscs in India, focusing on ecology, systematics, biogeography, and conservation. His research employs molecular, spatial and citizen science tools to address pertinent questions in molluscan studies.

Author contributions: HA led the entire field sampling, data collection and preparation of the manuscript. IA and Dr. NAA gave study conceptualization, design, manuscript review, editing and supervision. Their significant contributions were crucial for the improvement of the overall quality of the manuscript.

Acknowledgments: The authors express gratitude to the head, Department of Zoology, University of Kashmir for providing required laboratory facilities. Special appreciation to the Freshwater Ecology and Conservation Lab, ATREE Bengaluru for offering access to various equipment and for enhancing our practical work. The authors would also like to extend their sincere appreciation to CSIR, New Delhi for providing financial support to Hilal Ahmed, senior research fellow in advancing the research goals.

INTRODUCTION

The family Enidae comprises a group of pulmonate gastropod molluscs that primarily inhabit terrestrial environments. Woodward (1903) was the first to describe these land snails and they are well known for their air breathing mechanism. Enidae, a taxonomic family belonging to the phylum Mollusca, exhibits notable diversification within this phylum, encompassing approximately 66 genera and 300 species (Molluscabase 2024). The family Enidae is native to India, comprises approximately 29 species. These species are classified into three genera: *Mirus* Albers, 1850 (consisting of five species), *Serina* Gredler, 1898 (consisting of five species), and *Pseudonapaeus* Westerlund, 1887 (consisting of 19 species). Among these species, 21 are found exclusively in India (Kobelt & Moellendorff 1903; Gude 1914; Ray 1951; Solem 1979; Ramakrishna et al. 2010; Tripathy et al. 2018). With the progress of technology, numerous taxa have undergone taxonomic redescriptions. The genus *Pupinidius* Moellendorff belongs to the family Enidae and has undergone comprehensive examination, resulting in the redescriptions of 14 out of the 16 known species and subspecies (Wu & Zheng 2009). In a study conducted by Alonso et al. (2006), it was reported that five previously unidentified species belonging to the family Enidae of land snails were identified from La Gomera, located in the Canary Islands. The findings of Wu & Wu (2009, 2013) improves the understanding about the characteristics of this family, which still needs to be clarified in terms of its subdivision or make-up of subgroups. The taxonomic classification of the family Enidae has undergone thorough scrutiny and revision throughout its history. It has also been reported that taxonomy of this species delineated several subfamilies, including Pseudonapaeinae, Chondrulopsininae, Merdigerinae, Buliminusinae, Andronakiinae, Retowskiinae, Eninae, and Multidentulini (Schileyko 1998). Furthermore, the following taxonomy by Bouchet et al. (2017) tried to simplify things by narrowing the classification down to two subfamilies: Eninae and Buliminusinae. Bank & Neubert (2016) made improvements to the existing classification system by dividing the Eninae into four distinct tribes, namely: Enini, Multidentulini, Merdigera, and Pseudonapaeini. In addition to taxonomic factors, Enidae snails have notable versatility in adapting to a wide range of terrestrial environments, including forests, grasslands, and cold deserts (Ozgo 2014; Zhukov et al. 2019). The presence of adaptation in this species is responsible for the intricate morphological and behavioural characteristics identified

within the taxonomic group. Additionally, their evolution of a functional lung distinguishes them from their aquatic relatives and allows them to thrive on land (Lodi & Koene 2016; Nandy et al. 2022). The family Enidae is a compelling illustration of evolutionary flexibility among gastropod molluscs, including around 20% of the overall population of land snails (Alonso et al. 2006).

The taxonomic classification of the genus *Pseudonapaeus*, as first proposed by Westerlund (1887), occupies a notable position within the Eninae subfamily of the Enidae. According to Tripathy et al. (2022), *Pseudonapaeus* encompasses 136 recognized species and exhibits a broad geographical distribution spanning central, southern, southeastern Asia, and Japan. The distribution of this genus in India is primarily limited to the western Himalaya, comprising 18 species (Ahmed et al. 2023). The taxonomic complexity surrounding this genus has played a significant role in advancing our knowledge of terrestrial gastropods. The taxonomy of *Pseudonapaeus* has faced difficulties, particularly in classification and species identification (Feruza 2017). The complexities occur due to the varied physical traits of different species, posing challenges in accurately defining separate taxonomic groups. The taxonomic classification of this group includes multiple species, each of which poses distinct difficulties in accurate identification. The challenges arise from nuanced variations in shell form, coloration, and size, underscoring the importance for taxonomists to demonstrate meticulousness in discerning distinguishing characteristics. The *Pseudonapaeus* presents a captivating subject for scholarly investigation, providing valuable perspectives on the difficulties related to taxonomy, classification, and species identification within the Enidae family and the broader realm of terrestrial gastropods.

The Pir Panjal Range, a significant mountain range located in the northern section of the Indian subcontinent, has a crucial role in shaping the distribution patterns of the Enidae family and the genus *Pseudonapaeus* within the area. *Pseudonapaeus* cf. *candalaris*, a unique species of the genus *Pseudonapaeus*, demonstrates a significant distribution within the specified geographic area. The existing literature over the last two centuries emphasizes the difficulties encountered in taxonomy and the ever-evolving nature of scientific investigation. The progress in technology and methods has made it easier to learn more about *Pseudonapaeus* cf. *candalaris* and the Enidae family, which is an essential contribution to the field of malacology. The extensive body of literature on gastropod studies offers a significant basis for

present and future research, underscoring the enduring significance of investigating these land-dwelling molluscs within shifting scientific frameworks.

The scholarly discourse surrounding the distribution patterns and ecological preferences of the *Pseudonapaeus* cf. *candalaris* species in the western Himalaya has undergone significant development, owing to the outstanding contributions made by numerous workers. Huge Cuming, Esq. initially gathered the specimens, which were subsequently documented by Pfeiffer (1846). Pfeiffer's knowledge of the species' environment was limited, whereas Reeve asserted that it originated from regions including Europe and Asia (Reeve 1849). Specimens of the species were gathered by Thomas Thomson from Takht-i-Suleiman in Srinagar, India, during the exploration conducted in 1847–48 (Woodward 1856; Benson 1857). The occurrence of the species in the higher slopes of Kashmir was further investigated in subsequent research conducted by Hanley & Theobald (1876). Later on, Nevill (1878) expanded the geographical range of this family included Tandali from Himachal Pradesh, India. Theobald (1878) expanded upon the existing studies by investigating the elevated regions in Kashmir. Gude (1914) conducted an extensive study encompassing Fort Lockhart in Pakistan as a habitat for the subject under examination.

Conversely, Ramakrishna et al. (2010) identified Kashmir as the location of occurrence based on significant literature sources. Various geographical areas, such as Chandak from the Poonch District of the Pir Panjal Range in India (Ahmed et al. 2023), exemplify the inclusive scope of these investigations. The body of literature, which spans over a century, encompasses diverse research endeavours that have significantly enhanced our comprehension of the distribution and ecology of *Pseudonapaeus* cf. *candalaris* in the western Himalaya.

There is a significant knowledge deficit on the variety and ecological aspects of land molluscs, specifically *Pseudonapaeus* cf. *candalaris*, in the vicinity of the Takht-i-Suleiman type locality situated on the eastern flank of the Pir Panjal Range. Even with the proximity of the species, existing literature indicates a significant gap in detailed research about the ecology and diversity of land molluscs within this geographic region. Significantly, the research conducted by Ahmed et al. (2023) underscores the necessity for further investigation and the dearth of periodic evaluations of species by checklists. This study notably draws attention to the inadequate focus on terrestrial molluscs such as *Pseudonapaeus* cf. *candalaris* and their ecological

significance. The research holds great importance, mainly due to its proximity to the type locality. It presents a distinct chance to acquire knowledge regarding habitat preferences, population dynamics, and prospective conservation strategies for this species. In addition, the need for more consideration of the ecological aspects of land molluscs in the region gives rise to apprehensions regarding the potential ramifications for the agricultural sector at the local level. It is imperative to undertake a targeted research endeavour that examines the ecology of *Pseudonapaeus* cf. *candalaris* and other terrestrial molluscs in the Pir Panjal Range. Addressing this study would make a valuable contribution to the scientific comprehension of the species while also carrying practical consequences for promoting local agricultural sustainability and preserving biodiversity.

It is imperative to adopt a multidimensional approach to effectively address the research gap in precisely describing pupillid shell features. Using ultrastructure images of the shell surfaces gives us a high-resolution picture that lets us look at many different morphological features, like the structure of the sutures, the structure of the tips, and the structure of the shell openings. The utilization of this sophisticated imaging technology overcomes the constraints inherent in traditional microscopy methods. Integrating molecular identification techniques, particularly DNA barcoding, can enhance taxonomy classifications with additional precision. The primary objective of molecular analysis will be to investigate genetic markers, enhancing species identification's precision. Putting these methods together and linking morphological and molecular approaches creates a strong foundation for fully understanding the features of the pupillid shell. The comprehensive nature of this technique addresses the deficiency in morphological analysis and establishes a foundation for the following research endeavours, encompassing ecological investigations. The objective is to enhance our comprehension of these species, aiding in the evaluation of damage, development of conservation measures and implementation of management methods that are well-informed and grounded in a more comprehensive and precise understanding of pupillid land snails. The present study significantly enhances our comprehension of terrestrial snails' biodiversity and ecological processes within the demanding topographies of the Pir Panjal Range and the wider Himalayan region besides provide us significant opportunities for enhancing the understanding of the complex interplay between these gastropods and their alpine habitats.

MATERIAL AND METHODS

Field sampling

From April 2021 to March 2023, the specimens of *Pseudonapaeus* cf. *candalaris* were meticulously collected in the Rajouri and Poonch Districts of the Pir Panjal Range (Figure 1). Monthly surveys, following an active visual search strategy. Specimens underwent photographic documentation and precise shell measurements in the laboratory using a Leica M205 stereo microscope and Mitutoyo digital calliper. Identification was confirmed through morphological examination and comparison with type specimens. Preserved at the ATREE Biodiversity Laboratory, this research significantly enhances the understanding of terrestrial mollusc taxonomy in the region.

Morphological analysis

The collected individuals were morphologically examined for standard conchological characteristics such as shell shape, size, aperture shape, width, architecture on the shell, etc. The shell morphology was compared

with earlier descriptions (Pfeiffer 1846; Benson 1857). The photos of the syntype from the Natural History Museum London and other voucher specimens (ZMA. MOLL.34612 at Naturalis Biodiversity Center) were compared for identification.

RESULTS

Systematic position

Order: Gastropoda
 Subclass: Heterobranchia
 Order: Stylommatophora
 Family: Enidae B.B. Woodward, 1903 (1880)
 Subfamily: Eninae B.B. Woodward, 1903 (1880)
 Genus: *Pseudonapaeus* Westerlund, 1887
Pseudonapaeus cf. *candalaris*

Shell morphology

The shell of this sinistral gastropod exhibits a cylindrical morphology characterized by a sleek outer surface and faintly pigmented bands. On average, it is

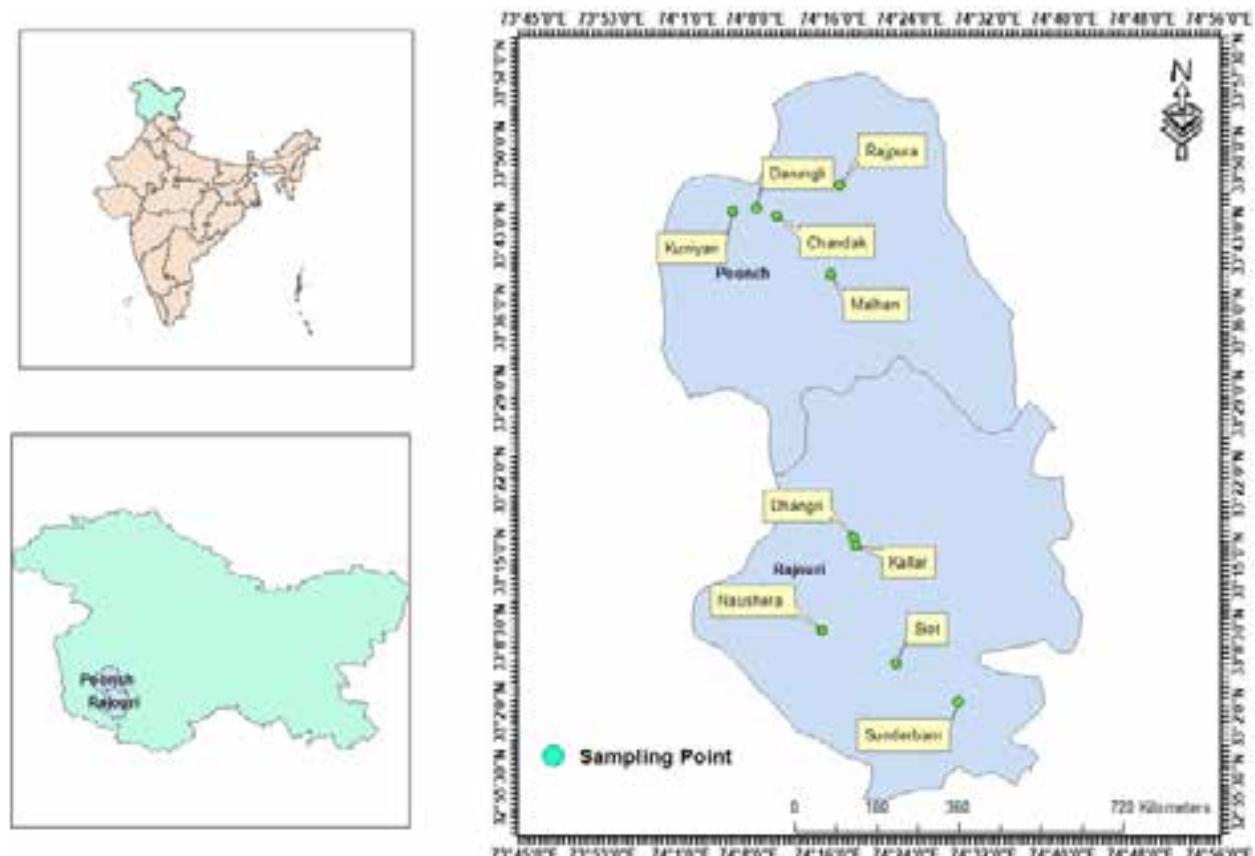


Figure 1. Map showing the sampling locations in Poonch and Rajouri Districts in Jammu & Kashmir (J&K), India. The inset maps show the location of the J&K, Poonch and Rajouri districts.

25.2 mm in length and has a diameter of 5.8 mm (Image 1). Deep grooves and a top that gradually narrows to a sharp point distinguish the shell. It displays slightly slanted stripes over an off-white base colour. The terminal one exhibits a series of nine flat bends, gradually decreasing in obliquity, culminating in a rounded base. The semioval aperture has an interior characteristic of bright white coloration. A peristome with enlarged white folds encircles the opening, harmoniously connecting them with a delicate callus along the borders. Significantly, the columellar region exhibits a pronounced dilation, contributing to the complexities inherent in the morphological characteristics of this snail shell. On examining the ultrastructure images of the shell (Image 1a), the surface is smooth with a slowly obliquely slight band without horizontal streaks, the groove is not too wide and the shell tip is concentrated bluntly without a sharp tip.

Ecological habitat

By methodically collecting 79 specimens, it was possible to ensure a complete representation of the species' range across various environments. A rigorous assessment was carried out to examine the species' ecological intricacies, focusing on its habits and environment. The study on *Pseudonapaeus* cf. *candelaris* in the Pir Panjal Range of the western Himalaya has provided a detailed understanding of species preferences for several environmental and habitat factors in the terrestrial ecosystem. The species exhibited a consistent

occurrence in environments defined by soils with good drainage, particularly red clay, located beneath a thick layer of fallen leaves and within regions with abundant vegetation that get limited direct sunlight (Image 2b). The altitude distribution of *P. cf. candelaris*, which spans from 900 to 1,500 m, has been identified as a crucial element that highlights its ability to adapt to specific elevational ranges within the Pir Panjal Range (Image 2a). The soil study indicated a pH range of 6.5–7.8, with a distinct inclination towards habitats with a substantial calcium content of 7.9–9.8 mg/g. This preference is particularly evident in locations that experience semi-arid climatic conditions. Observing dead specimens within the sandy mud and loamy soil indicates the possibility of these locations serving as potential hibernation places during high temperatures and aridity. Field observations showed a notable increase in specimen abundance from August to mid-September. This time frame accounted for approximately 75% of the studied population. The ecological study provides a complete overview of the essential climatic and ecological elements that play a crucial role in regulating the distribution patterns of *P. cf. candelaris*. These parameters, identified as critical determinants, include humidity, altitude, soil type, and temperature.

Image 1. The shell image of *Pseudonapaeus* cf. *candelaris* collected from the Pir Panjal area: a—during the present study | b—the syntype with catalogue number 20180423 from the Natural History Museum, London. Scale 1 cm. © Hilal Ahmed.

Table 1. Comparative morphological study of different morphologically similar land snails of the Enidae family distributed in northern India.

	Characters	<i>Pseudonapaeus purii</i>	<i>P. domina</i>	<i>P. arcuatus</i>	<i>P. vibex</i>	<i>Serina nevilliana</i>	<i>Pseudonapaeus</i> cf. <i>candalaris</i>
1	Shell shape and size	Cylindrical, 15 mm x 5.5 mm	Cylindrical, 23 mm x 9 mm	Variable, 12.5–21 mm x 5–8 mm	Cylindrical, 15.1 mm x 5.0 mm	Cylindrical, similar to <i>P. purii</i> , 11.8 x 4.3 mm	Cylindrical, elongated, 25.2 mm x 5.8 mm
2	Coloration	Chalky-white coating on last four whorls; original horny-brown on uppermost whorls	Shell with reddish-brown oblique stripes	Dark horny-yellow, faint white lines on body whorls	Dark horny-yellow, with characteristic hyaline white lines	Grayish-white to off-white, similar to <i>P. cf. candalaris</i>	Off-white with slightly slanted stripes; bright white aperture interior
3	Surface texture	Distinct longitudinal plications, corrugated similar to <i>Serina nevilliana</i>	Smooth, slight striations on outer surface	Smooth with faint transverse lines	Smooth with hyaline white lines	Smooth with faint grooves	Smooth with faintly pigmented bands; deep grooves; tip blunt without sharp point
4	Aperture	Oblong-ovate, pale brownish interior, edentate	Semi-oval, slightly oblique	Variable, 5 mm x 4 mm to 7.5 mm x 6 mm	Rounded, variable diameter	Semi-oval, similar to <i>P. cf. candalaris</i>	Semi-oval, bright white interior; peristome with thick white folds; distinct columellar dilation
5	Whorls	Four distinct whorls, last one with chalky-white coat	Five to six, with reddish-brown markings on final whorls	Five to six, smooth, regular in structure	Four to five, with hyaline lines	Five to six, faintly pigmented	Nine slightly oblique bends on final whorl, decreasing in obliquity towards the rounded base
6	Habitat	High-altitude mostly under leaf litter (>3,000 m)	Western Himalaya, deep clay soil	Swagni Maidan, sloping meadow (<3,000 m)	Chakrata and Deoban, high-altitudes (2,424–3,030 m)	High-altitude regions, semi-arid conditions	Well-drained red clay at altitudinal range 900–1,500 m
7	Endemism	Yes, rediscovered in 2018, Great Himalayan National Park	Yes, western Himalaya	Yes, found in lesser Himalayan region	Yes, prevalent in middle Himalayan region	Endemic to some Himalayan regions	Yes, widespread across western Himalaya
	References	Tripathy et al. 2022; Ray 1951	Benson 1857; Gude 1914	Reeve 1849; Gude 1914; Rensch 1955	Rensch 1955; Gude 1914	Theobald 1881; Gude 1914	Present study

Image 2. a—The typical habitat of *Pseudonapaeus* cf. *candalaris* in the Pir Panjal region of Jammu & Kashmir | b—the microhabitat with a living individual. © Hilal Ahmed.

DISCUSSION

The rediscovery of *Pseudonapaeus* cf. *candalaris*, a species belonging to the Enidae family and native to the Pir Panjal Range in the western Himalaya, represents a significant achievement in malacological research. This species has been challenging to find since it was

documented 170 years ago at Takht-i-Suleiman in Srinagar, Kashmir (Woodward 1856). Many scholars from different periods have been interested in studying this species, including Reeve (1849), Woodward (1856), Hanley & Theobald (1876), Nevill (1878), Theobald (1878), Gude (1914), Ramakrishna et al. (2010), and Tripathy et al. (2018). Old records do not always have

solid proof; they often rely on lists or collections of historical writings (Gude 1914; Ramakrishna et al. 2010; Tripathy et al. 2018) that do not give essential details like reference numbers and pictures, or drawings that are needed to confirm the specimens that were reported. Reeve's (1849) early claim that the species was limited to Asia and Europe, which was later withdrawn, introduces a level of intricacy to the historical account. The problem worsens because specimens still need to be correctly identified as *Zootecus* sp. even though they have apparent physical features that make them easy to spot. The persistent uncertainty and lack of modern reports highlight the rarity of *P. cf. candelaris* in the Pir Panjal Range, as emphasized in recent studies (Ahmed et al. 2023). The clear connection of the species with its original location in Kashmir is an undeniable aspect of its importance, both in the past and present.

The shells of *Pseudonapaeus* cf. *candelaris* in the Pir Panjal range exhibit unique traits specific to the species. Typically, these shells have a cylindrical shape with a pointed tip that resembles a candle. The oval-shaped aperture and the spire height, which is around half of the shell's overall height, are distinctive characteristics of the species. Certain shells exhibit chromatic differences and development lines, indicating the possibility of variety within the population. *P. cf. candelaris* can be distinguished from similar species like *P. domina* and *P. arctuatus* based on its distinctive physical characteristics (Table 1). These include a sinistral shell, a smooth surface, a thick aperture shell without horizontal streaks and 3–4 middle whorls that are almost the same width. According to historical records by Nevill (1878) and Theobald (1878), many sinistral shells were recorded, while dextral shells were less commonly seen. The lack of visual evidence and preserved specimens in historical literature raises doubts about the occurrence of dextral shells. This scepticism is particularly relevant considering the extensive surveys conducted by multiple expeditions and authors over the past two years (Ahmed et al. 2023). Theobald (1878) also talks about how the sinistral and dextral shells are very different in size and suggests that the dextral shells might be *Pseudonapaeus domina* with close-type locations. Discernible distinguishing characteristics have yet to be found between the two.

This study provides a comprehensive analysis of shell morphology for *Pseudonapaeus* cf. *candelaris* in the Pir Panjal range of the northwestern Himalaya. In addition, it includes a succinct ecological investigation specific to this species. By combining traditional taxonomic methods with ecological assessment, the understanding of this mollusc species is significantly improved in this

ecologically crucial region. Future research should prioritize an in-depth exploration of the ecological implications of *P. cf. candelaris* and its role within the Pir Panjal ecosystem.

This research underscores the need for extensive biodiversity studies in the western Himalayas, inspired by the rediscovery of *P. cf. candelaris*—a species initially documented by scientists over 170 years ago during several expeditions. This rediscovery emphasizes the pressing need to investigate and preserve the region's rich biodiversity.

REFERENCES

Ahmed, H., I. Ahmed & N.A. Aravind (2023). An updated checklist of non-marine molluscs of the western Himalaya. *Journal of Threatened Taxa* 15(12): 24368–24395. <https://doi.org/10.11609/jott.8516.15.12.24368-24395>

Alonso, M.R., S.L. Goodacre, B.C. Emerson, M. Ibanez, R. Hutterer & K. Groh (2006). Canarian land snail diversity: conflict between anatomical and molecular data on the phylogenetic placement of five new species of *Napaeus* (Gastropoda, Pulmonata, Enidae). *Biological Journal of the Linnean Society* 89(1): 169–187. <https://doi.org/10.1111/j.1095-8312.2006.00670.x>

Bank, R.A. & E. Neubert (2016). Notes on Enidae, 7. Revision of the Enidae of Iran, with special reference to the collection of Jacques de Morgan (Gastropoda: Pulmonata). *Vita Malacologica* 14: 1–84.

Benson, W.H. (1857). New species of *Bulimus* from India, Burma and the Mauritius. *The Annals and Magazine of Natural History* 19(2): 327–330. <https://doi.org/10.1080/00222935708693934>

Bouchet, P., J.P. Rocroi, B. Hausdorf, A. Kaim, Y. Kano, A. Nützel, P. Parkhaev, M. Schrödl & E.E. Strong (2017). Revised classification, nomenclator and typification of gastropod and monoplacophoran families. *Malacologia* 61(1–2): 1–526. <https://doi.org/10.4002/040.061.0201>

Feruza, G. (2017). The description of new species of the genus *Pseudonapaeus* (Gastropoda, Pulmonata, Geophila) from Kugitangtau mountain range. *Journal of Research in Health Science* 1(1): 1–7. <https://doi.org/10.26739/2523-1243-2017-1-1-7>

Gude, G.K. (1914). The fauna of British India, including Ceylon and Burma. Mollusca-II. (Trochomorphidae-Janellidae). Taylor & Francis, London, i–xii, 520 pp. <https://doi.org/10.5962/bhl.title.12891>

Hanley, S.C.T & W. Theobald (eds.) (1876). *Conchologia Indica: Illustrations of the Land and Freshwater Shells of British India*. L. Reeve & Company, London, 416 pp.

Kobelt, W. & O.F. von Mollendorff (1903). Catalog der Familie Buliminidae. *Nachr. Dtsch. malak. Ges.* 35(3/4): 36–60; 35(5/6): 65–71. (Frankfurt am Main)

Lodi, M. & J.M. Koene (2016). The love-darts of land snails: integrating physiology, morphology and behaviour. *Journal of Molluscan Studies* 82(1): 1–10. <https://doi.org/10.1093/mollus/eyv046>

Molluscabase (2024). Molluscabase. Retrieved from <https://www.molluscabase.org/> Electronic version accessed 02 January 2025.

Nandy, G., H. Barman, S. Pramanik, S. Banerjee & G. Aditya (2022). Land snail assemblages and microhabitat preferences in the urban areas of Kolkata, India. *Journal of Urban Ecology* 8(1): juac004. <https://doi.org/10.1093/jue/juac004>

Nevill, G. (1878). Mollusca. Scientific Results of the Second Yarkand Mission; based upon the collections and notes of the late Ferdinand Stoliczka Ph.D. Office of the Superintendent of Government Printing, Calcutta, 21 pp.

Özgo, M. (2014). Rapid evolution and the potential for evolutionary rescue in land snails. *Journal of Molluscan Studies* 80(3): 286–290.

<https://doi.org/10.1093/mollus/eyu029>

Pfeiffer, L. (1846). Descriptions of twenty new species of *Helicea*, collected by Hugh Cuming, Esq. *Proceedings of the Zoological Society of London* 14: 37–41.

Ramakrishna, S.C. Mitra & A. Dey (2010). Annotated checklist of Indian land molluscs. Occasional Paper–306, Records of the Zoological Survey of India, Kolkata, 359 pp.

Ray, H.C. (1951). Land shells of the genus *Ena* Turton from Swagni Maidan, Parbatti Valley, Punjab, with description of a new species (Mollusca, Gastropoda: family Enidae). *Record of Indian Museum* 49(1): 31–35. <https://doi.org/10.26515/rzsi/v49/i1/1952/162082>

Reeve, L.A. (1849). Monograph of the genus *Bulimus*, pp. 62–89. In: Reeve, L.A. (ed.). *Conchologia Iconica, or Illustrations of the Shells of Molluscous Animals*. L. Reeve & Co., London, 89 pp. <https://doi.org/10.5962/bhl.title.8129>

Rensch, I. (1955). On some Indian land snails. *Journal of the Bombay Natural History Society* 53(2): 163–176.

Schileyko, A.A. (1998). Treatise on Recent terrestrial pulmonate molluscs. Part 2. Gastrocoptidae, Hypselostomatidae, Vertiginidae, Truncatellinidae, Pachnodidae, Enidae, Sagidae. *Ruthenica*. Supplement 2: 129–261.

Solem, A. (1979). Some mollusks from Afghanistan. *Fieldiana Zoology* 1: 1–89.

Theobald, W. (1878). Notes on the land and fresh-water shells of Kashmir, more particularly of the Jhelum valley below Srinagar and the hills North of Jammu. *Journal of the Asiatic Society of Bengal* 47(2): 141–149.

Tripathy, B., A. Mukhopadhyay & S. Sajan (2022). *Pseudonapaeus purii* (Ray, 1951), comb. nov., rediscovery of an endemic snail from western Himalaya (Gastropoda: Enidae). *Records of the Zoological Survey of India* 122(4): 359–362. <https://doi.org/10.26515/rzsi/v122/i4/2022/168126>

Tripathy, B., A. Mukhopadhyay & S. Sajan (2022). *Pseudonapaeus purii* (Ray, 1951), comb. nov., rediscovery of an endemic snail from western Himalaya (Gastropoda: Enidae). *Records of the Zoological Survey of India* 22(4): 359–362. <https://doi.org/10.26515/rzsi/v122/i4/2022/168126>

Tripathy, B., S.K. Sajan & A. Mukhopadhyay (2018). Mollusca, pp. 785–796. In: Chandra, K., D. Gupta, K.C. Gopi, B. Tripathy & V. Kumar (eds.). *Faunal Diversity of Indian Himalaya*. Zoological Survey of India, Kolkata, 872 pp.

Westerlund, C.A. (1887). Fauna der in der paläarctischen Region lebenden Binnenschnecken: Gen. *Buliminus*, *Sesteria*, *Pupa*, *Stenogyra* & *Cionella*. Ohlson, Berlin, 212 pp.

Woodward, B.B. (1903). List of British non-marine Mollusca. *Journal of Conchology* 10: 352–367.

Woodward, S.P. (1856). On the land and freshwater shells of Kashmir and Tibet, collected by Dr. T. Thomson. *Proceedings of the Zoological Society of London* 24: 185–187.

Wu, M. & Q. Wu (2009). A study of the type species of *Clausiopsis* Moellendorff (Gastropoda, Stylommatophora: Enidae), with the description of a new species. *Journal of Conchology* 40(1): 91.

Wu, M. & Q. Xu (2013). Serina Gredler (Gastropoda, Stylommatophora: Enidae), the continuous-peristomed mountain snails endemic to the eastern slope of the Qinghai-Xizang Plateau. *Zootaxa* 3620(1): 043–066. <https://doi.org/10.11646/zootaxa.3620.1.2>

Wu, M. & W. Zheng (2009). A review of Chinese *Pupinidius* Moellendorff (Gastropoda, Stylommatophora: Enidae), with the description of a new species. *Zootaxa* 2053(1): 1–31. <https://doi.org/10.11646/zootaxa.2053.1.1>

Zhukov, O.V., D.V. Kovalenko, S.S. Kramarenko & A.S. Kramarenko (2019). Analysis of the spatial distribution of the ecological niche of the land snail *Brephulopsis cylindrica* (Stylommatophora, Enidae) in technosols. *Biosystems Diversity* 27(1): 62–68. <https://doi.org/10.15421/011910>

Diet and nutrient balance of wild Asian Elephants *Elephas maximus* in Nepal

Raj Kumar Koirala¹ & Sean C.P. Coogan²

¹ Department of Park Recreation and Wildlife Management, Institute of Forestry, Tribhuvan University, Pokhara, Nepal.

² Department of Natural Resource Science, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada.

¹ raj.koirala@pc.tu.edu.np (corresponding author), ² sean.c.p.coogan@gmail.com

Abstract: We estimated the nutritional content of major wild ($n = 22$) and agricultural crop plants ($n = 3$) consumed by Asian Elephants *Elephas maximus* in Nepal during the wet and dry seasons, respectively. We then used nutritional geometry to explore the macronutrient balance of these plant species, as well as the overall diet of elephants in both the dry and wet seasons. Furthermore, we compared the diet of the Nepal elephants with the previously published diet of Indian population of elephants. We found that despite intraspecific and seasonal variation, the overall diet of elephants was relatively stable in protein (P) intake relative to non-protein macronutrients (fat + carbohydrate; non-protein (NP)), and neutral detergent fibre (NDF) between the wet (16% crude protein (CP): 26.7 % NP: 57.3% NDF; and, 10.4% CP: 13.7% NP: 75.7% NDF) in dry season, which suggests protein intake prioritization in support of previous work on captive elephants. Furthermore, the diet of Indian population of elephants (wet season: 16.0%P: 22.5%NP: 61.4%NDF and dry season: 11.1%P: 18.0 %NP: 70.7 %NDF) showed a similar pattern to the Nepal elephants, suggesting active regulation of macronutrient and NDF intake across populations despite differences in food consumed as part of their diets. Importantly, NDF intake in addition to non-protein macronutrients is likely necessary for elephants to stabilize their protein intake balance; thus, it is important to consider a multidimensional nutritional perspective in elephant conservation planning. The study has concluded that in a well-managed seasonal habitat, elephants can regulate their preferred macronutrient and NDF intake from available natural food plants without resorting to agricultural crop depredation.

Keywords: Crop, depredation, Elephantidae, macronutrient balance, Mammalia, NDF, nutritional geometry, right angled mixture triangle.

Editor: Heidi Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA.

Date of publication: 26 February 2025 (online & print)

Citation: Koirala, R.K. & S.C.P. Coogan (2025). Diet and nutrient balance of wild Asian Elephants *Elephas maximus* in Nepal. *Journal of Threatened Taxa* 17(2): 26487-26493. <https://doi.org/10.11609/jott.9220.17.2.26487-26493>

Copyright: © Koirala & Coogan 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: None.

Competing interests: The authors declare no competing interests.

Author details: RAJ KUMAR KOIRALA, PhD, is a professor at the Institute of Forestry, Pokhara Campus, Tribhuvan University, Nepal. He specializes in teaching courses on conservation biology, wildlife and protected area management, forest zoology, ornithology, and mammalogy. DR SEAN COOGAN is a postdoctoral researcher, Department of Natural Resource Science, Thomson Rivers University, British Columbia, Canada. He specializes in wildlife, nutritional, and fire ecology.

Author contributions: RKK—conceptualized the project, Written the ms, data analysis. SC—analysed, reviewed.

Acknowledgements: We gratefully acknowledge the Rufford Foundation for their generous support of our previous research on elephants, which served as a significant source of inspiration for the completion and publication of this work. Their encouragement and commitment to conservation research have been invaluable in advancing our understanding and efforts in this field.

INTRODUCTION

The diet and nutritional demands of wildlife are crucial aspects to consider when formulating conservation and management strategies. Foraging, however, is a complex process, involving the interplay of physiological and behavioural factors with an animal's multidimensional nutritional environment (Rabenheimer et al. 2009; Simpson & Rabenheimer 2012). The Asian Elephant *Elephas maximus* is a species of conservation concern often involved in food-related human-elephant interactions (Desai 1991) through crop depredation (Santiapillai & Jackson 1990; Nyhus & Sumianto 2000). Recently, studies of captive Asian Elephants suggest that they regulate their intake of multiple nutrients, with protein (P) intake more tightly regulated relative to non-protein macronutrients (fat + carbohydrate; NP) and fibre (NDF; (Koirala 2018)). This type of nutrient regulation, however, has not been explored in wild elephant populations.

In this paper, we estimated the proximate nutritional content of plants consumed by migratory and resident elephants during the wet and dry seasons in the far eastern region and central region of Chitwan National Park (CNP) and Parsa National Park (PNP) of Nepal. The consumed plants were identified through feeding sign survey and micro-histological analysis of dung, and also based on a previous study (Koirala et al. 2016). We used nutritional geometry (i.e., right-angled mixture triangle (RMT); Rabenheimer 2011) to explore the proportions of macronutrients and fibre in the seasonal food plants and diets of elephants, including both natural and agriculture crop plants, to evaluate evidence for nutrient intake regulation similar to previous studies. Furthermore, we used published literature on the diet of wild elephants in India (Das et al. 2014) to evaluate if they showed similar dietary patterns to the Nepal elephants, which might suggest active regulation of macronutrient and NDF intake across populations despite consuming different diets.

MATERIALS AND METHODS

The CNP (952.632 km²) and PNP (637.37 km²) are two of Nepal's protected areas, and are situated in the south-central region of the country (Koirala et al. 2016). On the other hand, Nepal gets migratory elephants from northern Bengal of India (Koirala et al. 2015) in the forests of the eastern district of Jhapa. We collected food plant species of elephants' diets

for nutritional analysis based on our previous study on food preference, which identified 57 plant species (12 grasses, five shrubs, two climbers, one herb, and 37 tree species) consumed by elephants (Koirala et al. 2016). However, only the most preferred species (n = 22) and three agriculture crop plants were collected for proximate nutrient analysis (Table 1). Plant and crop samples were collected during the late rainy ("wet") season (August/September 2013) and summer "dry" season (March/April 2014) from elephant habitat, where habitat was determined by the presence of elephant foraging signs and direct observation. The wet season collection period coincided with the beginning of crop raiding time in late monsoon season with a peak in pre-winter, while April/May was the beginning of crop raiding in the dry season. After collection, samples were air-dried and kept in paper bags for transport to the laboratory. The proximate nutritional estimates were analysed in the laboratory of Nepal Agricultural Research Centre and Nepal Environmental and Scientific Services, Kathmandu, Nepal, following standard methods (AOAC 2012) for crude protein (Kjeldahl; CP), ether extract for lipid (Soxhlet extraction; EE), fiber (digestion method; NDF), and ash. Non-structural carbohydrate (NSC) was calculated by difference. To correct for indigestible waxes and lipids in plants consumed, we subtracted 1% from EE to estimate crude fat (CF) following Rothman et al. (2012). Proportional data were transformed using a "logit" transformation to approximate normality before running the stat test.

We used the Right angled mixture triangle (RMT) to investigate the proportion of macronutrients and NDF in the food plants and seasonal diet of elephants. Following Koirala et al. (2016), we plotted NP and NDF on the x- and y-axis of the RMT, respectively, while CP was represented on the implicit axis (z) which varies inversely with distance from the origin (Rabenheimer 2011). Macronutrients and NDF were expressed as a percentage of the sum of each (i.e., non-structural carbohydrate + neutral detergent fibre + lipid + protein) on a dry matter basis. NDF was included in the analysis, because elephants derive energy from fibre through hindgut fermentation (Anguita et al. 2006). We estimated the seasonal mixture space provided by the plant foods by forming minimum convex polygons around food points for each season.

We determined the overall macronutrient balance of seasonal diets by weighing the nutritional estimates for each plant species by the relative utilisation percentage determined as described by Koirala et al. (2016), which is the product of the frequency of occurrence and rank

score of each plant in the micro-histological analysis (Holechek & Gross 1982) and feeding-sign survey respectively (Koirala et al. 2016). We also used RMT analysis to compare the balance of CP, NP, and NDF (Koirala 2018) in the diet of elephants in our study area with existing data on the available diets of wild elephants in India (Das et al. 2014).

Independent sample t-test was performed to see the seasonal difference in the nutrient dry matter/ balance in the plants. Pearson correlation was performed to see the relationship between utilisation and availability of protein and NDF in the diet. All tests were done using Excel and IBM SPSS statistical package version 22.

RESULTS

The nutrient contents of the leaves of plants consumed by elephants didn't vary with species and season (Table 1). The highest estimates for CP (*Lagerstroemia parviflora*; 25.97%), NSC (*Litsea monopetala*; 31.85%), and NDF (*Saccharum bengalensis*; 88.62%) were found in the wet season. The average percent dry matter CP content of food plants was 12% in the wet season and 11 % in the dry season ($t_{37} = 0.372$, $p = 0.712$). The average NDF content was 55.9% (wet season) and 66% (dry season) ($t_{37} = -1.556$, $p = 0.128$), and average EE content was 1.7 % and 1.2% ($t_{37} = 1.427$, $p = 0.162$) in wet and dry seasons, respectively.

The proportion of P: NP: NDF in plants was variable between seasons (Figure 1). For example, the protein balance of most frequently consumed plants *Spatholobus parviflorus* and *Mallotus philippensis* was higher during the wet season. In both seasons, however, most of the dominant plant species consumed were similar, for example, *Spatholobus parviflorus*, *Mallotus philippensis* (Koirala et al. 2016). In the case of agricultural crops, in the wet season paddy was 12.34 % P: 18.31% NP: 69.35% NDF, and in the dry season 9.55% P: 15.42% NP: 75.03% NDF (Figure 1).

The estimated seasonal diets of elephants was (Figure 2): 16 % CP: 26.7 % NP: 57.3% NDF in wet season; and, 10.4% CP: 13.7% NP: 75.7 NDF in dry season.

DISCUSSION

The utilisation pattern of food plants showed that browse forms the major diet of elephants in the dry season in both PWR and CNP. While the wet season diet was slightly dominated by grass in PWR and browse in

CNP (Koirala et al. 2016). The nutritional content (Table 1) of plant species was stable between seasons.

The combined dry season diet was greater in NDF than the wet season diet. The combined wet season diet was greater in protein and non-protein than the dry season diet. However, both summer and winter diets were somewhat similar in nutrient balance. NDF balance was the highest difference of 12% (± 2.09 SE) while non-protein showed a difference of 11.6% (± 2.04 SE) and protein at the least difference of 6% (± 1.05 SE).

During the wet season, the protein content of food plants like *Acacia catechu*, *Litsea monopetala*, and *Lagerstroemia parviflora* was high to compensate for the deficiency of protein from *Saccharum bengalensis*, *Saccharum spontaneum*, and *Phragmites karka*, suggesting that these foods were complementary to each other (Figure 1A).

Similarly, in dry season, the protein balance of diet of highly utilised browse and agricultural crops like paddy and wheat were similar. Although there was less protein in *Spatholobus parviflorus*, a highly preferred plant in the dry season, so elephants may be using plants species like *Phragmites karka*, *Acacia catechu*, *Litsea monopetala*, and *Ficus semicordata* to slightly increase protein content to balance the deficit of protein from *Spatholobus parviflorus*, *Cymbopogon* sp., *Saccharum spontaneum*, and *Saccharum bengalensis* (Figure 1B).

Moreover, there was no significant relationship between utilisation and availability of protein ($r=-0.146$, $p=0.418$ and NDF ($r = -0.188$, $r = 0.293$) in the weighed diet. The preference of plants is different irrespective of their presence and frequencies in the diet. The utilisation of these plants varies with season and localities (Koirala et al. 2016). Subsequently, the combined macronutrient balance of dry and wet season food plants was almost similar. The balance of different macronutrients showed no significant seasonal difference ($t_{30} = 1.030$, $p = 0.311$) protein; ($t_{30} = 0.760$, $p = 0.453$) and non-protein ($t_{30} = -2.039$, $p = 0.050$) NDF. This gives an indication that although elephants utilised many types of food plants with different nutritional content, the animals compose their diet to achieve a preferred macronutrient intake target (Rabenheimer 2011; Coogan 2014).

At the time of this study in both of these study periods, crops act as a complementary food source to replace low protein grasses. The lower protein in grasses like *Cymbopogon* sp., *Saccharum spontaneum*, *S. bengalensis*, and *Digitaria* spp. in the dry season and higher accessibility and protein content in crops may lead to crop raiding. This is consistent with the assertion that the nutritional composition of crops could

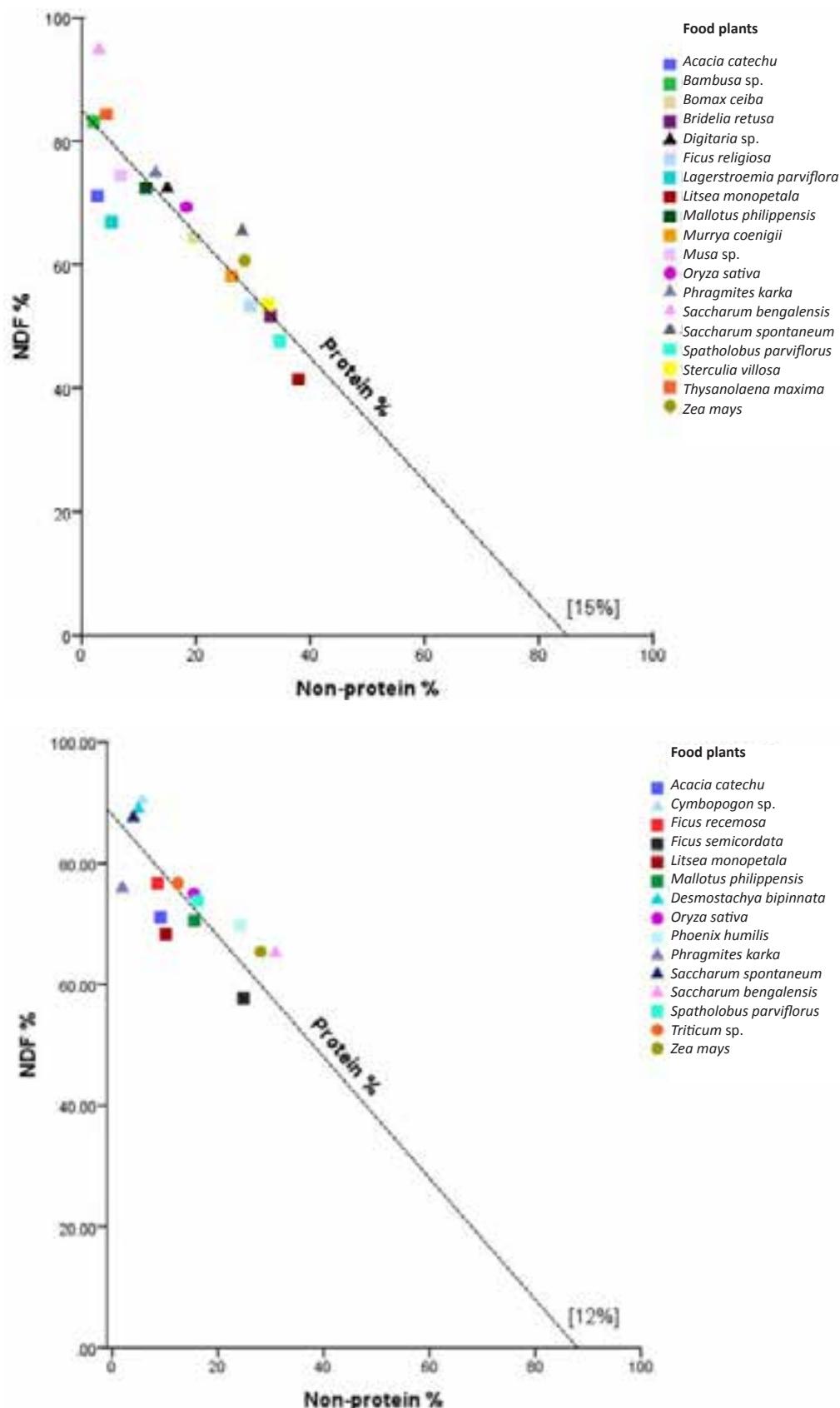


Figure 1. RMT showing the balance of crude protein, non-protein macronutrients (NSC+ crude fat), and NDF in plants consumed by elephants in both the seasons: A—wet season | B—dry season. Browse species are shown as squares, grasses as triangles, and agriculture crops as circles.

Table 1. Nutritional composition (percent dry matter) of major plants consumed by Asian elephants, including crude protein (CP), ether extract (EE), ash, neutral detergent fibre (NDF), acid detergent lignin (ADL), and non-structural carbohydrates (NSC).

Plant species	CP	(EE)	Ash	NDF	ADF	ADL	NSC
Wet season							
<i>Lagerstroemia parviflora</i>	25.97	1.20	5.82	62.32	52.14	24.32	4.69
<i>Ficus religiosa</i>	13.99	1.40	16.90	43.86	35.79	12.98	23.85
<i>Thysanolaena maxima</i>	10.20	0.87	8.67	76.35	57.30	12.90	3.91
<i>Musa</i> sp.	15.89	6.25	12.62	63.65	59.89	11.58	1.59
<i>Saccharum bengalensis</i>	2.07	0.80	5.73	88.62	62.22	32.58	2.77
<i>Saccharum spontaneum</i>	5.76	0.80	11.00	57.67	49.15	39.30	24.76
<i>Sterculia villosa</i>	12.80	1.00	6.40	49.60	46.50	19.50	31.20
<i>Bomax ceiba</i>	14.04	0.86	11.10	56.57	41.36	19.09	18.29
<i>Acacia catechu</i>	24.15	1.30	6.35	65.94	43.65	12.40	2.26
<i>Digitaria ciliaris</i>	10.80	0.86	14.04	61.55	43.13	9.07	12.75
<i>Paspalum scrobiculatum L</i>	5.00	3.00	7.18	7.77	2.50	2.05	4.71
<i>Murrya coenigii</i>	13.70	0.90	6.60	54.32	41.22	14.25	24.48
<i>Bridelia retusa</i>	13.75	1.20	8.36	46.95	41.04	16.74	29.74
<i>Mallotus philippensis</i>	14.35	2.30	11.25	63.54	53.98	25.62	8.56
<i>Spatholobus parviflorus</i>	14.69	2.85	11.70	41.99	35.02	11.18	28.77
<i>Phragmites karka</i>	6.60	0.60	10.36	80.99	64.97	40.88	1.45
<i>Saccharum spontaneum</i>	6.10	0.65	6.32	82.45	66.02	13.20	4.48
<i>Bambusa</i> sp.	12.50	2.00	13.80	70.91	51.85	17.52	0.79
<i>Litsea monopetala</i>	17.44	3.22	10.22	37.27	28.22	13.12	31.85
<i>Saccharum bengalensis</i>	3.56	1.87	7.31	60.84	1.31	6.62	27.42
<i>Desmostachya bipinnata</i>	12.17	1.78	9.59	55.95	43.86	17.75	14.42
Paddy	11.25	0.60	8.20	63.25	52.35	24.30	16.70
Maize	9.69	0.90	10.00	54.00	42.00	34.00	25.41
Dry season							
<i>Spatholobus parviflorus</i> (bark)	6.50	0.34	15.03	54.73	48.19	21.43	23.40
<i>Saccharum spontaneum</i>	7.56	1.25	9.92	77.97	54.13	11.95	3.30
<i>Saccharum bengalensis</i>	7.94	1.0	8.88	77.46	50.47	7.1	4.72
<i>Acacia catechu</i>	18.50	1.40	5.30	66.65	59.89	11.58	8.15
<i>Cymbopogon</i> sp.	3.55	0.50	8.36	82.45	81.48	12.92	5.14
<i>Spatholobus parviflorus</i>	8.70	0.34	12.03	64.73	47.11	21.46	14.20
<i>Mallotus philippensis</i>	12.35	3.78	10.40	62.50	51.78	22.72	10.97
<i>Ficus semicordata</i>	15.56	0.73	10.99	51.35	47.16	19.90	21.37
<i>Ficus racemosa</i>	12.61	1.20	13.53	65.54	49.97	29.08	7.12
<i>Phoenix humilis</i>	6.00	1.50	0.96	64.23	53.12	19.20	27.31
<i>Phragmites karka</i>	20.56	1.31	6.98	70.68	34.79	7.48	0.47
<i>Litsea monopetala</i>	20	2.56	6.56	63.10	49.34	27.85	8.82
Paddy	8.53	0.7	10	67	*	*	13.77
Maize	5.76	0.80	11.00	57.67	49.15	39.30	24.76
Wheat	9.75	0.6	9.5	69	*	*	11.15
Unidentified	10.66	1.26	9.39	65.73	51.89	17.81	12.95

* Indicates analysis was not done.

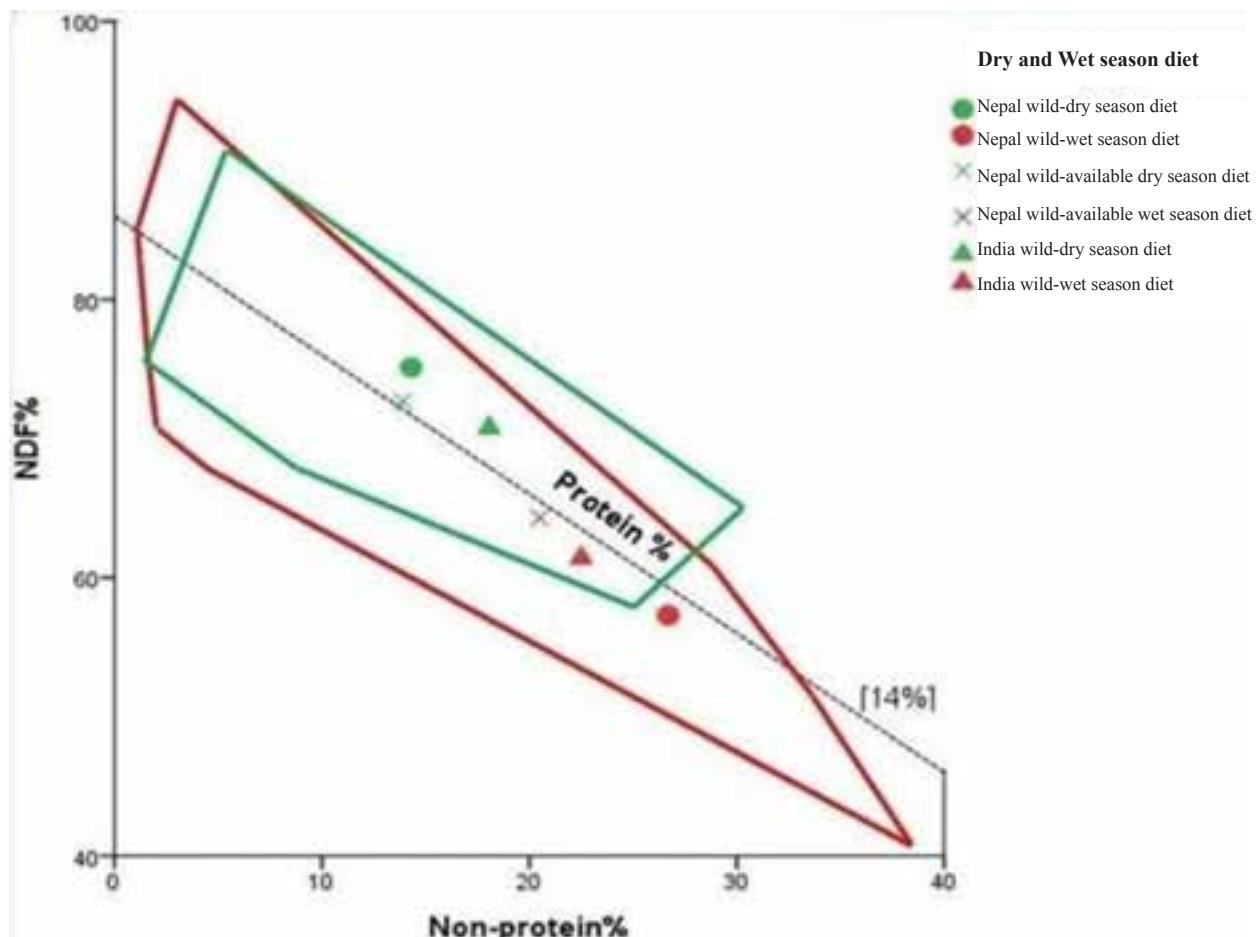


Figure 2. An enlarged view estimated diet composition of combined food in Right-angled mixture triangles (RMT; Raubenheimer 2011). Solid green circle (Dry season), and solid red circle, (wet season) diet weighed by utilisation percentage (Koirala et al. 2016). The crops and the leaves of all plants combined weighed by the seasonal availability in the environment (solid cross symbols), wet season (Red symbol), and dry season (Green symbol). The red and green solid triangles represent the wet and dry season diet of Asian Elephants (India population) respectively. Crude protein is represented on the implicit axis which varies inversely with distance from the origin. For reference, the dashed grey line indicates 14% protein content. The estimated seasonal nutrient space provided by food plants is shown by green polygon dry season and red polygon wet season around the food points.

be related to the crop raiding behaviour of elephants (Sukumar & Gadgil 1988; Sukumar 1989, 1991, 2006).

Our previous study has found that there was a negative relationship between utilisation and availability. As such there could be a reasonable selection of foods. The present study attempted to validate our hypothesis that the elephants are selectively feeding with a null hypothesis of feeding proportional to availability through the pattern of use seen in some of the highly preferred food plants like *Mallotus philippensis*, *Bambusa* sp., *Bombax ceiba*, *Spatholobus perviflorus*, and *Thysanolaena maxima*. The difference shown in the availability and utilisation in dry and wet season diet showed that there is selective mode of feeding. The availability of plant foods and their utilisation determines the preference. The preference based on availability

and usage may be primary information in relation to conservation of probable food plants in the habitat. However for the long term population sustainability of elephants, utilisation information based on nutritional content of plants is vital for the conservation and management of habitat for elephants. Further, the geometric analysis of food plants has revealed that besides the relationship between utilisation and macro nutrient content, the balance of nutrients of different diets plays a vital role in food selection. The ratio focused selection was located by this study as the diagonal clustering of expected dry and wet seasonal diet points, together with similar seasonal diet points of Indian wild elephants. The significant relationship of utilisation and macronutrient balance of highly preferred browse, grasses, and crops at least in these periods of the year

have revealed that crop raiding can be seen as part of protein makeup of elephants due to lower protein in grasses and some browse. In nutrient space, crops have been found to be occupying a place in between browse and grass. Thus, the elephants move away from their natural habitat to seek an alternative source of fodder with a high nutritive value such as crops.

REFERENCES

Anguita, M., N. Canibe, J.F. Pérez & B.B. Jensen (2006). Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: Use of cannulated pigs and in vitro fermentation. *Journal of Animal Science* 84(10): 2766–2778. <https://doi.org/10.2527/jas.2005-212>

AOAC (2012). Official Method of Analysis: Association of Analytical Chemists. 19th Edition, Washington DC, 121–130pp.

Coogan, S.C., D. Raubenheimer, G.B. Stenhouse & S.E. Nielsen (2014). Macronutrient optimization and seasonal diet mixing in a large omnivore, the grizzly bear: a geometric analysis. *PLOS one* 9(8): e105719. <https://doi.org/10.1371/journal.pone.0097968>

Das, B.J., B.N. Saikia, K.K. Baruah, A. Bora & M. Bora (2014). Nutritional evaluation of fodder, its preference and crop raiding by wild Asian Elephant (*Elephas maximus*) in Sonitpur District of Assam, India. *Veterinary World* 7(12): 1082–1089.

Desai, A.A. (1991). The home range of elephants and its implications for management of the Mudumalai Wildlife Sanctuary, Tamilnadu. *Journal of Bombay Natural History Society* 88: 145–156.

Holechek, J. L. & B. Gross (1982). Training needed for quantifying simulated diets from fragmented range plants. *Journal of Range Management* 35(5): 644–647. <https://doi.org/10.2307/3898655>

Koirala, R.K., W. Ji, A. Aryal, M. Pathak & D. Raubenheimer (2016). Feeding preferences of the Asian Elephant (*Elephas maximus*) in Nepal. *BMC Ecology* 16: 54. <https://doi.org/10.1186/s12898-016-0105-9>

Koirala, R.K. (2018). Nutritional Ecology of Asian Elephant (*Elephas maximus*) and Human Wildlife Interactions, PhD thesis, Massey University, Auckland New Zealand.

Koirala, R.K., W. Ji, A. Aryal, J. Rothman & D. Raubenheimer (2015). Dispersal and ranging patterns of the Asian Elephant (*Elephas maximus*) in relation to their interactions with humans in Nepal. *Ethology Ecology & Evolution* 28(2): 221–231. <https://doi.org/10.1080/03949370.2015.1066872>

Nyhus, P.J. & R. Tilson (2000). Crop-raiding elephants and conservation implications at Way Kambas National Park, Sumatra, Indonesia. *Oryx* 34(4): 262–274. <https://doi.org/10.1046/j.1365-3008.2000.00132.x>

Raubenheimer, D., S.J. Simpson & D. Mayntz (2009). Nutrition, ecology and nutritional ecology: toward an integrated framework. *Functional Ecology* 23(1): 4–16. <https://doi.org/10.1111/j.1365-2435.2009.01522.x>

Raubenheimer, D. (2011). Toward a quantitative nutritional ecology: the right-350 angled mixture triangle. *Ecological Monographs* 81: 407–427. <https://doi.org/10.1890/10-1707.1>

Raubenheimer, D., S.J. Simpson & A.H. Tait (2012). Match and mismatch: conservation physiology, nutritional ecology and the timescale of biological adaptation. *Philosophical Transactions of the Royal Society B* 367: 1628–1646. <https://doi.org/10.1098/rstb.2012.0007>

Rothman, J. M., C.A. Chapman & P.J. Van Soest (2012). Methods in primate nutritional ecology: a user's guide. *International Journal of Primatology* 33: 542–566. <https://doi.org/10.1007/s10764-011-9568-x>

Santiapillai, C. & P. Jackson (1990). The Asian Elephant: an action plan for its conservation. IUCN/SSC Action Plans for the Conservation of Biological Diversity, viii + 79 pp.

Simpson, S. J. & D. Raubenheimer (2012). The nature of nutrition: a unifying framework from animal adaptation to human obesity. Princeton University Press, 256 pp. <https://doi.org/10.1515/9781400842803>

Sukumar, R. & M. Gadgil (1988). Male-female differences in foraging on crops by Asian elephants. *Animal Behaviour* 36(4): 1233–1235. [https://doi.org/10.1016/S0003-3472\(88\)80084-8](https://doi.org/10.1016/S0003-3472(88)80084-8)

Sukumar, R. (1989). Ecology of the Asian Elephant in southern India. I. Movement and habitat utilization patterns. *Journal of Tropical Ecology* 5(01): 1–18. <https://doi.org/10.1017/s0266467400003175>

Sukumar, R. (1991). The management of large mammals in relation to male strategies and conflict with people. *Biological Conservation* 55(1): 93–102. [https://doi.org/10.1016/0006-3207\(91\)90007-v](https://doi.org/10.1016/0006-3207(91)90007-v)

Sukumar, R. (2006). A brief review of the status, distribution and biology of wild Asian elephants, (*Elephas maximus*). *International Zoo Yearbook* 40: 1–8. <https://doi.org/10.1111/j.1748-1090.2006.00001.x>

Avian diversity in wetlands of southwestern Kerala of India during COVID

Vijayakumari Sudhakaran Bindu¹ & S. Sajitha²

^{1,2} Post Graduate Department of Zoology, Milad E Sherief Memorial College, Kayamkulam, Alapuzha, Kerala 690502, India.

¹drvbsbindu@gmail.com (corresponding author), ²drsajiv@yahoo.com

Abstract: The COVID-19 pandemic, known as the COVIDian era, has impacted ecosystems worldwide, including wetlands, which are essential habitats for avian biodiversity. The study on bird diversity in the wetlands of Kollam District, southwestern part of Kerala, employed a combination of field surveys and observational methods to assess the avian communities across various habitats. The survey areas were selected based on their significance as wetland ecosystems and included Polachira, Pozhikkara, and associated wetlands within Kollam District. The study documented 98 bird species across 41 families and 15 orders. Passeriformes was the most diverse order with 37 species, followed by Pelecaniformes and Charadriiformes with 13 species each. Apodiformes, Podicipediformes, and Psittaciformes each had a single recorded species. Ardeidae was the most abundant family with 10 species, followed by Rallidae (six species), Sturnidae, and Scolopacidae (five species each). Among the bird species recorded, 16 were migratory, 76 were resident, and six were local migrants. The study assessed bird diversity across Polachira, Pozhikkara, and associated wetlands using various indices, including Simpson, Simpson's λ , Simpson's D, Margalef, Berger-Parker, Shannon-Wiener, and Pielou. Shannon-Wiener diversity index at Polachira is 4.46, Pozhikkara 4.47 and associated wetlands is 4.45, which suggests that the overall avian diversity is comparable among these wetlands. Pozhikkara appears to have slightly higher species richness (Margalef's index 14.64) and slightly lower dominance (Berger-Parker index 35.90) compared to the other two sites. This study elucidates the effects of pandemic-related disruptions on bird populations, highlighting the resilience and vulnerabilities of avifauna in wetland ecosystems.

Keywords: Avian diversity, Berger-Parker, biodiversity indices, COVIDian era, Margalef, Pielou, Polachira, Pozhikkara, Shannon-Wiener.

Editor: H. Byju, Coimbatore, Tamil Nadu, India.

Date of publication: 26 February 2025 (online & print)

Citation: Bindu, V.S. & S. Sajitha (2025). Avian diversity in wetlands of southwestern Kerala of India during COVID. *Journal of Threatened Taxa* 17(2): 26494-26503. <https://doi.org/10.11609/jott.9379.17.2.26494-26503>

Copyright: © Bindu & Sajitha 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: This study received no external funding.

Competing interests: The authors declare no competing interests.

Author details: DR. VIJAYAKUMARI SUDHAKARAN BINDU, of the Department of Zoology, MSM College, Kayamkulam (University of Kerala), is a leading expert on the avian, butterfly, and fish diversity of the region, where she is actively engaged in research. Her primary research interests include biodiversity, chemical ecology, and environmental DNA, and she has made significant contributions to field ecology and ecotoxicology. Ms. S. SAJITHA, an independent researcher and MSc Zoology graduate from the same department, is an avid bird watcher in the Kollam district.

Author contributions: The authors contributed equally in the preparation of the manuscript.

Acknowledgements: We gratefully acknowledge the assistance of those who helped with field data collection, as well as the Kollam district authorities for their support in facilitating this study.

INTRODUCTION

The onset of the COVID-19 pandemic in early 2020 introduced unprecedented challenges to both human society and natural ecosystems, potentially influencing bird populations and their habitats in complex ways (Warrington et al. 2022).

While wetlands in India are recognized for their ecological significance, there is a notable gap in understanding the dynamics of wetland bird populations, particularly in the context of the COVID-19 pandemic, termed the COVIDian era (Madhok & Gulati 2022). The impact of the pandemic on wetland ecosystems and avian biodiversity remains understudied, despite its potential to induce both direct and indirect effects on bird populations. Investigating the diversity of wetland birds in the Kollam District during the COVIDian era can elucidate how anthropogenic disturbances and environmental changes interact to shape avian communities in these critical habitats.

The COVID-19 pandemic has influenced the diversity and distribution of wetland birds in Kollam District, with potential alterations in species composition and abundance. The reduction in human disturbances, such as tourism and industrial activities, during lockdown periods, may have provided temporary respite for certain bird species, leading to shifts in their population dynamics (Cooke et al. 2021; Friedrich et al. 2021). Conversely, changes in land use patterns and habitat degradation may have posed challenges to wetland bird conservation efforts, affecting the overall resilience of avian communities. This study is to enhance the understanding of the dynamics of wetland bird populations in the context of the COVID-19 pandemic, contributing valuable insights to conservation and management efforts in wetlands and beyond. This study aimed to investigate the impact of the COVID-19 pandemic on avian diversity within the diverse wetland ecosystems of Kollam District, southwestern Kerala, India. The study sites, Polachira, Pozhikkara, and associated wetlands within the district, were specifically chosen to represent a range of wetland types. This diversity allowed for a comprehensive assessment of avian responses to potential pandemic-related disruptions across different wetland ecosystems.

MATERIAL AND METHODS

Study area

The study area encompassed Kollam District,

located along the southwestern coast of Kerala, India, bordering the Arabian Sea. Within the district, this study specifically focused on the avian diversity of Polachira, Pozhikkara, and associated wetland ecosystems. The location map of the study area is depicted in Figure 1.

Polachira

Polachira (8.83 °N, 76.70 °E) holds a diverse range of aquatic habitats, including marshes and shallow water bodies spanning over 600 ha. Polachira is primarily composed of paddy fields, characterized as 'Moonupoovu Nilam,' allowing farmers to cultivate rice thrice annually. Soil is highly fertile promising substantial yield. A significant challenge faced by farmers is the perpetual waterlogging of the fields. Polachira's rich biodiversity, particularly the abundance of fish and mussels, attracts numerous avian fauna including migratory birds. Its proximity to urban centres makes it an accessible location for studying wetland bird diversity.

Pozhikkara

Pozhikkara (8.81 °N, 76.65 °E) is a small town on the western border of the Paravur in Kollam District, flanked by the Arabian Sea on one side and the backwaters on the other side. Pozhikkara is a heritage site in Kerala blessed with estuaries, backwaters and a sublime beach. The ecology of this region is unique. It has flora and fauna that adapt to both saltwater and freshwater. This coastal wetland presents a unique opportunity to examine the avian fauna associated with estuarine and coastal habitats, offering insights into the ecological significance of these transitional ecosystems.

Associated wetlands

In addition to Polachira and Pozhikkara, the study also includes associated wetlands (8.82 °N, 76.67 °E) in the form of paddy fields and marshy areas between Polachira and Pozhikkara. These diverse wetlands provide habitat for a variety of bird species, contributing to the overall richness of avian biodiversity in the region.

Methods

The study on bird diversity in the wetlands employed a combination of field surveys and observational methods to assess the avian communities. Field observations were conducted from May 2020 to April 2021. Bird species richness, abundance, and distribution patterns were documented using standardized bird-watching protocols and ecological surveys. Field surveys were conducted monthly over 12 months to investigate bird

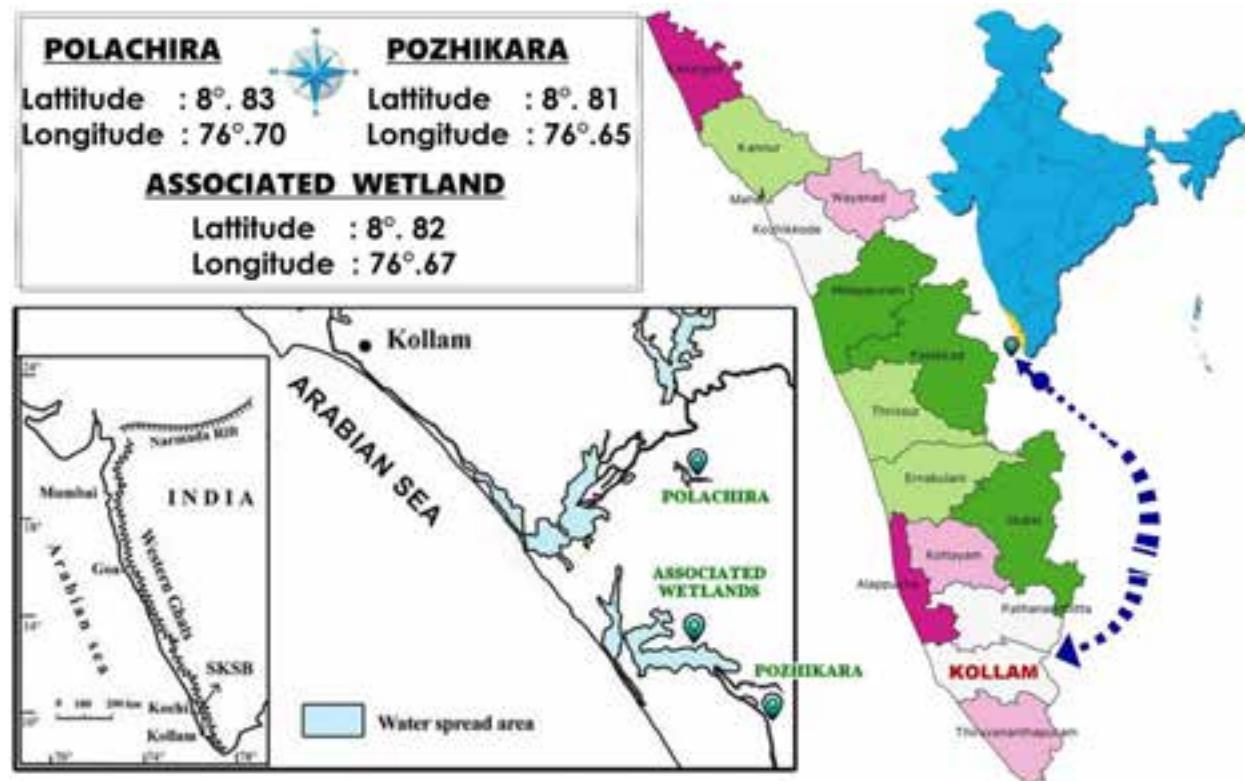


Figure 1. *Sphaeroma taborans* sp. nov. (ZSI/WGRC/1.R.-INV.28482) holotype: A—dorsal view | B—antennule | C—antenna | D—epistome | E—right mandible | F—maxilla.

diversity within each wetland. Surveys were conducted during morning (0600–1000 h) and evening (1600–1900 h) (Byju et al. 2023) to capture diurnal and nocturnal avian activity, with particular attention being paid to dawn and dusk periods when bird activity is typically high. Field researchers and trained ornithologists conducted systematic surveys of wetland habitats, utilizing binoculars, telescopes, and field notebooks to record bird sightings. Transect surveys along pre-established routes ensured comprehensive coverage of the diverse wetland habitats and microenvironments within the study area (Buckland et al. 2008). Bird surveys were conducted along established transects within the wetlands. Three-line transects were established within each of the three wetlands. Each transect was 500 × 100 m². Line transect methodology was employed, with observers walking along predetermined paths and recording all bird species detected within a specified distance of 50 m on either side. Along each transect, three sampling points were designated at 150-m intervals. At each sampling point, a point count method was employed. Observers remained stationary for a 30-min period, recording all bird species seen or heard (Nadeau et al. 2008) within a 50-m radius. A 5-min

settling period was allowed at each point to minimize disturbance to bird activity.

Avian diversity indices at different sites were calculated using the Shannon- Wiener index (Shannon & Weaver 1949), Berger-Parker index (Berger & Parker 1970), Pielou index (Pielou 1969) Margalef index and Simpson index D (Margalef 1958).

I. Shannon- Wiener Diversity Index:

The Shannon Diversity Index is represented as H' , where p_i denotes the relative abundance of each group of organisms.

$$H' = -\sum p_i \ln(p_i)$$

II. Berger-Parker Index:

The Berger-Parker Index, denoted as d , is calculated as N_{\max} divided by N , where N_{\max} represents the number of individuals in the most abundant group, and N represents the total number of individuals.

III. Margalef Index:

The Margalef Index, denoted as d_{Ma} , is computed as $(S-1)$ divided by the natural logarithm of N , where S stands for the species number and N indicates the total

number of individuals.

IV. Simpson Index:

The Simpson Index, represented as λ , is calculated as the sum of the squared proportions of individuals, where p_i represents the proportion of individuals belonging to each species.

$$\lambda = \sum p_i^2$$

V. Gini-Simpson index:

The Gini-Simpson Index, labeled as D , is derived as 1 minus the Simpson Index (λ), where λ denotes the Simpson Index.

VI. Pielou index:

The Pielou Index, represented as E' , is calculated as the sum of p_i multiplied by the logarithm of p_i , divided by the logarithm of the total number of species (R), where p_i represents the relative abundance of each species.

RESULTS

In the present study, 98 species of birds belonging to 41 families and 15 orders were recorded. Order Passeriformes dominated with 37 species followed by Pelecaniformes and Charadriiformes with 13 species each. The orders Apodiformes, Podicipediformes, and Psittaciformes exhibited the lowest species richness, each represented by a single species. Family Ardeidae

dominated with 10 species followed by Rallidae with six species and Sturnidae and Scolopacidae with five species each. Among 98 recorded avifauna, 16 were migratory, 76 were residents and six were local migrants. Order Charadriiformes dominated with eight migratory species followed by Passeriformes with four species, Coraciiformes with two species. The lowest number of migratory bird species were reported from orders Ciconiiformes and Palecaniformes with one species each. Order Passeriformes dominate with 33 resident bird species followed by Pelecaniformes, Gruiformes, Coraciiformes, Piciformes, Ciconiiformes, Anseriformes, Cuculiformes, Accipitriformes, Podicipediformes, Psittaciformes, Suliformes, and Apodiformes. Six species of local migrants were observed of which order Pelecaniformes dominated with four bird species. According to the IUCN Red List (2024), the Asian Woolly-necked Stork was the only 'Near Threatened' species, while all other bird species observed in the study were categorized as 'Least Concern'. Residential status, IUCN status, order, and family-wise distribution of bird species are depicted in Table 1.

Biodiversity indices

The diversity indices such as Simpson index, Simpson index — λ , Simpson index — D , Margalef index, Berger-Parker index, Shannon- Wiener index and Pielou index in the Polachira, Pozhikka associated wetlands are shown in Table 2.

The Berger-Parker index, which measures the dominance of the most abundant species, is consistently

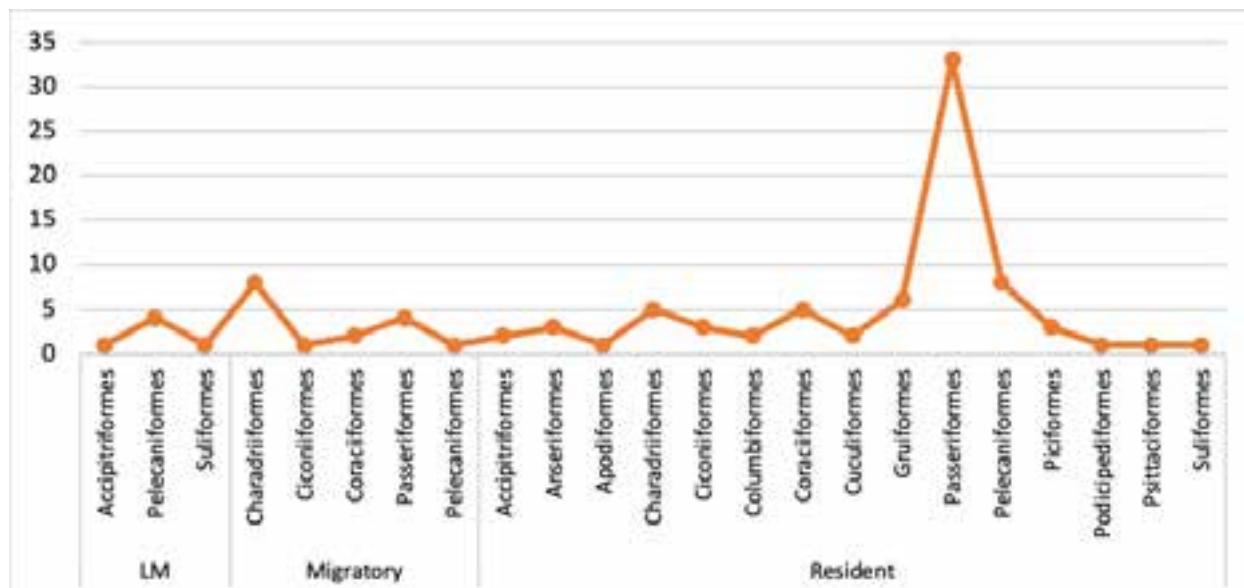


Figure 2. Residential status: order-wise distribution of birds.

Table 1. Residential status, IUCN status, order, and family-wise distribution of bird species.

	Common name	Scientific name	Order	Family	Residential status	IUCN Red List status
1	Brahminy Kite	<i>Haliastur indus</i>	Accipitriformes	Accipitridae	LM	LC
2	Black Kite	<i>Milvus migrans</i>	Accipitriformes	Accipitridae	R	LC
3	Western Marsh Harrier	<i>Circus aeruginosus</i>	Accipitriformes	Accipitridae	R	LC
4	Lesser Whistling-Duck	<i>Dendrocygna javanica</i>	Anseriformes	Anatidae	R	LC
5	Indian Spot-billed Duck	<i>Anas poecilorhyncha</i>	Anseriformes	Anatidae	R	LC
6	Asian Palm Swift	<i>Cypsiurus balasiensis</i>	Apodiformes	Apodidae	R	LC
7	Indian Swiftlet	<i>Aerodramus unicolor</i>	Apodiformes	Apodidae	R	LC
8	Red Wattled Lapwing	<i>Vanellus indicus</i>	Charadriiformes	Charadriidae	R	LC
9	Kentish Plover	<i>Charadrius alexandrinus</i>	Charadriiformes	Charadriidae	M	LC
10	Tibetan Sand-Plover	<i>Charadrius mongolus</i>	Charadriiformes	Charadriidae	M	LC
11	Pacific Golden-Plover	<i>Pluvialis fulva</i>	Charadriiformes	Charadriidae	M	LC
12	Bronze-winged Jacana	<i>Metopidius indicus</i>	Charadriiformes	Jacanidae	R	LC
13	Pheasant-tailed Jacana	<i>Hydrophasianus chirurgus</i>	Charadriiformes	Jacanidae	R	LC
14	Brown-headed Gull	<i>Chroicocephalus brunnicephalus</i>	Charadriiformes	Laridae	R	LC
15	Black-winged Stilt	<i>Himantopus himantopus</i>	Charadriiformes	Recurvirostridae	R	LC
16	Green Sandpiper	<i>Tringa ochropus</i>	Charadriiformes	Scolopacidae	M	LC
17	Common Sandpiper	<i>Actitis hypoleucos</i>	Charadriiformes	Scolopacidae	M	LC
18	Common Greenshank	<i>Tringa nebularia</i>	Charadriiformes	Scolopacidae	M	LC
19	Temminck's Stint	<i>Calidris temminckii</i>	Charadriiformes	Scolopacidae	M	LC
20	Common Snipe	<i>Gallinago gallinago</i>	Charadriiformes	Scolopacidae	M	LC
21	Painted Stork	<i>Mycteria leucocephala</i>	Ciconiiformes	Ciconiidae	R	LC
22	Asian Woolly-necked Stork	<i>Ciconia episcopus</i>	Ciconiiformes	Ciconiidae	R	NT
23	White Stork	<i>Ciconia ciconia</i>	Ciconiiformes	Ciconiidae	M	LC
24	Asian Openbill	<i>Anastomus oscitans</i>	Ciconiiformes	Ciconiidae	R	LC
25	Yellow-footed Green-Pigeon	<i>Treron phoenicopterus</i>	Columbiformes	Columbidae	R	LC
26	Spotted Dove	<i>Spilopelia chinensis</i>	Columbiformes	Columbidae	R	LC
27	Common Kingfisher	<i>Alcedo atthis</i>	Coraciiformes	Alcedinidae	R	LC
28	Pied Kingfisher	<i>Ceryle rudis</i>	Coraciiformes	Alcedinidae	R	LC
29	Indian Roller	<i>Coracias benghalensis</i>	Coraciiformes	Coraciidae	R	LC
30	White-throated Kingfisher	<i>Halcyon smyrnensis</i>	Coraciiformes	Halcyonidae	R	LC
31	Chestnut-headed Bee-eater	<i>Merops leschenaultia</i>	Coraciiformes	Meropidae	R	LC
32	Blue-tailed Bee-eater	<i>Merops philippinus</i>	Coraciiformes	Meropidae	M	LC
33	Asian Green Bee-eater	<i>Merops orientalis</i>	Coraciiformes	Meropidae	M	LC
34	Greater Coucal	<i>Centropus sinensis</i>	Cuculiformes	Cuculidae	R	LC
35	Asian Koel	<i>Eudynamys scolopaceus</i>	Cuculiformes	Cuculidae	R	LC
36	Common Moorhen	<i>Gallinula chloropus</i>	Gruiformes	Rallidae	R	LC
37	White-breasted Waterhen	<i>Amaurornis phoenicurus</i>	Gruiformes	Rallidae	R	LC
38	Western Swamphen	<i>Porphyrio porphyrio</i>	Gruiformes	Rallidae	R	LC
39	Grey-headed Swamphen	<i>Porphyrio poliocephalus</i>	Gruiformes	Rallidae	R	LC
40	Eurasian Coot	<i>Fulica atra</i>	Gruiformes	Rallidae	R	LC
41	Watercock	<i>Gallicrex cinerea</i>	Gruiformes	Rallidae	R	LC
42	Blyth's Reed Warbler	<i>Acrocephalus dumetorum</i>	Passeriformes	Acrocephalidae	M	LC
43	Clamorous Reed Warbler	<i>Acrocephalus stentoreus</i>	Passeriformes	Acrocephalidae	R	LC

	Common name	Scientific name	Order	Family	Residential status	IUCN Red List status
44	Ashy Woodswallow	<i>Artamus fuscus</i>	Passeriformes	Artamidae	R	LC
45	Common Tailorbird	<i>Orthotomus sutorius</i>	Passeriformes	Cisticolidae	R	LC
46	Zitting Cisticola	<i>Cisticola juncidis</i>	Passeriformes	Cisticolidae	R	LC
47	Plain Prinia	<i>Prinia inornata</i>	Passeriformes	Cisticolidae	R	LC
48	Ashy Prinia	<i>Prinia socialis</i>	Passeriformes	Cisticolidae	R	LC
49	House Crow	<i>Corvus splendens</i>	Passeriformes	Corvidae	R	LC
50	Indian Jungle Crow	<i>Corvus culminatus</i>	Passeriformes	Corvidae	R	LC
51	Rufous Treepie	<i>Dendrocitta vagabunda</i>	Passeriformes	Corvidae	R	LC
52	Large-billed Crow	<i>Corvus macrorhynchos</i>	Passeriformes	Corvidae	R	LC
53	Pale-billed Flowerpecker	<i>Dicaeum erythrorhynchos</i>	Passeriformes	Dicaeidae	R	LC
54	Black Drongo	<i>Dicrurus macrocercus</i>	Passeriformes	Dicruridae	R	LC
55	Black/Ashy Drongo	<i>Dicrurus adsimilis</i>	Passeriformes	Dicruridae	R	LC
56	White-rumped Munia	<i>Lonchura striata</i>	Passeriformes	Estrildidae	R	LC
57	Tricolored Munia	<i>Lonchura malacca</i>	Passeriformes	Estrildidae	R	LC
58	Scaly-breasted Munia	<i>Lonchura punctulata</i>	Passeriformes	Estrildidae	R	LC
59	Barn Swallow	<i>Hirundo rustica</i>	Passeriformes	Hirundinidae	LM	LC
60	Red-rumped Swallow	<i>Cecropis daurica</i>	Passeriformes	Hirundinidae	M	LC
61	Brown Shrike	<i>Lanius cristatus</i>	Passeriformes	Laniidae	R	LC
62	Jungle Babbler	<i>Argya striata</i>	Passeriformes	Leiothrichidae	R	LC
63	Yellow-billed Babbler	<i>Argya affinis</i>	Passeriformes	Leiothrichidae	R	LC
64	Western Yellow Wagtail	<i>Motacilla flava</i>	Passeriformes	Motacillidae	M	LC
65	Paddyfield Pipit	<i>Anthus rufulus</i>	Passeriformes	Motacillidae	R	LC
66	Oriental Magpie-robin	<i>Copsychus saularis</i>	Passeriformes	Muscicapidae	R	LC
67	Purple-rumped Sunbird	<i>Leptocoma zeylonica</i>	Passeriformes	Nectariniidae	R	LC
68	Black hooded Oriole	<i>Oriolus xanthornus</i>	Passeriformes	Oriolidae	R	LC
69	Indian Golden Oriole	<i>Oriolus kundoo</i>	Passeriformes	Oriolidae	R	LC
70	Green Warbler	<i>Phylloscopus nitidus</i>	Passeriformes	Phylloscopidae	M	LC
71	Baya Weaver	<i>Ploceus philippinus</i>	Passeriformes	Ploceidae	R	LC
72	Red-whiskered Bulbul	<i>Pycnonotus jocosus</i>	Passeriformes	Pycnonotidae	R	LC
73	Red-vented Bulbul	<i>Pycnonotus cafer</i>	Passeriformes	Pycnonotidae	R	LC
74	Common Myna	<i>Acridotheres tristis</i>	Passeriformes	Sturnidae	R	LC
75	Jungle Myna	<i>Acridotheres fuscus</i>	Passeriformes	Sturnidae	R	LC
76	Chestnut-tailed Starling	<i>Sturnia malabarica</i>	Passeriformes	Sturnidae	R	LC
77	Common/Jungle Myna	<i>Acridotheres tristis</i>	Passeriformes	Sturnidae	R	LC
78	Malabar Starling	<i>Sturnia blythii</i>	Passeriformes	Sturnidae	R	LC
79	Cattle Egret	<i>Bubulcus ibis</i>	Pelecaniformes	Ardeidae	LM	LC
80	Large Egret	<i>Ardea alba</i>	Pelecaniformes	Ardeidae	LM	LC
81	Little Egret	<i>Egretta garzetta</i>	Pelecaniformes	Ardeidae	R	LC
82	Median Egret	<i>Ardea intermedia</i>	Pelecaniformes	Ardeidae	R	LC
83	Purple Heron	<i>Ardea purpurea</i>	Pelecaniformes	Ardeidae	R	LC
84	Indian Pond Heron	<i>Ardeola grayii</i>	Pelecaniformes	Ardeidae	R	LC
85	Night Heron	<i>Nycticorax nycticorax</i>	Pelecaniformes	Ardeidae	LM	LC
86	Medium Egret	<i>Ardea intermedia</i>	Pelecaniformes	Ardeidae	R	LC
87	White Egret sp.	<i>Ardea alba modesta</i>	Pelecaniformes	Ardeidae	R	LC
88	Grey Heron	<i>Ardea cinerea</i>	Pelecaniformes	Ardeidae	R	LC

	Common name	Scientific name	Order	Family	Residential status	IUCN Red List status
89	Oriental Darter	<i>Anhinga melanogaster</i>	Pelecaniformes	Phalacrocoracidae	R	LC
90	Oriental White Ibis	<i>Threskiornis melanocephalus</i>	Pelecaniformes	Threskiornithidae	LM	LC
91	Glossy Ibis	<i>Plegadis falcinellus</i>	Pelecaniformes	Threskiornithidae	M	LC
92	White-cheeked Barbet	<i>Psilopogon viridis</i>	Piciformes	Megalaimidae	R	LC
93	Black-rumped Flameback Woodpecker	<i>Dinopium benghalense</i>	Piciformes	Picidae	R	LC
94	Common Flameback Woodpecker	<i>Dinopium javanense</i>	Piciformes	Picidae	R	
95	Little Grebe	<i>Tachybaptus ruficollis</i>	Podicipediformes	Podicipedidae	R	LC
96	Rose-ringed Parakeet	<i>Psittacula krameri</i>	Psittaciformes	Psittaculidae	R	LC
97	Little Cormorant	<i>Phalacrocorax niger</i>	Suliformes	Phalacrocoracidae	R	LC
98	Indian Cormorant	<i>Phalacrocorax fuscicollis</i>	Suliformes	Phalacrocoracidae	LM	LC

LM—Local Migrant | M—Migrant | R—Resident | LC—Least Concern | NT—Near Threatened.

high across Polachira, Pozhikkara, and associated wetlands. The Margalef index, which primarily reflects species richness, shows relatively high values across all sites. Simpson's index λ and Pielou's evenness index both indicate relatively high evenness within the avian communities. The Shannon-Wiener index, a comprehensive measure of diversity, shows very similar values across all three sites (4.46, 4.47, and 4.45). This suggests that the overall avian diversity is comparable among these wetlands.

DISCUSSION

Increases in human population facilitate urbanization globally which in turn leads to changes in the structure and ecology of landscape ultimately leading to biodiversity loss due to anthropogenic threats (McKinney 2006; Rocha & Fellowes 2018). Populations of birds, which are one of the most common wild fauna in the urban area, are facing threats and have been declining as a result of the rapid urbanization-expansion process (Bolwig et al. 2006; Strohbach 2009; Evans et al. 2011; Gatesire et al. 2014). In the present study, 98 species of birds belonging to 41 families and 15 orders from Pozhikkara, Polachira, and associated wetlands were recorded. Twenty-four species of birds in 11 families and nine orders were reported from wetlands in Kollam, mainly Kandachira and nearby paddy fields (Anoop et al. 2017). From large stretches of wetlands in the form of paddy fields, ponds and canals in Chadayamangalam and Nilamel in Kollam District 14 species of birds belonging to five families were identified (Lekshmy 2014). The Berger-Parker index, which measures the dominance, in the

present study suggests that a few species such as *Anas poecilorhyncha*, *Ardea intermedia*, *Fulica atra*, *Porphyrio poliocephalus*, *Dendrocygna javanica*, *Hirundo rustica*, *Egretta garzetta* dominate the avian communities in these wetlands. Simpson's index λ (0.01) and Pielou's evenness index (0.97) suggests that some species such as *Anas poecilorhyncha*, *Ardea intermedia* may be more abundant than *Vanellus indicus* and *Corvus culminatus*, the distribution of individuals among species is relatively equitable. The Margalef index indicates a considerable number of bird species present in each wetland. The Shannon-Wiener index (Polachira 4.46, Pozhikkara 4.47, and associated wetlands 4.45) suggests that the overall avian diversity is comparable among these wetlands of study. Species richness showed similar values among the three study sites, with minimum variations and associated wetland had slightly higher dominance (based on Berger-Parker index 37.20) compared to the other two sites. Overall, all three wetland sites exhibit relatively high species richness, moderate dominance, and high evenness in their avian communities. The similar values of the Shannon-Wiener index (4.45–4.47) across all sites suggest that the overall avian diversity is comparable among these three wetlands. Laseetha et al. (2023) reported 86 bird species in Polachira and associated wetlands. The study recorded a higher bird diversity of 98 species across Pozhikkara, Polachira, and associated wetlands. This apparent increase in species richness, particularly during a period of restricted human activity (lockdown), may suggest increased human encroachment on these natural habitats.

The COVID-19 pandemic brought about unexpected changes in humans such as social distancing, remote work, and lockdowns (Zellmer et al. 2020) which, throughout the world, led to a marked pollution

Table 2. Biodiversity indices.

Wetland	Berger-Parker index	Margalef index	Simpson index λ	Simpson index D	Shannon-Wiener index	Pielou index
Polachira	34.70	14.52	0.01	0.99	4.46	0.97
Pozhikkara	35.90	14.64	0.01	0.99	4.47	0.97
Associated Wetlands	37.20	14.67	0.01	0.99	4.45	0.97

reduction in the air (Venter et al. 2020) and noise (Lecocqm et al. 2020), which created an environment potentially benefiting bird communication, foraging, and breeding success and improved air quality had positive impacts on bird health and foraging opportunities. Noise pollution negatively affects bird abundance and distribution (McClure et al. 2013; Shannon et al. 2015), as it interferes with mating signals and defense mechanisms (Slabbeekoor 2013). Water bodies polluted with biological wastes, which in turn affect biological oxygen demand, can cause significant damage to the abundance of aquatic invertebrates, zooplankton and fish (Schirmel et al. 2016), and can also affect bird populations (Klemetsen & Knudsen 2013; Mallin et al. 2016). The analysis of water quality parameters such as suspended particulate matter (SPM) concentration in Asthamudi Lake in Kollam District using Landsat 8 OLI image shows that the concentration of SPM values in lockdown (mean SPM 8.01 mg/l) is lower than that of pre-lockdown (10.03 mg/l) and last five-year average (9.1 mg/l) (Aswathy et al. 2021). Noise pollution significantly impacts avian abundance and occupancy by disrupting critical acoustic communication pathways (Shannon et al. 2015). Elevated noise levels can mask crucial vocalizations, such as mating calls and alarm calls, hindering successful reproduction and increasing vulnerability to predation (Slabbeekoor 2013). Air quality is also attributed for increase in avifauna diversity. Lockdowns led to significant reductions in PM 2.5 and other pollutants in megacity of Delhi (Mahato et al. 2020) and 22 cities covering different regions of India (Sharma et al. 2020). Air Quality Index (AQI) temporal variability in Kollam demonstrated improved air quality during the lockdown period (median: 49, range: 30–105) compared with both the pre-lockdown (median: 89, range: 48–205) and post-lockdown (median: 75, range: 47–124) periods (Thomas et al. 2023). The exposure to particulate matter can negatively impact species diversity (Sanderfoot & Holloway 2017; Liang et al. 2020). The observed increase in bird diversity in this study may be partly attributed to the improved air quality conditions experienced during the lockdown period.

Decreased human activity due to lockdowns and

travel restrictions have led to reduced disturbance to bird habitats as restricted movement of humans helped the unrestricted movement of wild animals and birds during the pandemic period (Sahagun 2020). Diversity is an important ecological indicator for estimating the health and quality of ecosystems and birds play crucial roles in natural activities such as pest control, pollination and seed dispersal (Jaman et al. 1999). Anthropogenic activities such as poisoning, hunting, trapping, killing and destroying the habitat of birds compel birds to change their habitats due to scarcity of food and shelter (Rajia et al. 2015; Shome et al. 2020). A survey conducted by Lekshmy (2014) in the Nilamel and Chadayamangalam regions in Kollam and post COVID avian survey of Laseetha et al. (2023) in the Polachira Wetland reported a total of 14 and 86 bird species respectively. In the present study, conducted during the COVID-19 lockdown period, documented an extensive avian diversity in the Kollam region. This notable increase in bird diversity, observed during the time of reduced anthropogenic activity, suggests the relationship between human disturbance and local avifauna.

CONCLUSION

This study provides valuable insights into the avian diversity within the Polachira, Pozhikkara, and associated wetlands of Kollam District during the COVID-19 pandemic. The study reveals a consistent pattern of high species richness and moderate evenness across all study sites. The study suggests a moderate level of dominance by a few species, the overall avian diversity remains remarkably similar among these wetlands. These findings emphasize the importance of these wetland ecosystems in supporting diverse avian communities within Kollam District.

REFERENCES

Anoop, C., P.V. Bhanu, R. Devika, B.S. Thasni, V. Devipriya, S. Reshma & S. Fathima (2017). An investigation of the avian diversity in the wetlands of Kollam District. B.Sc Project Report. University of Kerala, 57 pp

Aswathy, T.S., A.L. Achu, S. Francis, G. Gopinath, S. Joseph, U. Surendran & P.S. Sunil (2021) Assessment of water quality in a tropical Ramsar Wetland of southern India in the wake of COVID-19, Remote Sensing Applications. *Society and Environment* 23: 100604. <https://doi.org/10.1016/j.rsase.2021.100604>

Berger, W.H. & F.L. Parker (1970). Diversity of planktonic Foraminifera in deep-sea sediments. *Science* 168(3937): 1345–1347. <https://doi.org/10.1126/science.168.3937.1345>

Bolwig, S., D. Pomeroy, H. Tushabe & D. Mushabe (2006). Crops, trees, and birds: biodiversity change under agricultural intensification in Uganda's farmed landscapes. *Geografisk Tidsskrift - Danish Journal of Geography* 106(2): 115–130. <https://doi.org/10.1080/00167223.2006.10649561>

Buckland, S.T., S.J. Marsden & R.E. Green (2008). Estimating bird abundance: making methods work. *Bird Conservation International* 18(S1): S91–S108. <https://doi.org/10.1017/S0959270908000294>

Byju, H., N. Raveendran, S. Ravichandran & R. Kishore (2023). An annotated checklist of the avifauna of Karangadu mangrove forest, Ramanathapuram, Tamil Nadu, with notes on the site's importance for waterbird conservation. *Journal of Threatened Taxa* 15(3): 22813–22822. <https://doi.org/10.11609/jott.8356.15.3.22813-22822>

Cooke, S.J., P. Soroye, J.L. Brooks, J. Clarke, A.L. Jeanson, A. Berberi & J.R. Bennett (2021). Ten considerations for conservation policy makers for the post-COVID-19 transition. *Environmental Reviews* 29(999): 1–8. <https://doi.org/10.1139/er-2021-0014>

Evans, K.L., D.E. Chamberlain, B.J. Hatchwell, R.D. Gregory & K.J. Gaston (2011). What makes an urban bird? *Global Change Biology* 17(1): 32–44. <https://doi.org/10.1111/j.1365-2486.2010.02247.x>

Friedrich, J., J. Zscheischler & H. Faust (2021). Social-ecological transformation and COVID-19: the need to revisit working-class environmentalism. *GAIA-Ecological Perspectives for Science and Society* 30(1): 18–22. <https://doi.org/10.14512/gaia.30.1.5>

Gatesire, T., D. Nsabimana, A. Nyiramana, J.L. Seburanga & M.O. Mirville (2014). Bird diversity and distribution in relation to urban landscape types in Northern Rwanda. *Scientific World Journal* 2014: 1–12. <https://doi.org/10.1155/2014/157824>

Jaman, M.F., S.U. Sarker & N.J. Sarker (1999). Food habits and feeding behavior of Black Drongo, *Dicrurus macrocercus albirictus* (Hodgson). *Bangladesh Journal of Zoology* 26(2): 57–66.

Klemetsen, A. & R. Knudsen (2013). Diversity and abundance of water birds in a subarctic lake during three decades. *Fauna Norvegica* 33: 21–27. <https://doi.org/10.5324/FN.V33I0.1584>

Laseetha, T.G., K.J. Mohan, S. Jisha & B. Hari (2023). Diversity of Charadriiform birds from a tropical wetland. *Ecology, Environment & Conservation* 29: S129–S137. <https://doi.org/10.53550/EEC.2023.v29i04s.022>

Lecocq, T., S.P. Hicks, K. van Noten, K. van Wijk, P. Koelemeijer, R.S.M. de Plaen, F. Massin, G. Hillers, R.E. Anthony, M.T. Apoloner & H. Xiao (2020). Global quieting of high-frequency seismic noise due to COVID-19 pandemic lockdown measures. *Science* 369(6509): 1338–1343. <https://doi.org/10.1126/science.abd2438>

Lekshmy, S. (2014). Biodiversity of wetland birds in Nilamel and Chadayamangalam, Kollam, Kerala. *Journal of Aquatic Biology and Fisheries* 2: 303–307.

Liang, Y., I. Rudik, E.Y. Zou, A. Johnston, A.D. Rodewald & C.L. Kling (2020). Conservation cobenefits from air pollution regulation: evidence from birds. *Proceedings. National Academy of Science* 117: 30900–30906. <https://doi.org/10.1073/pnas.2013568117>

Madhok, R. & S. Gulati (2022). Ruling the roost: avian species reclaim urban habitat during India's COVID-19 lockdown. *Biological Conservation* 271: 109597. <https://doi.org/10.1016/j.biocon.2022.109597>

Mahato, S., S. Pal & K.G. Ghosh (2020). Effect of lockdown amid COVID-19 pandemic on air quality of the megacity Delhi, India. *Science of the Total Environment* 730: 139086. <https://doi.org/10.1016/j.scitotenv.2020.139086>

Mallin, M., M. McIver, E. Wambach & A. Robuck (2016). Algal blooms, circulators, waterfowl, and eutrophic Greenfield Lake, North Carolina. *Lake and Reservoir Management* 32: 168–181. <https://doi.org/10.1080/10402381.2016.1146374>

Margalef, R. (1958). Information theory in ecology. *General Systematics* 3: 36–71.

McClure, C.J.W., H.E. Ware, J. Carlisle, G. Kaltenecker & J.R. Barber (2013). An experimental investigation into the effects of traffic noise on distributions of birds: avoiding the phantom road. *Proceedings of the Royal Society B* 280(1773): 1–9. <https://doi.org/10.1098/rspb.2013.2290>

McKinney, M.L. (2006). Urbanization as a major cause of biotic homogenization. *Biological Conservation* 127: 247–260. <https://doi.org/10.1016/j.biocon.2005.09.005>

Nadeau, C.P., C.J. Conway, B.S. Smith & T.E. Lewis (2008). Maximising detection probability of wetland-dependent birds during point-count surveys in northwestern Florida. *The Wilson Journal of Ornithology* 120(3): 513–519. <https://doi.org/10.1676/07-041.1>

Pielou, E.C. (1969). *An Introduction to Mathematical Ecology*. Wiley, New York, viii + 286 pp. <https://doi.org/10.1002/bimj.19710130308>

Rajia, S., M.M. Alam, G.W. Chowdhury, M. Akash & M.A. Islam (2015). Status and diversity of birds of Ramna Park, Dhaka, Bangladesh. *Bangladesh Journal of Zoology* 43(2): 291–301. <https://doi.org/10.3329/bjz.v43i2.27399>

Rocha, E.A. & M.D.E. Fellowes (2018). Does urbanization explain differences in interactions between an insect herbivore and its natural enemies and mutualists? *Urban Ecosystems* 21: 405–417. <https://doi.org/10.1007/s11252-017-0727-5>

Sahagun, L. (2020). Coyotes, falcons, deer, and other wildlife are reclaiming L.A. territory as humans stay at home. *Los Angeles Times*. Available at: <https://www.latimes.com/environment/story/2020-04-21/wildlife-thrives-amid-coronavirus-lockdown> Accessed on ?

Sanderfoot, O.V. & T. Holloway (2017). Air pollution impacts on avian species via inhalation exposure and associated outcomes. *Environmental Research Letters* 12: 083002. <https://doi.org/10.1088/1748-9326/aa8051>

Schirmel, J., M. Bundschuh, M.H. Entling, I. Kowarik & S. Buchholz (2016). Impacts of invasive plants on resident animals across ecosystems, taxa, and feeding types: a global assessment. *Global Change Biology* 22(2): 594–603. <https://doi.org/10.1111/gcb.13093>

Shannon, C.E. & W. Weaver (1949). *A Mathematical Model of Communication*. University of Illinois Press, Urbana. <https://doi.org/10.1002/j.1538-7305.1948.tb01338.x>

Shannon, G., M.F. McKenna, L.M. Angeloni, K.R. Crooks, K.M. Fristrup, E. Brown, K.A. Warner, M.D. Nelson, C. White, J. Briggs, S. McFarland & G. Wittemyer (2015). A synthesis of two decades of research documenting the effects of noise on wildlife. *Biological Reviews* 91: 982–1005. <https://doi.org/10.1111/BRV.12207>

Sharma, S., M. Zhang, J.A. Gao, H. Zhang & S.H. Kota (2020). Effect of restricted emissions during COVID-19 on air quality in India. *Science of the Total Environment* 728: 138878. <https://doi.org/10.1016/j.scitotenv.2020.138878>

Shome, A.R., M.M. Alam, M.F. Rabbe, M.M. Rahman & M.F. Jaman (2020). Diversity, status, and habitat usage of avifauna at Sadar Upazila, Magura, Bangladesh. *Bangladesh Journal of Zoology* 48(2): 441–456. <https://doi.org/10.3329/bjz.v48i2.52434>

Slabbekoor, H. (2013). Songs of the city: noise-dependent spectral plasticity in the acoustic phenotype of urban birds. *Animal Behaviour* 85: 1089–1099. <https://doi.org/10.1016/j.anbehav.2013.01.021>

Strohbach, M.W., D. Haase & N. Kabisch (2009). Birds and the city:

urban biodiversity, land use, and socioeconomics. *Ecology and Society* 14(2): 31.

Thomas, G., J. Thomas, R.S. Devika, A. Krishnan, V.M. Anju & J.N. Amrutha (2023). Impact of COVID-19 lockdown on ambient air quality in the southwest coastal urban regions of India. *Aerosol Science and Engineering* 7: 303–314. <https://doi.org/10.1007/s41810-023-00180-x>

Venter, Z.S., K. Aunan, S. Chowdhury & J. Lelieveld (2020). COVID-19 lockdowns cause global air pollution declines. *Proceedings of the National Academy of Sciences* 117: 18984–18990. <https://doi.org/10.1073/pnas.2006853117>

Warrington, M.H., M.B. Schrimpf, P.D. Brisay, M.E. Taylor & N. Koper (2022). Avian behaviour changes in response to human activity during the COVID-19 lockdown in the United Kingdom. *Proceedings of the Royal Society B.* 289: 20212740. <https://doi.org/10.1098/rspb.2021.2740>

Zellmer, A.J., E.M. Wood, T. Surasinghe, B.J. Putman, G.B. Pauly, S.B. Magle, S.L. Jesse, A.M.K. Cria & M. Fidino (2020). What can we learn from wildlife sightings during the COVID-19 global shutdown? *Ecosphere* 11(8): e03215. <https://doi.org/10.1002/ecs2.3215>

Checklist on the ichthyofaunal resources and conservation status of Dikhu River, Nagaland, India

Metevinu Kechu¹ & Pranay Punj Pankaj²

^{1,2} Department of Zoology, Nagaland University, Hqrs: Lumami, Zunheboto District, Nagaland 798627, India.

¹ metevinu06@gmail.com, ² pranaypunj@gmail.com (corresponding author)

Abstract: Dikhu River constitutes one of the major perennial rivers of Nagaland and due to its pristine beauty aids as a tourism spot. From the present study, ichthyofaunal diversity accounted for a total of 28 fish species belonging to 6 orders, 13 families, and 3 subfamilies. From the investigation, order Cypriniformes (67.9%) was found to be the most dominant, followed by Siluriformes (14.3%) and Anabantiformes (7.1%) while order Beloniformes, Synbranchiformes and Anguilliformes was found to be the least common with 10.7% in total. The IUCN red list of threatened species shows 71.4% are Least Concern, 7.1% Near Threatened, 3.6% Vulnerable, 3.6% Endangered, 10.7% Not Accessed and 3.6% Data Deficient. IUCN population status data shows that 57.1% are unknown, 10.7% stable, 10.7% not accessed, and 21.4% with decreasing population trends. Diversity indices (Shannon, Simpson, and Evenness) indices ranged 2.497–2.912, 0.892–0.936, and 0.820–0.908, respectively. Relative abundance determinations ranged from a high of 15.55% for *Devario aequipinnatus* to the lowest values for *Tariqilabeo latius* and *Botia rostrata* at 0.08%. Anthropogenic pressure on the Dikhu River has resulted in habitat modification and fragmentation, posing a hazard to fish diversity. Fish abundance was found to be highest in the post-monsoon season and lowest in winter. These findings are significant for academic purposes and support conservation strategies for local fish resources.

Keywords: Assessment, biodiversity, diversity index, fish species, fisheries management, ichthyofauna, Nagaland fisheries, population status, riverine habitat, threatened species.

Editor: Yahya Bakhtiyar, University of Kashmir, Srinagar, India.

Date of publication: 26 February 2025 (online & print)

Citation: Kechu, M. & P.P. Pankaj (2025). Checklist on the ichthyofaunal resources and conservation status of Dikhu River, Nagaland, India. *Journal of Threatened Taxa* 17(2): 26504–26514. <https://doi.org/10.11609/jott.9181.17.2.26504-26514>

Copyright: © Kechu & Pankaj 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: ICAR-National Bureau of Fish Genetic Resources, Lucknow (Project No.: G./NE/2015).

Competing interests: The authors declare no competing interests.

Author details: METEVINU KECHU is a research scholar and is actively engaged in ichthyofaunal exploration and documentation in Nagaland. PRANAY PUNJ PANKAJ is engaged in teaching fisheries as well as research and development activities on the subject in the region.

Author contributions: MK surveyed the Dikhu River of Nagaland and confirmation of the identity of the species. PPP supervised the work and interpreted the taxonomic information gathered by the Mk.

Acknowledgements: PPP gratefully acknowledges the financial support from ICAR-National Bureau of Fish Genetic Resources, Lucknow.

INTRODUCTION

India has been identified as one of the mega biodiversity countries in the world (Mittermeier & Mitemeir 1997) and the northeastern part of India with its unique topography has been considered a biodiversity hotspot in the world (Groombridge & Jenkins 1998). The region's rich biodiversity is attributed to its tectonic placement (Kottelat 1989) and is considered a freshwater fish biodiversity hotspot in the world (Kottelat et al. 1996).

The state of Nagaland, located in the northeastern part of India, is known for its rich biodiversity, including a diverse range of fish species. Nagaland is bounded by beautiful hilly terrain and riverine system and shares boundaries with Assam (northern and western part), Arunachal Pradesh (northeastern part), Myanmar (eastern part), and Manipur (southern) (Kosygin & Vishwanath 1998). The three principal drainages of Nagaland consist of Brahmaputra and Barack of Indian origin and Chindwin drainage of Indo-Burma origin. The Dikhu River, flowing through Nagaland, serves as a prime location to study the ichthyofaunal diversity in the region. This river is characterized by its running waters and hilly terrain, making it an ideal habitat for various fish species. Furthermore, little information exists on the biology of these fish species, emphasizing the need for a comprehensive study of their diversity. The study of fish diversity in the Dikhu River would provide valuable insights into the ecological dynamics and conservation efforts in the region.

Biodiversity hotspots under freshwater ecosystems, are increasingly under threat, making their conservation a critical concern. Major factors such as habitat destruction, invasive species, overexploitation, and the impacts of climate change are driving the rapid decline of species populations. Studies have highlighted that approximately 24% of freshwater species are facing a high risk of extinction due to threats including pollution, dam construction, water extraction, agricultural practices, and the introduction of invasive species (Sayer et al. 2025). In the northeastern region of India, studies have provided valuable insights into the conservation status of freshwater fish species, illustrating both the rich diversity and the significant threats they face (Vishwanath 2017). A report presented at COP 28 in the United Arab Emirates further revealed that 25% of freshwater fish species worldwide are at risk of extinction, with climate change directly impacting at least 17% of these species (IUCN 2023). These findings underscore the urgent need for targeted conservation

efforts to safeguard freshwater biodiversity.

The Shannon Index, Simpson Index, and Jacquard's Evenness Index are commonly used to measure biodiversity and community structure in ecological studies. Biodiversity is often astonishingly altered or overused to define the population of a community. It is a measure of the number of species that make up a biological community and is considered one of the most important aspects of community organization or structure (Jewel et al. 2018). Information about ichthyofaunal diversity is scarce in this region and only a few notable works have been done by Hora (1936), Menon (1954), Acharjee et al. (2012), and a few studies have been done on the biodiversity status in Dikhu River individually by Ezung et al. (2022) and Konyak & Limatemjen (2022). The use of these diversity indices would allow researchers to assess the species richness, evenness, and dominance of fish populations in the Dikhu River. By quantifying the diversity indices, researchers can determine the overall health and stability of the fish community in the river. Understanding the fish diversity in the Dikhu River is crucial for several reasons. Firstly, it aids in the conservation and management of fish populations. This information helps in formulating policies for sustainable fisheries management. Though it is considered a significant river in the state, there has been scarce information regarding its status and its habitat ecology and hence this present study is an attempt to identify the current fish species diversity in this river.

MATERIALS AND METHOD

Study area

Dikhu River is one of the tributaries of the Brahmaputra River and six stations were selected for sampling (Table 1). The study was conducted for a period of 12 months from March 2019 to February 2020. The locations of the study sites were taken using GPS (Garmin etrex-10) (Image 1). It originates from the Naruto Hill, Zunheboto, and later confluences towards the Brahmaputra River from Naginimora, Assam. It then channels through most of the Zunheboto and Mokokchung districts of Nagaland, covering a total distance of 170 km. The two major tributaries of the Dikhu River are Yangyu in Tuensang district and Nanung (Langpangkong range) in Mokokchung district (Ao et al. 2008).

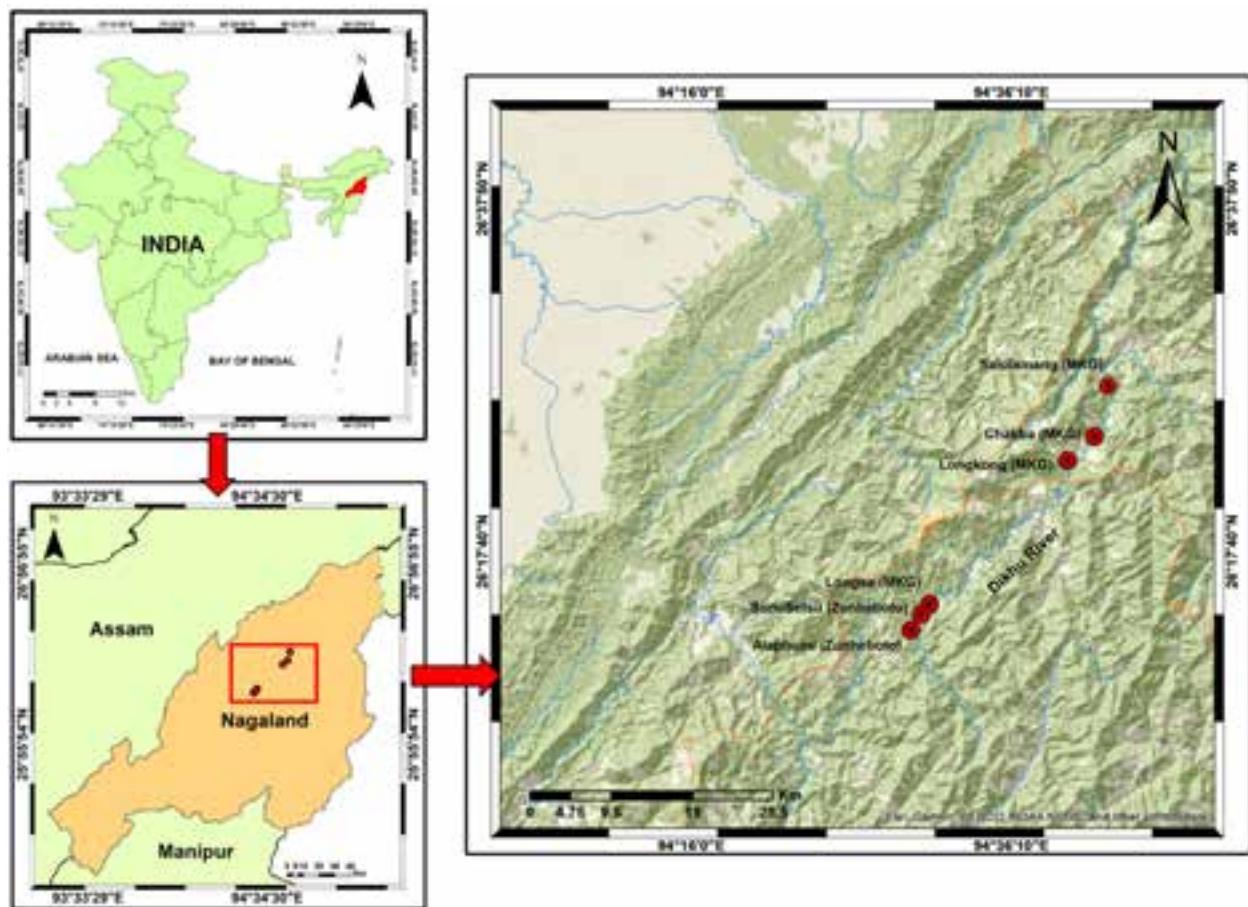


Image 1. Geospatial mapping of study site distribution along the Dikhu River, Nagaland.

Fish sampling

Fish samples were collected from various sampling sites along the course of the river with gears such as cast nets, gill nets, scoop nets, hooks and lines, and locally available indigenous traps. Sampling collection was done on a monthly basis. Collected fish samples were photographed with a Canon EOS 3000D camera and measured using a vernier caliper and graduated ruler (graduations in mm) while excess fishes were released back into the river then a few samples were preserved in 10% formalin solution for further identification. Samples were identified with the help of key identification characters given by Talwar & Jhingran (1991), Menon (1999), Vishwanath et al. (2007), and Jayaram (2010), and the latest nomenclature was based in accordance with the Catalog of Fishes (Fricke et al. 2025). Fish classification was conducted following the guidelines outlined by Nelson et al. (2016).

Species diversity

Shannon diversity index, (Shannon & Weaver 1949)

Table 1. Sampling sites of Dikhu River, Nagaland.

Stations	Geographical coordinates	Altitude
Longsa (MKG)	26.244° N 94.517° E	2230 ft or 679.7 m
Longkong (MKG)	26.380° N 94.662° E	1390 ft or 423 m
Chakba (MKG)	26.403° N 94.690° E	1292 ft or 393.8 m
Alaphumi (Zunheboto)	26.219° N 94.497° E	2383 ft or 726.3 m
Salulamang (MKG)	26.452° N 94.704° E	1164 ft or 354.7 m
SumiSetsü (Zunheboto)	26.234° N 94.508° E	2271 ft or 692.2 m

$$H' = - \sum \pi_i \ln (\pi_i)$$

Where H' is the Shannon Diversity Index and π_i is the number of individuals in the i^{th} species as a proportion of the total population. $\ln (\pi_i)$ is the natural log of π_i

The formula used for calculating Simpson's index (Simpson 1949) is:

$$D = 1 - (\sum n_i^2 / N^2)$$

Where n is the number of individuals of a specific species. N is the total number of individuals of all species.

Pielou's Evenness Index (J') is calculated using the Shannon Diversity Index (H') and $\ln(S)$ is the natural logarithm of the total number of species (S) in the community. The formula for Pielou's Evenness Index (Pielou 1966) is:

$$J' = H'/H'\max = H' / \ln(S)$$

The relative abundance (percentage composition) of fish species across the six sampling stations was calculated using the following formula.

Relative Abundance (%) = (Number of individuals of a species $\times 100$) / Total number of species

Statistical analysis: For data conversion and analysis, Microsoft Excel was used.

RESULTS

Fish assemblage

Fish species composition of Dikhu River showed the presence of 28 fish species belonging to six orders 13 families and three subfamilies (Images 2 & 3). Table 2 provides a detailed checklist of fish species, organized according to their IUCN conservation status (IUCN 2024) and documented population trends. Among the order of fish species, Cypriniformes were observed as the most dominant group with 67.9% followed by Siluriformes (14.3%) and Anabantiformes (7.1%) while the least common order group belonged to Beloniformes, Synbranchiformes, and Anguilliformes with combined (10.7%) in total (Figure 1). Cyprinidae dominated among the families represented by 14 species and among the genus group *Garra*, *Opsarius*, and *Danio* were the most common with three species each. Based on the IUCN red list of threatened species category 71.4% was represented under Least Concern (LC), 7.1% under Near Threatened (NT), 3.6% under Vulnerable (VU), 3.6% under Endangered (EN), 10.7% under Not Assessed (NA) and 3.6% under Data Deficient (DD) status (Figure 2). The population trend of fish species as per IUCN also showed 57.1% as unknown, 10.7% as stable, 10.7% as not accessed, and 21.4% as decreasing population trends (Figure 3). Assessing the species according to its economic value were categorized as 46.4% under food and ornamental, 35.7% under ornamental, 10.7% under food, and 7.1% under food and sport category (Figure 4).

Relative abundance

The relative abundance of small indigenous fish *Devario aequipinnatus* (15.55%), *Opsarius bendelisis*

(11.39%), *Garra naganensis* (9.52%), and *Amblyceps apangi* (7.73%) were found to be high in the river under study indicating its abundance and dominance. Species under different conservation categories like *Neolissochilus hexagonolepis* (NT) showed relatively high RA with values of 4.31%, which indicates the stability of their population despite natural and anthropogenic threats in the sampling sites. While others under the threatened category like *Tor putitora* (EN), *Anguilla bengalensis* (NT), and *Botia rostrata* (VU) indicated decreasing trends with RA values of 0.62%, 0.16%, and 0.08 %. Other species with fairly high RA were *Schistura savona* (6.61%), *Psilorhynchus homaloptera* (5.91%), *Pterocryptis indica* (5.71%) and *Pethia conchonius* (5.25%). The lowest RA was recorded in *Tariqilabeo latius* and *Botia rostrata* with values of 0.08% each. It has been observed that the highest number of catches was recorded during the post-monsoon followed by the pre-monsoon season compared to the other seasons (Figure 5).

Diversity index

Diversity was highest ($H' = 2.912$, $1-D = 0.936$) in post-monsoon season and lowest in monsoon season ($H' = 2.497$, $1-D = 0.892$), and the values of evenness index (J') were recorded highest ($J' = 0.908$) in pre-monsoon season and lowest in monsoon season ($J' = 0.82$). The mean value and standard deviation of species found in each season, Shannon diversity (H'), Simpson's index ($1-D$), and Pielou's evenness (J') indices were recorded as, 23.75 ± 2.217 , 2.716 ± 0.194 , 0.915 ± 0.022 and 0.864 ± 0.044 (Table 3). The study concluded that the Dikhu River supports rich fish diversity, while there is a notable shift in the fish community structure.

DISCUSSION

The spatial distribution of fish species in the Dikhu River is influenced by a complex interplay of ecological factors, including abiotic conditions, biotic interactions, and evolutionary adaptations within the habitat (Pelicice et al. 2015; Bose et al. 2019; Satpathy et al. 2021; Alam et al. 2024). Among these factors, the dominance of Cypriniformes in the fish assemblages of the river is particularly notable. This pattern mirrors findings from other studies across northeastern Indian rivers, indicating a widespread dominance of this order (Taro et al. 2022; Ahmed et al. 2023; Chetry et al. 2023; Singh et al. 2024). The success of Cypriniformes in these ecosystems can be attributed to their evolutionary adaptations, including

Table 2. Comprehensive overview of fish catch composition of Dikhu River, Nagaland: conservation status, population trends, and economic significance.

	Systematic position	Local name (Ao)	Common name	IUCN status	Population trends	Economic value	Specimen number
Order: Anguilliformes							
Family: Anguillidae							
1	<i>Anguilla bengalensis</i> (Gray, 1831)	Angulang	Indian Mottled Eel	NT	Unknown	Fd	NUFM 1390
Order: Cypriniformes							
Family: Cyprinidae							
Subfamily: Barbinae							
2	<i>Neolissochilus hexagonolepis</i> (McClelland, 1839)	Seben	Katli or Chocolate mahseer	NT	Decreasing	Fd, Sp	NUFM 1279
3	<i>Tor putitora</i> (Hamilton, 1822)	Tzünger	Golden mahseer	EN	Decreasing	Fd, Sp	NUFM 1285
4	<i>Pethia conchonius</i> (Hamilton, 1822)	Tzünger	Rosy barb	LC	Unknown	Fd, Or	NUFM 1289
Subfamily: Danioninae							
5	<i>Opsarius bendelisis</i> (Hamilton, 1807)	Tawa	Indian hill trout	LC	Stable	Fd, Or	NUFM 1310
6	<i>Opsarius tileo</i> (Hamilton, 1822)	Tawa	Tileo baril	LC	Unknown	Fd, Or	NUFM 1316
7	<i>Opsarius barna</i> (Hamilton, 1822)	Tawa	Barna Baril	LC	Stable	Fd, Or	NUFM 1317
8	<i>Danio dangila</i> (Hamilton, 1822)	Zer	Dangila Danio	LC	Decreasing	Fd, Or	NUFM 1325
9	<i>Danio rerio</i> (Hamilton, 1822)	Zer	Zebra fish	LC	Decreasing	Fd, Or	NUFM 1329
10	<i>Danio assamila</i> (Kullander, 2015)	Zer	Not accessed	Not accessed	Not accessed	Fd, Or	NUFM 1332
11	<i>Devario aequipinnatus</i> (McClelland, 1839)	Zer	Giant danio	LC	Unknown	Fd, Or	NUFM 1319
Subfamily: Labeoninae							
12	<i>Tariqilabeo latius</i> (Hamilton, 1822)	Anget	GangeticLatia	LC	Unknown	Fd	NUFM 1295
13	<i>Garra lissorhynchus</i> (McClelland, 1842)	Anget	Khasi garra	LC	Unknown	Fd, Or	NUFM 1296
14	<i>Garra birostris</i> (Nebeshwar & Vishwanath, 2013)	Anget	Not accessed	Not accessed	Not accessed	Fd, Or	NUFM 1302
15	<i>Garra naganensis</i> (Hora, 1921)	Anget	Naga garra	LC	Unknown	Fd, Or	NUFM 1304
Family: Psilorhynchidae							
16	<i>Psilorhynchus homaloptera</i> (Hora & Mukherji, 1935)	Mernngo	Homaloptera minnow	LC	Unknown	Or	NUFM 1347
17	<i>Psilorhynchus arunachalensis</i> (Nebeshwar, Bagra & Das, 2007)	Mernngo	Not accessed	DD	Unknown	Or	NUFM 1353
Family: Botiidae							
18	<i>Botia rostrata</i> (Günther, 1868)	Nga-medaktsü	Gangetic loach	VU	Decreasing	Or	NUFM 1356
Family: Nemacheilidae							
19	<i>Paracanthocobitis botia</i> (Hamilton, 1822)	Sangsert	Mottled loach	LC	Decreasing	Or	NUFM 1335
20	<i>Schistura savona</i> (Hamilton, 1822)	Retong	Half-banded Loach	LC	Unknown	Or	NUFM 1341
Order: Siluriformes							
Family: Siluridae							
21	<i>Pterocryptis indica</i> (Datta, Barman & Jayaram, 1987)	Lorng	Siluras Catfish	DD	Unknown	Fd	NUFM 1360
Family: Bagridae							
22	<i>Olyra longicaudata</i> (McClelland, 1842)	Nenak	Torrent Catfish	LC	Unknown	Or	NUFM 1357
Family: Amblycipitidae							
23	<i>Amblyceps apangi</i> (Nath & Dey, 1989)	Nenak	Indian Torrent Catfish	LC	Unknown	Or	NUFM 1368
Family: Sisoridae							
24	<i>Glyptothorax indicus</i> (Talwar, 1991)	Jangmu	Catfish	LC	Unknown	Or	NUFM 1366
Order: Anabantiformes							
Family: Channidae							
25	<i>Channa melanostigma</i> (Geetakumari & Vishwanath, 2011)	Alopungo	snakehead	Not accessed	Not accessed	Fd, Or	NUFM 1374

	Systematic position	Local name (Ao)	Common name	IUCN status	Population trends	Economic value	Specimen number
Family: Badidae							
26	<i>Badis badis</i> (Hamilton, 1822)	Akngo	Badis	LC	Unknown	Or	NUFM 1379
Order: Beloniformes							
27	<i>Xenentodon cancila</i> (Hamilton, 1822)	Jokli	Freshwater Garfish	LC	Unknown	Or	NUFM 1385
Order: Synbranchiformes							
28	<i>Mastacembelus armatus</i> (Lacepède, 1800)	Merü	Spiny Eel	LC	Stable	Fd, Or	NUFM 1388

DD—Data Deficient | EN—Endangered | LC—Least Concern | NT—Near Threatened | VU—Vulnerable | Fd—Food | Sp—Sport | Or—Ornamental.

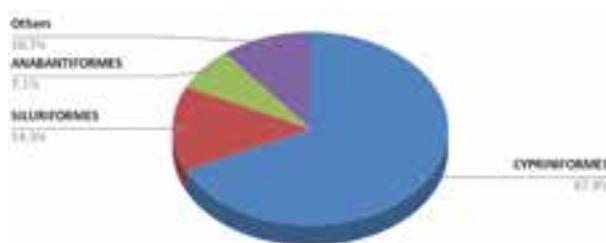


Figure 1. Distribution of fish species by order group.

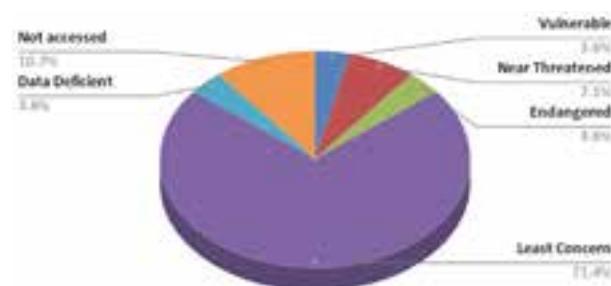


Figure 2. Distribution via IUCN conservation status.

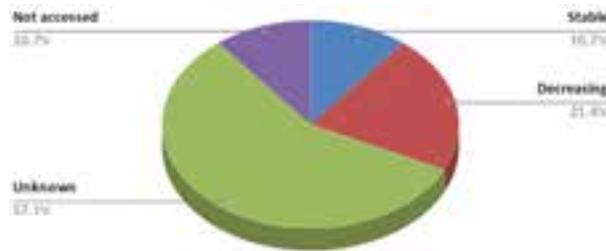


Figure 3. Distribution by population trend.

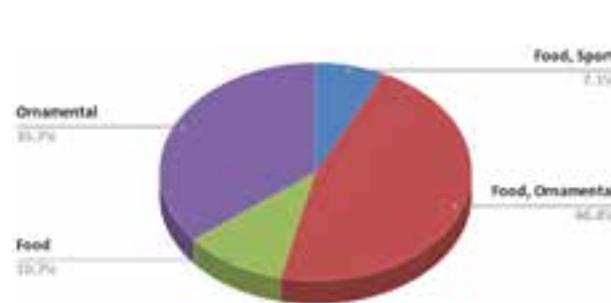


Figure 4. Distribution by economic value.

the ability to thrive in a range of water conditions, their varied feeding strategies, and reproductive behaviors, which have enabled them to outcompete other species in these freshwater habitats. Furthermore, their efficient use of resources has positioned Cypriniformes as central components of the ecological dynamics in these rivers (Mondal & Bhat 2020). Similar patterns of Cypriniformes dominance have been reported in studies conducted in Nagaland, with most species classified by the IUCN as either 'Least Concern' or 'Data Deficient' (Tsurunla et al. 2024), emphasizing the need for more focused studies on the region's ichthyofauna. The present study also identified a significant proportion (21.4%) of species experiencing a declining population trend, which is likely attributable to a combination of natural environmental pressures and anthropogenic influences (Nel et al. 2009; Kechu et al. 2021).

Relative abundance (RA) is an important metric in

ichthyological studies as it reflects the proportional representation of species within a community. This measure is crucial for understanding species dominance, interspecies competition, and the overall health and stability of aquatic ecosystems (Hubbell 2005). In this study, *Devario aequipinnatus* and *Opsarius bendelisis* were found to have the highest RA, with values similar to those reported by Valentina et al. (2015) in Karbi Anglong district, Assam. Additionally, the post-monsoon season was marked by the highest number of catches, consistent with findings by Ali et al. (2004), who observed that receding water levels during this period tend to concentrate fish in shallower areas, thereby increasing catch rates.

The Shannon Diversity Index is a key tool for assessing the health of aquatic ecosystems. Values below 1

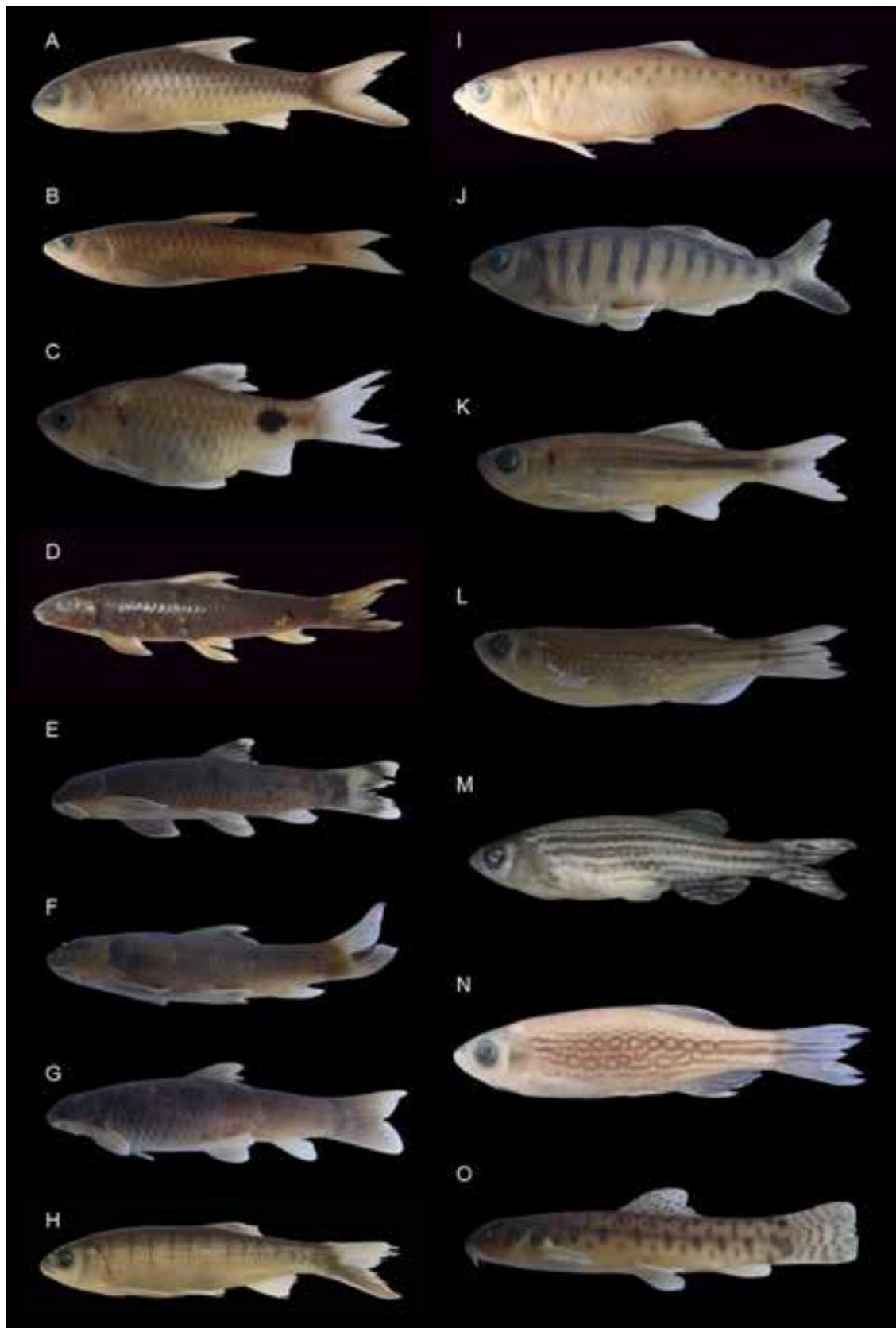


Image 2. Fish species recorded in Dikhu River, Nagaland: A—*Neolissochilus hexagonolepis* | B—*Tor putitora* | C—*Pethia conchonius* | D—*Tariqilabeo latius* | E—*Garra lissorhynchus* | F—*Garra birostris* | G—*Garra naganensis* | H—*Opsarius bendelisis* | I—*Opsarius tileo* | J—*Opsarius barna* | K—*Devario aequipinnatus* | L—*Danio dangila* | M—*Danio rerio* | N—*Danio assamila* | O—*Paracanthocobitis botia*. © Metevinu Kechu.

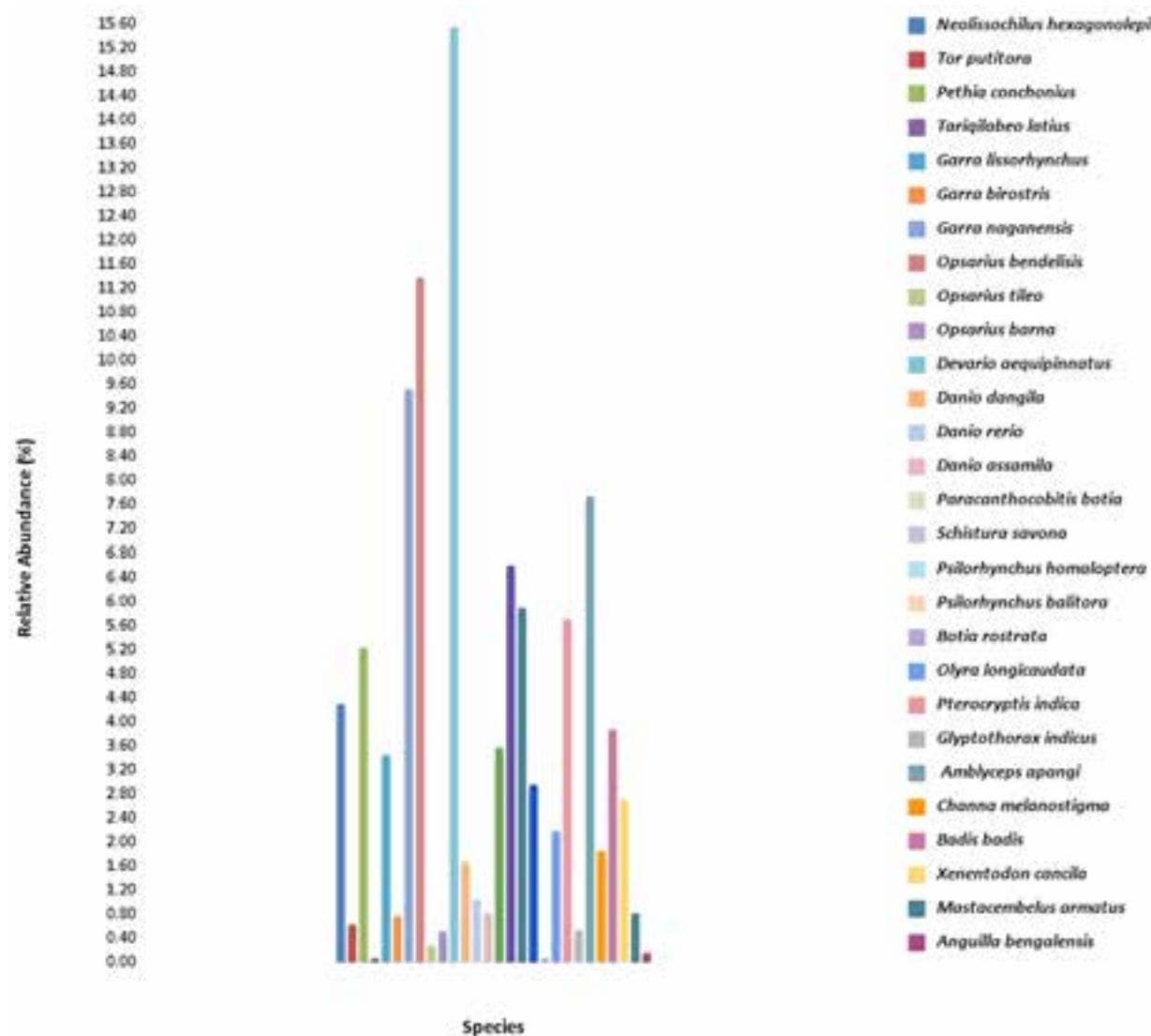


Figure 5. Relative abundance of fish species.

generally indicate high pollution and stress, values between 1 and 2 suggest moderate stability and values above 3 reflect a healthy, stable environment conducive to species survival (Stub et al. 1970). The findings from this study align with those of Dey & Sarma (2018), who reported the highest fish diversity during the post-monsoon season in the Manas River. Similarly, Satpathy et al. (2021) recorded a Shannon diversity value of 2.76 for the Subansiri River, suggesting moderate ecosystem health. Simpson's dominance index, which emphasizes the abundance of species over richness, also contributes to understanding the evenness of fish communities (Islam & Yasmin 2018). In this study, the highest evenness (J') was recorded during the pre-monsoon season, while the lowest value occurred during the monsoon. The average evenness across all seasons was 0.864 ± 0.044 ,

indicating a fairly balanced distribution of species. The post-monsoon season consistently displayed the highest species richness and diversity, likely due to the influx of water from various sources, which brings additional species into the river system and enhances community diversity. Additionally, there is a rise in species richness due to the migration of fish from larger rivers for breeding and spawning. These seasonal dynamics underscore the critical role of water-level fluctuations in shaping fish community composition, with the post-monsoon period supporting the highest levels of biodiversity across the study area.

During field surveys, interviews with local villagers revealed a noticeable decline in fish diversity, primarily attributed to the use of destructive fishing practices. The increasing availability and affordability of such tools have

Image 3. Fish species recorded in Dikhu River, Nagaland: A—*Schistura savona* | B—*Psilorhynchus homaloptera* | C—*Psilorhynchus balitora* | D—*Botia rostrata* | E—*Olyra longicaudata* | F—*Pterocryptis indica* | G—*Glyptothorax indicus* | H—*Amblyceps apangi* | I—*Channa melanostigma* | J—*Badis badis* | K—*Xenentodon cancila* | L—*Mastacembelus armatus*. © Metevinu Kechu.

exacerbated the problem, leading not only to a reduction in fish populations but also negatively affecting the reproductive success of species, thereby causing long-term ecological harm. These observations are consistent with research suggesting that anthropogenic activities, such as overfishing and the use of harmful fishing techniques, are major contributors to fish population

declines in river systems across Nagaland (Kechu et al. 2021).

The lack of comprehensive taxonomic surveys, genetic studies, and an understanding of the impacts of environmental changes poses significant challenges to the conservation of freshwater species in northeastern India. These gaps hinder accurate species identification

Table 3. Diversity indices distribution in four seasons in Dikhu River.

Season	Total individuals	Total species found in each season	Shannon diversity index H'	Simpson's dominance index (D)	Evenness (J)
Pre-monsoon	798	25	2.842	0.930	0.908
Monsoon	407	21	2.497	0.892	0.820
Post-monsoon	891	26	2.912	0.936	0.894
Winter	477	23	2.613	0.901	0.833
Total	2573				
Total no. of fishes	28				
Mean ± SD		23.75 ± 2.217	2.716 ± 0.194	0.915 ± 0.022	0.864 ± 0.044

and impede effective conservation planning, particularly for rare or endemic species. Integrating traditional ecological knowledge from local communities can provide valuable insights into fish migration patterns, breeding cycles, and habitat usage, complementing modern scientific research and enhancing conservation efforts (Albuquerque et al. 2021). There is an urgent need for more holistic and integrated conservation strategies, including habitat restoration, the promotion of sustainable fishing practices, and community-based conservation programs. Regular ecological monitoring and biodiversity assessments are crucial for safeguarding the aquatic ecosystems of the Dikhu River and for meeting both local and global biodiversity conservation goals.

REFERENCES

Acharjee, B.K., M. Das, P. Borah & J. Purakayastha (2012). Ichthyofaunal diversity of Dhansiri River, Dimapur, Nagaland, India. *Check List* 8(6): 1163–1165.

Ahmed, A.M., R. Dutta, H. Pokhrel, D. Nath, L. Mudo, R. Sarmah, S.K. Bhagabati & I. Ahmed (2023). Fish species composition, distribution, and community structure of a Himalayan biodiversity hotspot river Diyung, north east India. *Pakistan Journal of Zoology* 1–11.

Alam, A., J. Kumar, U.K. Sarkar, D.N. Jha, S.K. Sahu, S.C. Sukla Das, S.K. Srivastava, S.K., V. Kumar & B.K. Das (2024). Linking ecological characteristics with fish diversity, assemblage patterns and feeding guilds, and GIS applications along the temporal and spatial gradients in a large subtropical reservoir, India, for sustainable management. *Journal of Water and Climate Change* 15(2): 607–627.

Albuquerque, U., D. Ludwig, I. Feitosa, J. De Moura, P. Gonçalves, R. Da Silva, T. Da Silva, T. Gonçalves-Souza & W. Júnior (2021). Integrating traditional ecological knowledge into academic research at local and global scales. *Regional Environmental Change* 21: 45. <https://doi.org/10.1007/s10113-021-01774-2>

Ali, M.Y., G.M. Salim, M.A. Mannan, M.M. Rahman, W. Sabbir & A. Mursida (2004). Freshwater fish fauna of Mymensingh floodplain, Bangladesh. *Journal of Biological Sciences* 4(5): 575–580.

Ao, S., S.C. Dey & S.K. Sarmah (2008). Fish and fisheries of Nagaland. *Inland Fisheries Society of India* 26: 1–19.

Bose, R., A.K. Bose, A.K. Das, A. Parashar & K. Roy (2019). Fish diversity and limnological parameters influencing fish assemblage pattern in Chambal River Basin of Madhya Pradesh, India. *Proceedings of the National Academy of Sciences, India Section B: Biological Sciences* 89: 461–473. <https://doi.org/10.1007/s40011-017-0958-5>

Chetry, V., H. Das, P.K. Saikia, M.K. Saikia, B.P. Saikia & K. Sarma (2023). Ichthyofaunal diversity in Jia Bharali River of North Bank Landscape of Assam in eastern Himalaya, northeast India. *Ecology, Environment and Conservation* 29(01): 145–157.

Dey, A. & D. Sarma (2018). Diversity, distribution and conservational approach of hillstream ornamental fishes in Manas River, India: An eastern hotspot region. *Journal of Coldwater Fisheries* 1(1): 103–112.

Ezung, S., M. Kechu & P.P. Pankaj (2022). First record of *Garra birostris* Nebeshwar & Vishwanath, 2013 (Cypriniformes: Cyprinidae) from Doyang and Dikhu rivers of Brahmaputra drainage, Nagaland, India. *Journal of Threatened Taxa* 14(7): 21453–21457. <https://doi.org/10.11609/jott.7075.14.7.21453-21457>

Fricke, R., W.N. Eschmeyer & R. Van Der Laan (eds.) (2025). *Eschmeyer's Catalog of Fishes: Genera, Species, References*. Electronic version accessed 23 January 2025. <http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp>

Groombridge, B. & M. Jenkins (1998). *Freshwater Biodiversity: A Preliminary Global Assessment*. World Conservation Monitoring Centre, Cambridge, U.K., 104 pp.

Hora, S.L. (1936). Fish and fisheries of Manipur with some observations on those of the Naga Hills. *Records of the Indian Museum (Calcutta)* 22: 165–214. [https://doi.org/10.1016/0022-5193\(66\)90133-0](https://doi.org/10.1016/0022-5193(66)90133-0)

Hubbell, S.P. (2005). The neutral theory of biodiversity and biogeography and Stephen Jay Gould. *Paleobiology* 31(2): 122–132.

Islam, M. & R. Yasmin (2018). Assemblage, abundance and diversity of fish species in river Dhaleshwari, Bangladesh. *Asian Journal of Fisheries and Aquatic Research* 1: 1–28. <https://doi.org/10.9734/ajfar/2018/v2i126112>

IUCN (2023). Freshwater fish highlight escalating climate impacts on species: IUCN Red List. Available at: https://iucn.org/press-release/202312/freshwater-fish-highlight-escalating-climate-impacts-species-iucn-red-list?utm_source (Accessed: 22 January 2025).

IUCN (2024). The IUCN Red List of Threatened Species. Version 2024-2. <https://www.iucnredlist.org> Accessed on 23 January 2025.

Jayaram, K.C. (2010). *Freshwater Fishes of Indian Region*. 2nd Edition. Narendra Publishing House, New Delhi, 616 pp.

Jewel, M.A.S., M.A. Haque, R. Khatun & M.S. Rahman (2018). A comparative study of fish assemblage and diversity indices in two different aquatic habitats in Bangladesh: Lakhandaha Wetland and Atari River. *Jordan Journal of Biological Sciences* 11(4): 427–434.

Kechu, M., S. Ezung, S. Longkumer, A. Jamir & P.P. Pankaj (2021). Progress and prospects for sustainable production and conservation of threatened coldwater fishes of north-east India with special

reference to Nagaland state. *Journal of Experimental Zoology India* 24(1): 27–33.

Konyak, S.L. & Limatemjen (2022). Ichthyofaunal diversity of downstream Dikhu River and its tributaries in Mon District of Nagaland, India. *Asian Journal of Fisheries and Aquatic Research* 18(1): 16–22. <https://doi.org/10.9734/ajfar/2022/v18i130427>

Kosygin, L. & W. Vishwanath (1998). A report on fish diversity of Tizu River, Nagaland with some new records. *Ecology, Environment and Conservation* 4: 243–247.

Kottelat, M. & T. Whitten (1996). *Freshwater Biodiversity in Asia with Special Reference to Fish: World Bank Technical Paper No. 343.* The World Bank, Washington DC, 59 pp.

Kottelat, M. (1989). Zoogeography of the fishes from Indochinese inland waters with an annotated check-list. *Bulletin Zoologisch Museum* 12(1): 1–55.

Menon, A.G.K. (1954). Further observation on the fish fauna of the Manipur State. *Records of the Indian Museum* 52: 21–26.

Menon, A.G.K. (1999). *Checklist: Freshwater Fishes of India.* Occasional Paper No. 175. Zoological Survey of India, Calcutta, 366 pp.

Mittermeier, R.A. & C.G. Mittermeier (1997). Megadiversity: earth's biologically wealthiest nations. In: McAllister, M.C., D.E. Hamilton & B. Harvey (eds.). *Global Freshwater Biodiversity.* Sea Wind Cemex, Mexico City, 140 pp.

Mondal, R. & A. Bhat (2020). Temporal and environmental drivers of fish-community structure in tropical streams from two contrasting regions in India. *PLOS ONE* 15(4): e0227354. <https://doi.org/10.1371/journal.pone.0227354>

Nel, J.L., D.J. Roux, R. Abell, P.J. Ashton, R.M. Cowling, J.V. Higgins & J.H. Viers (2009). Progress and challenges in freshwater conservation planning. *Aquatic Conservation: Marine and Freshwater Ecosystems* 19(4): 474–485.

Nelson, J.S., T.C. Grande & M.V.H. Wilson (2016). *Fishes of the World. 5th Edition.* John Wiley & Sons, Hoboken, 707 pp. <https://doi.org/10.1002/9781119174844>

Pelicice, F.M., P.S. Pompeu & A.A. Agostinho (2015). Large reservoirs as ecological barriers to downstream movements of Neotropical migratory fish. *Fish and Fisheries* 16(4): 697–715. <https://doi.org/10.1111/faf.12089>

Pielou, E.C. (1966). Species-diversity and pattern-diversity in the study of ecological succession. *Journal of Theoretical Biology* 10(2): 370–383.

Satpathy, S., K. Sivakumar & J.A. Johnson (2021). Fish communities and associated habitat variables in the upper Subansiri River of Arunachal Pradesh, eastern Himalaya, India. *Journal of Threatened Taxa* 13(1): 17477–17486. <https://doi.org/10.11609/jott.5503.13.1.17477-17486>

Sayer, C.A., E. Fernando & R.R. Jimenez (2025). One-quarter of freshwater fauna threatened with extinction. *Nature* 1–8. <https://doi.org/10.1038/s41586-024-08375-z>

Shannon, C.E. & W. Weaver (1949). *The Mathematical Theory of Communication.* The University of Illinois Press, Urbana, IL, 1–117.

Simpson, E.H. (1949). Measurement of diversity. *Nature* 163: 688. <https://doi.org/10.1038/163688a0>

Singh, D., J. Rana & J. Tungoe (2024). Impact of prevailing factors on assemblages and status of freshwater fish fauna of river Song in the lower Himalaya. *Iranian Journal of Fisheries Sciences* 23(2): 237–254. <https://doi.org/10.22092/ijfs.2024.349403.0>

Stub, R., J.W. Appling, A.M. Hatstetter & I.J. Hass (1970). The effect of industrial waste of Memphis and Shelby country on primary planktonic producers. *Bioscience* 20: 905–912.

Talwar, P.K. & A.G. Jhingran (1991). *Inland Fishes of India and Adjacent Countries, Vols. I & II.* Oxford and IBH Co. Pvt. Ltd., New Delhi, 1158 pp.

Taro, K., L. Tamang & D.N. Das (2022). Ichthyofaunal diversity of Senki stream, Itanagar, Arunachal Pradesh: a comparative status between 2004–05 and 2018–19. *Journal of Threatened Taxa* 14(7): 21356–21367. <https://doi.org/10.11609/jott.5738.14.7.21356-21367>

Tsurunla, K., L. Limatemjen, S.L. Konyak, & V. Chüzo (2024). Fish fauna and their IUCN conservation status of Chessore sub-division of Shamator, Nagaland, India. *World News of Natural Sciences* 56: 58–66.

Valentina, T., H.T. Singh, A. Tamuli & R. Teron (2015). Assessment of physico-chemical characteristics and fish diversity of hill streams in Karbi Anglong District, Assam, India. *International Research Journal of Environmental Sciences* 4(5): 6–11.

Vishwanath, W. (2017). Diversity and conservation status of freshwater fishes of the major rivers of northeast India. *Aquatic Ecosystem Health & Management* 20(1–2): 86–101. <https://doi.org/10.1080/14634988.2017.1294947>

Vishwanath, W., W.S. Lakra & U.K. Sarkar (2007). *Fishes of North East India.* NBFGR, Lucknow, Uttar Pradesh, India, 264 pp.

A study on the diversity of butterflies in selected landscapes of the Indian Institute of Technology, Guwahati campus, Assam, India

Uma Dutta¹ , Sonali Dey² & Deepshikha Moran³

^{1,2} Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Guwahati, Assam 781001, India.

³ Department of Zoology, Dibrugarh College, Dibrugarh, Assam 786003, India.

¹ umadutta@yahoo.com (corresponding author), ² sonalidey167@gmail.com, ³ deepshikhamoran6@gmail.com

Abstract: A study has been carried out to find out the diversity of butterflies at the Indian Institute of Technology, Guwahati campus, Assam India from September 2019 to March 2022. In the present study, a total of 82 species with a total of 1,378 individuals of butterflies belonging to six families, namely, Papilionidae, Pieridae, Lycaenidae, Nymphalidae, Hesperiidae, and Riodinidae have been recorded. During the survey, the maximum number of butterflies were observed in the old E-type site and D-type site and its adjoining areas, where there are abundant flowering, host, and nectar-collecting plants and wildflowers, and a minimum number of butterflies were listed from old and new guest house site and transit campsites. Among four study years, 2020 had the highest genera and species number followed by the year 2021. From the present study it can be concluded that despite urbanization, there is a good diversity of butterflies. Therefore, the implementation of appropriate and effective conservation methods is of utmost importance in order to protect the diversity.

Keywords: Conservation ecology, diversity, ecological indicator, flowering plants, Kamrup District, Lepidoptera, northeastern India, seasonal variation, species richness, urbanization.

Editor: Jatishwor Singh Irungbam, Centrum Algatech, Třeboň, Česká Republika.

Date of publication: 26 February 2025 (online & print)

Citation: Dutta, U., S. Dey & D. Moran (2025). A study on the diversity of butterflies in selected landscapes of the Indian Institute of Technology, Guwahati campus, Assam, India. *Journal of Threatened Taxa* 17(2): 26515-26529. <https://doi.org/10.11609/jott.8254.17.2.26515-26529>

Copyright: © Dutta et al. 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interests: The authors declare no competing interests.

Author details: DR. UMA DUTTA—an associate professor at the Department of Zoology, Cotton University. She is the former Dean of Life Sciences and Head of the Department of Zoology, CU. Her research focuses on bio-active components in chronic disease treatment viz., cancer, diabetes cardiovascular disease as well as validation of traditional knowledge and its practices in agricultural pest control with ethnopharmacological importance. She is passionate about nature and biodiversity, especially insect, butterfly and birds. She has also published book on butterfly diversity of Cotton University campus; SONALI DEY—a UGC-JRF PhD research scholar at Department of Zoology, Cotton University; DR. DEEPSHIKHA MORAN—assistant professor, Department of Zoology, Dibrugarh College, Dibrugarh, she has a good number of publications in journals of national and international repute.

Author contributions: UD—contributed to the study design, conceptualisation, supervision, draft writing, review editing, data collection, spotting of the species and photography. SD—contributed to data collection, survey work, photography, draft preparation, figure and table preparation and bibliographic study. DM—contributed to table and figure preparation and some part of survey work. The first draft of the manuscript was written by Uma Dutta and edited by Sonali Dey. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Acknowledgements: Authors are highly grateful to the workers and residents of IIT Guwahati campus for their help and support in finding the places in and around the institute. Authors are also thankful to Miss Bhanita Bora for her help during preparation of the article.

INTRODUCTION

Butterflies act as an ecological indicator of environmental variation and are highly sensitive to disturbances and changes in habitat (Nally & Fleishman 2004). In the field of conservation ecology, butterflies are considered an umbrella species (Betrus et al. 2005). It is worth mentioning that butterfly diversity indirectly indicates plant diversity because both butterfly adults and caterpillars are highly reliable on specific host plants (Padhye et al. 2006).

In India, 1,379 butterfly species, from six different families, viz., Papilionidae, Pieridae, Lycaenidae, Riodinidae, Nymphalidae, and Hesperiidae, with 74 endemic species were observed. Among these, 1,143 species (82.9%) were identified as Oriental elements, 206 species (14.9%) as Palearctic elements, and 23 species (1.7%) as Afrotropical elements. Over two-thirds of the species were documented in the northeastern states of India (Das et al. 2023). Most of the species of order Lepidoptera indicates meta population which are exclusively phytophagous in nature (Menken et al. 2010). Northeastern India comprises eight states, viz., Arunachal Pradesh, Assam, Manipur, Mizoram, Nagaland, Sikkim, and Tripura are one the richest biodiversity areas which supports a rich butterfly fauna (Bora & Meitei 2014). A huge variety of flowering plants, suitable habitats, topography and climates are ideal for butterfly distribution, diversity and abundance. Eastern Himalayan part as well as northeastern region of India comprises 58% of butterflies found in the Indian subcontinent and Myanmar (Evans 1932). Evans (1932) reported that about 962 species and subspecies of butterflies belonging to five taxonomic families are found in northeastern India alone.

Limited research has been carried out on the butterflies of Assam. A total of 70 species of butterflies belonging to 45 genera were documented from the Regional Research Laboratory Campus, Jorhat, Assam (Bhuyan et al. 2005). In various parts of Guwahati city, a number of studies were conducted to find out the number of butterfly species. A total of 72 species have been reported from Assam State Zoo-Cum-Botanical Garden, Guwahati (Ali & Basistha 2000). Saikia et al. (2015) provided an excellent documentation of about 18 species of butterflies from Jalukbari and Gauhati university campus, Guwahati. A survey in Nambor-Doigrung Wildlife Sanctuary, Assam, identified 224 butterfly species across 137 genera and five families, with Nymphalidae being the most dominant. A study surveyed butterfly diversity in Dangori Reserve Forest,

Upper Assam, documenting 121 species across six families, with Nymphalidae being the most dominant. Significant findings include the recording of rare species such as *Tanaecia julii* and *Lethe chandica*, along with endemic species like *Arhopala ganesa* and *Mycalesis mineus* (Boruah & Das 2017). A study was conducted in Panbari Forest, Kaziranga, upper Assam, that presented a checklist of 137 skipper butterfly species (Hesperiidae) including species such as Purple Lancer *Salanoemia fuscicornis*, Red-vein Lancer *Pyronera niasana burmana*, Pied Flat *Celaenorhinus moreana*, and various species of *Choaspes*, *Potanthus*, and *Halpe* (Gogoi 2013).

Under this contemplated background, the present study was carried out to identify and estimate the butterfly diversity in IIT, Guwahati campus.

MATERIALS AND METHODS

Study Area

The present study was conducted on the IIT Guwahati campus in Assam, renowned as one of the most beautiful campuses in India. Located at 26.187 N and 91.691 E, the campus lies on the northern banks of the Brahmaputra River, connected to northern Guwahati's Amingaon town, and is approximately 20 km from the city center. Spanning 700 ac (2.8 km²), the campus features undulating terrain, hillocks, and a variety of landscapes, including evergreen, semi-evergreen, and deciduous vegetation, as well as shrubs, grasslands, and wetlands interspersed with lakes.

The campus's diverse vegetation, host plants, food plants, and nectar-rich flowers support a rich variety of reptiles, birds, mammals, insects, and, notably, many vibrant moth and butterfly species. Study sites included urban habitat areas, hilly terrains, lakes, wetlands, and specific locations such as the guest house, administrative block, and serpentine lake. The relatively undisturbed and tranquil environment of residential and non-residential areas further contributes to butterfly richness. Detailed descriptions of the selected study sites are provided in Table 1 and Image 1.

Survey Method

The study was conducted across various sites at IIT from September 2019 to March 2022 using the Pollard Walk method. Surveys were performed twice yearly at each site, between 0900 h and 1700 h on sunny days. Observers walked fixed transects, recording butterflies within 3–5 m. Unidentified butterflies were caught, identified using field methods and references,

Table 1. Types of habitats present in different study sites of IIT campus of Guwahati, Assam.

Study site	Name of the study site	Habitats
1	Site 1	D type and its adjoining area
2	Site 2	New E type
3	Site 3	Old E type
4	Site 4	F type and its adjoining area
5	Site 5	Old and new guest house site
6	Site 6	Manas hostel site
7	Site 7	Hill top
8	Site 8	Serpentine lake and its adjoining area
9	Site 9	Transit camp site
10	Site 10	Admin site and its adjoining area

and released (Yasmin et al. 2023). Identification was primarily done on-site, with photographs used for challenging cases. Data on date, location, and weather were recorded. The best time for observation and photography was early mornings, especially after rain showers, when flowering plants and nectar sources attracted the highest butterfly activity.

The identifications were done with the help of Evans (1932), and Kehimkar (2008). The WPA, 1972 status of butterflies was obtained from the database available at https://vindhyaabachao.org/wildlife_guidelines/schedule_species_insects.pdf

Relative abundance is calculated by the formula:

$$\text{Species relative abundance} = \frac{\text{Species abundance}}{\text{Total abundance}} \times 100$$

RESULTS

During the survey period from September 2019 to March 2022, a total of 82 species with a total of 1,378 individuals of butterfly belonging to six families and 57 different genera were recorded from different sites of IIT, Guwahati campus. Checklist of butterfly species and their abundance in different study sites are shown in Table 2. The study analyzed the composition of butterfly families over four years (2019–2022). Nymphalidae

emerged as the most dominant family, with the highest species count and abundance each year, followed by Papilionidae, Lycaenidae, Pieridae, Hesperiidae, and Riodinidae. Each family displayed variations in the number of genera, species, and individuals annually, with the details summarized in Table 3 and Figure 1. Overall, Nymphalidae consistently led in diversity and population.

The majority of butterfly species were observed on the old E-type site and the D-type site with its adjoining areas, which are rich in flowering plants, host plants, and nectar-collecting wildflowers. In 2019, out of 77 species, 19 were recorded at the old E-type site, while 14 were found at the D-type site and nearby areas. In 2020, out of 83 species, both sites recorded 17 species each. Similarly, in 2021 and 2022, out of 79 and 71 species respectively, 20 and 15 species were found at the old E-type site, while 14 and 16 species were recorded at the D-type site and its surroundings (Table 4). Figure 2 illustrates butterfly abundance over four years, showing that 2020 had the highest number of genera and species, followed by 2021.

Table 5 presents the relative abundance of butterfly species, while Table 6 and Figure 3 highlight the relative abundance of different families. The study found that in 2019, *Junonia atlites* had the highest relative abundance (3%), whereas *Telicota linna* had the lowest (0.09%). In 2020, 2021, and 2022, *Papilio polytes* recorded the highest relative abundance at 2.25%, 2.72%, and 3.35%, respectively. Conversely, *Rapala tara*, *Sarangesa desahara*, and *Abisara neophron* had the lowest relative abundance (0.15%) in 2020, while *Appias galba* (0.18%) and *Orsotriaena medus* (0.12%) showed the lowest relative abundance in 2021 and 2022, respectively. Across all four years, the family Nymphalidae consistently exhibited the highest relative abundance, while Riodinidae had the lowest (Figure 2).

During this survey, 15 butterfly species with protected status under the Schedule II (Part H with serial numbers) of The Wild Life (Protection) Amendment Act, 2022, were recorded. These include *Papilio slateri*, *Graphium sarpedon sarpedon*, *Graphium eurypylus*, *Graphium aristaeus anticrates*, *Cepora nadina nadina*, *Artipe eryx*, *Poritia hewitsoni*, *Spindasis lohita*, *Neptis magadha khasiana*, *Tanaecia lepidea*, *Charaxes bernardus*, *Melanitis zitenius*, *Ragadia crisilda*, *Parthenos sylvia gambrisius* and *Lethe insana* (Table 2).

Image 1. Different study sites of IIT Campus, Guwahati, Assam, India.

Table 2. Checklist of butterfly species and their abundance in different study areas.

	Common name	Scientific Name	Year				Site	Status	Conservation status, 2022	
			2019	2020	2021	2022				
Family: Papilionidae										
1	Common Mormon	<i>Papilio polytes</i>	4+	4+	4+	3+	Site 3, site 7, site 9	Very common		
2	Great Mormon	<i>Papilio memnon agenor</i>	3+	4+	4+	3+	All sites	Common		
3	Common lime	<i>Papilio demoleus</i>	3+	3+	2+	2+	Site 1 site 2, site 5	Very common		
4	Common mime	<i>Papilio clytia clytia</i>	3+	4+	4+	3+	Site 1, site 3, site 6, site 10	Common		
5	Blue-striped Mime	<i>Papilio slateri</i>	–	3+	3+	2+	Site 2, site 7	Not rare	Schedule II (Part H; No. 250)	
6	Red Helen	<i>Papilio helenus</i>	2+	3+	3+	+	Site 1, site 8	Not rare		
7	Yellow Helen	<i>Papilio nephelus</i>	4+	4+	4+	3+	Site 3, site 4, site 8,	Not rare		
8	Common Bluebottle	<i>Graphium sarpedon sarpedon</i>	+	+	2+	+	Site 6, site 10	Common	Schedule II (Part H; No. 255)	
9	Fivebar Swordtail	<i>Graphium antiphates pompilius</i>	+	2+	3+	3+	Site 4, Site5	Not rare		
10	Fourbar Swordtail	<i>Graphium agetes aestes</i>	+	2+	–	–	Site 1, Site 7	Rare		
11	Common Jay	<i>Graphium doson</i>	2+	4+	3+	2+	Site 1, site 2, site 3	Not rare		
12	Great Jay	<i>Graphium eurypylus cheronus</i>	2+	3+	2+	–	Site 1, site 3	Not rare	Schedule II (Part H; No. 264)	
13	Great Zebra	<i>Graphium xenocles xenocles</i>	2+	2+	1+	1+	site 2, site 6	Not rare		
14	Chain Swordtail	<i>Graphium aristaeus anticrates</i>	2+	3+	2+	–	Site 5, site 6	Not rare	Schedule II (Part H; No. 252)	
15	Common Rose	<i>Atrophaneura aristolochiae</i>	+	2+	+	+	Site 3, Site 7	Rare		
16	Common Birdwing	<i>Troides Helena cerberus</i>	2+	3+	3+	2+	Site 1, site 3	Not rare		
17	White Dragontail	<i>Lamproptera curius curius</i>	3+	3+	2+	2+	Site 5, site 6	Not rare		
18	Great Windmill	<i>Byasa dasarada dasarada</i>	2+	3+	2+	2+	Site 2, site 3	Not rare		
19	Common Banded Awl	<i>Hasora chromus</i>	3+	4+	3+	2+	Site 1, site 7	Common		
20	Yellow Gorgon	<i>Meandrusa payeni evan</i>	3+	3+	2+	2+	Site 3, Site 5	Not rare		
Family: Pieridae										
1	Common grass yellow	<i>Eurema hacabe</i>	3+	4+	3+	2+	Site 3, site 7, site 10	Very common		
2	Great orangetip	<i>Hebomoia glaucippe</i>	3+	3+	2+	2+	Site 1, site 3	Common		
3	Common Emigrant	<i>Catopsilia Pomona</i>	3+	4+	3+	3+	Site 7, site 9	Very common		
4	Mottled emigrant	<i>Catopsilia pyranthe</i>	2+	3+	2+	2+	Site 3, site 7	Very common		
5	Orange Albatross	<i>Appias galba</i>	+	+	+	–	Site 4	Rare		
6	Striped Albatross	<i>Appias olferna</i>	2+	2+	+	2+	Site 4	Common		
7	Spot Puffin	<i>Appias lalage</i>	2+	+	–	+	site 3, Site 5	Not rare		
8	Lesser Gull	<i>Cepora nadina nadina</i>	2+	3+	3+	2+	Site 1, Site 3	Not rare	Schedule II (Part H; No. 286)	
9	Redspot Jezebel	<i>Delias descombesi</i>	3+	4+	4+	3+	Site 1, site 5, site 7	Common		
Family: Lycaenidae										
1	Lesser grass blue	<i>Zizina otis</i>	3+	4+	3+	3+	Site 3, Site 5, site 10	Not rare		
2	Forget me not	<i>Catochrysops strabo</i>	3+	4+	3+	2+	Site 2, site 6, site 8	Common		
3	Zebra blue	<i>Leptotes plinius</i>	3+	3+	2+	2+	Site 1 site 3	Common		
4	Yamfly	<i>Loxura atymnus</i>	2+	2+	2+	+	Site 1, site 3	Not rare		
5	Assam Flash	<i>Rapala tara</i>	–	+	2+	2+	Site 5	Rare		

	Common name	Scientific Name	Year				Site	Status	Conservation status, 2022
			2019	2020	2021	2022			
6	Green Flash	<i>Artipe eryx</i>	2+	2+	+	+	Site 7, site 8	Not rare	Schedule II (Part H, No. 39)
7	Dingy Lineblue	<i>Petrelaea dana</i>	3+	2+	2+	+	Site 4, site 5	Common	
8	Common Tit	<i>Hypolycaena erythrus himavantus</i>	2+	+	+	-	Site 6	Common	
9	Common Gem	<i>Poritia hewitsoni</i>	2+	3+	2+	-	Site 1, site 9	Not rare	Schedule II (Part H, No. 23)
10	Common Lineblue	<i>Prosotas nora nora</i>	4+	4+	3+	2+	site 3, Site 7	common	
11	Long-banded Silverline	<i>Spindasis lohita</i>	3+	3+	2+	3+	Site 2, Site 3	Not rare	Schedule II (Part H, No. 53)
Family: Nymphalidae									
1	Leopard lacewing	<i>Cethosia cyane</i>	3+	2+	2+	+	Site 6, site 7	Not rare	
2	Peacock pansy	<i>Junonia almana</i>	+	2+	+	-	Site 1, site 3	Not rare	
3	Lemon pansy	<i>Junonia lemonias</i>	4+	3+	2+	2+	Site 5, site 8, site 10	Very common	
4	Grey pansy	<i>Junonia atlites</i>	4+	3+	3+	3+	Site 2, site 10	Very common	
5	Yellow pansy	<i>Junonia hirta</i>	3+	4+	3+	2+	Site 7, site 5	Common	
6	Chocolate Soldier	<i>Junonia iphita</i>	2+	3+	2+	2+	Site 3, site 6	Common	
7	Great eggfly	<i>Hypolimnas bolina</i>	3+	3+	3+	2+	Site 1, site 3, site 7	Very common	
8	Plain Tiger	<i>Danaus chrysippus</i>	3+	3+	2+	2+	Site 5, site 9	Common	
9	Common four ring	<i>Ypthima huebneri</i>	3+	4+	4+	3+	Site 3, site 6	Common	
10	Common fivering	<i>Ypthima baldus</i>	2+	2+	-	+	Site 6	Common	
11	Common palmfly	<i>Elymnias hypermnestra</i>	-	+	+	-	Site 5	Rare	
12	Common Bushbrown	<i>Mycalesis persius</i>	4+	4+	3+	3+	Site 1, site 10	Very common	
13	Blue tiger	<i>Tirumala limniace</i>	3+	3+	2+	2+	Site 3, site 5	Common	
14	Dark Blue Tiger	<i>Tirumala septentrionis</i>	-	+	2+	+	Site 2, site 4	Not rare	
15	Medus Brown	<i>Orsotriaena medus</i>	2+	+	+	+	Site 1, site 7	Rare	
16	Common Indian crow	<i>Euploea core</i>	4+	3+	2+	2+	Site 5, Site 9	Common	
17	Common sailor	<i>Neptis hylas astola</i>	3+	2+	3+	2+	Site 1, site 3, Site 10	Common	
18	Spotted Sailor	<i>Neptis magadha khasiana</i>	+	2+	+	2+	Site 3, site 5	Rare	Schedule II (Part H; No. 216)
19	Grey count	<i>Tanaecia lepidea</i>	2+	4+	3+	3+	Site 1, site 4	Common	Schedule II (Part H; No. 165)
20	Plain Earl	<i>Tanaecia jahnu</i>	+	2+	+	+	Site 3, Site 6	Rare	
21	Colour sergeant female	<i>Athyma nefte</i>	3+	2+	+	2+	Site 5, site 6	Rare	
22	Tawny Rajah	<i>Charaxes bernardus</i>	2+	4+	3+	3+	Site 7, site 10	Common	Schedule II (Part H; No. 223)
23	Tawny coster	<i>Acraea terpsicore</i>	2+	4+	3+	2+	Site 3, site 5	Common	
24	Common Evening Brown	<i>Melanitis leda</i>	3+	2+	2+	+	Site 6, site 10	Common	
25	Great Evening Brown	<i>Melanitis zitenius</i>	+	2+	2+	2+	Site 1, site 3	Rare	Schedule II (Part H; No. 160)
26	Plain Tiger	<i>Danaus chrysippus</i>	3+	3+	2+	+	Site 3, Site 8	Very common	
27	Glassy Tiger	<i>Parantica aglea</i>	+	2+	4+	2+	Site 3, site 7	Common	
28	Vagrant	<i>Vagrana egista</i>	2+	+	-	2+	Site 6	Not rare	
29	Common Sergeant	<i>Athyma perius</i>	2+	3+	2+	2+	Site 8	Common	
30	Striped Ringlet	<i>Ragadia crisilda</i>	-	2+	2+	2+	Site 2, site 6	Not rare	Schedule II (Part H; No. 218)
31	Clipper	<i>Parthenos sylvia gambrisius</i>	2+	2+	+	-	Site 2, Site 5	Rare	Schedule II (Part H; No. 135)
32	Common Forester	<i>Lethe insana</i>	3+	+	+	-	Site 1, site 5, site 7	Not rare	Schedule II (Part H; No. 141)

	Common name	Scientific Name	Year				Site	Status	Conservation status, 2022
			2019	2020	2021	2022			
33	Great Nawab	<i>Polyura eudamippus eudamippus</i>	+	2+	+	2+	site 1, Site 3	Rare	
34	Rustic	<i>Cupha erymanthis lotis</i>	2+	3+	3+	2+	Site 6	Not rare	
Family: Hesperiidae									
1	Common small flat	<i>Sarangesa desahara</i>	-	+	2+	+	Site 2, site 5	rare	
2	Common snow flat	<i>Tagiades japerus atticus</i>	4+	4+	3+	2+	Site 3, site 10	Common	
3	Paint Brush Swift	<i>Baoris farri</i>	3+	3+	2+	2+	Site 1, Site 7	common	
4	Great Swift	<i>Pelopidas assamensis</i>	+	2+	+	-	Site 3, site 4	Not rare	
5	Linna Palm Dart	<i>Telicota linna</i>	+	2+	2+	-	Site 3, site 7	Common	
Family: Riodinidae									
1	Punchinello	<i>Zemeros fleygas indicus</i>	3+	4+	3+	2+	Site 3, site 10	Common	
2	Double Banded Judy	<i>Abisara bifasciata</i>	3+	2+	2+	2+	Site 1, site 3	Not rare	
3	Tailed Judy	<i>Abisara neophron</i>	2+	+	+	-	Site 2, site 10	Not rare	

N.B. On the basis of abundance, Butterfly species were included under classes: 4+ (highly abundant, more than 25 sightings), 3+ (moderately abundant, 16–25 sightings), 2+ (abundant, 6–15 sighting); +(present, 1–5 sighting), -(absent).

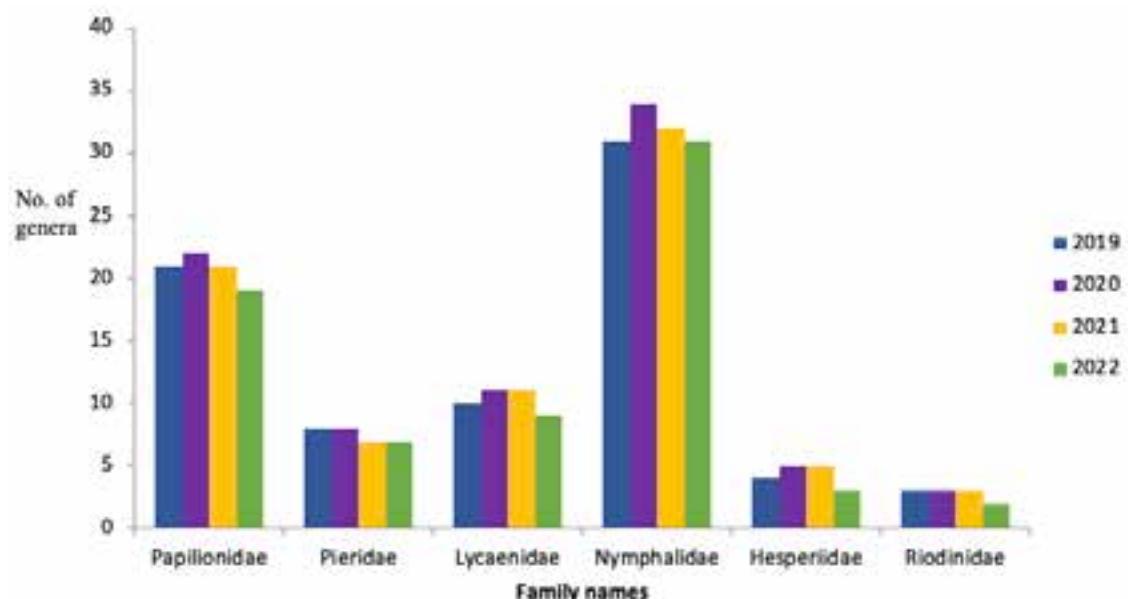


Figure 1. Bar diagram showing the number of genera of different butterfly families in four successive years.

DISCUSSION

During the survey, a total of 82 species with about 1,378 individuals of butterfly belonging to six families (Papilionidae, Pieridae, Lycaenidae, Nymphalidae, Hesperiidae and Riodinidae) and 57 different genera were recorded in the study area.

Similar studies were reported by Gogoi et al. (2023) in Soraipung Range of Dehing Patkai National Park where

they recorded a total of 92 butterfly species from five families, among which 13 species were classified as protected under different schedules of the Indian Wildlife (Protection) Act, 1972 but according to Wild Life (Protection) Amendment Act, 2022, nine species among the list of 13 species are now classified as protected under Schedule I and II.

In the present investigation, a maximum number of butterflies were recorded in the year 2020 (57 genera

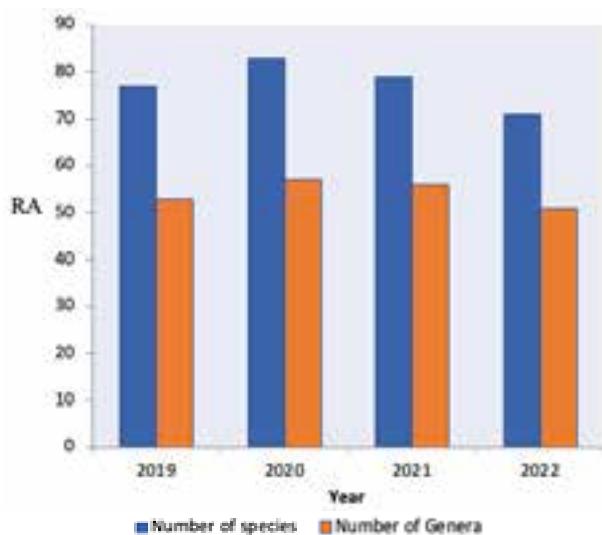


Figure 2. Bar diagram showing abundance of butterflies in four successive years across the study area.

and 63 species) and 2021 (56 genera and 79 species). This might have happened because of less human interference, disturbances and environmental pollution occurred due to COVID-19 pandemic during the year 2020

and 2021. Comparatively, a lower number of butterflies were documented in the year 2022 (51 genera and 71 species) and 2019 (53 genera and 77 species). Lower number of butterflies in 2019 may be due to restoration of day-to-day human activities in these areas.

In the present study, Nymphalidae family had the highest number and percentage of species of butterflies in all four years of study period compared with the other families. The result of the present survey is in close consortium with the findings of Ali & Basistha (2000). They documented 72 identified species of butterflies belonging to five families with the highest number of species of the Nymphalidae family from Assam State Zoo-cum-Botanical Garden, Guwahati, Assam. Furthermore, the survey of Bohra & Purkayastha (2021) of the urban landscape, of Guwahati, Assam, India, listed 249 species of butterflies belonging to six families. The Nymphalidae family was represented as dominant during the survey period. Adaptation and proper landscape management could be the reason for the high diversity of the family Nymphalidae. Another reason for the rich diversity of the family Nymphalidae might be due to their strong active flying capability and their polyphagous nature

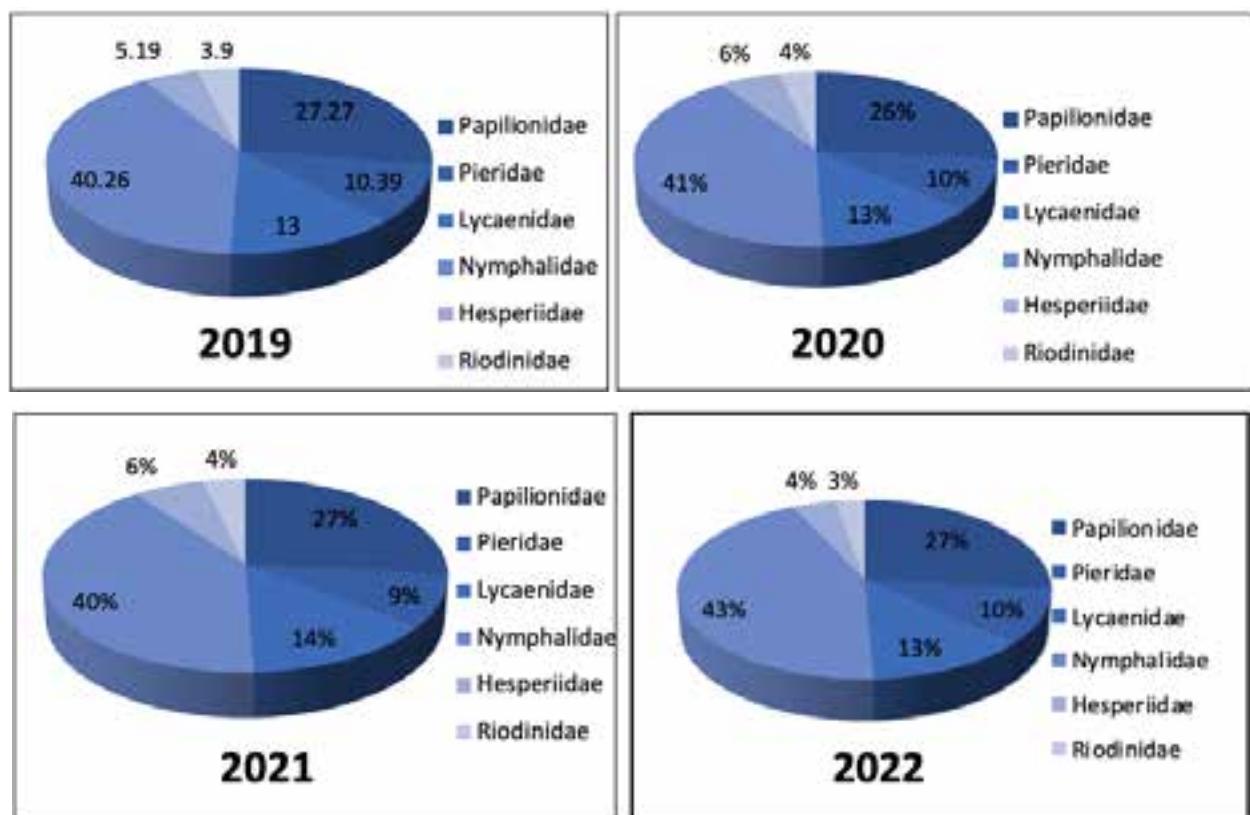


Figure 3. Pie chart showing the relative abundance of six butterfly families in different years.

Table 3. Number of genera and species of five families of butterfly.

Family	Year															
	2019				2020				2021				2022			
	No. of Genera	%	No. of Species	%	No. of Genera	%	No. of Species	%	No. of Genera	%	No. of Species	%	No. of genera	%	No. of Species	%
Papilionidae	9	16.98	21	27.27	9	15.79	22	26.51	9	16.07	21	26.58	9	17.65	19	26.76
Pieridae	6	11.32	8	10.39	6	10.53	8	9.64	6	10.71	7	8.86	6	11.76	7	9.86
Lycaenidae	10	18.87	10	12.99	11	19.30	11	13.25	11	19.64	11	13.92	9	17.64	9	12.68
Nymphalidae	22	41.51	31	40.26	24	42.11	34	40.96	23	41.07	32	40.51	22	43.14	31	43.66
Hesperiidae	4	7.55	4	5.19	5	8.77	5	6.02	5	8.93	5	6.33	3	5.88	3	4.23
Riodinidae	2	3.77	3	3.90	2	3.51	3	3.61	2	3.57	3	3.80	2	3.92	2	2.82
	Total = 53		Total = 77		Total = 57		Total = 81		Total = 56		Total = 79		Total = 51		Total = 71	

Table 4. Number of butterfly species in different sites of study area.

Sites	Name of the site	2019	2020	2021	2022
Site 1	D-type and its adjoining area	14	17	14	16
Site 2	New E-type	7	5	2	1
Site 3	Old E-type	19	17	20	15
Site 4	F type and its adjoining area	8	12	15	12
Site 5	Old and new guest house	1	2	3	1
Site 6	Manas hostel site	9	11	8	5
Site 7	Hill top	11	13	9	7
Site 8	Serpentine lake and its adjoining area	4	2	3	5
Site 9	Transit camp site	2	1	1	3
Site 10	Admin site and its adjoining area	2	3	4	6

which facilitates them to cover large areas and utilize a variety of host plants (Eswaran & Pramod 2005; Janz 2005; Padhye et al. 2006).

Faunal diversity is dependent upon the habitat types, food resources and food quality. The diversity and distribution of butterfly species are also influenced by sufficient larval and adult plant resources (Ramesh et al. 2010). In the present study, the highest relative abundances of different species of butterfly family were found in old E-type and hill top sites. Even though the old E-type site is an urbanized area and has human interference, the residents of this area have transformed the environment of the place in such a way that it has become an attractive and favourable place for butterflies. In agreement with the result of the present study, different earlier studies have shown that butterfly diversity in disturbed habitats is more than in

undisturbed areas (Spitzer et al. 1993; Hamer et al. 1997). Hill top is the least disturbed area and the occurrence of sufficient host plants make it more favourable for butterflies. *Junonia atlites* was found to have the highest relative abundance in 2019 and in the years 2020, 2021 and 2022. *Papilio polytes* showed highest relative abundance. Both *Junonia atlites* and *Papilio polytes* are common and most frequently observed butterflies and this may happen due to their adaptation power and the presence of a large number of host plants.

Adult butterflies generally prefer forest areas with medium altitude and larvae prefer ecotones with an abundance of food plants with large leaves (Piccini et al. 2022). Therefore, to conserve this beautiful creation or Nature's jewels, the suitable environment for the butterflies should be maintained as well as enhanced. Therefore, to restore growth of butterfly population, enough plantation should be carried out in and around the IIT Guwahati campus area. Prevention of human interventions and disturbances and also deforestation for the purpose of clearing land for buildings in the hilly areas and lake sides, by the management, will be a huge step towards the conservation of these amazing insects.

The findings of this study suggest that despite ongoing urbanization within the IIT Guwahati campus in Assam, the area still supports a thriving diversity of butterflies. During the study period, a total of 82 butterfly species, comprising 1,378 individuals from six families and 57 genera, were documented. Among these families, Nymphalidae exhibited the highest species count and percentage, followed by Papilionidae, Lycaenidae, Pieridae, Hesperiidae, and Riodinidae, in descending order of abundance (Nymphalidae > Papilionidae > Lycaenidae > Pieridae > Hesperiidae > Riodinidae).

Table 5. Numerical abundance and relative abundance (RA) of individual butterflies across the study area.

	Common name	Family	2019		2020		2021		2022	
			No.	RA (%)						
1	Common Mormon	Papilionidae	27	2.45	31	2.25	30	2.72	28	3.35
2	Great Mormon		24	2.18	28	2.03	26	2.36	23	2.75
3	Common lime		19	1.73	21	1.52	15	1.36	13	1.55
4	Common mime		22	2	29	2.1	27	2.45	24	2.89
5	Blue-striped Mime		-	-	18	1.31	16	1.45	13	1.55
6	Red Helen		7	0.64	16	1.16	17	1.54	5	0.6
7	Yellow Helen		27	2.45	29	2.1	28	2.54	23	2.75
8	Common Bluebottle		2	0.18	5	0.36	7	0.64	2	0.24
9	Fivebar Swordtail		5	0.45	9	0.65	16	1.45	19	2.27
10	Fourbar Swordtail		3	0.27	7	0.51	-	-	-	-
11	Common Jay		14	1.27	26	1.89	23	2.09	16	1.91
12	Great Jay		9	0.82	18	1.31	11	1	-	-
13	Great Zebra		11	1	15	1.09	12	1.09	9	1.08
14	Chain Swordtail		7	0.64	15	1.09	6	0.54	-	-
15	Common Rose		3	0.27	9	0.65	5	0.45	3	0.36
16	Common Birdwing		12	1.09	17	1.23	19	1.72	15	1.8
17	White Dragontail		17	1.55	20	1.45	14	1.27	12	1.43
18	Great Windmill		8	0.73	18	1.31	10	0.91	11	1.31
19	Common Banded Awl		21	1.91	27	1.96	24	2.18	13	1.55
20	Yellow Gorgon		21	1.91	19	1.38	13	1.18	10	1.19
21	Common grass yellow	Pieridae	21	1.91	29	2.1	26	2.36	15	1.8
22	Great orangetip		19	1.73	21	1.52	15	1.36	11	1.31
23	Common Emigrant		25	2.27	27	1.96	23	2.09	22	2.63
24	Mottled emigrant		13	1.18	18	1.31	15	1.36	14	1.67
25	Orange Albatross		8	0.73	5	0.36	2	0.18	-	-
26	Striped Albatross		12	1.09	13	0.94	11	1	14	1.67
27	Spot Puffin		6	0.55	4	0.29	-	-	2	0.24
28	Lesser Gull		11	1	16	1.16	17	1.54	12	1.43
29	Redspot Jezebel		19	1.72	26	1.89	29	2.63	21	2.51
30	Lesser grass blue	Lycaenidae	24	2.18	28	2.03	24	2.18	20	2.39
31	Forget me not		25	2.27	31	2.25	21	1.91	14	1.67
32	Zebra blue		17	1.55	22	1.6	11	1	9	1.08
33	Yamfly		5	0.45	7	0.51	4	0.36	3	0.36
34	Assam Flash		-	-	2	0.15	7	0.64	5	0.6
35	Green Flash		8	0.73	5	0.36	3	0.27	2	0.24
36	Dingy Lineblue		17	1.55	13	0.94	12	1.09	5	0.6
37	Common Tit		7	0.64	4	0.29	4	0.36	3	0.36
38	Common Gem		8	0.73	16	1.16	6	0.54	-	-
39	Common Lineblue		27	2.45	30	2.18	25	2.27	14	1.67
40	Long-banded Silverline		17	1.55	23	1.67	13	1.18	27	3.23

	Common name	Family	2019		2020		2021		2022	
			No.	RA (%)						
41	Leopard lacewing	Nymphalidae	21	1.91	15	1.09	10	0.91	5	0.6
42	Peacock pancy		3	0.27	8	0.58	4	0.36	-	-
43	Lemon pancy		29	2.64	22	1.6	14	1.27	9	1.08
44	Grey pancy		33	3	25	1.81	25	2.27	24	2.87
45	Yellow pansy		24	2.18	30	2.18	21	1.91	15	1.79
46	Chocolate Soldier		8	0.73	19	1.38	16	1.45	14	1.67
47	Great eggfly		16	1.45	22	1.6	19	1.72	14	1.67
48	Danaid eggfly		16	1.45	18	1.31	11	1	8	0.96
49	Common fouring		23	2.09	28	2.03	28	2.54	25	2.99
50	Common fivering		7	0.64	6	0.44	-	-	2	0.24
51	Blue striped palmfly		-	-	5	0.36	3	0.27	-	-
52	Common Bushbrown		27	2.45	31	2.25	29	2.63	23	2.75
53	Blue tiger		20	1.82	24	1.74	13	1.18	14	1.67
54	Dark Blue Tiger		-	-	3	0.22	8	0.73	5	0.6
55	Pointed Palmfly		9	0.82	7	0.51	3	0.27	1	0.12
56	Common Indian crow		27	2.45	21	1.52	13	1.18	14	1.67
57	Common sailor		20	1.82	14	1.02	19	1.72	12	1.43
58	Spotted Sailor		5	0.45	11	0.79	4	0.36	9	1.08
59	Grey count		13	1.18	27	1.96	22	2	19	2.27
60	Plain Earl		2	0.18	6	0.44	3	0.27	3	0.36
61	Perak Lascar		23	2.09	12	0.87	5	0.45	11	1.31
62	Tawny Rajah		13	1.18	28	2.03	20	1.81	14	1.67
63	Tawny coster		15	1.36	29	2.10	25	2.27	15	1.79
64	Common EveningBrown		21	1.91	9	0.65	10	0.91	4	0.48
65	Great EveningBrown		2	0.18	11	0.79	8	0.73	6	0.72
66	Plain Tiger		18	1.64	17	1.23	9	0.82	5	0.6
67	Glassy Tiger		5	0.45	14	1.02	27	2.45	13	1.55
68	Vagrant		7	0.64	3	0.22	-	-	9	1.08
69	Common Sergeant		13	1.18	24	1.74	14	1.27	12	1.43
70	Striped Ringlet		-	-	6	0.44	10	0.91	8	0.96
71	Clipper		11	1	8	0.58	4	0.36	-	-
72	Common Forester		14	1.27	23	1.67	9	0.82	4	0.48
73	Great Nawab		2	0.18	8	0.58	5	0.45	9	1.08
74	Rustic		12	1.09	21	1.52	19	1.72	13	1.55
75	Common small flat	Hesperiidae	-	-	2	0.15	7	0.64	4	0.48
76	Common snow flat		26	2.36	27	1.96	23	2.09	15	1.79
77	Paint Brush Swift		20	1.82	18	1.31	8	0.73	7	0.84
78	Great Swift		3	0.27	9	0.65	4	0.36	-	-
79	Linna Palm Dart		1	0.09	6	0.44	3	0.27	-	-
80	Punchinello	Riodinidae	21	1.91	30	2.18	22	2	19	2.27
81	Plum Judy		17	1.55	12	0.87	13	1.18	9	1.08
82	Tailed Judy		8	0.73	2	0.15	3	0.27	-	-

Papilio polytes Common Mormon*Papilio clytia clytia* Common Mime*Papilio demoleus* Common Lime*Eurema hecabe* Common Grass Yellow*Hebomia glaucippe* Great Orange Tip*Tagiades jocelini otticus* Common Snow Flat*Catopsilia pomona* Common Emigrant*Catopsilia pyranthe* Mottled Emigrant*Pieris canidia* Indian Cabbage White*Appias olferna* Striped Albatross*Zemeros flegyas indicus* Punchinello*Zizina otis* Lesser Glass Blue**Image 2. Photographs of some of the species of butterfly observed in the IIT Guwahati campus.**

Celastrina strabon Forget-me-not*Leptotes plinius* Zebra Blue*Cethosia cyane* Leopard Lacewing*Junonia almana* Peacock Pancy*Junonia lemonias* Lemon Pancy*Junonia oenone* Grey Pancy*Hypolimnas bolina* Great Eggfly*Danaus chrysippus* Plain Tiger*Ypthima huebneri* Common Four ring*Ypthima baldus* Common Five-ring*Elymnias hypermnestra* Common Palmfly*Mycalesis perseus* Common Bushbrown*Appias galba* Orange Albatross

Image 2 cont.. Photographs of some of the species of butterfly observed in the IIT Guwahati campus.

Tirumala limniace Blue Tiger

Euploea core Common Crow

Neptis hylas Common Sailor

Seringesadesahera Common Small Flat

Tanaecia lepidea Grey Count

Athyma nefte Colour Sergeant female

Acraea terpsicore Tawny Castor

Ariadne ariadne Angled Castor

Neptis onoto Yellow Sailor

Cupha erymanthisiota Rustic

Polyura eudamippus The Great Nawab

Charaxes bernardus Tawny Rajah

Image 2 cont.. Photographs of some of the species of butterfly observed in the IIT Guwahati campus.

© All the photographs are credited by Dr. Uma Dutta except *Neptis hylas* Common Sailor, *Tirumala limniace* Blue Tiger and *Junonia almana* Peacock Pancy, which are taken by Sonali Dey.

REFERENCES

Ali, I. & S.K. Basistha (2000). Butterfly diversity of Assam State Zoo-Cum-Botanical Garden. *Zoos' Print Journal* 15(5): 264–265. <https://doi.org/10.11609/JoTT.ZPJ.15.5.264-5>

Betrus, C.J., E. Fleishman & R.B. Blair (2005). Cross-taxonomic potential and spatial transferability of an umbrella species index. *Journal of Environmental Management* 74(1): 79–87. <https://doi.org/10.1016/j.jenvman.2004.08.010>

Bhuyan M., P.R. Bhattacharyya & P.B. Kanjilal (2005). Butterflies of the Regional Research Laboratory Campus, Jorhat, Assam. *Zoo's Print Journal* 20(6): 1910–1911. <https://doi.org/10.11609/JoTT.ZPJ.1010.1910-1>

Bohra, S.C. & J. Purkayastha (2021). An insight into the butterfly (Lepidoptera) diversity of an urban landscape: Guwahati, Assam, India. *Journal of Threatened Taxa* 13(2): 17741–17752. <https://doi.org/10.11609/jott.6122.13.2.17741-17752>

Bora, A. & L.R. Meitei (2014). Diversity of butterflies (Order: Lepidoptera) in Assam University campus and its vicinity, Cachar District, Assam, India. *Journal of Biodiversity and Environmental Sciences* 5(3): 328–339.

Borah, A. & G.N. Das (2017). Butterflies (Lepidoptera) of Dangori Reserve Forest, Upper Assam, India. *Zoo's Print* 32(11): 12–23.

Das, G.N., Z.F. Fric, S. Panthee, J.S. Irungbam & M. Konicka (2023). Geography of Indian Butterflies: patterns revealed by checklists of federal states. *Insects* 14(6): 549. <https://doi.org/10.3390/insects14060549>

Eswaran, R. & P. Pramod (2005). Structure of butterfly community of Anaikatty Hills, Western Ghats. *Zoos' Print Journal* 20(8): 1939–1942. <https://doi.org/10.11609/JoTT.ZPJ.1330.1939-42>

Evans, W.H. (1932). The identification of Indian Butterflies. *Journal of the Bombay Natural History Society* 31: 49–83.

Gogoi, M.J. (2013). Notes on some skipper butterflies (Lepidoptera: Hesperiidae) from Panbari Forest and its adjoining areas, Kaziranga-Karbi Anglong, upper Assam, India. *Journal of Threatened Taxa* 5(13): 4759–4768. <https://doi.org/10.11609/JoTT.o3340.4759-68>

Gogoi, R., A. Chetry & A. Bhuyan (2023). Diversity and species richness of butterfly in soraipung range of Dehing Patkai National Park, Assam, India. *The Journal of Basic and Applied Zoology* 84(1): 6. <https://doi.org/10.1186/s41936-023-00327-9>

Hamer, K.C., J.K. Hill, L.A. Lace & A.M. Langan (1997). Ecological and biogeographical effects of forest disturbance on tropical butterflies of Sumba, Indonesia. *Journal of Biogeography* 24(1): 67–75. <https://doi.org/10.1111/j.1365-2699.1997.tb00051.x>

Janz, N. (2005). The relationship between habitat selection and preference for adult and larval food resources in the polyphagous butterfly. *Journal of Insect Behavior* 18(6): 767–780. <https://doi.org/10.1007/s10905-005-8739-z>

Kehimkar, I.D. (2008). *The Book of Indian Butterflies*. Oxford University Press, 497 pp.

Menken, S.B., J.J. Boomsma & E.J. van Nieukerken (2010). Large - scale evolutionary patterns of host plant association in the Lepidoptera. *Evolution, International Journal of Organic Evolution* 64(4): 1098–1119. <https://doi.org/10.1111/j.1558-5646.2009.00889.x>

Nally, R.M. & E. Fleishman (2004). A successful predictive model of species richness based on indicator species. *Conservation Biology* 18(3): 646–654. https://doi.org/10.1111/j.1523-1739.2004.00328_18_3.x

Padhye, A.D., N. Dahanukar, M. Paingankar, M. Deshpande & D. Deshpande (2006). Season and landscape wise distribution of butterflies in Tamhini, northern, Western Ghats, India. *Zoos' Print Journal* 21(3): 2175–2181. <https://doi.org/10.11609/JoTT.ZPJ.1142.2175-81>

Piccini, I., M. Pittarello, V. Di Pietro, M. Lonati & S. Bonelli (2022). New approach for butterfly conservation through local field-based vegetational and entomological data. *Ecosphere* 13(4): e4026. <https://doi.org/10.1002/ecs2.4026>

Pollard, E. & T.J. Yates (1993). *Monitoring Butterflies for Ecology and Conservation*. Chapman & Hall, London, 273 pp.

Ramesh, T., K.J. Hussain, M. Selvanayagam, K.K. Satpathy & M.V.R. Prasad (2010). Patterns of diversity, abundance and habitat associations of butterfly communities in heterogenous landscapes of the Department of Atomic Energy (DAE) campus at Kalpakkam, south India. *International Journal of Biodiversity and Conservation* 2(4): 75–85.

Saikia, M.K., J. Kalita & P.K. Saikia (2015). New records of butterflies and authentication of several species of butterflies existence in Assam. *Journal on New Biological Reports* 4(2): 180–196.

Spitzer, K., V. Novotny, M. Tonner & J. Leps (1993). Habitat preferences, distribution and seasonality of the butterflies (Lepidoptera, Papilionoidea) in a montane tropical rain forest, Vietnam. *Journal of Biogeography* 20(1): 109–121. <https://doi.org/10.2307/2845744>

Yasmin, R., A. Das, L.J. Rozario & M.E. Islam (2023). Butterfly detection and classification techniques: A review. *Intelligent Systems with Applications* 18: 200214. <https://doi.org/10.1016/j.iswa.2023.200214>

Sphaeroma taborans sp. nov., a new species of wood-boring isopod
(Crustacea: Isopoda: Sphaeromatidae) from Munroe Island, Ashtamudi
Estuary, Kerala, India

M.S. Arya¹ , A. Biju² & Dani Benchamin³

¹⁻³ Zoology Research Centre, St. Stephen's College, Pathanapuram, Kollam District, University of Kerala 689695, India.

¹aryamadhussc@gmail.com (corresponding author), ²bijuanio75@gmail.com, ³danibencharmin93@gmail.com

Abstract: *Sphaeroma taborans* sp. nov. is described from Munroe Island, part of Ashtamudi Estuary, Kerala, India. This wood-boring species can be distinguished from all other congeners by its dorsal surface with three longitudinal bands between eyes, a prominent blackish tubercle on the anterior band, and scattered weak tubercles. Epistome subtriangular and nontruncated. Pleon and pleotelson bearing appressed hair layers. Pleotelsonic dorsal surface with six stout tubercles in a transverse row near the anterior followed by three pairs of median prominent blunt tubercles. Apex curved triangle, slightly curved upwards. Uropodal exopod with 4–5 external teeth and an acute apex thorn-like setae along lateral margins with acute apex extending beyond pleotelsonic apex.

Keywords: Ashtamudi Lake, epistome, holotype, mangrove ecosystems, paratype, pereopod, pleopod, pleotelson, Ramsar wetland, Sphaeromatidae, uropodal exopod, taxonomic description, tubercle.

Malayalam: ഫെറോമ താബോറൻസ് എന്ന പുതിയ ഇന്ന് ടിന്റുരൂപ്പ് ലൈസേൻസോപാധി സ്പീഷിസിനെ ഇന്ത്യയുടെ തെക്കുപടിഞ്ഞാറൻ സംസ്ഥാനമായ കേരളത്തിലെ അസ്സുമുടി കായലിന്റെ ഭാഗമായ മൺരോ ലൈസേൻസിൽ നിന്നും കണ്ടെത്തി. തലയുടെ ഓഗ്രത്തായി രണ്ടു കണ്ണുകൾക്കുമിച്ചിലായി കാണപ്പെട്ടുന്ന മുന്ന് ബാൻഡുകളും അതിലെ മുന്നിലൂള്ള ബാൻഡിലായി കാണുന്ന കുത്ത പുത്രാകുത്തിയിലുള്ളതുമായ ഒരു ട്രൂഡബൾക്കിളിനോടൊപ്പും ചെറിയ ട്രൂഡബൾക്കിളികളും മൂന്ന് പുതിയ സ്പീഷിസിനെ മറ്റും സ്പീഷിസുകളിൽ നിന്നും പുത്രന്നത്തെക്കുന്നത് ഉപരികോണാകുത്തിയിലുള്ളതും മുകളിലേക്ക് ചെറുതായി വള്ളത്തിൽക്കുന്നതുമായ എപ്പിഡൈം, ഫിയോസിലിഡം, ഫിയോടെൻസിലിഡം അമർന്നുകൊടുവന്ന രോമപാളികൾ, തിരിക്കിന്നമായ ആറ് ട്രൂഡബൾക്കിളികളും ഫിയോടെൻസാണിക് ഡോസസൽ ഉപരിതലം, തുടർന്ന് മുന്ന് ജോധി മുൻചുള്ളൂള്ള ട്രൂഡബൾക്കിളികൾ, ത്രികോണാകുത്തിയിലുള്ളതും അല്ലപ്പെടുകളിലായി വള്ളത്തിൽക്കുന്നതുമായ ശരിഗതിന്റെ താഴ്വരത്ത് അമെ, കുർത്ത അമുലുള്ളതും ഇരു പശങ്ങളിലും മുള്ളു പോലെയുള്ളതു കുറിരോമങ്ങളുടെ ഘടനയോടുകൂടിയതും ഫിയോടെൻസിന്റെ അഗ്രത്തിന് അപ്പുറിതത്തെക്ക് നിണ്ണുകിടക്കുന്നതും നാലു മുതൽ അഞ്ചു വരെയുള്ള ബാഹ്യ പാലുകളും മുള്ളുകളും യുറോപ്പാധിയിൽ എക്സോപാധി എന്ന പേരിൽ കൊണ്ടുവരുന്നതാണ്.

ZooBank: urn:lsid:zoobank.org:pub:04E5C920-3544-42AA-954C-02A98EB16E3D

Editor: R. Ravinesh, Centre for Marine Living Resources and Ecology, Kochi, India.

Date of publication: 26 February 2025 (online & print)

Citation: Arya, M.S., A. Biju & D. Bencharim (2025). *Sphaeroma taborans* sp. nov., a new species of wood-boring isopod (Crustacea: Isopoda: Sphaeromatidae) from Munroe Island, Ashtamudi Estuary, Kerala, India. *Journal of Threatened Taxa* 17(2): 26530–26537. <https://doi.org/10.11609/jott.8909.17.2.26530-26537>

Copyright: © Arya et al. 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: Self-funded.

Competing interests: The authors declare no competing interests.

Author details: Dr. ARYA M.S., a former PhD scholar, Postgraduate and Research Department of Zoology, St. Stephen's College research interest in estuarine ecology and planktonology. DR BIJU A., serves as an associate professor, and Research guide at St. Stephen's College, Pathanapuram has research interest in planktonology. DR. DANI BENCHAMIN, a former PhD scholar, Postgraduate and Research Department of Zoology, St. Stephen's College has research interests in freshwater ecology and biomonitoring.

Author contributions: AMS and DB carried out fieldwork, identification, and manuscript preparation, BA reviewed the manuscript.

Acknowledgements: We are grateful to the authorities of St. Stephen's College, Pathanapuram, and the University of Kerala for providing laboratory facilities for this discovery. The first author extends her gratitude to her husband, Sreenish S., for his assistance in the field. The research stipend for the first and third authors was provided by the University of Kerala.

INTRODUCTION

The *Sphaeroma* Bosc, 1801, is a widely distributed genus worldwide in tropical and subtropical waters. Seven species of *Sphaeroma* have been identified from the Indian waters: (*Sphaeroma annandalei* Stebbing, 1911, *S. travancorensis* Pillai, 1955, *S. globicauda* Dana, 1851, *S. terebrans* Bate, 1866, *S. triste* Heller, 1865, *S. tuberculatum* Purusotham & Rao, 1971, and *S. walkeri* Stebbing, 1905). These wood-boring isopods inhabit the trunks and prop roots of mangrove plants, thus affecting their structure and stability. Moreover, sphaeromatid isopods reduce the root production and growth rate which leads to altering the nutrient supply (Thiri & Yang 2022). Previous investigations revealed that the burrowing activity of *Sphaeroma* isopods also has harmful effects on manmade coastal wooden structures such as jetties (Dodge-Wan & Nagarajan 2020).

Munroe Island is a critically vulnerable ecosystem in Kerala, south India (Rafeeqe et al. 2023). This Island is between the Kallada River and the Ashtamudi Estuary (Arya et al. 2023). Specimens collected from the Peringalam Station in Munroe Island proved to be a new species of *Sphaeroma* genus and are described here as *Sphaeroma taborans* sp. nov. This isopod builds burrows in substrates such as dead wood and decaying roots of mangroves. It is generally supposed that the burrow

serves as a shelter for the *S. taborans* sp. nov. rather than as a food resource.

MATERIALS AND METHODS

Specimens for this study were collected from Munroe Island, part of Ashtamudi Estuary, Kerala (Image 1). Specimens were preserved in the field in 70% ethanol and dissected in diluted glycerine. Followed by the examination using a dissecting microscope (Weswox SZM105). Drawings were made using a standard camera lucida mounted on a compound microscope (Olympus CX33), and all images were processed with Photoshop CS5. Terminology of the morphological characters follows that of Bate, 1866; Harrison & Holdich 1984; Khalaji-Pirbalouty & Waegele 2010). The holotype (ZSI/WGRC/1.R.-INV.28482) was deposited in the Zoological Survey of India Kozhikode, Kerala, India. Paratypes (SSCDZ/Iso/01/2024 and SSCDZ/Iso/02/2024) were deposited in the Department Museum, Zoology Research Centre, St. Stephen's College, Pathanapuram.

Image 1. The type locality of *Sphaeroma taborans* sp. nov. in Munroe Island, India.

RESULTS

Systematics

Suborder Sphaeromatidea Wägele, 1989

Superfamily Sphaeromatoidea Latreille, 1825

Family Sphaeromatidae Latreille, 1825

Genus *Sphaeroma* Bosc, 1801*Sphaeroma taborans* sp. nov.

(Figures 1A–F, 2A–C, 3A–D)

urn:lsid:zoobank.org:act:260E7560-8A67-470F-ABFD-1757B627FE9B

Type Locality: Munroe Island, 8.996 °N, 76.596 °E, Asthamudi Estuary, Kerala, India.**Material examined:** Holotype: Female (8 mm), India,

Kerala, Munroe Is, 8.996 °N, 76.596 °E, 7 September 2023, Perungalam stn. 5 m (ZSI/WGRC/1.R.-INV.28482). Paratypes: 1 female (8 mm) (SSCDZ/Iso/01/2024), 1 male (10 mm) (SSCDZ/Iso/02/2024) same data as holotype.

Description of female: Body about two times as long as highest width.

Head (Figure 1) dorsal surface with three longitudinal bands between eyes and a prominent blackish tubercle on the anterior band and scattered weak tubercles on the surface. Eyes bulbous.

Pereonites (Figure 1; Table 1) 1–4 with weak tubercles, 5–7 with a transverse row of continuous prominent, conical, setigerous tubercles; 6–7 with two transverse rows of thorn-like structure laterally.

Antennule (Figure 1) first peduncle article bearing

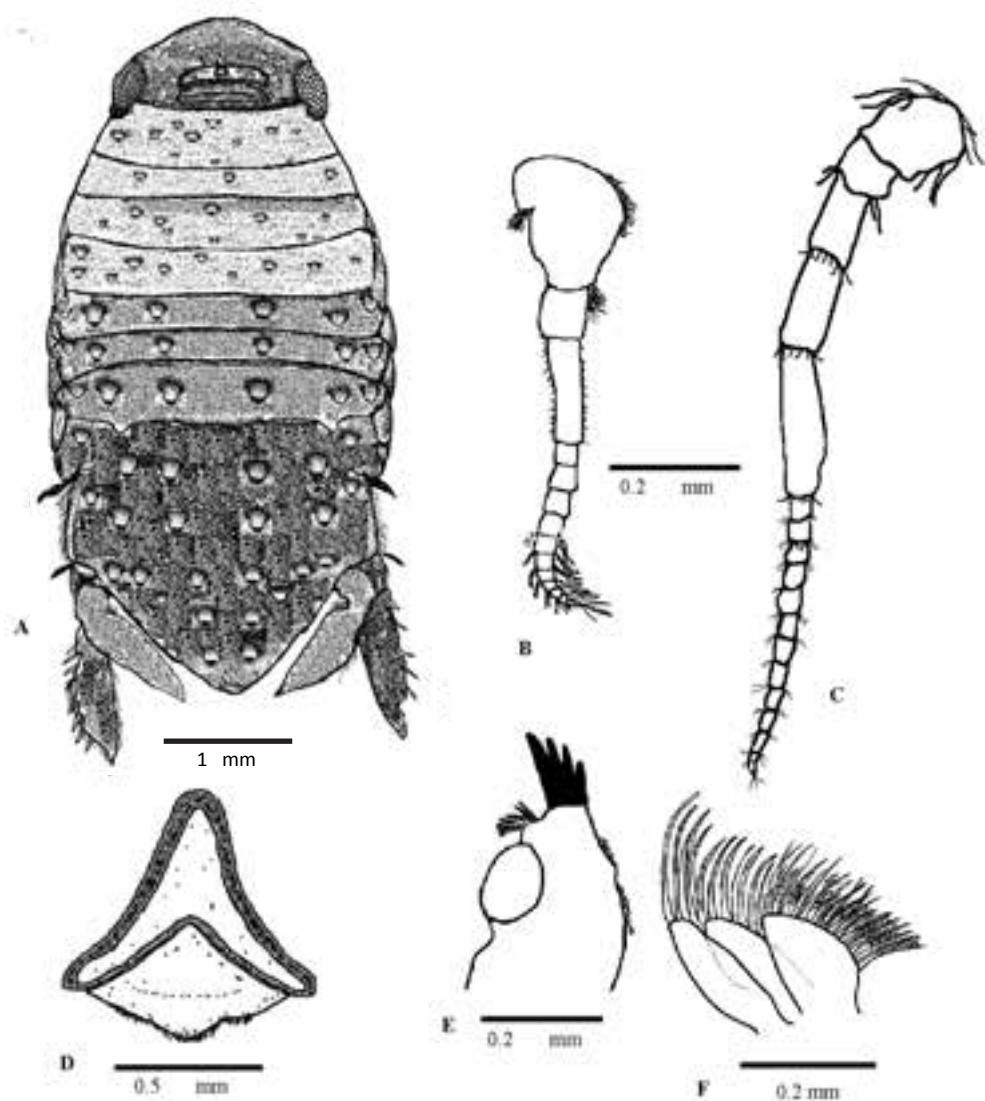


Figure 1. *Sphaeroma taborans* sp. nov. (ZSI/WGRC/1.R.-INV.28482) holotype: A — dorsal view | B — antennule | C — antenna | D — epistome | E — right mandible | F — maxilla.

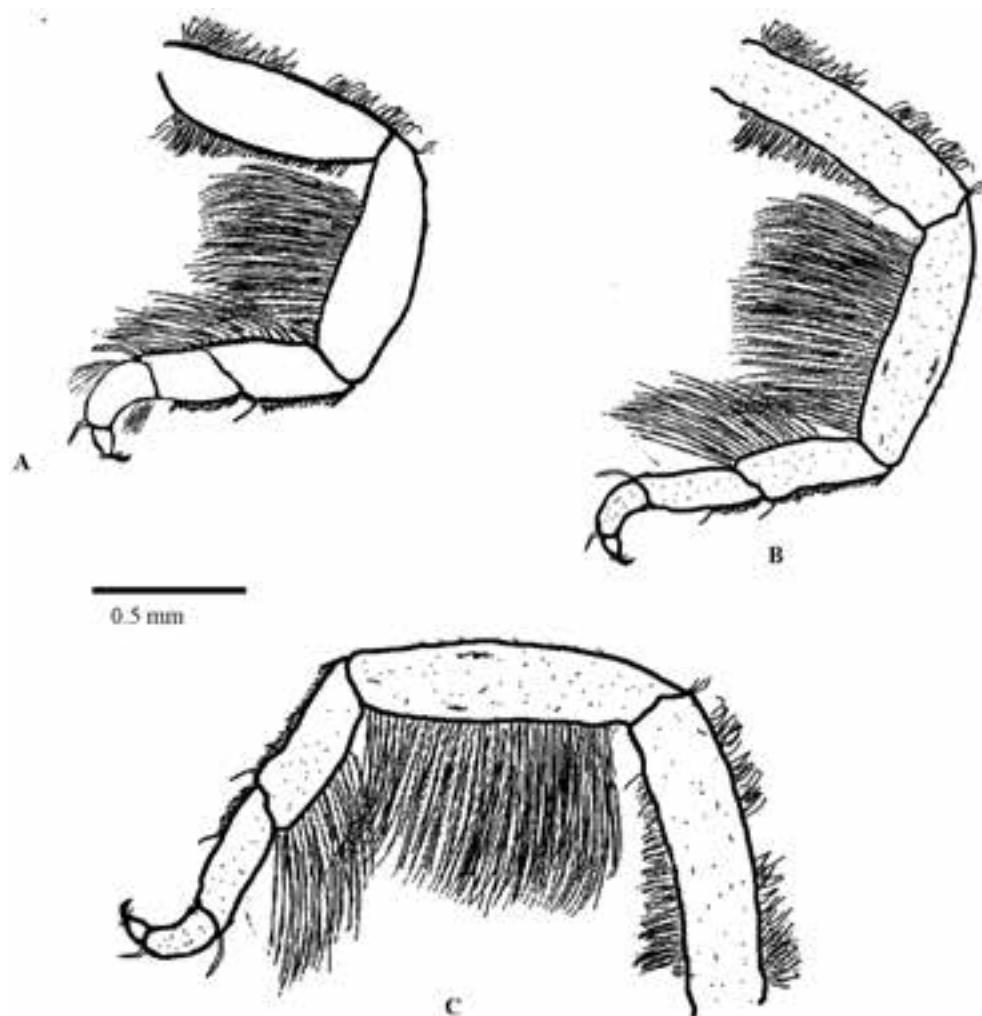


Figure 2. *Sphaeroma taborans* sp. nov., holotype: A–C—pereopods 1–3.

weak tubercles and short setae, with some short plumose setae on the upper surface; article two with some short plumose setae on dorsal and ventral margins, article three slender, 1.7 times as long as article two; flagellum with 11 articles, articles 4–9 each bearing single aesthetasc.

Antenna (Figure 1) peduncle article one setose; articles 2–4 each with long setae on posterior end; article five about 0.84 times as long as article four; flagellum with 15 articles.

Epistome (Figure 1) granulate, subtriangular apex, lateral margin concave and sublinear.

Left mandible (Figure 1) incisor with four cusps; incisor processes are blackish, indicating a high degree of sclerotization; molar processes are almost oval; reduced lacinia mobilis.

Maxillule lateral lobe apex without robust setae.

Maxilla (Figure 1) lateral and middle endites with long, slender, curved spines; mesial endite with dense

internal plumose setae.

Maxilliped endite wide distally, with plumose setae, fine simple setae in distal margin, mesial margin bears one hook, ventral surface with a row of long robust plumose setae.

Pereopod 1 (Figure 2) basis about 2.5 times as long as greatest width; ischium and merus inner lateral margin with dense long setae; carpus inner lateral margin with fine setae; propodus superior margin setose; dactylus inferior margin with fine setae, fused to a blackish claw.

Pereopod 2 (Figure 2) ischium lateral margins with long comb setae; merus inner margin with long comb setae; carpus inferior end with one long fine setae; propodus inferior margin with long setae; dactylus fused to a blackish claw.

Pereopod 3 (Figure 2) is similar to pereopod 2.

Pereopod 4 (Figure 2) ischium superior margin with biserrate setae on a medial angle; merus and carpus inferior margin with fine setae; propodus inferior margin

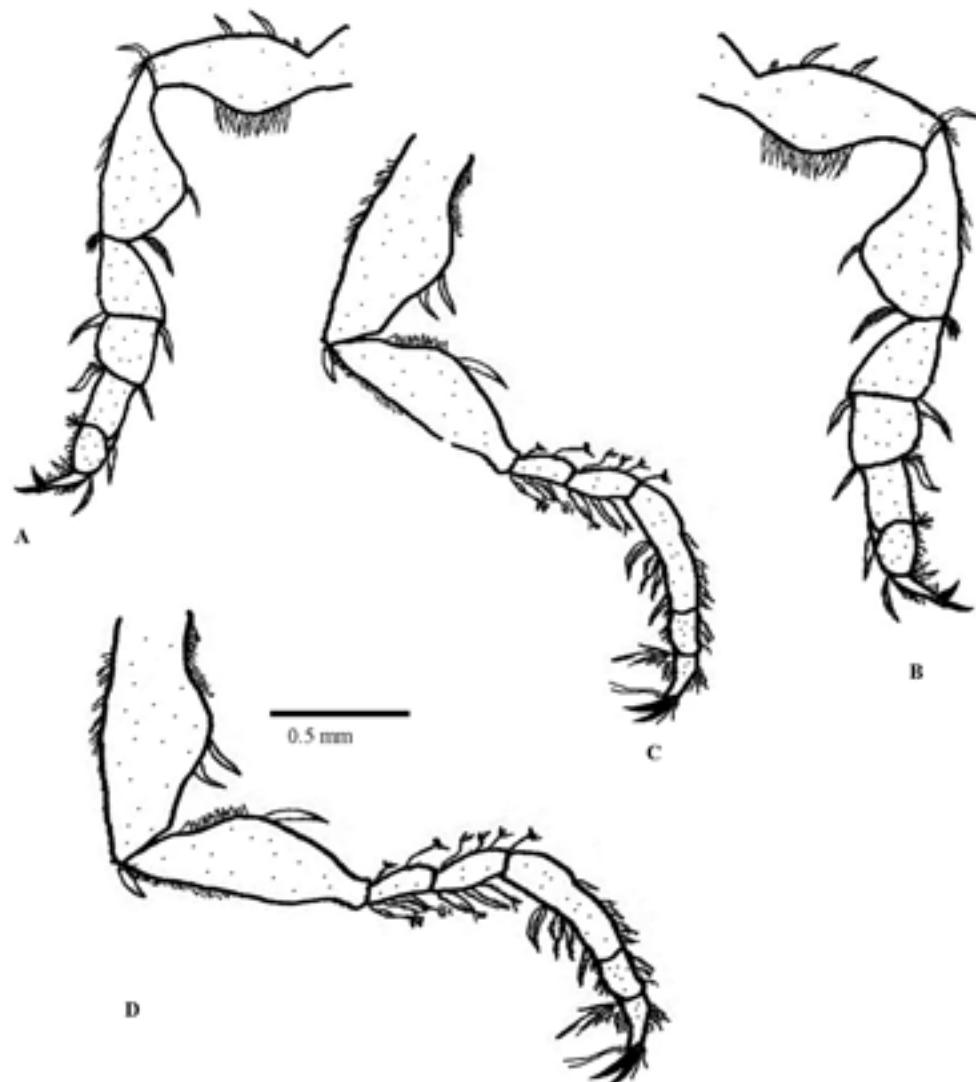


Figure 3. *Sphaeroma taborans* sp. nov., holotype: A–D—pereopods 4–7

with three long robust setae; dactylus with fine setae fused to blackish claws.

Pereopod 5 (Figure 3) is similar to pereopod 4.

Pereopod 6 (Figure 3) basis about 3.2 times as long as greatest width, superior margin with several fine and two robust setae; ischium superior margin with long and small serrate setae distally; merus superior distal margin with fine setae, inferior margin with biserrate seta and a long robust seta; carpus subequal in length to merus, inferior margin with two palmate setae, distal margin with simple setae; propodus superodistal corner with four slender setae; dactylus with fine setae fused to blackish claws.

Pereopod 7 (Figure 3) is similar to 6.

Pleon (Figure 1) with a transverse row of prominent tubercles at the middorsal surface and weak dense

tubercles and two transverse rows of a tuft of setae over two sutures at lateral sides, posterior margin with two pointed extensions; posterolateral end with a long thorn-like structure.

Pleopod 1 subtriangular endopod, subequal in length to apically truncate exopod; bearing coupling hooks.

Pleopod 2 with rami as in pleopod 1; appendix masculina absent; bearing coupling hooks.

Pleopod 3 subtriangular, and broad endopod, subequal in length to apically truncate exopod; bearing coupling hooks.

Pleopod 4 endopod with an internal indentation.

Pleopod 5 endopod with rounded apex.

Pleotelson (Figure 1; Table 1) bearing weak dense appressed hair layers over surface, pleotelsonic medial lobe rounded triangle, lateral lobes weak and blunt;

Table 1. Comparison among the congeners in the genus *Sphaeroma*.

Characteristics	Pereon segments	Pleotelson	Uropod rami	Type locality
<i>S. walkerii</i>	2–4 each bearing two irregular transverse rows of low tubercles; 5–7 with a transverse row of prominent tubercles.	Dorsal surface granulated with scattered tubercles, either side of midline bearing a longitudinal row of five prominent tubercles, broadly rounded posteriorly with upturned and crenulated borders.	Uropodal exopod slightly longer than endopod with 5–6 external teeth and an acute apex; endopod margins fringed with dense simple setae, narrowly rounded apex, dorsal surface bearing 2–3 prominent tubercles, and an oblique ridge on the basal region.	Jokkenpiddi Paar, Sri Lanka
<i>S. annandaelei</i>	1–7 posterior margin with a fringe of small setules; 2–7 with coxal plate sutures clearly visible; 4–7 dorsally with transverse ridges.	Dorsal surface with two pairs of prominent blunt tubercles followed by a single median prominent tubercle, Posterior margin curved upwards with rounded apex.	Uropodal rami subequal, extending well beyond pleotelsonic apex; endopod margins fringed with numerous simple marginal setae; exopod lateral margin clearly serrate, with 4–5 prominent and proximally further tiny teeth.	Port Canning, western India.
<i>S. terebrans</i>	2–7 with a transverse ridge; 5–7 with four equidistant posterior submarginal tubercles each carrying a bunch of long stiff hairs; 4, 6, and 7 each bear four large tubercles.	Dorsal surface with four stout tubercles in a transverse row near the anterior margin, apex subtriangular, narrowly rounded, slightly curved upwards with minute apical hairs.	Uropodal exopod bears five prominent teeth at the outer edges, endopod apically acute, extending just beyond pleotelsonic apex, margins straight bearing fringes of long setae, and dorsal surface with a pronounced proximal tuft of long setae.	Hinchinbrook Island, Australia
<i>S. travancorensis</i>	Peraeon segments with simple ridges.	Pleotelsonic apex narrow, dorsally tuberculated.	Uropodal exopod serrate, with prominent and tiny teeth.	Kerala Coast, India
<i>S. taborans</i> sp. nov.	1–4 weak tubercles, 5–7 transverse rows of prominent tubercles; 6–7 two transverse rows of thorn-like structures.	Dorsal surface with six stout tubercles in a transverse row near the anterior followed by three pairs of median prominent blunt tubercles. Apex curved triangle, slightly curved upwards with appressed hairs.	Uropodal exopod longer than endopod with 4–5 external teeth and an acute apex; endopod surface with dense hairs, thorn-like setae along lateral margins with acute apex extending beyond pleotelsonic apex.	Munroe Island, India

medial lobe surpassing the apex of lateral lobes; five pairs of internal pouches. Pleotelson apex is very short and not reaching to the distal end of the uropod and endopod.

Uropod rami (Figure 1; Table 1) are perfectly knife-shaped and noticeably shorter than endopod, both bear blackish spots, appressed setae on the surface, and long thorn-like setae along lateral and distal margins; endopod laterally serrated and distal margin slightly pointed.

Diagnosis of an adult female. Pleon and pleotelson with appressed hair layers, pleotelsonic dorsal surface with six stout tubercles in a transverse row near the anterior followed by three pairs of median prominent setigerous tubercles. Apex curved triangle, slightly curved upwards bearing a prominent blackish tubercle on the anterior band on the head; epistome subtriangular; flagellum of antennule and antenna with 11 and 15 articles respectively; long thorn-like structures at the lateral margins of 6–7 pereonites and posterolateral end of pleon; knife-shaped uropodal exopod and endopod longer than pleotelsonic apex, both bears blackish spots.

Male. Apart from sexual characteristics similar to females, the body size is slightly larger than in female

and pleotelson is longer than female.

Etymology

This specific epithet 'taborans' refers to the Mount Tabor Ashram, the Headquarters of the Institution where this significant research was conducted at the Zoology Research Centre, St. Stephen's College, Pathanapuram.

Distribution: Known only from Munroe Island, Ashtamudi Estuary, Kerala, India.

Ecological notes

The specimens of *Sphaeroma taborans* sp. nov. were collected from the dead wood in the mangrove areas of Munroe Island.

Remarks

Sphaeroma taborans can be recognized by the dorsal surface with three longitudinal bands between eyes a prominent blackish tubercle on the anterior band and scattered weak tubercles. Epistome with subtriangular apex. Pleon and pleotelson bearing appressed hair layers. Pleotelsonic apex curved triangle, slightly curved upwards with appressed hairs and surpassing the apex of lateral lobes. The new species *S. taborans* differs from *S. walkerii* Stebbing, 1905 (known from Jokkenpiddi Paar, Sri Lanka). The latter has crenulated pleotelsonic

Key to the species of the genus *Sphaeroma* (females)

1. Epistome with triangular apex 2
- Epistome with subtriangular apex 3
2. Pleotelsonic apex broadly rounded posteriorly with upturned and crenulated borders; Uropodal exopod with 5–6 external teeth and an acute apex; lacinia mobilis with two cusps *S. walkerii*
- Pleotelsonic posterior margin curved upwards with rounded apex; lacinia mobilis absent; Uropodal exopod lateral margin serrate, with 4–5 prominent and proximally further tiny teeth *S. annandalei*
3. Pleotelsonic apex subtriangular, narrowly rounded, slightly curved upwards with minute apical hairs; Uropodal exopod with five prominent teeth at outer edges, endopod apically acute, extending just beyond pleotelsonic apex, dorsal surface with a pronounced proximal tuft of long setae; *S. terebrans*
- Pleotelsonic apex narrow, dorsally tuberculated; Peraeon segments with simple ridges; Uropodal exopod serrate, with prominent and tiny teeth; *S. travancorensis*.
- Pleotelsonic apex curved triangle, slightly curved upwards with appressed hairs; Uropodal exopod with 4–5 external teeth and an acute apex; endopod surface with dense hairs, thorn-like setae along lateral margins with acute apex extending beyond pleotelsonic apex; three longitudinal bands between eyes and a prominent blackish tubercle on the anterior band *S. taborans* sp. nov.

borders, triangular epistomal apex, cusped lacinia mobilis, and distinct surface ornamentation. *S. taborans* is similar to *S. terebrans* Spence Bate, 1866 in having an equal number of antennular segments, and prominent teeth at the outer edges of the exopod. *S. taborans* differs from *S. terebrans* in having distinct pleotelsonic apex and surface ornamentation. Investigation of *S. taborans* showed that this species is more similar to *S. annandalei* Stebbing, 1911 (known from Port Canning, western India) and *S. travancorensis* Pillai, 1954 (known from Kerala Coast, southern India). *S. taborans* differs from *S. annandalei* and *S. travancorensis* in having the following distinct features such as surface ornamentation, three longitudinal bands between the eyes, a prominent blackish tubercle on the anterior band; pleotelsonic apex with appressed hairs; pleon with a long thorn-like structure at the posterolateral end; Antennal flagellum with 15 articles; Epistome with subtriangular apex; Uropodal exopod with 4–5 external teeth, endopod surface with dense hairs, thorn-like setae along lateral margins.

DISCUSSION

Although the *Sphaeroma* is one of the largest and most widely distributed genera in the Sphaeromatidae family (Khalaji-Pirbalouty & Gagnon 2023), the taxonomic information on the genus is scanty in Kerala. According to Roy (2019), only seven species of *Sphaeroma* were reported in the Indian waters. The present study

increases the *Sphaeroma* record to eight species with the description of *Sphaeroma taborans* sp. nov. The discovery of this new species after 61 years is indicative of the imperative to discover the isopod diversity from this region, particularly from the Indian mangrove estuaries. Hence, a comprehensive sampling at various estuarine locales, and mangrove ecosystems of India would expose more undescribed species of these sphaeromatid isopods.

Sphaeroma taborans sp. nov. is closely related to *S. travancorensis*, which was originally described from the Thiruvananthapuram District (formerly known as Travancore), Kerala, India. It is morphologically distinct, with notable differences including a curved triangular pleotelsonic apex, a uropodal exopod featuring 4–5 external teeth, and an acute apex. Consequently, *S. travancorensis* is considered a valid species.

REFERENCES

Arya, M.S., A. Biju & D. Bencharmin (2023). Assessment of spatial and temporal variations in water quality using multivariate statistical analysis in the Munroe Island, Kerala, India. *Acta Ecologica Sinica* 43(5): 751–763. <https://doi.org/10.1016/j.chnaes.2022.10.002>

Bate, C.S. (1866). Carcinological gleanings. No. II. *Annals and Magazine of Natural History, series 3*. 17(97): 24–31.

Bosc, L.A.G (1801). *Histoire Naturelle des Crustacés, Contenant leur Description et leurs Moeurs; avec Figures Dessinées d'Après Nature. Tome premier. Suite à Buffon, Paris, Deterville, Paris* 258: 1–8.

Dana, J.D. (1853). Crustacea. Part II. *United States Exploring Expedition. During the Years 1838, 1839, 1840, 1841, 1842. Under the Command of Charles Wilkes, U.S.N. 14*: 691–1618.

Dodge-Wan, D. & R. Nagarajan (2020). Boring of intertidal sandstones by Isopod *Sphaeroma triste* in NW Borneo (Sarawak, Malaysia). *Journal of Coastal Research* 36(2): 238–248. <https://doi.org/10.2112/JCOASTRES-D-19-00066.1>

Harrison, K. & D.M. Holdich (1984). Hemibranchiate sphaeromatids (Crustacea: Isopoda) from Queensland, Australia, with a world-wide review of the genera discussed. *Zoological Journal of the Linnean Society* 81(4): 275–387. <https://doi.org/10.1111/j.1096-3642.1984.tb01175.x>

Heller, C. (1865). *Crustaceen. Reise der Österreichischen Fregatte Novara um die Erdre, in den Jahren 1857, 1858, 1859 unter den Befehlen des Commodore B. von Wüllerstorf-Urbair, Zoologischer Theil. Kaiserlich-Königliche Hof- und Staatsdruckerei, Wien, Band 2 (Abtheilung) 3: 1–280.*

Khalaji-Pirbalouty, V. & J.M. Gagnon (2023). Illustrated catalogue of sphaeromatoid isopods (Crustacea, Malacostraca) in the Canadian Museum of Nature (CMN). *Zoosystematics and Evolution* 99(2): 375–389. <https://doi.org/10.3897/zse.99.103682>

Khalaji-Pirbalouty, V. & J.W. Waegele (2010). A new record of *Sphaeroma annandalei* Stebbing, 1911 (Crustacea: Isopoda: Sphaeromatidae) from the Persian Gulf, and description of a new related species (*Sphaeroma silvai* nov. sp.) from the south Atlantic Ocean. *Zootaxa* 2508(1):30–44. <https://doi.org/10.11646/zootaxa.2508.1.2>

Latreille, P.A. (1825). *Familles Naturelles du Règne Animal, Exposé Succinctement et Dans un Ordre Analytique Avec l'indication de Leurs Genres.* J.B. Baillière, Paris, 570 pp.

Pillai, N.K. (1955). Wood boring Crustacea of Travancore. I. Sphaeromidae. *Trivandrum IV, Bulletin of the Central Research Institute* 1: 127–139.

Pillai, N.K. (1954). A preliminary note on the Tanaidacea and Isopoda of Travancore. *University of Travancore, Trivandrum, Natural Sciences, Bulletin of the Central Research Institute* 3 (1): 1–21.

Rafeequ, M.K., T.R. Anoop, M.K. Sreeraj, R. Prasad, L.S. Nair & A. Krishnakumar (2023). Anthropogenic interventions on land neutrality in a critically vulnerable estuarine island ecosystem: a case of Munro Island (India). *Scientific Reports* 13(1): 1458. <https://doi.org/10.1038/s41598-023-28695-w>

Roy, M.K.D. (2019). A systematic list of isopod fauna Hitherto known from India. *Zoological Survey of India, Kolkata, Crustacea Section.* 1–20.

Stebbing, T.R.R. (1905). Report on the Isopoda collected by Professor Herdman, at Ceylon, in 1902. In: Herdman, W.A. (ed.). *Report to the Government of Ceylon on the Pearl Oyster Fisheries of the Gulf of Manaar with Supplementary Reports Upon the Marine Biology of Ceylon, by Other Naturalists* 4(23): 1–64.

Stebbing, T.R.R. (1911). Indian Isopods. *Records of the Indian Museum* 6(4): 179–191.

Thiri, M. & Y. Yang (2022). Review on possible factors for outbreak of Wood- Boring Isopod, *Sphaeroma* spp. which causes destructive impact on mangrove forest in China. *Open Journal of Ecology* 12(3): 211–235. <https://doi.org/10.4236/oje.2022.123013>

Wägele, J.W. (1989). Evolution und phylogenetisches System der Isopoda. *Zoologica* 140: 1–262.

A report on Conidae (Gastropoda) from the Karnataka coast – distribution and shell morphometry

B.S. Chandan¹ , R. Shyama Prasad Rao² & Mohammed S. Mustak³

^{1,3} Molecular and Genetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangotri, Mangaluru, Karnataka 574199, India.

²Center for Bioinformatics, NITTE deemed to be University, Mangaluru, Karnataka 575018, India.

¹chandugowda.sinu@gmail.com, ²drsrspao@gmail.com, ³msmustak@gmail.com (corresponding author)

Abstract: Conidae are a diverse group of predatory marine gastropods known for their highly potent venom, which may hold potential for biomedical applications. This study presents findings from a survey of Conidae species inhabiting the coastal shorelines of Karnataka. Shell measurements and morphometric analyses were conducted on four species: *Conus biliosus*, *C. inscriptus*, *C. milneedwardsi*, and *Conasprella dictator*. Molecular phylogenetic analysis of *C. biliosus* was performed using the partial mitochondrial cytochrome oxidase subunit I (COI) gene sequence.

Keywords: Cone snails, *Conasprella*, *Conus*, Cytochrome oxidase subunit I (COI), marine biodiversity, shell morphometrics, venomous molluscs

Kannada: ಕೊನ್ನೇಡಿ ಎಂಬುದು ಪರಬ್ರಹ್ಮಾಂಕ ಸಮುದ್ರದ್ವಾರ್ಥಿಗಳ ವೈಧ್ಯಾಯ ಮಯ ಗುಂಪುಗಾಗ್ರದು, ಅವರು ಅಂತಹ ಅಂತರ್ಭಾಗದಲ್ಲಿ ಹೇಳುವಾಗೂ ಇದ್ದು ಜೀವಿತ ವೈಧ್ಯಾಯಕ್ಕೆಯಿಂದ ಅನ್ವಯಗ್ರಹಿ ಸಂಭಾಬವಾಗ್ಯ ತೆರುವನು ಹೇಳಿದ್ದರಿಂದಷ್ಟು. ಈ ಅಧ್ಯಾಯ ನಮವು ಕರ್ತೃವಳಿ ತೇರ್ಗಳಾಲ್ಲಿ ಮಾನಸೋನುವ ಕೊನ್ನೇಡಿ ಪರಬ್ರಹ್ಮಾಂಗಳ ಸಮುದ್ರಾಂಶವಿಯ ಪ್ರಲಾಂತಿಗಳಾನ್ನು ಪರಾಸ್ಯತ್ವಪರ್ವತನುತ್ತಿರುತ್ತದೆ. ಶಿಂಬಿದ ಮಾನವನ ಮತ್ತು ಮಾರ್ಗಾಂಶವಿಕ್ರಿಯೆ ಪ್ರಾರ್ಥಾತ್ಮಿಕಾಂಶಗಳಾನ್ನು ನೂರಾಲ್ಕು ಪರಬ್ರಹ್ಮಾಂಗಳಿಂದ ಕೀಳನಸ್ತ ಬ್ರಹ್ಮಾಲ್ಯಾಂಗನಿಸ್ತ, ಕೊನ್ನೇಡಿ ಮುಲಾನ್ನಿಂದ ಪರಾರ್ಥತ್ವ ಮತ್ತು ಕೀಳನಸ್ತ ಪರಾಲ್ಯಾಲು ದ್ವಾರಾ ತೀರ್ಣಿತರು ಮೇಲೆ ನಡೆಸಲಾಗಿರುತ್ತದೆ. ಭಾಗಿಗಳಿಗೆ ವೈಟಿಲಿಕಾಂಧ್ರಾಯದ ಸ್ವಂತಿಕ್ರಿಯೆಗಳೇ ಅಕ್ಷಸ್ನೀಜೀನ್ಸ್ ಸಭಾಯುನ್ನಿಟ್‌ | (CO) ಅನುವಂಶಾಕ್ತ ಧಾರು ಅನುಕೂಲಮವನ್ನು ಬಳಸಿಕೊಂಡು ನ್ನೆ. ಬ್ರಹ್ಮಾಲ್ಯಾಂಗನಿಸ್ತ ಪರಾರ್ಥಾತ್ಮಿಕಾಂಶವಿಕ್ರಿಯೆ ನಡೆಸಲಾಗಿರುತ್ತದೆ.

Editor: I. Benjamin Franklin, Bombay Natural History Society, Mumbai, India

Date of publication: 26 February 2025 (online & print)

Citation: Chandan, B.S., R.S.P. Rao & M.S. Mustak (2025). A report on Conidae (Gastropoda) from the Karnataka coast – distribution and shell morphometry. *Journal of Threatened Taxa* 17(2): 26538–26546. <https://doi.org/10.11609/jott.9475.17.2.26538-26546>

Copyright: © Chandan et al. 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: This work did not receive any specific funding.

Competing interests: The authors declare no competing interests

Statement of ethics: The work is in compliance with ethical standards. No animal ethics and bio-safety clearances were necessary.

Data availability: The data used in this work are available publicly as given in the tables and supplemental.

Author details: B.S. CHANDAN, holds a master degree in Zoology and currently pursuing PhD in Department of Applied Zoology, Mangalore University. Passionate about wildlife ecology and conservation. DR.R. SHYAMA PRASAD RAO, faculty at Center for Bioinformatics, NITTE University, Mangaluru, Karnataka. His area of interest are bioinformatics, computational biology, data analysis. DR.MOHAMMED S. MUSTAK, professor, Department of Applied Zoology, Mangalore University, Mangalagangotri, Karkanaata. He is interested in the biodiversity of the cone snail (Mollusca: Conidae) and Lepidoptera diversity in Western Ghats and Lakshadweep archipelago.

Author contributions: BSC and MSM planned the work. BSC collected the data. BSC and RSPR analysed the data. BSC drafted the paper and RSPR revised the paper. All authors contributed intellectually, and edited/reviewed the manuscript. All authors have read and agreed to the published version of the manuscript.

Acknowledgements: Authors thank the Karnataka Forest Department for the permission to visit the study area and collect the samples. BSC thanks Mr. Akshay Jeere, Mr. A. Bharat Kumar, and the Department of Marine Biology, Karnataka University Post Graduate Centre, Karwar for support during the field survey. Authors thank UGC-SAP-II, Department of Applied Zoology, Mangalore University for the facilities.

INTRODUCTION

The family Conidae Fleming, 1822 (Dutertre & Lewis 2023) is a widely-distributed species-rich group of marine gastropod molluscs (Rockel et al. 1995). Cone shells are found in all tropical and subtropical oceans, with the Indo-West-Pacific region having the greatest species diversity (Filmer 2001). Studies on the taxonomy and distribution of Conidae in India date back to the latter half of the 19th century (Kohn 1978), and recently 76 of the 93 species known from India were reported from the collections of the Zoological Survey of India (Venkitesan et al. 2019). A total of 77 species of Conidae were documented from Indian waters (Kohn 1978). Regionally, 60 species were documented from Tamil Nadu (Franklin et al. 2009), 84 from the Gulf of Mannar and Lakshadweep Islands (Edward et al. 2022), and 46 from the Kerala coast (Ravinesh et al. 2022).

More than 50 species of cone shells have been identified by various researchers from the Andaman & Nicobar Islands (Rao 2003; Venkataraman et al. 2004; Franklin et al. 2013; Franklin & Apte 2021). A total of 78 cone snail species have been documented from the Lakshadweep archipelago (Smith 1894; Hornell 1921; Nagabhushanam & Rao 1972; Appukuttan et al. 1989; Rao & Rao 1991; Ravinesh & Kumar 2015; Edward et al. 2022). More recently, Ravinesh et al. (2018) recorded 49 species from Lakshadweep, including four newly reported species, three of which had not been previously recorded in India.

Until now, there have been no specific reports of *Conus* from the coast of Karnataka, India. This study presents the findings of a Conidae survey conducted in the year 2022–23 across several coastal regions of Karnataka. Field observations documented the regional distribution of four Conidae species, and shell morphometric analyses were carried out. Only one species was observed alive, and its molecular phylogenetic analysis was performed using the partial mitochondrial cytochrome oxidase subunit I (COI) gene sequence.

MATERIALS AND METHODS

Sample collection

Field surveys were conducted on accessible beaches across three coastal districts of Karnataka: Dakshina Kannada, Udupi, and Uttara Kannada (Image 1A). Transect and trawl net surveys were carried out along the shorelines in various types of coastal marine

habitats, including intertidal and subtidal sandy bottoms, shallow sandy areas, rocky shorelines, and algae-covered rocks. The frequency of each species in these habitats was recorded (Image 1B). The specimens were collected using the handpicking method. Live specimens of *Conus biliosus* ($n = 2$) were observed and collected exclusively from rocky shorelines and algae-covered rocks in Karwar, Uttara Kannada District. The identification of collected specimens was based on the shell morphology descriptions (Rockel et al. 1995). Foot tissue from the live specimen was preserved in 90% ethanol for molecular analysis.

Morphometric analysis

The collected shells were covered with algae, so for easier identification and measurement, they were cleaned using a mixture of commercial liquid bleach ("Rin"), containing nonylphenol ethoxylate, EDTA and sodium xylene sulfonate in water. To preserve the specimens, the surface of the shell was polished with mineral oil. Shell measurements were taken using Vernier Callipers (Kohn & Riggs 1975). The following variables were recorded: weight (W, in grams), shell length (SL), maximum diameter (MD), height of maximum diameter (HMD), aperture height (AH), aperture length (AL), aperture width (AW), height of penultimate whorl (HPW), and spire height (SH) (Fig. S1). All linear measurements were recorded in millimetres (mm).

DNA extraction and PCR amplification

The foot tissue of *C. biliosus* was used as the source of genetic material and DNA was isolated from 40 mg of tissue using the CTAB method (Doyle & Doyle 1987) yielding approximately 500 ng/ μ l in a total volume of 60 μ l. The mitochondrial cytochrome oxidase subunit I (COI) gene was amplified using universal primers dgLCO: GGTCAACAAATCATAAAGAYATYGG and dgHCO: TAAACTTCAGGGTGACCAAARAAYCA (Folmer et al. 1994). Additionally, 12S1: GGCTTGGCGGTGTTTAGAC and 12S3: GTGCACGTTTCAGAGCCCTA (Simon et al. 1991), and 16Sar: CGCCTGTTACCAAAACAT and 16Sbr: CCGGTCTGAAGTCAGATCACGT (Palumbi 1996) primers were used to amplify 12S rRNA and 16S rRNA genes. PCR reactions were conducted in a total volume of 30 μ l, containing 3 μ l DNA, 1.5 μ l of each primer, 13.5 μ l of Takara master mix, 1.5 μ l MgCl₂, and 9 μ l of PCR gradient water. The protocol began with initial amplification reaction that denatured at 94°C for 4 minutes, followed by 35 cycle denaturation for 40 seconds, annealing at 51°C for 40 seconds and extension at 72°C for 1 minute. A final extension step at 72°C for 5 minutes was

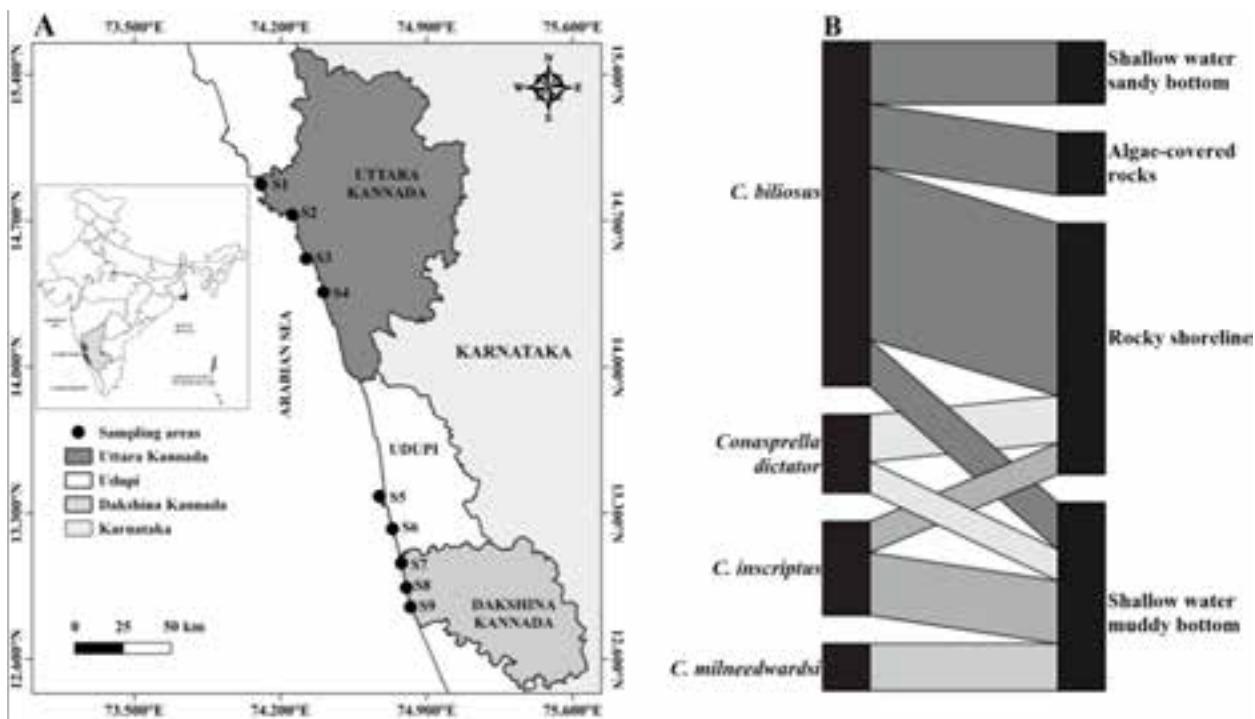


Image 1. Sampling sites (S1–S9) of Conidae in the Karnataka coast. (B) Natural habitat of cone snails collected.

included (Laxmilatha et al. 2021). The genomic DNA concentration and yield of PCR products were quantified using a Nano Drop spectrophotometer (Thermo Fisher Scientific Pvt. Ltd.) and assessed qualitatively using 0.8% agarose gel electrophoresis for DNA and 2% acrylamide gel electrophoresis for PCR products.

Phylogenetic analysis

The amplified PCR products were sequenced using the Sanger sequencing method (Barcode Biosciences). The resulting sequences were compared against the NCBI nr database using BLAST, and the top hits corresponding to *C. biliosus* were downloaded. Additionally, sequences of closely related species (*C. shikamai*) and other COI sequences were retrieved for use as an outgroup. Multiple sequence alignment was performed using MUSCLE, and a phylogenetic tree was constructed using the maximum likelihood (ML) method with the Kimura 2-parameter (K2P) model in MEGA7 software (Kumar et al. 2016). Bootstrap analysis was conducted with 1,000 replicates to assess the tree's robustness.

Data/Statistical analysis:

The morphometric measurements were recorded in a Microsoft Excel spreadsheet and summarized as mean (\pm standard deviation) along with minimum–maximum values. A Spearman's rank correlation coefficient matrix

of the morphometric variables was generated using the R *corrplot* package (Wei & Simko 2021), and scatter plots of morphometric variables (Raup 1961; Kohn & Riggs 1975) were created in Microsoft Excel. Principal component analysis (PCA) was then performed using the R *ggplot2* package (Wickham 2016).

RESULTS

Distribution

Four species were recorded: *Conus biliosus*, *C. inscriptus*, *C. milneedwardsi*, and *Conasprella dictator*; only *C. biliosus* was sampled alive. Altogether, 27 shells, including two live specimens were collected. *Conus milneedwardsi* is listed under Schedule I of the Indian Wildlife (Protection) Act, 1972, Part G: Mollusca (Ravinesh et al. 2019; Samuel et al. 2021).

Based on the sampling data (Image 2A–D), *Conus biliosus*, *C. inscriptus*, and *Conasprella dictator* were observed in the Uttara Kannada and Dakshina Kannada districts, while *C. milneedwardsi* was recorded only in the Udupi District. Sampling of cone shells included several marine habitats. *Conus biliosus* was found in shallow water sandy bottoms and rocky habitats (Image 1B, 2N–Q) with live specimens collected from algae-covered rocks. *Conasprella dictator* and *Conus inscriptus* shells

were found in rocky shoreline areas and shallow muddy bottoms (Image 1B). In contrast, *C. milneedwardsi* shells were collected by trawling in shallow muddy bottoms.

Family: Conidae Fleming, 1822

Genus: *Conus* Linnaeus, 1758

Conus biliosus (Röding, 1798)

Method of collection: Handpicking.

Condition: Live specimens (n = 2) and shells (n = 11).

Habitat: Rocky shore and algae-covered rocks.

Description (Image 2A, 2E–M): Shell length approximately ranges from 20 mm to 40 mm, the body is covered with low, wavy spiral ridges that run from shell base to shoulder and spiral growth ridges are frequently visible, but in some shells they are smooth. We observed this species with different shades (Image 2E–M) of orange, brown, brown-black, and pale brown (juvenile).

Conus inscriptus Reeve, 1843

Method of collection: Trawl bycatch.

Condition: Shells (n = 6).

Habitat: Shallow to subtidal sandy bottom.

Description (Image 2B): Shell length approximately ranges 40–55 mm. Shells are solid with a monotonous finish in a pale brown colour. Anteriorly, spiral grooves present – grooves are wide and contain spiral threads. In the sub-shoulder, bands are usually less noticeable than anterior bands.

Conus milneedwardsi Jousseaume, 1894

Method of collection: Trawl bycatch.

Condition: Shells (n = 3).

Habitat: Subtidal sandy bottoms.

Description (Image 2C): Shell length approximately ranges 86–136 mm. Shells are reddish-white or brownish-white with prominent reticulated patches and spiral bands.

Genus: *Conasprella* Thiele, 1929

Conasprella dictator (Melvill, 1898)

Method of collection: Handpicking and trawl bycatch.

Condition: Shells (n = 5).

Habitat: Shallow sandy bottoms.

Description (Image 2D): Shell length approximately ranges 25–35 mm. Shell is brownish-cream color, surrounded by distinct, dark-brown to reddish-brown bands, which are particularly prominent on the body whorl.

Morphometric analysis

The morphometric data for *C. biliosus* (n = 13), *Conasprella dictator* (n = 5), *C. inscriptus* (n = 6), and *C. milneedwardsi* (n = 3) is given in Table 1.

The Spearman's rank correlation coefficient matrix of the morphometric variables indicated that all variables were positively correlated (Figure 1A), with correlation coefficients ranging from $\rho = 0.38$ to $\rho = 0.99$. The scatter plots of morphometric variables against shell length are shown in Figure 1B–I. The variables such as HMD ($R^2 = 0.994$) and AL ($R^2 = 0.987$) exhibited excellent predictability in relation to shell length. Some variables, such as AW and HPW appeared to be more species-specific as *C. milneedwardsi* samples deviated from the general trend. HPW demonstrated the lowest predictability with respect to shell length among and within species.

A PCA (Figure 2) biplot of morphometric measurements explained 75.6% of the variance in PC1 and 15.5% in PC2. The samples from all four species formed distinct clusters, though the *Conasprella dictator* cluster overlapped with that of *C. biliosus*. As indicated by the lower variability of morphometric measurements (Table 1), *Conasprella dictator* was less spread compared to the other species in the PCA biplot. The variables projected onto the biplot revealed that SL, MD, and

Table 1. The morphometric measurements of the collected cone shells.

Variables	<i>C. biliosus</i> (n = 13) Mean (\pm SD) Min–Max	<i>Conasprella</i> <i>dictator</i> (n = 5) Mean (\pm SD) Min–Max	<i>C. inscriptus</i> (n = 6) Mean (\pm SD) Min–Max	<i>C. milneedwardsi</i> (n = 3) Mean (\pm SD) Min–Max
W	4.2 (2.3) 1.3–8.4	2.1 (0.7) 1.4–3.3	10.7 (3.6) 6.8–15.3	41.1 (21.8) 17.7–60.8
SL	28.2 (7.2) 19.1–41.2	29.1 (4.2) 25–35.5	48.8 (5.5) 41.9–54.6	114.7 (25.8) 86–136
MD	17.2 (3.7) 11.2–22.6	13.6 (1.9) 12.1–16.9	24.2 (3.4) 20.3–27.8	38.0 (12.5) 24–48
HMD	19.8 (6.0) 12.7–32.3	20.1 (2.8) 17.8–24.7	36.3 (4.9) 29.2–41.2	72.4 (16.0) 54.1–84
AH	25.5 (6.4) 16.7–35.5	23.1 (2.5) 21–27	39.3 (4.8) 34.8–45.8	76.7 (14.4) 60.1–86
AL	23.0 (6.3) 14.1–32	21.8 (2.6) 19.7–26	39.4 (5.6) 33–45.3	74.7 (16.3) 55.9–85.2
AW	3.2 (1.0) 1.8–4.9	3.0 (1.1) 1.9–4.4	5.0 (0.7) 4.1–5.8	4.2 (0.4) 3.8–4.5
HPW	1.4 (0.4) 0.7–2.3	1.3 (0.4) 0.6–1.9	3.7 (1.4) 2.2–6.0	2.2 (0.2) 2.0–2.3
SH	3.5 (1.1) 2.5–6.1	13.8 (6.3) 6.7–20.0	8.7 (1.0) 7.2–9.9	31.7 (4.1) 27.2–35

Abbreviations: W—Weight | SL—Shell length | MD—Maximum diameter | HMD—Height of maximum diameter | AH—Aperture height | AL—Aperture length | AW—Aperture width | HPW—Height of penultimate whorl | SH—Spire height. The measurements/values for W are in grams, and all others are in millimeter.

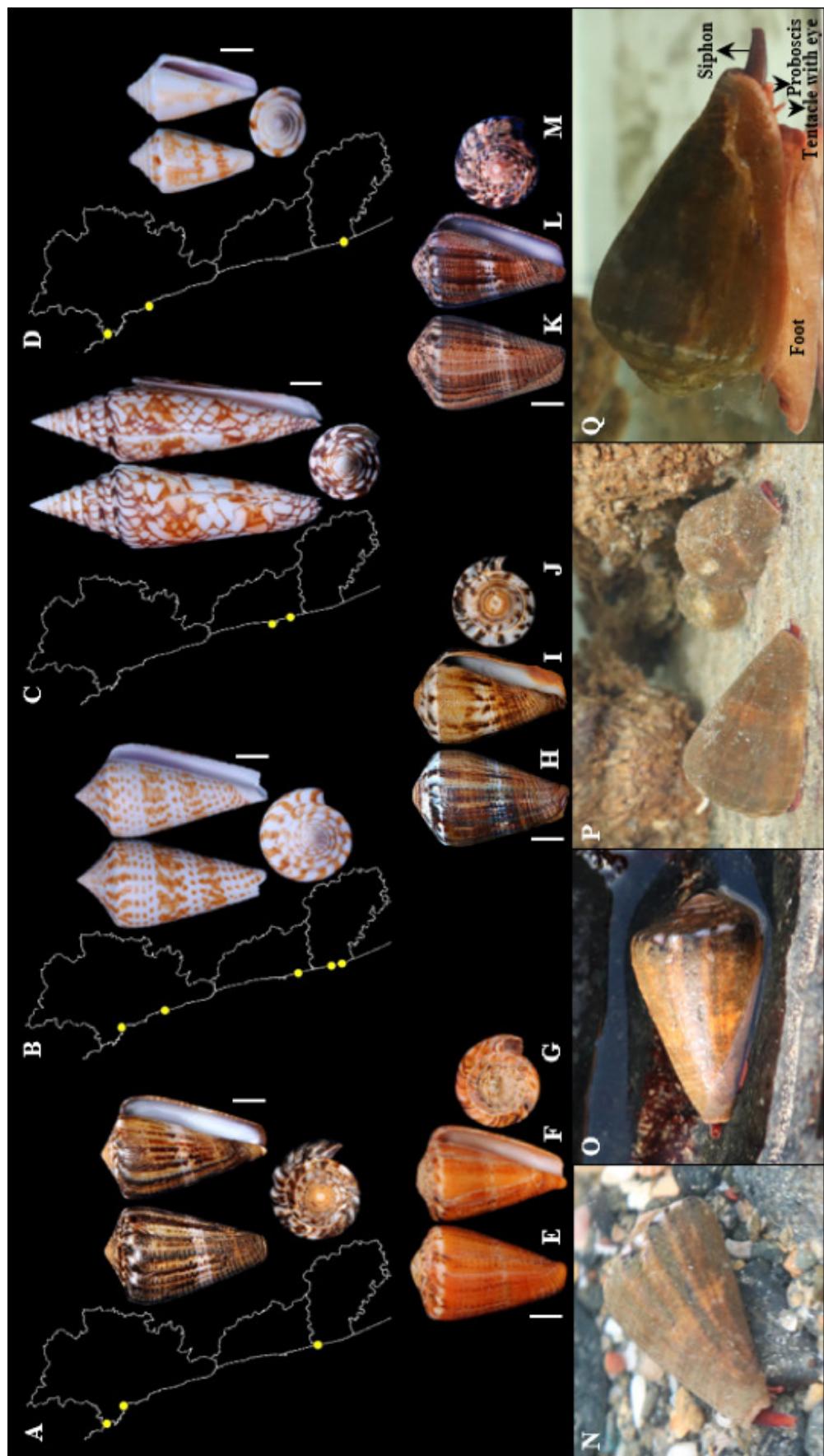
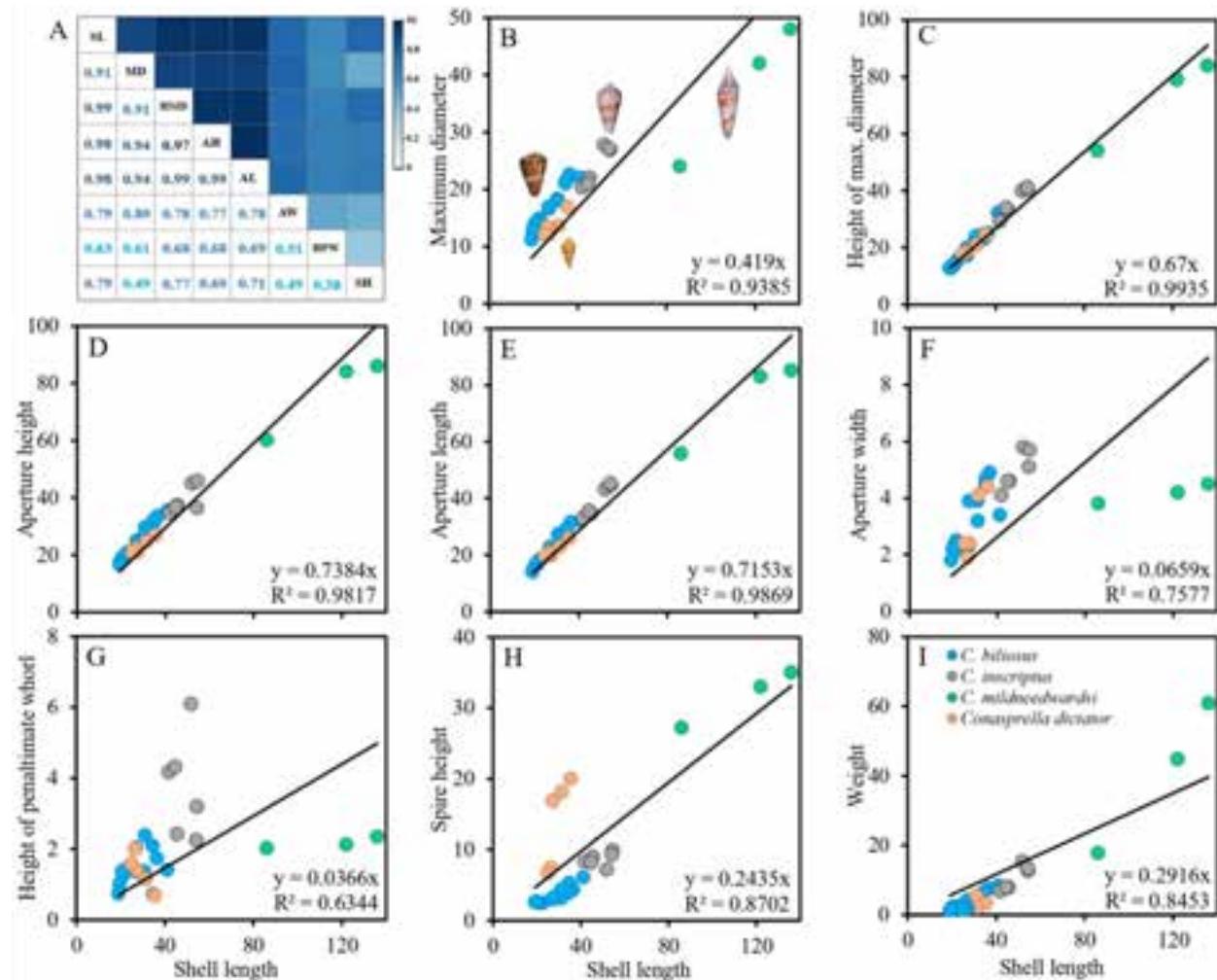



Image 2. Distribution (locality data) of Conidae in the Karnataka coast. (A) *C. biliosus*, (B) *C. inscriptus*, (C) *C. milneedwardsi*, and (D) *Conasprella dictator*. (E-M) Colour morphs in *C. biliosus*. (A-M) Dorsal, ventral, and top views of cone snail species. Scale bar is 1 cm. (N-Q) *C. biliosus* in the natural habitat. (P-Q) *C. biliosus* in aquarium. © B S Chandan.

Figure 1. (A) The Spearman's rank correlation coefficient matrix of morphometric variables. (B-I) Scatter plots of various shell measurements (all in mm, except weight which is in g) against the shell length (in mm). Abbreviations: AH - aperture height, SL - shell length, MD - maximum diameter, HMD - height of maximum diameter, AL - aperture length, AH - aperture height, AW - aperture width, APW - height of penultimate whorl, and SH - spire height.

other factors primarily contributed to PC1, as evident by the spread of long-shelled *C. milneedwardsi* along PC1. The variables HPW, AW and SH primarily contributed to PC2.

Phylogeny of *C. biliosus*

The mitochondrial COI sequences from two *C. biliosus* samples were obtained and submitted to NCBI (supplemental information). The phylogenetic tree based on these COI sequences revealed that *C. biliosus* samples (PQ390234 and PQ392002) from Karnataka were distinct, but clustered within the same clade of other *C. biliosus* (KJ549870.1 and KJ550138.1) from Indo-West-Pacific region (Puillandre et al. 2014) (Figure 3). The *C. shikamai* and other species formed a clear outgroup. Since COI sequences were found and used

widely for cone snail databases, 12S rRNA and 16S rRNA sequences were not included in the analysis.

DISCUSSION

This study documents four species of cone snails: *C. biliosus*, *C. inscriptus*, *C. milneedwardsi*, and *Conasprella dictator* from the Karnataka coast. While Conidae species generally share a similar shell shape (Rockel et al. 1995), morphometric measurements are widely used as distinguishing features between species. The ranges of values observed in this study are consistent with previous records of morphometric measurements for cone shells of the corresponding species from the Indo-Pacific region (Rockel et al. 1995), Lakshadweep

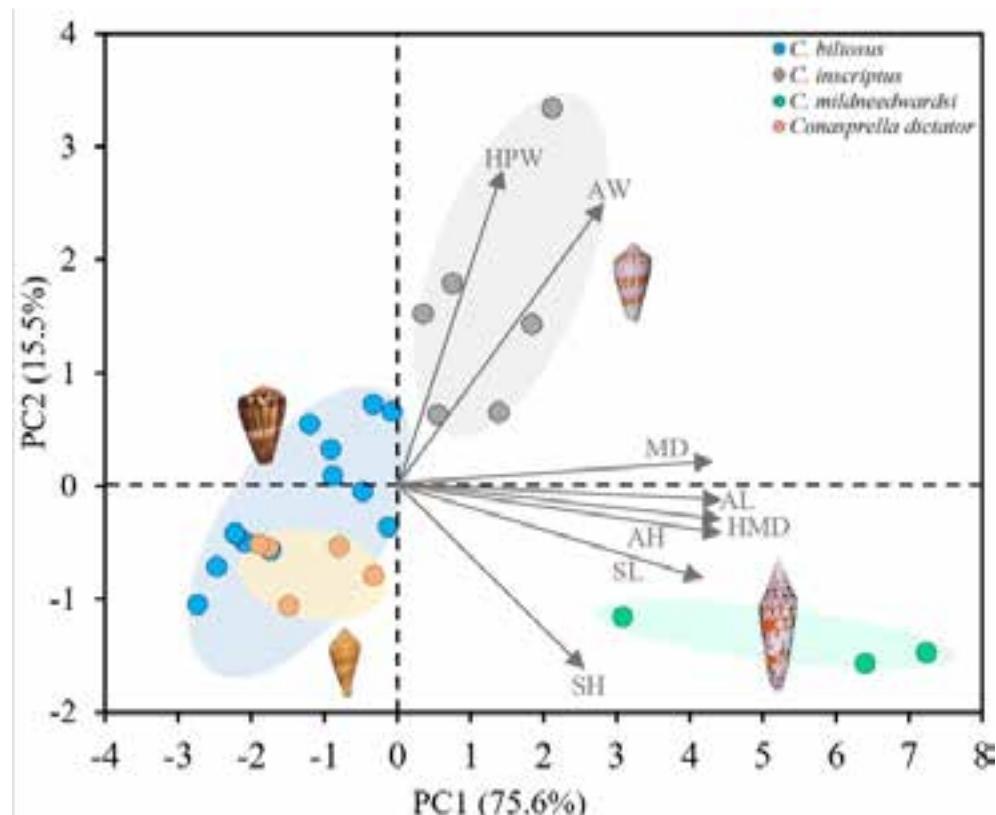


Figure 2. PCA biplot of Conidae species based on morphometric variables. Groups based on species. The arrows indicate the relationships of the variables with species group.

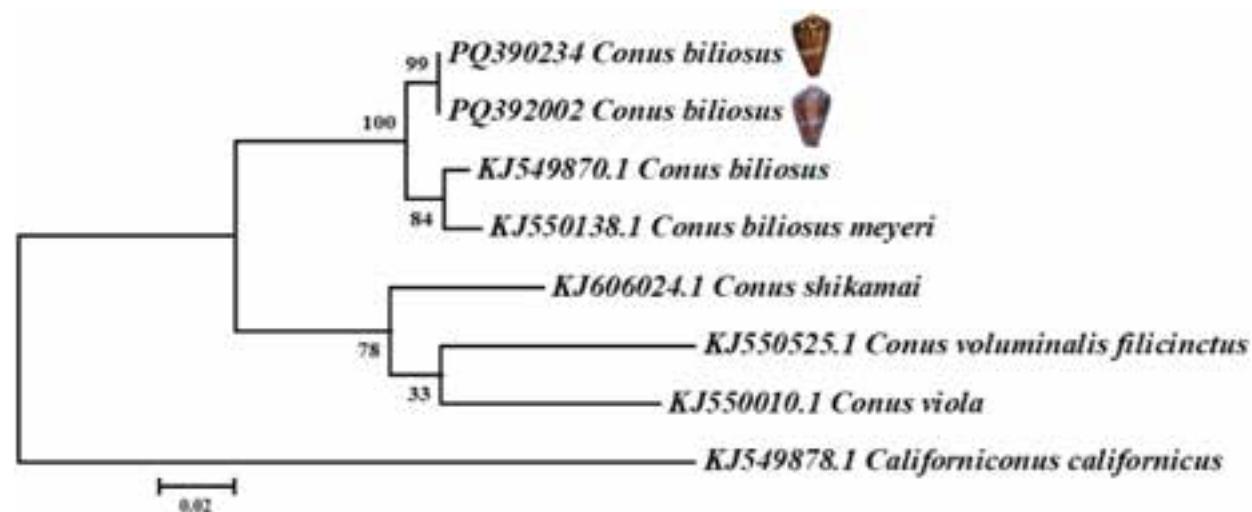


Figure 3. Maximum likelihood (ML) based phylogenetic tree of *C. biliosus* using partial mitochondrial COI gene sequences. The *C. shikamai* and others were used as the out group. Numbers next to nodes indicate percentage bootstrap values based on 1000 iterations. Scale bar indicates the number of substitutions per site.

(Ravinesh et al. 2018), Tamil Nadu (Venkitesan et al. 2019), and Kerala (Ravinesh et al. 2022).

The phylogenetic analysis based on mitochondrial COI sequences of live *C. biliosus* specimens collected in

this study placed them in a monophyletic group with *C. biliosus meyeri*, a southern subspecies found in Indian marine habitats (Puillandre et al. 2014).

This pilot study on the previously unexplored

Karnataka coast may inspire researchers to conduct more intensive surveys and acquire accurate data on habitat and distribution of cone snails of the Karnataka coast.

REFERENCES

Appukuttan, K.K., A. Chellam & A.K. Ramdoss (1989). Molluscan resources. In: Suseelan, C. (Ed.), Marine living resources of the union territory of Lakshadweep: An indicative survey with suggestions for development. *CMFRI Bulletin* 43: 77–92.

Doyle, J.J. & J.L. Doyle (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. *Phytochemical Bulletin* 19: 11–15.

Dutertre, S. & R.J. Lewis (2013). Cone snail biology, bioprospecting and conservation, fffhal-02306901f, pp. 1–15. In: Hämäläinen, E.M. & Sofia Järvinen (eds.). *Snails: Biology, Ecology, and Conservation*. Nova Science Publishers, New York.

Edward, J.K.P., R. Ravinesh & A.B. Kumar (2022). The molluscs of Gulf of Mannar, India and adjacent waters: A fully illustrated guide. Suganthi Devadason Marine Research Institute (SDMRI) & Department of Aquatic Biology & Fisheries, Thiruvananthapuram, Kerala, India.

Filmer, R.M. (2001). A catalogue of nomenclature and taxonomy in the living Conidae. Backhuys Publishers, Leiden, 388 pp.

Folmer, O., M. Black, W.R. Hoeh, R. Lutz & R.C. Vrijenhoek (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. *Molecular Marine Biology and Biotechnology* 3: 294–299. [https://doi.org/10.1016/1050-1738\(94\)90029-9](https://doi.org/10.1016/1050-1738(94)90029-9)

Franklin, J.B., K.A. Subramanian, S.A. Fernando & K.S. Krishnan (2009). Diversity and distribution of Conidae from the Tamil Nadu coast of India (Mollusca: Caenogastropoda: Conidae). *Zootaxa* 2250: 1–63. <https://doi.org/10.11646/zootaxa.2250.1.1>

Franklin, J.B., P. Venkateshwaran, N.V. Vinithkumar & R. Kirubagaran (2013). Four new records of Conidae (Mollusca: Caenogastropoda) from the Andaman Islands, India. *Zootaxa* 3635: 81–86. <https://doi.org/10.11646/zootaxa.3635.1.8>

Franklin, J.B. & D.A. Apte (2021). Three new distribution records of Conidae (Gastropoda: Neogastropoda: Conoidea) from the Andaman Islands, India. *Journal of Threatened Taxa* 13: 18378–18384. <https://doi.org/10.11609/jott.6891.13.5.18378-18384>

Hornell, J. (1921). Common molluscs of South India; Appendix molluscan fauna of the Laccadive islands. *Madras Fisheries Bulletin* 14: 213–215.

Kohn, A.J. & A.C. Riggs (1975). Morphometry of the *Conus* shell. *Systematic Zoology* 24: 346–359. <https://doi.org/10.1093/sysbio/24.3.346>

Kohn, A.J. (1978). The Conidae (Mollusca: Gastropoda) of India. *Journal of Natural History* 12: 295–335. <https://doi.org/10.1080/00222937800770171>

Kumar, S., G. Stecher & K. Tamura (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution* 33: 1870–1874. <https://doi.org/10.1093/molbev/msw054>

Laxmilatha, P., S. Ameri, K.A. Labeeb, K.V. Chaitanya & V.N. Varma (2021). A new species of cone snail, *Conus laccadivensis* sp. nov.: (Gastropoda: Conidae) from the Islands of Lakshadweep Archipelago. *Regional Studies in Marine Science* 44: 101783. <https://doi.org/10.1016/j.rsma.2021.101783>

Nagabhushanam, A.K. & G.C. Rao (1972). An ecological survey of the marine fauna of Minicoy Atoll (Laccadive Archipelago, Arabian Sea). *Mitteilungen Aus Dem Museum Für Naturkunde in Berlin. Zoologisches Museum Und Institut Für Spezielle Zoologie (Berlin)* 48: 265–324. <https://doi.org/10.1002/mmz.19720480203>

Palumbi, S.R. (1996). The polymerase chain reaction, pp. 205–247. In: Hillis, D.M., C. Moritz & B.K. Mable (eds.). *Molecular Systematics*, 2nd edition. Sinauer, Sunderland, Massachusetts.

Puillandre, N., P. Bouchet, Jr. T.F. Duda, Y.I. Kantor, A.V. Sysoev & C. Meyer (2014). Molecular phylogeny and evolution of the cone snails (Gastropoda, Conoidea). *Molecular Phylogenetics and Evolution* 78: 290–303. <https://doi.org/10.1016/j.ympev.2014.05.023>

Rao, K.V. & N.V. Rao (1991). Mollusca, pp. 273–362. In: Ghosh, A.K. & A. Kumar (eds.). State fauna series 2. Fauna of Lakshadweep. Zoological Survey of India.

Rao, N.V.S. (2003). *Indian Sea Shells (Part 1). Polyplacophora and Gastropoda*. Records of the Zoological Survey of India, Kolkata, 416 pp.

Raup, D.M. (1961). The geometry of coiling in gastropods. *Proceedings of the National Academy of Sciences* 47: 602–609. <https://doi.org/10.1073/pnas.47.4.602>

Ravinesh, R. & A.B. Kumar (2015). A checklist of the marine molluscs of Lakshadweep, India. *Journal of Aquatic Biology & Fisheries* 3: 15–55.

Ravinesh, R., A.B. Kumar & A.J. Kohn (2018). Conidae (Mollusca, Gastropoda) of Lakshadweep, India. *Zootaxa* 4441: 467–494. <https://doi.org/10.11646/zootaxa.4441.3.3>

Ravinesh, R., A.B. Kumar & V.D. Samuel (2019). Status of marine molluscs in illegal wildlife trade in India. *TRAFFIC Post* 30: 33–39.

Ravinesh, R., A.B. Kumar & P. Karnaver (2022). Diversity of Conidae (Caenogastropoda: Conoidea) from the Kerala Coast, India. *Molluscan Research* 42: 73–89. <https://doi.org/10.1080/13235818.2022.2034080>

Rockel, D., W. Korn & A.J. Kohn (1995). Manual of the living Conidae. Indo-Pacific region. *Verlag Christa Hemmen, Wiesbaden* 517 pp.

Samuel, D.V., R. Ravinesh, A.B. Kumar, K.P. Raghuram, R.K. Sundar & R.K. Thakur (2021). Protected molluscs (seashells) of India. *TRAFFIC Identification Poster* 11–12.

Simon, C., A. Franke & A. Martin (1991). The polymerase chain reaction: DNA extraction and amplification, pp. 329–355. In: Hewitt, G.M. (ed.). *Molecular Techniques in Taxonomy*. Springer, Berlin, Germany. https://doi.org/10.1007/978-3-642-83962-7_22

Smith, E.A. (1894). XLIV-Natural history notes from HM Indian marine survey steamer 'Investigator,' Commander CF Oldham, RN-Series II, No. 10. Report upon some Mollusca dredged in the Bay of Bengal and the Arabian Sea. *Journal of Natural History* 14: 157–174. <https://doi.org/10.1080/00222939408677814>

Venkataraman, K., R. Jeyabaskaran, K.P. Raghuram & J.R.B. Alfred (2004). Bibliography and checklist of corals and coral reef associated organisms of India. *Records of the Zoological Survey of India* 226: 1–468.

Venkitesan, R., S. Barua & M. Hafiz (2019). Contribution to the knowledge on Indian marine molluscs: Family Conidae. *Records of the Zoological Survey of India* 119: 165–184.

Wei, T. & V. Simko (2021). R package "Corrplot": Visualization of a Correlation Matrix. *The Comprehensive R Archive Network* 26 pp. https://doi.org/10.1007/978-3-030-50889-1_45

Wickham, H. (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer, New York, 260 pp. <https://doi.org/10.1007/978-3-319-24227-4>

Supplemental information

Notes:

Partial gene sequences of 12S rRNA, 16S rRNA, and COI from two specimens of *C. biliosus*. The sequences have been submitted to NCBI and the accession numbers are given.

>PQ393374| 12S rRNA (partial) from *C. biliosus* 1

```
ATTCGACATTCACGTTTCCCGACCTCCTTATTCCGAGTTTACCGCTTGCTCAGGTAACATCTTAAACATAGTAGTTAGCTACGAAAATTTAATTAAACACGCTA
AATCAAGGTGAGCTAATAAGAGGGAGGAGATGGGTACAATTATATAATCACGAAAAACGCTTAAATAAGGTGTTGAAAGGAGGACTGAAAGTAATTAAATATAAAGAGA
ATGAATAGGGCTCTAAAACGTCACA
```

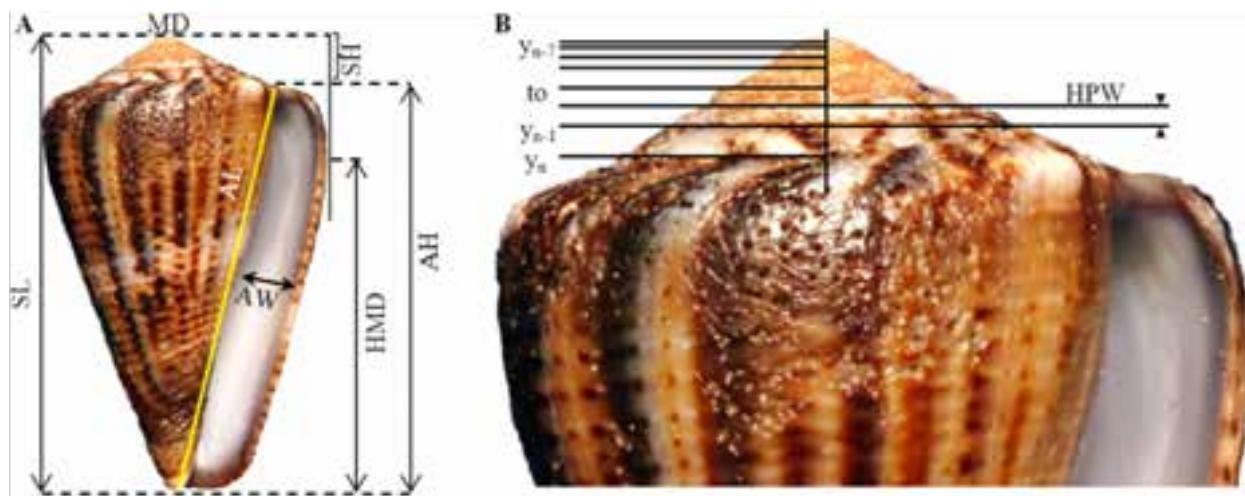
>PQ394594| 16S rRNA (partial) from *C. biliosus* 1

```
CGGACCTTGCAGTGAGTTTCAACGGCCGGTACTACTCACCGTCAAAGGTAGCATAATCATCCTGCCTTATAATTGAAGGCTGGAATGAATGGTTGACAAGAATACAACGTCTC
TATATGATTCTCTAGAATTATTTTGGATGAAAAGTCAGATATTAAAAGACAAGAAGACCCATCGAGCTTAGAGAAAATTAGTAGACTAATAATAATCAAGAAATAAAAGAAA
AACTACTAAACACTTGGTGGGCAACCGAGGAGAAAAAGCCTCTTAAGTTAACTCTGATGTGCTGATCAAAGGAAATTGATCAAAGGAAATTGACCTGAGTCTTAAGGGTGGTGTGAC
CATTATCTTTCAAGGCCATATCGAAAAAAAGGTTGTGACCTGATGTTGACCAGAATACCTAAAGATCGAGAAGTCTTAAGGGTGGTGTGACCTTAAATTCTACGTGAT
CTGT
```

>PQ390234| COI (partial) from *C. biliosus* 1

```
GGGTTGGTGGTACTGCCTTAAGTTATTGATTGCTGAGAATTAGGTGAGCTGCTTACCTGGAGACGATCAGTTGATAATGTAATTGAGCAGCACATGCTTGTATAATTGTTT
CTTAGTGTGCAATAATAATTGGGGGATTGGGATTGATTAGTAGCTCTTATATTGGGGGCTCCAGATATGGTTTCTCGACTAAATAATAAGTTTGGCTTCTCCGCTGCGTT
GCTCTCTATCGCAGCGGTAGAAAGGGGTGTTGAGCAGTATATCCTTTAGCAGGAAATCTAGCTCATGCTGGAGGTTCTGAGATCTGGGATTTCTCTCC
CTGCTGGGTTCTTATTTGGGTGAGTAAATTATTACACAAATTATAATACGATGGCAGGGATAAAATTGAAACGCTTCGTTGTTGTTGCGTAAAAATTACTGCTT
TTATTGCTTTATCTTACCTGTTAGCAGGAGCAATTACGATACTCTAACCGATCGAAATTAAACTGCTTCTTGACCAGCAGGAGGTGGGATCCTATTATACCAGCATTGTT
```

>PQ393375| 12S rRNA (partial) from *C. biliosus* 2


```
TACAAAAAAAGAACATACAGTGGTAAGTCTATCACGCTTACCGACCCCTATAGCAGTTGAGCTGTTGCTCAGGTAACCTTAAACATAGTAGTTAGCTGAAAAT
TATTAATAACACGTCAATCAAGGTGAGCTAATAAGAGGGAGGAGGGTACAATTATATAATCACGAAAAACGCTTAAATAAGGTGTTGAAAGGAGGACTGAAAGTAATT
TTAATTATAAAAGAGAATGAATAGGGCTCTGAAACGTCACA
```

>PQ380238| 16S rRNA (partial) from *C. biliosus* 2

```
TTTTAACGGCCGGTACTGACCGTCAAAGGTAGCATAATCATTGCTTATAATTGAAGGCTGGAATGAATGGTTGACAAGAATACAACGTCTATATGATTCTAGAATT
TTTGGATGAAAAGTCAGATATTAAAAGACAAGAAGACCCATCGAGCTTAGAGAAAATTAGTAGACTAATAATAATCAATAGAAAATAAGAAAACTAAACACTTGGT
GGGGCAACCGAGGAGCAAATAAGCCTCTTAAGTTAACTCTGATGTGCTGATCAAAGGAAATTGATCAAAGGAAATTGACCTGATGGATAACAACGTTAC
```

>PQ392002| COI (partial) from *C. biliosus* 2

```
GGGTTGGTGGTACTGCCTTAAGTTATTGATTGCTGAGAATTAGGTGAGCTGCTGCTTACCTGGAGACGATCAGTTGATAATGTAATTGAGCAGCACATGCTTGTATAATTGTTT
CTTAGTGTGCAATAATAATTGGGGGATTGGGATTGATTAGTAGCTCTTATATTGGGGGCTCCAGATATGGTTTCTCGACTAAATAATAAGTTTGGCTTCTCCGCTGCGTT
GCTCTCTATCGCAGCGGTAGAAAGGGGTGTTGAGCAGTATATCCTTTAGCAGGAAATCTAGCTCATGCTGGAGGTTCTGAGATCTGGGATTTCTCTCC
CTGCTGGGTTCTTATTTGGGTGAGTAAATTATTACACAAATTATAATACGATGGCAGGGATAAAATTGAAACGCTTCGTTGTTGTTGCGTAAAAATTACTGCTT
TTATTGCTTTATCTTACCTGTTAGCAGGAGCAATTACGATACTCTAACCGATCGAAATTAAACTGCTTCTTGACCAGCAGGAGGTGGGATCCTATTATACCAGCATTGTC
```


Image S1. Morphometric measurements of the Conidae shell (*C. biliosus*): A—Ventral view | B—Posterior or spire view. Abbreviations: AH—aperture height | AL—aperture length | AW—aperture width | HPW—height of penultimate whorl | HMD—height of maximum diameter | MD—maximum diameter | SH—spire height | SL—shell length. In the spire, the successive whorls are labelled as y_{n-1} to y_{n-7} . © B S Chandan.

New distribution record and DNA barcoding of the steno-endemic plant *Cordia diffusa* (Boraginaceae)

M. Haritha¹ , D. Leena Lavanya² & H. Abinaya³

^{1,2,3} Department of Botany, Avinashilingam Institute of Home Science and Higher Education for Women, Coimbatore, Tamil Nadu 641043, India.

¹harithamuthu0111@gmail.com, ²leenalavanyad@gmail.com (corresponding author), ³abisiva238@gmail.com

Abstract: The research marks the first documented occurrence of *Cordia diffusa* in Kurumbapalayam, a location where it had not been reported previously. In this study, genomic markers were also utilized to document the endemic plant species *Cordia diffusa* K.C.Jacob of the Boraginaceae family. This study employed chloroplast markers such as matK, rbcL, and the psbA-tndH region to determine their efficiency in identifying the species. For the first time, *C. diffusa* has been analyzed and documented using these genetic markers. Sequences obtained from three different primer sets for each marker were submitted to GenBank. This research highlights the first genetic documentation and identification of *C. diffusa* using chloroplast markers, contributing valuable genetic data to GenBank and advancing the understanding of this endangered species distribution.

Keywords: Boraginaceae, chloroplast markers, Endangered species, Kurumbapalayam, matK, psbA-tndH, rbcL, species identification.

Editor: Mandar Paingankar, Government Science College Gadchiroli, Maharashtra, India.

Date of publication: 26 February 2025 (online & print)

Citation: Haritha, M., D.L. Lavanya & H. Abinaya (2025). New distribution record and DNA barcoding of the steno-endemic plant *Cordia diffusa* (Boraginaceae). *Journal of Threatened Taxa* 17(2): 26547-26552. <https://doi.org/10.11609/jott.9486.17.2.26547-26552>

Copyright: © Haritha et al. 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Competing interests: The authors declare no competing interests.

Author details: HARITHA, M., is a research scholar in the Department of Botany at Avinashilingam Institute for Home Science and Higher Education for Women. Her research focuses on plant anatomy, DNA barcoding, and phytochemistry. DR. D. LEENA LAVANYA is an assistant professor in the Department of Botany at Avinashilingam Institute for Home Science and Higher Education for Women, holds a doctoral degree in Botany. Her research expertise includes molecular biology, phytochemistry, and mushroom cultivation. ABINAYA, H., is a research scholar in the Department of Botany at Avinashilingam Institute for Home Science and Higher Education for Women. Her research focuses on the biofortification of mushrooms.

Author contributions: MH—data collection, data analysis, and writing—original draft. DLL—supervision, guidance in research methodology, and writing—review & editing. HA—assistance in data collection and visualization.

Acknowledgements: The author thanks Dr. R. Sathishkumar, Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India, for carrying out the DNA barcoding work.

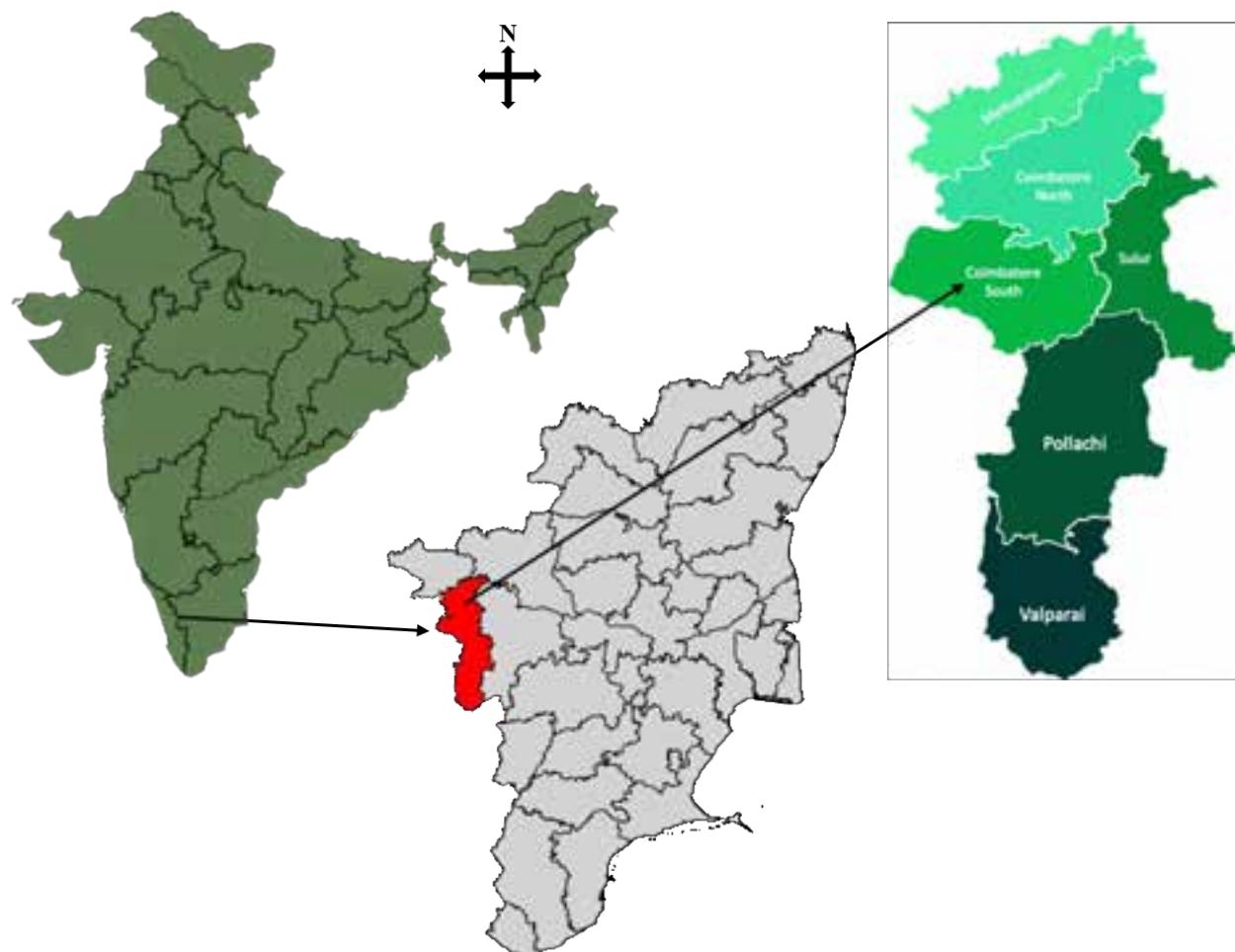
INTRODUCTION

The *Cordia* plant genus is part of the Boraginaceae family often referred to as the forget me-not family and includes herbs and trees, among its 2,700 species spread across almost 125 genera historically categorized into five subfamilies named Boraginoideae, Cordioideae, Ehretioideae, Heliotropioideae, and Wellstedioideae (De Candolle in 1845; Bentham & Hooker in 1876; Engler in 1898; Pilger & Krause in 1915). However, according to evolutionary studies, physical traits, and consistent naming conventions, these have now been expanded to 11 separate and related plant families. These include Boraginaceae sensu stricto, Codonaceae, the established Coldeniaceae family, Cordiaceae, Ehretiaceae, Heliotropaceae, Hoplestigmataceae, Hydrophylacaea, Lennoaceae, Namaceae, and Wellstediaceae as detailed by Luebert et al. (2016). The genus name *Cordia* pays tribute to the botanist and pharmacist Valerus Cordus as referenced by Quattrocchi (2012).

Henry et al. (1978) reported *Cordia diffusa* K.C.Jacob, a shrub commonly known as Kovai Manjack or Sirunaruvilli, is a rare and threatened flowering plant of southern India. While it is believed to be endemic to this region (Arumugam et al. 2019), reports suggest its presence in other areas like the Gulf of Mannar (Daniel & Umamaheshwari 2001) and Chengalpattu District (Ramamurthy 1987; Nayar 1996; Singh et al. 2015). In the region of Kurumbapalayam, in Sarkarsamakulam, within Coimbatore *C. diffusa* has been recently discovered. Highlighted by its traits the identification of plant species has been a common practice. Spotting endangered plants that resemble species based on their vegetative features poses a challenge. A solution to this dilemma could lie in DNA barcoding, introduced by Hebert et al. (2003) for the purpose of species identification or discovery. The ideal DNA barcode should be a consistent short DNA sequence (400–800 bp) that can be produced and characterized efficiently for all living species (Savolainen et al. 2005). CBOL Plant Working Group (2009) evaluated the performance of psbK-psbI, atpF-atpH, and trnH-psbA spacers, and matK, rbcL, rpoB, and rpoC1 and among the seven plastid barcode loci, recommends that rbcL and matK as standard barcoding region, ITS and trnH-psbA as supplementary barcode loci (China plant BOL group et al. 2011; Pang et al. 2012) these four loci were widely accepted as plant DNA barcodes (Yu et al. 2011; Li et al. 2012; Parveen et al. 2012; Aubriot et al. 2013; Saarela et al. 2013; Yan et al. 2015). Plastome sequences have also been used widely to study the phylogenetic connections of numerous plant taxa (Lv et

al. 2022; Su et al. 2022; Xu et al. 2022; Hu et al. 2023).

It should be remembered that DNA barcoding is not a substitute for taxonomy, but rather an important tool that generates information on undiscovered species (Ebach et al. 2005). Rapid economic development and its impact on the flora and fauna of numerous nations, particularly in the tropical and subtropical regions, molecular identification can speed up identification and improve the accuracy of species separation in complex species and tree plants and estimate the biodiversity of these regions to preserve the rare endemic and endangered species. In the present study, DNA barcoding of the endangered species *Cordia diffusa*, which has not been done so far, is done, and its phylogenetic relationship with other species was determined based on BLAST results.


MATERIALS AND METHODS

Plant collection

Plant materials were collected in 2022 in Kurumbapalayam, Coimbatore (Figure 1, Image 1). The collected specimens were authenticated, and a herbarium voucher was submitted to the Botanical Survey of India, Southern Circle, Coimbatore, Tamil Nadu.

DNA isolation, PCR amplification and DNA sequencing

DNA from *C. diffusa* leaf was obtained using the Macherey Nagel Nucleospin Plant II mini spin DNA extraction kit from 100 mg of tissue. The amount of DNA extracted was measured using a Thermo Scientific Nanodrop 2000 spectrophotometer. To barcode the DNA samples, for identification purposes the specific genes matK, rbcL and trnH-psbA were used for PCR amplification using a thermal cycler (Bio-Rad, USA). PCR reactions were performed with a total volume of 30 μ l reaction mixture containing 2 μ l (100 ng) of DNA, 15 μ l of EmeraldAmp GT PCR mix (TaKaRa, Bio USA, Inc.), 0.5 μ l (10 pM) of each forward and reverse prime, and 12 μ l of nuclease-free water. PCR cycling conditions were: one cycle of 5 min at 95°C, followed by 30 cycles at 95°C for 1 min. Annealing at different temperatures for different genes: 58°C for the matK gene, 55°C for the rbcL gene, and 57°C for the trnH psbA gene for 30 seconds and extension at 72°C for a minute and the final extension step at 72°C for 10 minutes. The reaction mixture consists of 2 μ l (100 ng) of DNA, 15 μ l of EmeraldAmp GT PCR mix (TaKaRa, Bio USA, Inc.), 0.5 μ l (10 pM) of each forward and reverse primer, and 12 μ l of nuclease-free

Figure 1. Study area of the plant *Cordia diffusa*.

water made up to 30 μ l. The primer set descriptions are given in Table 1. The amplified PCR products were loaded in a 1% TAE agarose gel and observed using a UV-Transilluminator. The amplified DNA was sequenced at Biokart (Karnataka, India). Sequencing was performed in both primers to obtain the full length of the targeted region.

Sequence submission and data analysis

The DNA sequences were assembled and edited using codon code Aligner V 2.06 (Codon Code Co, USA) to remove unclear base calls, and both sequences were assembled. The sequences were modified according to the NCBI criteria (<https://www.ncbi.nlm.nih.gov/>) and compared to the global sequence in the GenBank database (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>) using the nucleotide BLAST algorithm. Both BLASTn and BLASTx were performed sequentially. The sequences were submitted to NCBI through the Bankit submission channel (<https://www.ncbi.nlm.nih.gov/WebSub/>). To

determine the percentage of sequence similarity, the FASTA format of *Cordia diffusa* DNA sequences was compared with the NCBI database using BLAST + 2.14.).

RESULTS

A detailed literature survey on the occurrence of *C. diffusa* was done, and the species previously reported in Vaalankulam, Ramanathapuram (Chandrabose 1968), and IFGTB (Prabu et al. 2019) were identified in Kurumbapalayam, Coimbatore. The herbarium of the plant was submitted to the Botanical Survey of India, Coimbatore, with Voucher number MH178154 (Image 2).

PCR Results and DNA Barcode Sequence Analysis

Partial DNA sequencing was performed using matK, rbcL, and trnH-psbA gene regions. The accession number of the GenBank submitted sequences with their

Image 1. The habit of *Cordia diffusa*. © Haritha, M. & D. Leena Lavanya.

Table 1. List of primers used for DNA amplification.

Primer name	Sequence
F	CTTCGGATATGAGGAATTCTTCC
R	CTTCGGATATGAGGAATTCTTCC
F	ATGTCACCACAAACAGAGACTAAAGC
R	TCGCATGTACCTGCAGTAGC
F	CGCGCATGGTGGATTCAACATCC
R	GTTATGCATGAACGTAATGCTC

respective base lengths and nucleotide composition percentages are summarized in Table 2. Among the genes used for the study, the highest G+C content (42%) was observed in the *rbcL* gene compared to *matK* and *trnH-psbA*.

DISCUSSION

Cordia diffusa, a rare, endemic shrub species geographically restricted to Tamil Nadu and Sri Lanka, was first identified by Dr. K. Cherian Jacob in 1938 and later described in 1944. Henry et al. (1978) listed *C. diffusa* as a rare and threatened plant of southern India. Later, Chandrasekhar & Nair (1988) expressed concerns over its potential extinction, classifying it as indeterminate on the IUCN Red List of Threatened Plants (Rao et al. 2003). Although *C. diffusa* has been reported at several locations in Coimbatore, recent observations by Prabhu et al. (2019) indicated the removal of the species from the IFGTB region where it had previously been found.

Image 2. Herbarium of *Cordia diffusa* (MH178154).

This study adds new findings by documenting the presence of *C. diffusa* in Kurumbapalayam, Coimbatore.

Plant species identification primarily relies on sequencing variation from reference sequences and reconstructing phylogenetic relationships (Altschul et al.

Table 2. Average AT and GC nucleotide composition of *Cordia diffusa* species in three primers.

Primers	Accession number	Total base pairs obtained after sequencing	A (%)	T (%)	G (%)	C (%)	AT (%)	GC (%)
matK	OQ852800.1	727 bp	36	32	17	15	68	32
rbcL	OR096230.1	548 bp	28	30	21	21	58	42
trnH-psbA	OR096231.1	315 bp	28	45	17	10	73	27

1997). But as Smith et al. (2008) pointed out, in order to comprehend the detected species, it is crucial to combine plant DNA data with other traits, including morphology, ecology, and development. Because the chloroplast genomes of angiosperms are so well conserved, the chloroplast regions matK, rbcL, and trnH-psbA were used in this study to barcode *C. diffusa* (Chevenet et al. 2006; Amiryousefi et al. 2018; Mehmood et al. 2020). Reliable molecular markers for species identification are provided by these conserved areas.

Across the plant taxa, rbcL is highly conserved, enabling the development of universal primers for PCR amplification. However, the variation within the rbcL region allows for species identification and phylogenetic studies (Kress & Erickson 2007; Hollingsworth et al. 2009). *C. diffusa* (OR096230.1) has a base pair length of 548. The main purpose of DNA barcoding is to tell species apart effectively due to its significant variability, which helps in identifying plant species, especially when dealing with diverse groups where other markers might struggle with distinguishing closely related taxa as mentioned by Kress et al. (2005) and Shaw et al. (2007).

CONCLUSION

The study serves a significant part in documenting the molecular identification of *Cordia diffusa*, an endangered and steno-endemic plant species. In addition to enriching molecular databases, DNA sequences submitted to GenBank are a useful resource for upcoming studies in conservation biology and plant taxonomy. The new occurrence of the plant in Kurumbapalayam, Coimbatore, extends its known distribution and shows the need for continuous research and observation of regional plants. Further studies will concentrate on creating plans for the plant's conservation and sustainable management.

REFERENCES

Arumugam, S., K.S. Kumar, B. Karthik & V. Ravichandran (2019). *Cordia diffusa* K.C. Jacob, the Kovai Manjack (Boraginaceae): a highly threatened steno-endemic species from Coimbatore City, Tamil Nadu, India. *Journal of Threatened Taxa* 11(14): 14870–14875. <https://doi.org/10.11609/jott.5292.11.14.14870-14875>

Mehmood, F., I. Shahzadi, S. Waseem, B. Mirza, I. Ahmed & M.T. Waheed (2020). Chloroplast genome of *Hibiscus rosa-sinensis* (Malvaceae): Comparative analyses and identification of mutational hotspots. *Genomics* 112(1): 581–591. <https://doi.org/10.1016/j.ygeno.2019.04.010>

Altschul, S., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller & D.J. Lipman (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. *Nucleic Acids Research* 25(17): 3389–3402. <https://doi.org/10.1093/nar/25.17.3389>

Amiryousefi, A., J. Hyvonen & P. Pocza (2018). The chloroplast genome sequence of bittersweet (*Solanum dulcamara*): Plastid genome structure evolution in Solanaceae. *PLoS One* 13(4): e0196069. <https://doi.org/10.1371/journal.pone.0196069>

Aubriot, X., P.P. Lowry, C. Cruaud, A. Couloux & T. Haevermans (2013). DNA barcoding in a biodiversity hot spot: potential value for the identification of Malagasy Euphorbia L. listed in CITES Appendices I and II. *Molecular Ecology Resources* 13(1): 57–65. <https://doi.org/10.1111/1755-0998.12028> PMID: 23095939 17

Bentham, G. & J.D. Hooker (1876). *Genera Plantarum*, Vol. 1. Reeve, London, 57–102.

CBOL Plant Working Group, P.M. Hollingsworth, L.L. Forrest, J.L. Spouge, M. Hajibabaei, S. Ratnasingham, M. Van der Bank, M. Chase, W. Cowan, R.S. Erickson, D.L. Fazekas, A.J. Graham, S.W. James, K.E. Kim, K.J. Kress, W.J. Schneider, H. van AlphenStahl, J. Barrett, S.C.H. van den Berg & C. Little (2009). A DNA barcode for land plants. *Proceeding of the National Academy of Science* 106(31): 12794–12797. <https://doi.org/10.1073/pnas.0905845106>

Chandrabose, M. (1968). *A New Species of Polygala from South India*. Bulletin of the Botanical Survey of India 9(1–4): 288–290.

Chandrabose., M. & N.C. Nair (1988). *Flora of Coimbatore*. Bishen Singh Mahendra Pal Singh, Dehra Dun, 398 pp.

Chevenet, F., C. Brun, A.L. Bañuls, B. Jacq & R. Christen (2006). TreeDyn: Towards dynamic graphics and annotations for analyses of trees. *BMC Bioinformatics* 7: 439. <https://doi.org/10.1186/1471-2105-7-439>

China Plant BOL Group; D.Z. Li, L.M. Gao, H.T. Li, H. Wang, X.J. Ge, J.Q. Liu, Z.D. Chen, S.L. Zhou, S.L. Chen, J.B. Yang, C.X. Fu, C.X. Zeng, H.F. Yan, Y.J. Zhu, Y.S. Sun, S.Y. Chen, L. Zhao, K. Wang, T. Yang & G.W. Duan (2011). Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. *Proceeding of the National Academy of Science* 108(49): 19641–19646. <https://doi.org/10.1073/pnas.1104551108> PMID: 2210073

Daniel, P. & P. Umamaheshwari (2001). *Flora of Gulf of Mannar Southern India*. Botanical Survey of India, Calcutta, 688 pp.

De Candolle, A.P. (1845). *Prodromus Systematis Naturalis Regni Vegetabilis*, Vol. 9. Paris, 573 pp. <https://doi.org/10.5962/bhl.title.286>

Ebach, M.C. & C. Holrege (2005). DNA barcoding is no substitute for taxonomy. *Nature* 434(7034): 697–697. <https://doi.org/10.1038/434697b>

Engler, A. (1898). *Syllabus der Pflanzenfamilien*, second edition. Berlin: Gebrüder Borntraeger. <https://archive.org/details/syllabusderpfla00eng>

Hebert, P.D., S. Ratnasingham & J.R. De Waard (2003). Barcoding animal life: cytochrome c oxidase subunit 1 divergences among

closely related species. *Proceedings of the Royal Society of London. Series B: Biological Sciences* 270: S96–S99. <https://doi.org/10.1098/rbsl.2003.0025>

Henry, A.N., K. Vivekanathan & N.C. Nair (1978). Rare and threatened flowering plants of South India. *Journal of the Bombay Natural History Society* 75(3): 684–697.

Hollingsworth, M.L., A. Clark, L.L. Forrest, J. Richardson, R.T. Pennington, D.G. Long & P.M. Hollingsworth (2009). Selecting barcoding loci for plants: evaluation of seven candidate loci with species-level sampling in three divergent groups of land plants. *Molecular Ecology Resources* 9(2): 439–457. <https://doi.org/10.1111/j.1755-0998.2008.02439.x>

Hu, H.S., J.Y. Mao, X. Wang, Y. Liang, B. Jiang & D.Q. Zhang (2023). Plastid phylogenomics and species discrimination in the “Chinese” clade of Roscoea (Zingiberaceae). *Plant Diversity* 45: 523–534. <https://doi.org/10.1016/j.pld.2023.03.012>

Kress, W.J. & D.L. Erickson (2007). A two-locus global DNA barcode for land plants: the coding *rbcL* gene complements the non-coding *trnH-psbA* spacer region. *PLOS one* 2(6): e508. <https://doi.org/10.1371/journal.pone.0000508>

Kress, W.J., K.J. Wurdack, E.A. Zimmer, L.A. Weigt & D.H. Janzen (2005). Use of DNA barcodes to identify flowering plants. *Proceedings of the National Academy of Sciences* 102(23): 8369–8374. <https://doi.org/10.1073/pnas.0503123102>

Li, H.Q., J.Y. Chen, S. Wang & S.Z. Xiong (2012). Evaluation of six candidate DNA barcoding loci in *Ficus* (Moraceae) of China. *Molecular Ecology Resources* 12(5): 783–790. <https://doi.org/10.1111/j.1755-0998.2012.03147.x>

Luebert, F., L. Cecchi, M.W. Frohlich, M. Gottschling, C.M. Guiliams, K.E. Hasenstab-Lehman, H.H. Hilger, J.S. Miller, M. Mittelbach, M. Nazaire, M. Nepi, D. Nocentini, D. Ober, R.G. Olmstead, F. Selvi, M.G. Simpson, K. Sutory, B. Valdes, G.K. Walden & M. Weigend (2016). Familial classification of the Boraginales. *Taxon* 65(3): 502–522. <https://doi.org/10.12705/653.5>

Lv, S.Y., X.Y. Ye, Z.H. Li, P.F. Ma & D.Z. Li (2022). Testing complete plastomes and nuclear ribosomal DNA sequences for species identification in a taxonomically difficult bamboo genus. *Fargesia*. *Plant Diversity* 45: 147–155. <https://doi.org/10.1016/j.pld.2022.04.002>

Nayar, M.P. (1996). *Hotspots of Endemic Plants of India, Nepal, and Bhutan*. Tropical Botanic Garden and Research Institute, Thiruvananthapuram, 254 pp.

Pang, X., C. Liu, L. Shi, R. Liu, D. Liang, H. Li, S.S. Cherny & S. Chen (2012). Utility of the *trnH-psbA* intergenic spacer region and its combinations as plant DNA barcodes: a meta-analysis. *PLOS One* 7(11): e48833. <https://doi.org/10.1371/journal.pone.0048833>

Parveen, I., H.K. Singh, S. Raghuvanshi, U.C. Pradhan & S.B. Babbar (2012). DNA barcoding of endangered Indian *Paphiopedilum* species. *Molecular Ecology Resources* 12(1): 82–90. <https://doi.org/10.1111/j.1755-0998>

Pilger, R. & K. Krause (1915). Die Natürlichen Pflanzenfamilien, Ergänzungsheft 3. Leipzig: W. Engelmann.

Prabu, K., A. Rajasekaran, D. Bharathi & S. Ramalakshmi (2019). Anti-oxidant activity, phytochemical screening and HPLC profile of rare endemic *Cordia diffusa*. *Journal of King Saud University - Science* 31(4): 724–727. <https://doi.org/10.1016/j.jksus.2018.04.025>

Quattrocchi, U. (2012). *CRC World Dictionary of Medicinal and Poisonous Plants: Common Names, Scientific Names, Eponyms, Synonyms, and Etymology*. CRC Press. <https://doi.org/10.1201/b16504>

Ramamurthy, K. (1987). *Boraginaceae*. *Flora of Tamil Nadu*, India, 97 pp.

Rao, C.K., B.L. Geetha & S. Geetha (2003). *Red list of threatened vascular plant species in India*. Botanical Survey of India, Kolkata.

Saarela, J.M., P.C. Sokoloff, L.J. Gillespie, L.L. Consaul & R.D. Bull (2013). DNA barcoding the Canadian Arctic flora: core plastid barcodes (*rbcL* + *matK*) for 490 vascular plant species. *PLOS One* 8(10): e77982. <https://doi.org/10.1371/journal.pone.0077982>

Savolainen, V., R.S. Cowan, A.P. Vogler, G.K. Roderick & R. Lane (2005). Towards writing the encyclopedia of life: an introduction to DNA barcoding. *Philosophical Transactions of the Royal Society B* 360: 1805–1811. <https://doi.org/10.1098/rstb.2005.1730>

Shaw, J., E.B. Lickey, E.E. Schilling & R.L. Small (2007). Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. *American Journal of Botany* 94(3): 275–288. <https://doi.org/10.3732/ajb.94.3.275>

Singh, P., K. Karthikeyan, P. Lakshminarasimhan & S.S. Dash (2015). *Endemic Vascular Plants of India*. Botanical Survey of India, Kolkata, 339 pp.


Smith, M.A., J.J. Rodriguez, J.B. Whitfield, A.R. Deans, D.H. Janzen, W. Hallwachs & P.D. Hebert (2008). Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. *Proceedings of the National Academy of Sciences* 105(34): 12359–12364. <https://doi.org/10.1073/pnas.0805319105>

Su, T., Y.F. Geng, C.L. Xiang, F. Zhao, M. Wang, L. Gu & G.X. Hu (2022). Chloroplast genome of salvia sect. Drymosphace: comparative and phylogenetic analysis. *Diversity* 14: 324. <https://doi.org/10.3390/d14050324>

Xu, Y.L., H.H. Shen, X.Y. Du & L. Lu (2022). Plastome characteristics and species identification of Chinese medicinal wintergreens (*Gaultheria*, *Ericaceae*). *Plant Diversity* 44: 519–529. <https://doi.org/10.1016/j.pld.2022.06.002>

Yan, H.F., Y.J. Liu, X.F. Xie, C.Y. Zhang, C.M. Hu, G. Hao & X.J. Ge (2015). DNA barcoding evaluation and its taxonomic implications in the species-rich genus *Primula* L. in China. *PLOS One* 10(4): e0122903. <https://doi.org/10.1371/journal.pone.0122903>

Yu, W.B., P.H. Huang, R.H. Ree, M.L. Liu, D.Z. Li & H. Wang (2011). DNA barcoding of *Pedicularis* L. (Orobanchaceae): evaluating four universal barcode loci in a large and hemiparasitic genus. *Journal of Systematics and Evolution* 49(5): 425–437. <https://doi.org/10.1111/j.1759-6831.2011.00154.x>

First record of the sea slug *Lobiger serratifalci* (Calcaria, 1840) (Gastropoda: Sacoglossa: Oxynoidae) from the Indian coast

Dimpal Dodiya¹ & Paresh Poriya²

^{1,2} Department of Zoology, Bahauddin Government Science College, Junagadh, Gujarat 362001, India.

¹ dodiya.dimpal1995@gmail.com, ² pareshporiya@gmail.com (corresponding author)

Abstract: The present study confirms the presence of a Sacoglossan (Mollusca) species, *Lobiger serratifalci* (Calcaria, 1840), from India. The distribution of this species has not yet been documented in India. It has been reported from Turkey, Italy, France, Greece, Israel, and now, for the first time, from the western coast of India. *L. serratifalci* was discovered under green seaweeds in the lower intertidal zone. The species was found to remain hidden within various types of green seaweeds in the region. The study provides comprehensive details on its morphology, habitat, and taxonomy.

Keywords: Intertidal Sacoglossans, marine gastropods, sap-sucking sea slugs, western coast of India.

Gastropod molluscs, which comprise snails and slugs, are incredibly diversified in terms of species diversity, morphology, habitat, and numerous other characteristics. They have significant body plan differences and extend to freshwater, marine, and terrestrial habitats (Bieler 1992). Indian sea slugs were classified into 361 distinct species (Apte & Desai 2017), with an additional 33 species reported in the Gulf of Kachchh (Apte et al. 2010) and 24 species reported on a checklist from several islands and reefs in the Gulf of Kachchh of the Gujarat coast (Rao & Sastry 2005). There are 95 species found throughout the Gujarat coast; seven of these are found in Saurashtra (Poriya et al. 2015; Vadher et al. 2020). The food habits of gastropods include herbivores, omnivores, carnivores, and parasites, some of which

drill through the shells of other animals to feed. One of the few examples of specialized herbivores in the marine environment is the fascinating clade of opisthobranch molluscs known as the Sacoglossans. Each sacoglossan species is generally associated with a single genus or species of macroalgae and shows a close evolutionary relationship with its algal host(s) (Krug 2011). Sacoglossa, also known as the “solar-powered sea slugs,” are divided into two clades: the shelled families, Oxynoidea, and the shell-free families, Plakobranchacea (Handeler et al. 2009). The superfamily Oxynoidea comprises four families, including the Oxynoidae, which includes sea snails and bubble snails (Bouchet et al. 2005). Out of the three genera of the Oxynoidae family, *Lobiger* (Krohn 1847) comprises only five species: *L. nevilli* Pilsbry, 1896; *L. sagamiensis* Baba, 1952; *L. serratifalci* Calcaria, 1840; *L. souverbii* P. Fischer, 1857; and *L. viridis* Pease, 1863 (MolluscaBase 2023). The present study marks the first record of *L. serratifalci* from the Indian coast, specifically along the Adi coast of Gujarat. Given its highly cryptic nature, the observation of *L. serratifalci* proves to be particularly challenging, especially when concealed beneath green algae. The elusive nature of *L. serratifalci*, combined with its habitats with green algae, imparts an added layer of difficulty to its discovery. The species’ predominantly green coloration further camouflages

Editor: Hari Praved P., Cochin University of Science and Technology, Cochin, India.

Date of publication: 26 February 2025 (online & print)

Citation: Dodiya, D. & P. Poriya (2025). First record of the sea slug *Lobiger serratifalci* (Calcaria, 1840) (Gastropoda: Sacoglossa: Oxynoidae) from the Indian coast. *Journal of Threatened Taxa* 17(2): 26553-26557. <https://doi.org/10.11609/jott.9208.17.2.26553-26557>

Copyright: © Dodiya & Poriya 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: None.

Competing interests: The authors declare no competing interests.

Acknowledgements: The authors express their gratitude to Dr. R.P. Bhatt, principal of Bahauddin Government Science College, Junagadh, for providing the necessary laboratory resources throughout the study. The authors appreciate the manuscript’s critical review by anonymous reviewers. The first author is thankful to the Education Department of Gujarat State for the SHODH (Scheme of Developing High-Quality Research) fellowship.

it within its surroundings, making it one of the most challenging Sacoglossan species to discern in this coastal ecosystem. This research has provided information on the habitat, morphology, and systematics of this species.

MATERIAL AND METHOD

The specimens of sacoglossans, referred to as the genus *Lobiger*, were occasionally observed in the intertidal zone of the coast during field visits. The specimen was collected from a tide pool on the Adri coast (21.60194° N, 70.47611° E) on January 22, 2024 (Image 1A). The Adri coast is located on the west coast of India and has a mixed type of intertidal habitat with rocky outcrops studded with sand (Image 1B).

The supratidal zone is covered with sand; the upper, middle, and lower intertidal zones are rocky-sandy. A single sample was collected, cleaned and preserved in a 10% buffered formalin solution. The morphological characteristics of the species were observed using a stereo zoom microscope (Model S.N.-391). The voucher specimen was deposited at the Museum of the Department of Zoology, Bahauddin Government Science College, Junagadh. Standard references were used for identification, including Calcaria (1840), Gonor (1961), Thompson (1988), Jensen (1996), and Furfarò et al. (2020). We used the WoRMS database (2023) to determine this species' current taxonomic status on MolluscaBase.

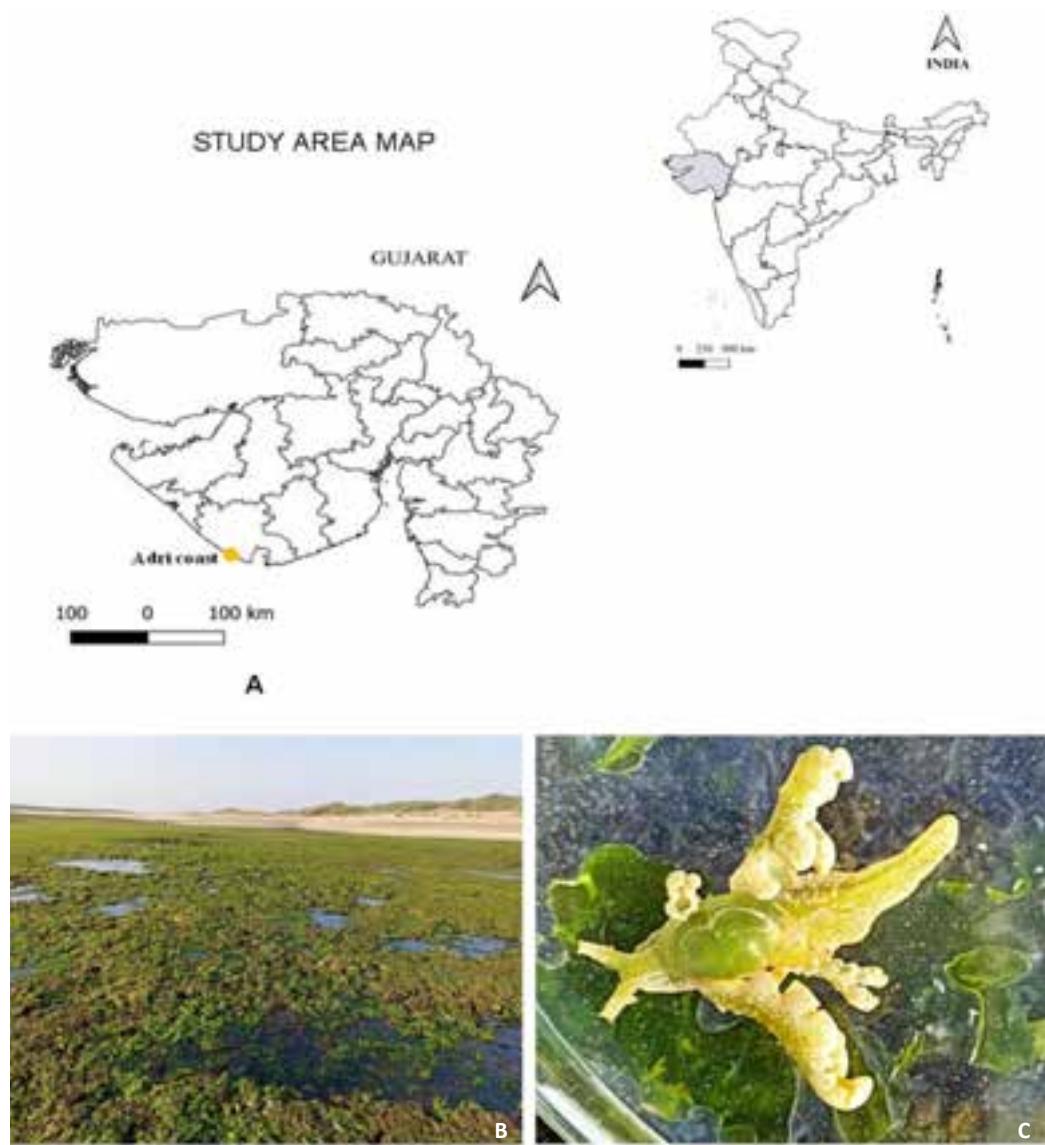


Image 1. A—Map of the study site, Adri Coast (Gujarat), western coast of India | B—Intertidal habitat | C—*Lobiger serradifalci* associated with green seaweed. © Dimpal Dodiya.

RESULTS AND DISCUSSION

Systematics

Phylum: Mollusca Linnaeus, 1758

Class: Gastropoda Cuvier, 1797

Order: Sacoglossa Ihering, 1876

Family: Oxynoidae Stoliczka, 1868

Genus: *Lobiger* Krohn, 1847

Species: *Lobiger serratifalci* (Calcara, 1840)

Synonyms (taken from WoRMS)

Lobiger serratifalci (Calcara 1840), *Bulla serratifalci* (Calcara 1840), *Lobiger philippi* (Krohn, 1847)

Morphological Description

The specimen is 20 mm in length, with a light yellow coloration across its entire body and a greenish hue beneath the shell (Image 2B). The external shell is translucent, showing the clear grass-green colour of the underlying mantle and the rhinophores are one pair (Image 2A). There are a few scattered white papillae on the head and tentacles (Image 2A). The foot and perfectly smooth body were completely covered in green seaweed, indicating that the species prefers seaweed-covered rocky substrates. The two pairs of parapodia are large and small, smooth, stumpy, and flattened, with white on surface and green & yellow inside, almost invariably fused together, and have pinkish dorsal edges (Image 2A,B). The parapodia lobe is long compared to the shell, which is highly elevated and slightly tipped backward and the outer side is white with brown speckling (Image 2D). The foot's region features tubercles, and in addition, the tail has a median ridge covered by two comparative, less lateral ridges (Image 2A,C). The body sides are smoother than those above the level of the parapodia lobes and have less developed tubercles.

Habitat

The specimen was found beneath green seaweeds *Caulerpa racemosa* and *Ulva Lactuca* (Image 1C) in the lower intertidal zone, which had large, deep-tide pools and areas covered with various kinds of seaweed.

Geographical Distribution

The present study confirms the presence of *Lobiger serratifalci* on the Indian coast. It was first reported from the Bay of Palermo, Mediterranean Sea (Calcara 1840); the Turkish coast (Pruvot-Fols 1954); Palermo, Messina, Naples, Marseilles, the Balearic Islands, and Banyuls (Wirz-Mangold & Wyss, 1958); the Bay of Mersin (formerly Icel) in the Eastern Mediterranean and on the

southern coast of Turkey (Swennen 1961); Villefranche-sur-Mer (Alpes-Maritimes), France (Gonor 1961); Israel (Barash & Danin 1982); Taranto (Perrone 1983); Aghios Andreas (Ionian Sea), Greece (Thompson 1988); the Salento Peninsula in Southeast Italy (Furfaro et al. 2020).

Remarks

The morphological characteristics of *L. serratifalci* align with previous observations made by Thompson (1988). Externally, *L. serratifalci* bears a resemblance to the *Lobiger souverbii* species, as both inhabit *Caulerpa* fronds and exhibit an elongated green body with a shell (Marcus 1977; Jensen & Clark 1983). *L. serratifalci* has a light grass-green body, flattened & in-rolled parapodia, and a pink-white exterior with brown speckling. In contrast, *L. souverbii* presents distinctive morphological features, including parapodial margins that are red with dots. The mantle is yellowish-green in color beneath its transparent shell, with several shorter blue lines scattered throughout the dorsal surface. *L. souverbii* also possesses two pairs of long, upright parapodia (Ichikawa 1993). *L. serratifalci* resembles another saccoglossan species, *Lobiger viridis*. Its whole body is bright yellow in colour and one pair of short rhinophores are present above the animal's mouth. Species have been commonly found on the Indian coast, like Poshitra Reef, Ashaba Island, the Gulf of Kachchh, and Andaman Island (Parasharya 2012; Apte & Desai 2017). It is possible that *L. serratifalci* is present in intertidal habitats but due to its close resemblance, it may have been overlooked and misidentified as *L. viridis* in a previous study.

The earliest study indicated *Caulerpa racemosa* as food of *L. serratifalci* (Marcus 1977; Jensen & Clark 1983). Few studies have also reported the phylogenetic relationship between Sacoglossans and their food plants (Kay 1968; Clark & Busacca 1978). All shelled Sacoglossans use *Caulerpa sp.* as their main food source, which demonstrates the phylogenetic relationships between Sacoglossa and their food plants (Jensen 1997; Parsons 1994). *L. serratifalci* also uses *Caulerpa sp.* (Swennen 1961), including *Caulerpa prolifera* (Gonor 1961; Gavagnin et al. 1994), and *C. racemosa* (Marcus 1977; Jensen & Clark 1983) as a main food source. During the present study, species were also found beneath the green seaweed *C. racemosa* habitat in the lower intertidal zone of the Adri coast.

REFERENCES

Apte, D., V. Bhave & D. Parasharya (2010). An annotated and illustrated checklist of the Opisthobranch fauna of Gulf of Kutch, Gujarat, India with 21 new records for Gujarat and 13 new records for India: Part 1.

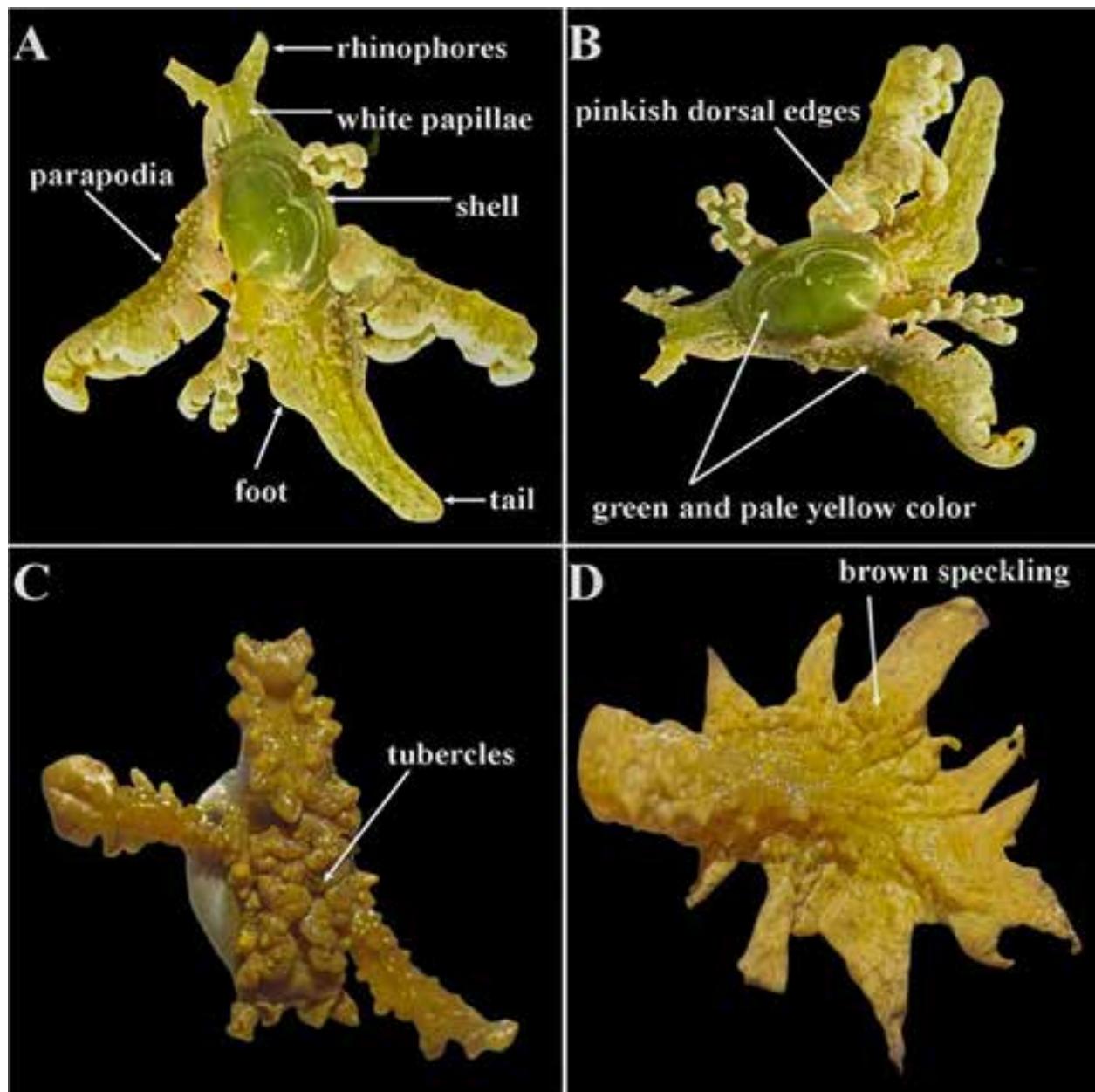


Image 2. *Lobiger serradifalci* specimen: A—dorsal view, morphological characters (rhinophores, white papillae, parapodia, shell, foot, tail) | B—pinkish dorsal edges, green and pale yellow color | C—tubercles | D—brown speckling. © Dimpal Dodiya.

Journal of the Bombay Natural History Society 107(1): 14–23.
Apte, D. & D. Desai (2017). Field Guide to the Sea Slugs of India. Bombay Natural History Society, Bombay, 456 pp.

Barash, A. & Z. Danin (1982). Mediterranean Mollusca of Israel and Sinai: composition and distribution. *Israel Journal of Ecology and Evolution* 31(3-4): 86–118. <https://doi.org/10.1080/00212210.1982.10688524>

Bieler, R. (1992). Gastropod phylogeny and systematics. *Annual Review of Ecology, Evolution, and Systematics* 23: 311–338. <https://doi.org/10.1146/annurev.ecolsys.23.1.311>

Bouchet, P., J. Rocroi, P. Fryda, J. Hausdorf, B.W. Ponder, A. Valdes & A. Waren (2005). Classification and Nomenclator of Gastropod Families. *Malacologia* 47(1–2): 1–368.

Calcaro, P. (1840). Monografie dei generi *Clausilia* e *Bulimo*

coll'aggiunta di alcune nuove specie di conchiglie siciliane esistenti nella collezione della Sig. Teresa Gargotta in Salinas. Palermo, Muratori, 54 pp.

Clark, K.B. & M. Busacca (1978). Feeding specificity and chloroplast retention in four tropical Ascoglossa, with a discussion of the extent of chloroplast symbiosis and the evolution of the order. *Journal of Molluscan Studies* 44(3): 272–282. <https://doi.org/10.1093/oxfordjournals.mollus.a065434>

Furfaro, G., F. Vitale, C. Licchelli & P. Mariottini (2020). Two seas for one great diversity checklist of the marine Heterobranchia (Mollusca; Gastropoda) from the Salento Peninsula (South-East Italy). *Diversity* 12(5): 171. <https://doi.org/10.3390/d12050171>

Gavagnin, M., A. Marin, F. Castelluccio, G. Villani & G. Cimino (1994). Defensive relationships between *Caulerpa prolifera* and its shelled

sacoglossan predators. *Journal of Experimental Marine Biology and Ecology* 175(2): 197–210. [https://doi.org/10.1016/0022-0981\(94\)90026-4](https://doi.org/10.1016/0022-0981(94)90026-4)

Gonor, J.J. (1961). Observations on the biology of *Lobiger serradifalci*, A Shelled Sacoglossan Opisthobranch from the Mediterranean. *Vie et Milieu* 12(3): 381–404.

Handeler, K., Y.P. Grzymkowski, P.J. Krug & H. Wagele (2009). Functional chloroplasts in metazoan cells – a unique evolutionary strategy in animal life. *Frontiers in Zoology* 6(1): 28. <https://doi.org/10.1186/1742-9994-6-28>

Ichikawa, M. (1993). Saccoglossa (Opisthobranchia) from the Ryukyu Islands. *Publications of the Seto Marine Biological Laboratory* 36(3): 119–139. <https://doi.org/10.5134/176229>

Jensen, K. & K.B. Clark (1983). Annotated checklist of Florida sacoglossan Opisthobranchia. *Nautilus* 97: 1–13.

Jensen, K.R. (1996). Phylogenetic systematics and classification of the Sacoglossa Mollusca, Gastropoda, Opisthobranchia. *Philosophical Transactions of the Royal Society of London Series B: Biological Sciences* 351: 91–122. <https://doi.org/10.1098/rstb.1996.0006>

Jensen, K.R. (1997). Evolution of the Sacoglossa (Mollusca, Opisthobranchia) and the ecological associations with their food plants. *Evolutionary Ecology* 11(3): 301–335. <https://doi.org/10.1023/A:1018468420368>

Kay, E.A. (1968). A review of the bivalved gastropods and a discussion of evolution within the Sacoglossa. *Symposia of the Zoological Society of London* 22: 109–134.

Krohn, A.D. (1847). Observations sur deux nouveaux genres de Gasteropodes (*Lobiger* et *Lophocercus*). *Annales des Sciences Naturelles (Zoologie)* 3(7): 52–60.

Krug, P.J. (2011). Patterns of speciation in marine gastropods: a review of the phylogenetic evidence for localized radiations in the sea. *American Malacological Bulletin* 29 (1/2): 169–186. <https://doi.org/10.4003/006.029.0210>

Marcus, E.D.B.R. (1977). An annotated checklist of the western Atlantic warm water opisthobranch Molluscs. *Journal of Molluscan Studies* 43: 1–22. <https://doi.org/10.1093/oxfordjournals.mollus.a065405>

Menon, P.K.B., D.A.K. Gupta & D.D. Gupta (1961). On the Marine Fauna of the Gulf of Kutch. Part-2 Gastropoda. *Journal of the Bombay Natural History Society* 58(2): 475–494.

MolluscaBase (2023). *Lobiger* Krohn, 1847. Accessed through: World Register of Marine Species at: <https://www.marinespecies.org/aphia.php?p=taxdetails&id=138308> on 26-12-2023.

Parsons, P.A. (1994). Morphological stasis: an energetic and ecological perspective incorporating stress. *Journal of Theoretical Biology* 171(4): 409–414. <https://doi.org/10.1006/jtbi.1994.1244>

Parasharya, D. (2012). Study of Corals and Some Associates in the Marine National Park and Sanctuary-Jamnagar. PhD Thesis. Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, 162 pp.

Perrone, A. (1983). Opistobranchi (Aplysiomorpha, Pleurobrancomorpha, Sacoglossa, Nudibranchia) del litorale salentino (Mar Jonio), (Elenco-contributo primo). *Thalassia Salentina* 12: 118–144. <https://doi.org/10.1285/i15910725v12-13p118>

Poriya, P., B. Vakani, B. Chaudhari, P. Kachhiya & R. Kundu (2015). Diversity and first record of heterobranch gastropods (opisthobranchs) from the Saurashtra coast of Kathiawar Peninsula, India. *Marine Biodiversity Records* 8(e82): 1–7. <https://doi.org/10.1017/S1755267215000585>

Pruvot-Fol, A. (1954). Mollusques opisthobranches. *Faune de France*, 58. Paul Lechevalier: Paris, 460 pp.

Rao, N.V.S. & D.R.K. Sastry (2005). Fauna of Marine National Park, Gulf of Kachchh (Gujarat): An Overview. *Conservation Area Series* 23. Zoological Survey of India, Kolkata, 79 pp.

Swennen, C. (1961). On a collection of Opisthobranchia from Turkey. *Zoologische Mededelingen* 38(3): 41–75.

Thompson, T.E. (1988). Eastern Mediterranean Opisthobranchia: Oxynoidae, Polybranchidae, Stiligeridae (Sacoglossa). *Journal of Molluscan Studies* 54(2): 157–172. <https://doi.org/10.1093/mollus/54.2.157>

Vadher, P., H. Kardani & I. Beleem (2020). An annotated checklist of sea slug fauna of Gujarat coast, India. *Journal of Threatened Taxa* 12(8): 15835–15851. <https://doi.org/10.11609/jott.5278.12.8.15835-15851>

Wirz-Mangold, K. & U. Wyss (1958). Faune marine des Pyrénées-Orientales, Opisthobranches. *Vie et Milieu* 9(2): 1–71.

Impatiens damrongii (Balsaminaceae), a new record for the flora of Vietnam

Ha Van Dang¹ , Leonid Vladimirovich Averyanov² & Cuong Huu Nguyen³

^{1,3} Vietnam National University of Forestry, Xuan Mai, Chuong My, Ha Noi, Vietnam.

² Komarov Botanical Institute Russian Academy of Sciences, Prof. Popov Street, 2, St. Petersburg, 197022, Russia.

¹ hadv@vnu.edu.vn, ² av_leonid@mail.ru, ³ nguyentruongtvt@gmail.com (corresponding author)

Abstract: *Impatiens damrongii* Shimizu, previously known as a native species of southern China, northern Laos, and northern Thailand, is found first in Vietnam, in the Nam Dong Conservation Area (Thanh Hoa Province). The voucher herbarium specimens of this species collected in Vietnam are housed in the herbarium of the Vietnam National University of Forestry. A morphological description of this species, accompanied by color photographs, data on ecology and phenology in Vietnam are additionally provided.

Keywords: Limestone flora, new distribution, Nam Dong Conservation Area, plant taxonomy, Thanh Hoa Province.

The genus *Impatiens* L. (Linnaeus 1753), a member of the Balsaminaceae family, is one of the most diverse groups of angiosperms, with 1000–1121 species distributed mainly in the tropical and subtropical Africa and Asia, with the center of diversity and probable origin in southern China (Grey-Wilson 1980; Chen et al. 2007; Mabberley 2017; POWO 2024). In Vietnam, 36 species of this genus were recorded before 2003 (Tardieu 1944; Nguyen & Kiew 2000; Pham 2003). Over the last two decades, seven species were additionally reported, namely: *I. purpureifolia* S.H.Huang & Y.M.Shui (Shui et al. 2011), *I. kamtilongensis* Toppin (Vu et al. 2015), *I. parvisepala* S.X.Yu & Y.T.Hou (Hoang et al.

2015), *I. napoensis* Y.L.Chen (Nguyen et al. 2018), *I. sicalifera* Hook.f. (Pham et al. 2019), *I. monticola* Hook.f. (Nguyen et al. 2021), and *I. lobulifera* (Quan et al. 2024). During the botanical fieldwork in limestone areas of the Nam Dong Conservation Area in northern Vietnam in December 2023, the authors collected an unusual species of *Impatiens*. After careful morphological examination of the species and analysis of available literature as well as collections of different herbaria, namely HN, LE, VNF, and VNM (all acronyms following Thiers 2024), this plant was identified as *Impatiens damrongii* Shimizu, which was previously reported from Thailand (Shimizu 1969; Suksathan & Ruchisansakun 2022), Laos (Souvannakhoummane et al. 2021), and southern China (Chen et al. 2023). This is the first record of this species in the flora of Vietnam, the data for which are presented in this communication.

MATERIAL AND METHODS

All collected and studied herbarium specimens of the newly discovered species are submitted and presently stored in the herbarium of the Vietnam National University of Forestry (VNF). Color photographs of plants were taken in natural habitats. Morphological

Editor: D.S. Rawat, G.B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India.

Date of publication: 26 February 2025 (online & print)

Citation: Dang, H.V., L.V. Averyanov & C.H. Nguyen (2025). *Impatiens damrongii* (Balsaminaceae), a new record for the flora of Vietnam. *Journal of Threatened Taxa* 17(2): 26558–26561. <https://doi.org/10.11609/jott.9172.17.2.26558-26561>

Copyright: © Dang et al. 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: Science Fund of Thanh Hoa province (contract № 11/2023/HĐTV-CCKL&ĐHLN) and Science Fund of the Vietnam National University of Forestry (№ LN.KC-2023.25).

Competing interests: The authors declare no competing interests.

Acknowledgements: The studies, the results of which are presented in this paper, were supported by Science Fund of Thanh Hoa province (contract № 11/2023/HĐTV-CCKL&ĐHLN) and Science Fund of the Vietnam National University of Forestry (№ LN.KC-2023.25). Authors would like to thank Mr. Nguyen Van Ly (Vietnam National University of Forestry) and the authorities of Nam Dong Conservation Area for their kind permission and various help in organizing the fieldwork. We also thank Keooudone Souvannakhoummane (Department of Biology-National University of Laos) for his valuable comments.

observations and measurements were made on living plants, dried specimens, and alcohol-preserved materials. Morphological characters were described using the terminology proposed by Shui et al. (2011) and Ruchisansakun et al. (2018). Provide an insert map if possible.

RESULTS

Taxonomic Treatment

Impatiens damrongii Shimizu, Acta Phytotax. Geobot. 24: 38. 1969; S.E. Asian Stud. 8, 2: 215 (1970); Souvannakhoummane et al., Edinburgh J. Bot. 78: 6 (2021); Suksathan & Ruchisansakun, Impatiens Thailand 128 (2022). – Type: Thailand, Phitsanulok Province, Phu Miang Mountain, Shimizu, T.11634 (holotype KYO!, isotype BKF!).

Description: Herbs perennial, up to 70 cm tall. Stem green to dark green with purple tint, erect or procumbent in basal part, laxly branched at lower nodes, smooth and glabrous. Leaves petiolate, alternate, aggregated near the stem apex; petiole (1.5) 2–4 cm long; lamina chartaceous, oblong-elliptic, 6.5–11 x 2–3.5 cm, lateral veins 3–4(5) pairs. Inflorescences arising from upper axils, 1–2 flowered; peduncle 1–3.5 cm long; rachis short; bracts persistent, ovate, 7–8 x 4–5 mm, apex mucronate, margin entire to serrate, with 2–4 pairs of glands at base. Flowers yellow, 1.7–2.1 cm wide; pedicel 10–13 mm long, glabrous. Lateral sepals 4; outer pair white with a yellow or greenish tint, obliquely orbicular or broadly ovate, 10–12 x 8–10 mm, apex mucronate, margin almost entire to sparsely serrate, with 2–4 pairs of glands at the base, glabrous to sparsely pubescent; inner pair linear to narrowly lanceolate, 18–20 x 2–3 mm. Lower sepal ca. 2.3 cm long, yellow, bucciniform, 1.2–1.4 cm long, apex apiculate, distal part abruptly constricted into a yellow, helicoid spur, spur apex bifid, gray-brown. Dorsal petal light yellow, 1.8–2.0 x 1.2–2.5, deltoid, apex emarginate, midvein adaxially with a thick crest along all its length. Lateral united petal up to 2 cm wide, yellow with red longitudinal lines in basal half, upper petals suborbicular to obovate, 20 x 5–12 mm, apex rounded; lower petals obovate, 24–28 x 10–15 mm, apex emarginate, at the base with oblong auricle. Stamens 5; filaments 7–8 mm long, flat; anthers reddish pink. Ovary fusiform, glabrous. Capsule narrowly oblong, about 2 cm long, abruptly pointed at apex. (Images 1&2).

Flowering and fruiting: October–December.

Distribution: Southern China (Yunnan), northern Laos (Louangphabang), Thailand (Phitsanulok Province), Vietnam (Thanh Hoa Province, Nam Dong Conservation Area).

Habitat: This species has been found in Thailand, China, and Laos, at elevations of 1200–1900 m, in humid evergreen forests often near streams. In Vietnam it was observed in primary and secondary evergreen broad-leaved lowland dry forests, along watershed in association with *Miliusa sinensis* Finet & Gagnep., *Garcinia* sp., *Begonia* sp., *Costus tonkinensis* Gagnep., *Dracaena cochinchinensis* (Lour.) S.C.Chen, *Ficus* sp., *Ocimum* sp., and *Diospyros mollis* (Kurz) Gürke at elevations of elevations of 900–950 m.

Specimens examined: Vietnam: Thanh Hoa Province, Nam Dong Conservation Area, on crystalline highly eroded rocky limestone along stream, around point 20.307 N & 104.888 E, at elevation 950 m, 09 December 2023, Nguyen Huu Cuong (VNF: NHC20231209001). Vietnam: Thanh Hoa Province, Nam Dong Conservation Area, dry evergreen broad-leaved secondary forest on cliffs composed by white crystalline marble-like highly eroded limestone along lake shore around point 20.306 N & 104.888 E, at elevation of about 900 m, not common, 10 December 2023, Nguyen Huu Cuong, Nguyen Van Ly (VNF: CL20231210012).

Note: Since *I. damrongii* is somewhat similar to *I.*

Image 1. *Impatiens damrongii* Shimizu. A&B—flowering plants in natural habitat. © Cuong Huu Nguyen

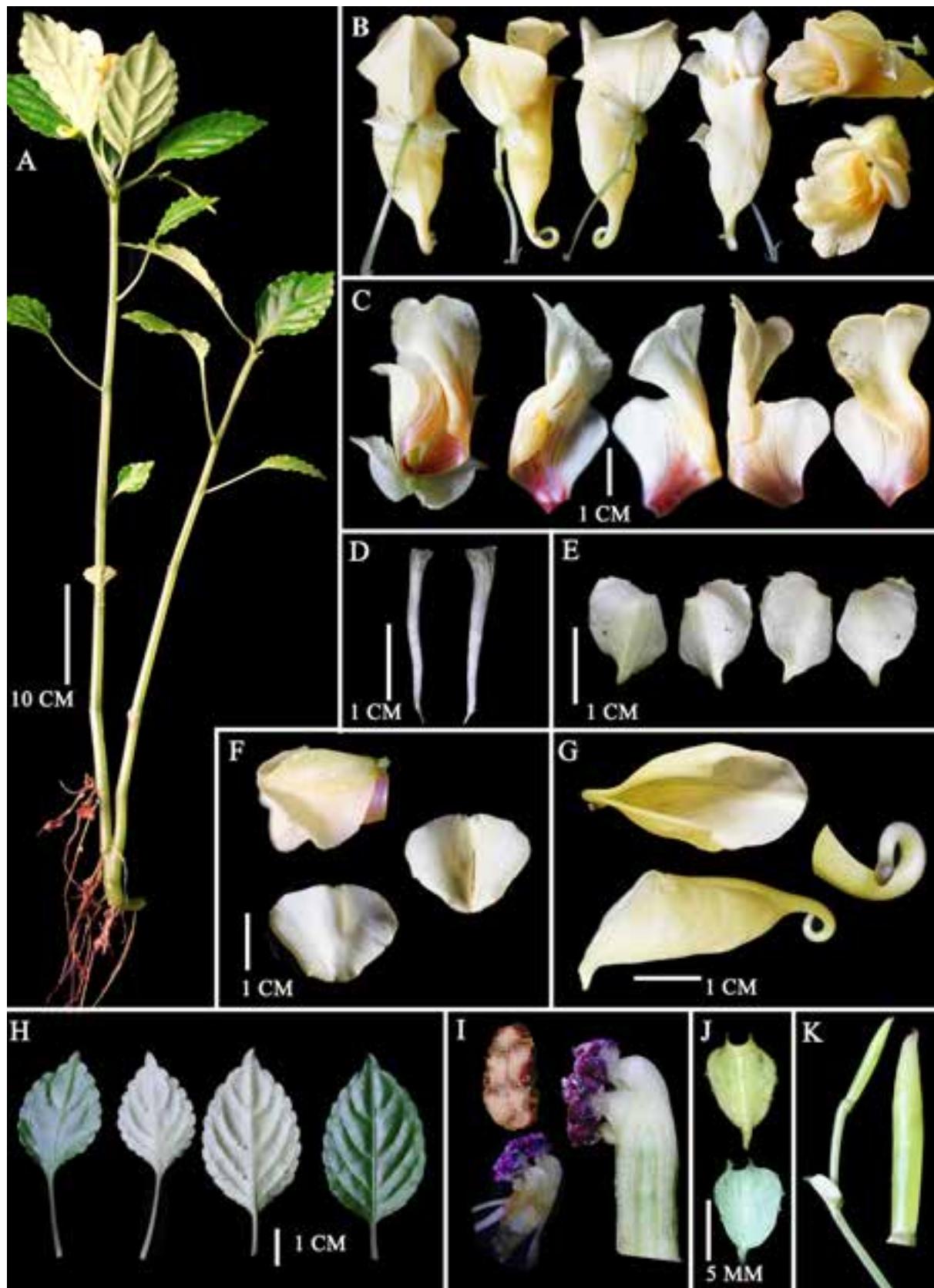


Image 2. *Impatiens damrongii* Shimizu: A—habit | B—flowers, views from different sides | C—lateral united petals, ventral and dorsal side | D—inner lateral sepal | E—outer lateral sepal | F—dorsal petal | G—lower sepal | H—abaxial and adaxial surface of leaf | I—stamens | J—bract | K—capsule. © Cuong Huu Nguyen

linearisepala S.Akiyama, H.Ohba & S.K.Wu (1996) in morphology and distribution range, further molecular study is needed to clarify their relationship. Plants of *I. damrongii* in Vietnam have minor differences from the Thailand, China, and Laos specimens, including gray-brown apex spur (vs. yellow), and habitat in the mountainous area at an altitude of 850–950 m alt. (vs. 1200–1900 m altitude).

REFERENCES

Chen, Y.L., Sh. Akiyama & H. Ohba (2007). Balsaminaceae, pp. 43–113. In: Wu, Z.Y., P. H. Raven & D.Y. Hong (eds.). *Flora of China, 12 (Hippocastanaceae through Theaceae)*. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis, USA.

Chen, Y., J. Chen, Q.Q. Yong, T.H. Yuan, Q. Wang, M.J. Li, Sh.W. Long & X.X. Bai (2023). Species diversity and geographical distribution patterns of Balsaminaceae in China. *Diversity* 15: 1012. <https://doi.org/10.3390/d15091012>

Grey-Wilson, C. (1980). *Impatiens of Africa*. Balkema, Rotterdam, Netherlands, viii + 235 pp.

Hoang, T.S., N.B. Trinh, Q.H. Nguyen, V.V. Pham & T.V.A. Nguyen (2015). *Impatiens parvisepala* (Balsaminaceae): a newly recorded from Vietnam. *Vietnam Journal of Forest Science* 4: 4018–4020.

Linnaeus, L.C. (1753). *Species Plantarum*, Vol. 2. Laurentius Salvius, Stockholm, 937 pp.

Mabberley, D.J. (2017). *Mabberley's Plant Book—A Portable Dictionary of Plants, their Classification and Uses, 4th Edition*. Cambridge University Press, Cambridge, 1102 pp.

Nguyen, H.C., L.V. Averyanov, A.A. Egorov & V.L. Nguyen (2021). *Impatiens monticola* (Balsaminaceae), a newly recorded species for the flora of Vietnam. *Botanicheskii Zhurnal (Moscow & St. Petersburg)* 106(10): 1036–1040. <https://doi.org/10.31857/S0006813621100082>

Nguyen, S.K., Y.H. Tong & N.H. Xia (2018). *Impatiens napoensis* (Balsaminaceae): a newly recorded species for the flora of Vietnam. *Journal of Tropical and Subtropical Botany* 26: 545–548. <https://doi.org/10.11926/jtsb.3905>

Nguyen, T.H & R. Kiew (2000). New and interesting plants from Ha Long Bay, Vietnam. *The Gardens' Bulletin, Singapore* 52: 185–202.

Pham, H.H. (2003). *An Illustrated Flora of Vietnam*, Vol. 2. Ho Chi Minh, Vietnam, 298–306.

Pham, T.T., V.T. Do, T.T. Nguyen, T.T. Phung & V.T. Pham (2019). *Impatiens sicalifera* (Balsaminaceae): a new record for the flora of Vietnam. *Acta Phytotaxonomica et Geobotanica* 70: 63–66. <https://doi.org/10.1894/apg.201817>

POWO (2024). <https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:103564-1>. Accessed on 24 January 2025.

Quan, N. Ch., L.V. Averyanov, H.D. Vo, D.H. Nguyen, H.V. Dang, Y.Th. Nguyen, L.V. Nguyen & C.H. Nguyen (2024). New species, *Impatiens lobulifera* (Balsaminaceae) in the flora of Vietnam. *Vietnamese Academy of Forest Sciences* 1: 3–9.

Ruchisansakun, S., P. Suksathan, T. van der Niet, E.F. Smets, Saw-Lwin & S.B. Janssens (2018). Balsaminaceae of Myanmar. *Blumea* 63: 199–267. <https://doi.org/10.3767/blumea.2018.63.03.01>

Shimizu, T. (1969). Classification and geography of *Impatiens* in Thailand and the Malaya Peninsula. *Acta Phytotaxonomica et Geobotanica* 24: 43–51.

Shui, Y.M., S. Janssens, S.H. Huang, W.H. Chen & Z.G. Yang (2011). Three new species of *Impatiens* L. from China and Vietnam: preparation of flowers and morphology of pollen and seeds. *Systematic Botany* 36(2): 428–439. <https://doi.org/10.1600/036364411X569615>

Souvannakhoummane, K., F.M. Newman, S. Lanorsavanh & P. Suksathan (2021). *Impatiens rostrata* (Balsaminaceae), a new species from Khammouane province, Laos, and nine new records. *Edinburgh Journal of Botany* 78(362): 1–15. <https://doi.org/10.24823/EJB.2021.362>

Suksathan, P. & S. Ruchisansakun (2022). *Impatiens of Thailand*. Natural History Publications, Borneo, Thailand, 396 pp.

Tardieu, B.M. (1944). Les *Impatiens* d'Indochine, répartition, affinités et description d'espèces nouvelles. *Notulae Systematicae* 11: 169–185.

Thiers, B.M. (2024). Index Herbariorum available at <http://sweetgum.nybg.org/science/ih/>. Accessed on 24 January 2025. (all acronyms following Theirs 2024).

Vu, T.C., T.T.H. Nguyen, H.Q. Bui & P. Suksathan (2015). A new record of *Impatiens kamtilongensis* Toppin (Balsaminaceae) for Vietnam flora. *Academia Journal of Biology* 37(3): 332–335. <https://doi.org/10.15625/0866-7160/v37n3.6967>

Invasive record of Brazilian Petunia *Ruellia elegans* Poir. (Acanthaceae) from northeastern India

Mamita Kalita

Department of Botany, Digboi College (Autonomous), Digboi, Assam 786171, India.
mamita.bot@gmail.com

Abstract: The present study reports the invasive occurrence of *Ruellia elegans* Poir. from northeastern India. The beautiful red flowered species flourishing in Digboi, Assam is marked as its new distribution extension. The occurrence has been documented as a new distribution record for the flora of Assam as well as northeastern India. A detailed morphological depiction, photographic images, characterization and taxonomic notes have been provided to aid in its identification and recognition.

Keywords: Assam, biodiversity, conservation, distribution record, flora, floral attributes, identification, morphology, native, taxonomy, threatening.

The Brazilian Petunia *Ruellia elegans* Poir. belongs to a morphologically diversified tribe *Ruellieae* Dumortier. According to Angiosperm Phylogeny Group (APG), *Ruellieae* appertain in the sub-family *Acanthoideae* Eaton of family *Acanthaceae* Jussieu nom. cons. (Stevens 2001 onwards). As stated in Plants of World Online (POWO 2024) database, *Acanthaceae* contributes 208 genera and is one of the diverse plant families with estimation of approximately 4,900 species (Manzitto-Tripp et. al. 2021). Members of the genus *Ruellia* Plum. ex. L. are mostly herbs, shrubs, rarely trees or lianas (Tripp 2007). The genus is horticulturally important having 350 species (Tripp et. al. 2013). However, according to POWO (2024), the genus is portrayed with 365 species distributed in tropics to subtropics to North America. As mentioned by

Tripp (2007), the species of *Ruellia* exhibit remarkable diversity in floral color, size and shape of corolla lobes, tubes, throat. According to Zhuang & Manzitto-Tripp (2022), the genus *Ruellia* manifests diversification in floral color due to anthocyanin biosynthetic pathway (ABP) and *R. elegans* was characterized with both pelargonidin and cyanidin pigments. The species *R. elegans* Poir. is native to northern, northeastern, and southeastern Brazil, predominantly thriving in wet tropical biome. Further, it has been introduced in regions of Andaman Islands, Puerto Rico, and Jamaica (POWO 2024).

In accord with POWO (2024), India is represented with six native species of *Ruellia* viz., *R. beddomei* C.B.Clarke., *R. ciliata* Hornem., *R. malabarica* Kostel., *R. patula* Jacq., *R. pseudopatula* Ensermu., *R. sibua* (Nees) I.M. Turner., and *R. sivarajanii* Sreedevi, Remadevi & Binojk. Whereas, *R. ciliatiflora* Hook., *R. simplex* C.Wright., *R. tuberosa* L. are non-native and introduced species of India. *R. elegans* is an indigenous species of Brazil (north-east, south, south-east) and introduced in the regions of Andaman Islands, Jamaica, and Puerto Rico. However, the species existence has been marked from Odisha, as a new recorded distribution for eastern India (Kalidass et. al. 2016). According to Ezcurra (1993), the species distribution has extended due to human activities.

Editor: K. Haridasan, Palakkad, Kerala, India.

Date of publication: 26 February 2025 (online & print)

Citation: Kalita, M. (2025). Invasive record of Brazilian Petunia *Ruellia elegans* Poir. (Acanthaceae) from northeastern India. *Journal of Threatened Taxa* 17(2): 26562-26565. <https://doi.org/10.11609/jott.9213.17.2.26562-26565>

Copyright: © Kalita 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: None.

Competing interests: The author declares no competing interests.

Acknowledgements: The author is thankful to the Herbarium Curator of GUBH.

MATERIALS AND METHODS

On 19 September 2023, the specimen has been allocated from the vicinity of Dehing Patkai rainforest of Digboi, Assam. Field photographs and GPS location were recorded with help of Canon IXUS 190. The vegetative and reproductive features of the collected specimen were examined through a stereo-zoom binocular microscope (Labomed CZM4). The identity of the species was confirmed through its protologue, and herbarium records. The photoplates were prepared using Adobe Photoshop software (version 7.0). The voucher specimen has been prepared following the protocol of Jain & Rao (1977) and deposited at Gauhati University Botanical Herbarium (GUBH). The map depicting the location of *Ruellia elegans* collected from Tinsukia District of Assam has been shown (Figure 1).

Taxonomic Treatment

Ruellia elegans Poir. in J.B.A.M.de Lamarck, Encycl., Suppl. 4: 727.1816. — *Ruellia formosa* Andrews in Bot. Repos. 10:t.610.1810. nom. illeg. — *Ruellia superba* D. Dietr. in Nachtr. Vollst. Lex. Gärtn. 17:307.1821. —

Arrhostoxylum formosum Nees in A.P. de Candolle, Prodr. 11:215.1847. — *Arrhostoxylum roseum* Nees in C.F.P. von Martius & auct. suc. (eds.), Fl. Bras. 9:61.1847. — *Arrhostoxylum silvaccola* var. *montanum* Nees in C.F.P. von Martius & auct. suc. (eds.), Fl. Bras. 9:60.1847. — *Ruellia speciosa* Mart. ex Nees in A.P.de Candolle, Prodr. 11: 215.1847.—*Asystasia formosa* T. Anderson in J. Agric. Soc. India, n.s., 1: 270.1868. — *Stemonacanthus formosus* T. Anderson in J. Agric. Soc. India, n.s., 1: 270.1868. — *Ruellia rosea* (Nees) W. Bull in Nursery Cat. (William Bull) 143:8.1878. — *Arrhostoxylum elegans* (Poir.) Bremek. & Nann. Bremek. in Verh. Kon. Ned. Akad. Wetensch., Afd. Natuurk., Sect. 2, 45(1):12.1948.

Description

Annual erect herbs, 30–60 cm tall, ascending, sparsely branched, pubescent, quadrangular; Leaves 4–10 × 2–4 cm in size, acuminate, simple, entire, elliptic-oblong, coriaceous, cuneate base, sparsely pubescent adaxially, glabrous abaxially, exstipulate, petiole 1–2 cm long, flat, slender, pubescent; Inflorescence axillary, arising from upper leaves, raceme, 12–15 cm long, few

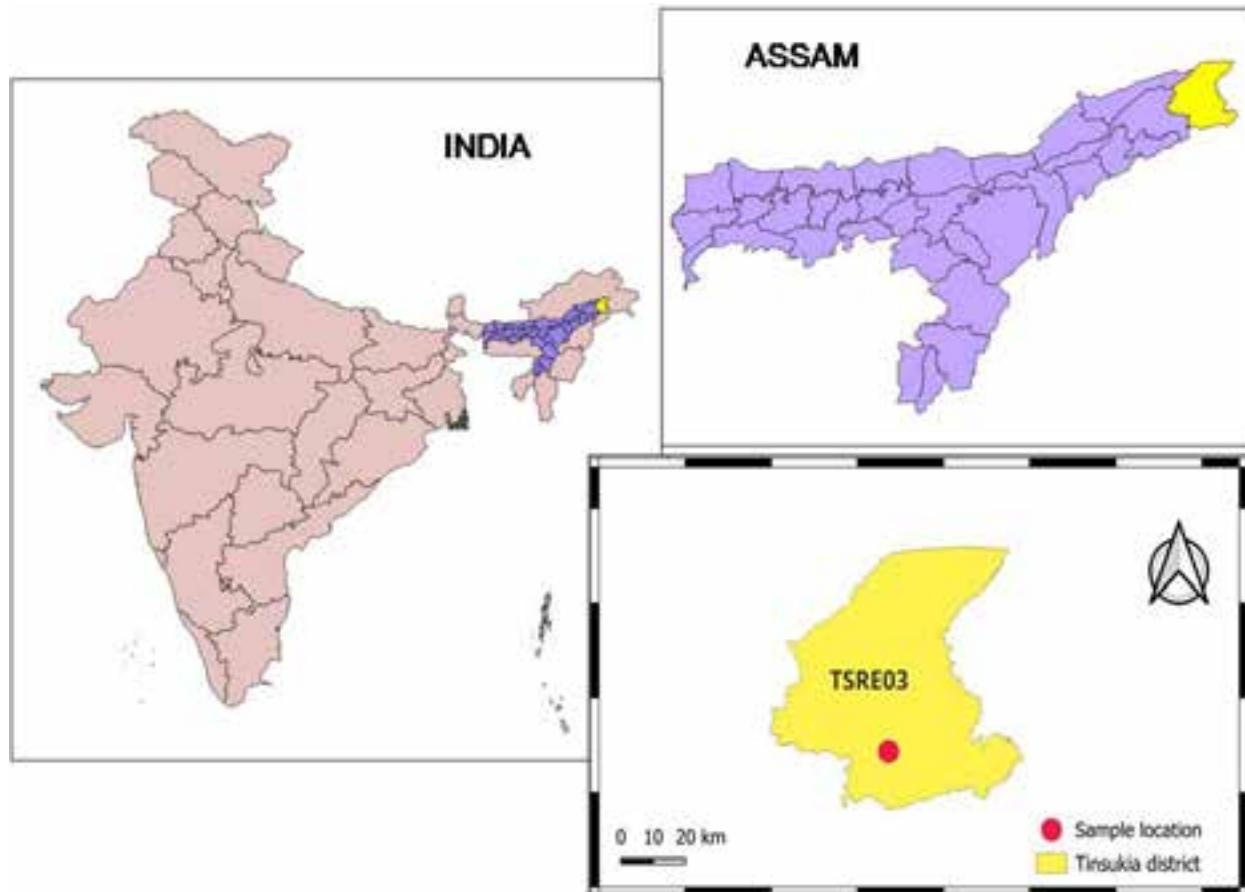


Figure 1. Geographic location of *Ruellia elegans* Poir. in Tinsukia District of Assam (Map prepared through QGIS software 3.40.0).

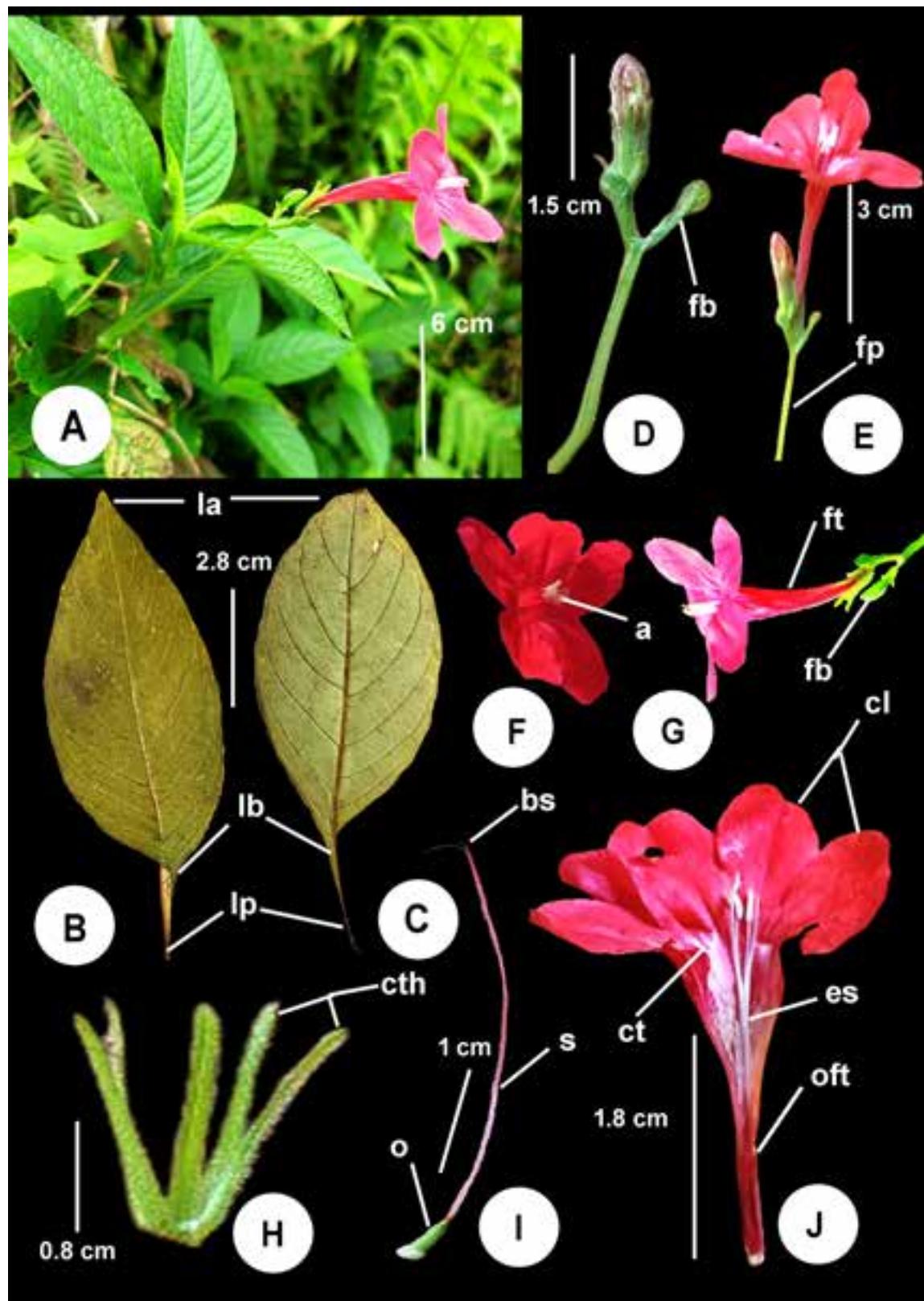


Image 1. *Ruellia elegans* Poir.: A—habit of the plant | B—adaxial side of the leaf surface | C—abaxial leaf surface showing leaf apex (la), leaf base (lb) and petiole (lp) | D—flower bud with floral bract (fb) | E—complete flower displayed on its floral pedicel (fp) | F—frontal view of the flower exhibiting anthers (a) | G—side view of the flower portraying floral tube (ft) and floral bract (fb) | H—calyx displaying five tooth (cth) | I—gynoecium with ovary (o), style (s) and bifid stigma (bs) | J—dissected corolla manifesting open floral tube (oft), epipetalous stamen (es), corolla lobes (cl) and corolla throat (ct). © Mamita Kalita.

flowered; Bract spathulate, pubescent, $0.8-1.2 \times 0.4-0.6$ cm; Flower pedicellate, bright red trumpet shaped, $4-5.5$ cm long, bisexual, regular; Calyx $1.5-1.8$ cm, five sepals, valvate, green, woolly, unequal lobes, united at base; Corolla with five petals, $1-1.5$ cm segregated limbs above, lower part united to form $3-4$ cm long floral tube, throat curved, pink-white patch inside, minutely hirsute outside, peduncle $0.5-1$ cm long; Stamens 4, didynamous, $3.2-3.8$ cm long, anthers white, $2.5-3$ mm long, sub-extrorse, versatile, dithecos; Gynoecium $3.8-4$ cm long, stigma bifid, pink, style pinkish white, ovary $2.8-3.7$ mm, elliptic, glabrous, ovary disc $0.8-1$ mm, cream-white. (Image 1)

Common names: Brazilian Petunia, Christmas pride, Elegant Ruellia, Red Ruellia, Wild Petunia.

Habitat: Terrestrial species found in high rainfall regions in wild or semi-wild patches/ margins of forest. Also, it grows well in understory of forests where partial sunlight falls.

Phenology: The flowering and fruiting has been observed during September.

Specimen examined

Brazil: South Brazil, Prov. St. Paul and Rio, Leg. Weir, J. 1861-62. #s.n. (K001048032! K001048033!); Environs de Rio de Janeiro et D’Ouro Preto, Leg. Moss A. Glaziou, v.1885. Coll.No.15297 (K001048034!); São Paulo, Leg. M. Kuhlman, 13.xi.1947. Coll.No.1518 (K001048038!); Minas Gerais, 20.3294° S, 46.3052° W, altitude 780 m, Leg. Souza, V.C. 14.i.1994. Coll.No.5059 (K001048037!); Near Rio, Leg. Graham. #s.n. (K001048035!) Determined by C. Kameyama, 1995; São Paulo, Leg. M. Groppo Jr. 26.ii.2001. Coll.No.595 (K001048036!). **India:** Andaman & Nicobar Islands, Port Blair, Nayagaon, South Andamans, Dr. S. Kumar, 15.iii.2008. Coll.No.26343 (PBL0000015227! PBL0000015228!). **Assam:** Tinsukia, Digboi, Near Dehing Patkai WS, Mamita Kalita, 19.ix.2023. Coll.No. TSRE03 (GUBH20634).

Taxonomic note

The specific epithet 'elegans' propound the pleasing appearance or bounteous nature of the species. The herbarium specimen (K001048032, K001048033, K001048038) were initially identified as *Ruellia formosa* and (K001048032, K001048033, K001048034, K001048035) as *Arrhostoxylum formosum*. Later, the correct identification was provided as *Ruellia elegans* and the former two names are now treated as synonyms. A write up over the herbarium sheet K001048035 describe the species as plants with bright red flowers having four

anthers (two long and two short ones). As mentioned by Ezcurra (1993), the calyx and corolla morphology of *R. elegans* is somewhat similar to *R. sceptrum-marianum* (Vell.) Stearn., and *R. acutangula* Nees, *R. silvaccola* (Nees) Lindau. Further, he described the species as red flowers having horizontal corolla forming a narrow tube with weak peduncles and pedicels. The presently examined species have similar floral attributes as described.

CONCLUSION

At the location site, altogether 8–10 individuals of the plant species were seen, each differing in their reproductive growth. Few other species growing along with *Ruellia elegans* are: *Diplazium* sp., *Dryopteris* sp., *Isodon* sp., *Oxalis debilis*, *Plantago major*, and *Rostellularia* sp. According to Rao & Kumar (2024), the species conservation status is not assessed in Brazil. The impacts of this invasive species should be monitored to take appropriate measures to control its spread threatening the native biodiversity.

REFERENCES

Ezcurra, C. (1993). Systematics of *Ruellia* (Acanthaceae) in Southern South America. *Annals of the Missouri Botanical Garden* 80(4): 787–845. <https://doi.org/10.2307/2399931>

Jain, S.K. & R.R. Rao (1977). *Handbook of Field and Herbarium Methods*. Today and Tomorrow Printers and Publishers, New Delhi, India, 150 pp.

Kalidass, C., P. Murugan & P.C. Panda (2016). *Ruellia elegans* Poir. (Acanthaceae): A new plant record for Eastern India. *Plant Science Research* 38(1&2): 118–119.

Lamarck, J.B. & J.L.M. Poiret (1816). *Encyclopédie méthodique. Botanique, Supplément*. Paris, Agasse. 4: 727 pp. <https://doi.org/10.5962/bhl.title.826>

Manzitto-Tripp, E.A., I. Derbyshire, T.F. Daniel, C.A. Kiel & L.A. McDade (2021). Revised classification of Acanthaceae and worldwide dichotomous keys. *TAXON* 71(5): 103–153. <https://doi.org/10.1002/tax.12600>

POWO (2024). Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet. Accessed on 25/09/2023. <https://powo.science.kew.org/>

Rao, K.S. & D. Kumar (2024). India Flora Online. Published on the Internet; <https://indiaflora-ces.iisc.ac.in/>

Stevens, P.F. (2001 onwards). APG IV. Angiosperm Phylogeny Website. Version14, July 2017. <http://www.mobot.org/MOBOT/research/APweb/>

Tripp, E.A. (2007). Evolutionary relationships within the species-rich genus *Ruellia* (Acanthaceae). *Systematic Botany* 32(3):628–649. <https://doi.org/10.1600/036364407782250625>

Tripp, E.A., T.F. Daniel, S. Fatimah & L.A. McDade (2013). Phylogenetic Relationships within *Ruellieae* (Acanthaceae) and a Revised Classification. *International Journal of Plant Sciences* 174(1): 97–137. <https://doi.org/10.1086/668248>

Zhuang, Y. & E.A. Manzitto-Tripp (2022). Co-expression network analyses of anthocyanin biosynthesis genes in *Ruellia* (Wild Petunias; Acanthaceae). *BMC Ecology and Evolution* 22(27): 1–17. <https://doi.org/10.1186/s12862-021-01955-x>

***Cuphea carthagenensis* (Jacq.) J.F.Macbr. (Lythraceae) — a new non-native plant record for the Eastern Ghats of India**

Prabhat Kumar Das¹ , Bishal Kumar Majhi² , Shashi Sourav Hansda³ , Samarendra Narayan Mallick⁴ , Purnendu Panda⁵ & Pratap Chandra Panda⁶

^{1,6}Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Ghatikia, Bhubaneswar, Odisha 751003, India.

²G.B. Pant National Institute of Himalayan Environment, Northeast Regional Centre, Chandranagar, Itanagar, Arunachal Pradesh 791113, India.

³Department of Botany, Utkal University, Bhubaneswar, Odisha 751004, India.

⁴Department of Botany, Ravenshaw University, Cuttack, Odisha 753003, India.

⁵Central Ayurveda Research Institute, Bharatpur, Bhubaneswar, Odisha 751029, India.

¹prabhatdasnou@gmail.com, ²bishalkm@gmail.com, ³shashibabu087@gmail.com, ⁴samarendra.mallick1@yahoo.com,

⁵pandapurnendu02@gmail.com, ⁶pcpanda2001@yahoo.co.in (corresponding author)

During the ongoing plant diversity inventory of the Eastern Ghat region of Odisha, the authors collected specimens from two populations of an interesting species of *Cuphea* with glandular-pubescent aerial parts and pale-purple to deep pink flowers from Sunabeda Plateau and Pendajam waterfall of Koraput District of Odisha. After examination of plant specimens, consultation of relevant literature, and matching with authentic herbarium specimens, it is identified as *Cuphea carthagenensis* (Jacq.) J.F.Macbr. (Lythraceae), a species native to South America.

In India, half-a-dozen species of *Cuphea* P.Browne have so far been reported, such as *C. hyssopifolia* Kunth, *C. carthagenensis* (Jacq.) J.F.Macbr., *C. ignea* A.DC., *C. lanceolata* W.T.Aiton, *C. micropetala* Kunth, and *C. procumbens* Ortega, which are commonly grown as garden ornamental plants or found as alien weeds in waste places, roadsides and degraded forest areas (Das

& Chanda 1987; Singh et al. 2000; Paul & Kumar 2023).

Among these, the species *C. carthagenensis* is so far been reported from northeastern states such as Assam, Arunachal Pradesh, Nagaland (Naithani 1990; Naithani & Bennet 1990), Mizoram (Singh et al. 2002), Darjeeling Hills of West Bengal (Paul & Kumar 2012), and Manipur (Panmei et al. 2019) as a naturalized weed in cultivated lands, disturbed habitats and also sometimes in open forests. There is no report of its occurrence in the Eastern Ghats of India, which covers the states of Odisha, Andhra Pradesh, Tamil Nadu, and Karnataka nor from peninsular India. The present report of its occurrence from Odisha is very interesting in view of its naturalization extending to the eastern parts of the country (Image 1).

***Cuphea carthagenensis* (Jacq.) J.F.Macbr.**, Publ. Field Columb. Mus., Bot. Ser. 8: 124. 1930; Naithani, Fl. Pl. India, Nepal & Bhutan: 172. 1990; Naithani & Bennet, Ind. For. 116(5): 423. 1990; Chowdhury & al. in P.K. Hajra

Editor: V. Sampath Kumar, Botanical Survey of India, Coimbatore, India.

Date of publication: 26 February 2025 (online & print)

Citation: Das, P.K., B.K. Majhi, S.S. Hansda, S.N. Mallick, P. Panda & P.C. Panda (2025). *Cuphea carthagenensis* (Jacq.) J.F.Macbr. (Lythraceae) — a new non-native plant record for the Eastern Ghats of India. *Journal of Threatened Taxa* 17(2): 26566-26570. <https://doi.org/10.11609/jott.9271.17.2.26566-26570>

Copyright: © Das et al. 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: None.

Competing interests: The authors declare no competing interests.

Acknowledgements: The authors thank the dean, the School of Pharmaceutical Sciences, and the President, Siksha O Anusandhan Deemed to be University, Bhubaneswar for providing laboratory facilities and encouragement.

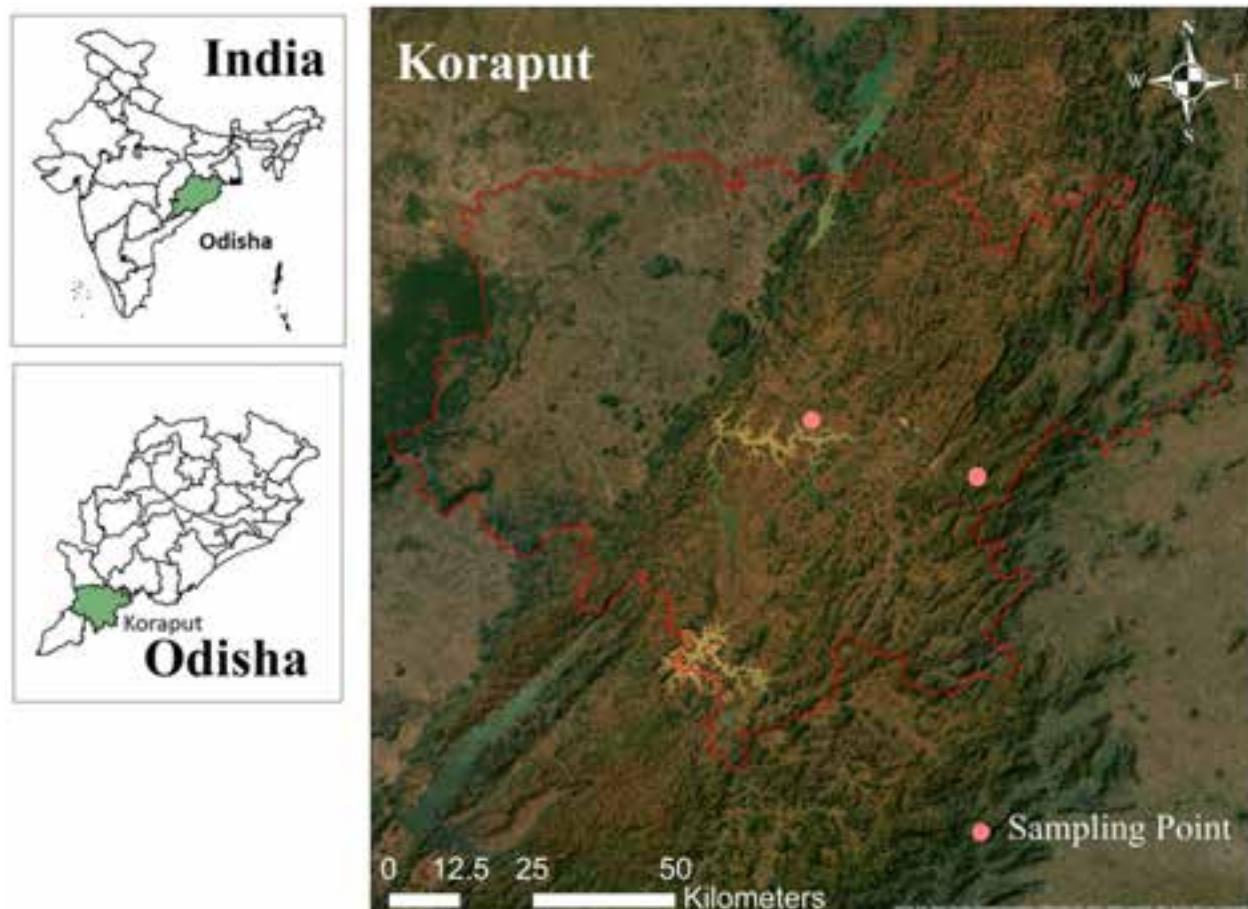


Image 1. Map showing the localities of collection of *Cuphea carthagrenensis* in Koraput District, Odisha.

& al., Mater. Fl. Arunachal Pradesh 1: 496. 1996; Paul & Kumar, Pleione 6(1): 244. 2012; Graham, Syst. Bot. 42(4): 876. 2017; T. Mathew & al. in A.A. Mao & S.S. Dash, Fl. Pl. India Annot. Checkl. Dicot 1: 558. 2020; Paul & Kumar, Fl. Mahananda Wildlife Sanctuary: 69. 2023. *Lythrum carthagense* Jacq., Enum. Syst. Pl. 22. 1760. *Cuphea pinto* (Vand.) Kuntze, Revis. Gen. Pl. 3(3): 96. 1898. *Cuphea balsamona* Cham. & Schlecht. in Linnaea 2: 363. 1827. *Cuphea prunellifolia*, Fl. Bras. Mer. 3: 108. 1833. (Images 2 & 3)

Common name: Colombian Cuphea, Colombian wax-weed.

Perennial herb, erect or spreading, much branched from near the base, 10–40 cm tall, young parts hairy. Stem viscid-pubescent, with intermixed glandular and non-glandular hairs; trichomes sparse to abundant, erect, reddish-purple. Leaves opposite, spreading, subsessile to shortly petiolate, gradually reduced in size in inflorescence; broadly to narrowly elliptic or elliptic-oblong, rarely ovate, 0.9–3.2 X 0.6–2.0 cm, base acute to attenuate, apex acute or acuminate, margin entire;

upper surface green, lower surface pale or both surfaces with scattered trichomes, midvein very prominent, secondary veins 5–6, prominent on dorsal side. Flowers extra axillary, solitary or in an indistinct leafy raceme, 4–6 mm long; pedicels 1–2 mm long; bracteoles lanceolate-linear. Floral tube, including a descending spur, sparsely pubescent with glandular hairs, distally rose-purple, otherwise green, ampullaceous with neck and mouth contracted in fruit. Calyx tubular, 3–5 mm long, longitudinally ribbed with a short spur at the base of posterior side; lobes short, equal, deltate, apex acute or short bristle-tipped. Petals 6, light pink to pink-purple, subequal, oblong, elliptic, or sub-spatulate, up to 3 mm long. Stamens 11, slightly longer than the floral tube; 2 short dorsal most inserted deepest, other 9 alternately unequal in length, inserted at the same level; filaments cream coloured, anthers light yellow. Ovary oblong, 0.5 mm long, glabrous; ovules 4–6; stigma capitate. Capsules enclosed by hypanthium, dehiscing on one side; seeds brownish, 2–6, 1–1.5 mm across, obovate to elliptic or subcircular, apex obtuse to shallowly retuse,

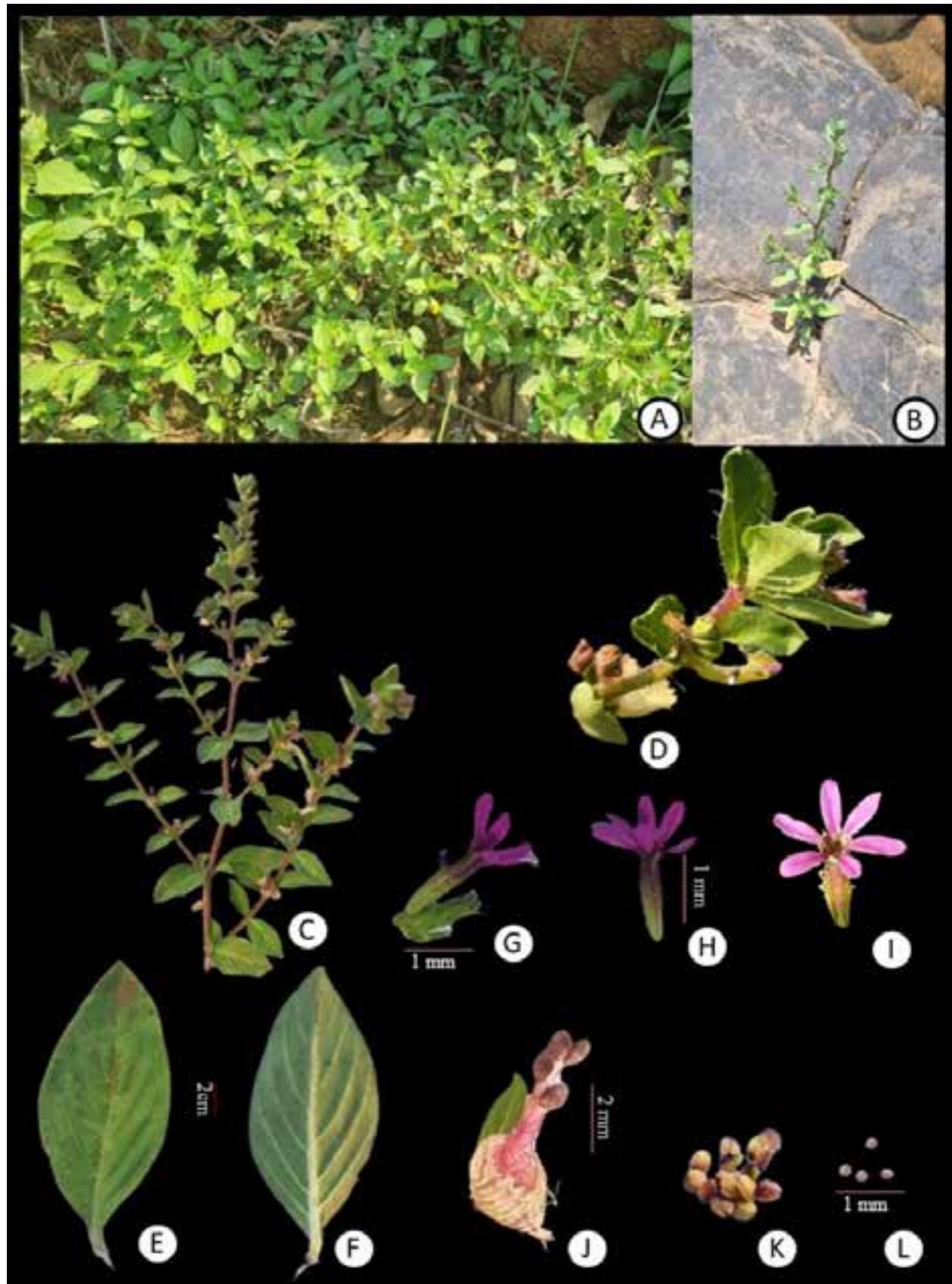


Image 2. *Cuphea carthagrenensis*: A&B—habitat | C&D—flowering and fruiting branch | E&F—abaxial and adaxial view of leaf | G—flower | H&I—flower cut open to show sepals, petals and anthers | J & K—seeds exposed on the placenta | L—seeds.

Image 3. Herbarium specimen of *Cuphea carthagenensis* (Jacq.) J.F.Macbr. (Image credit: P.K. Das).

margin thin, flattened, especially at micropylar end, surface verrucose.

Flowering and fruiting: February–May.

Distribution: Though the native range of *Cuphea carthagenensis* is South America covering Argentina, Bolivia, Brazil, Colombia, Ecuador, French Guiana, Guyana, Paraguay, Peru, Suriname, and Venezuela (Graham 2017), it has widely naturalized outside its native range, in the subtropical and tropical parts Central America, North America, the Caribbean, Oceania, and Asia. In Asia, the species is reported to occur in China, East Timor, India, Indonesia, Japan, Malaysia, Myanmar, Philippines, Singapore, and Taiwan.

In Oceania, *C. carthagenensis* is known from American Samoa, Australia, Micronesia, Fiji, French Polynesia, New Caledonia, Papua New Guinea, Western Samoa, Tonga, and Vanuatu. While it is a dominant weed of rice fields in Assam, India; it invades corn (*Zea mays*) plantings in Indonesia, Coconut *Cocos nucifera* groves in Vanuatu and Taro *Colocasia esculenta* fields in Fiji (Bradley 2022).

In India, the species has been previously reported from northeastern states (Assam, Arunachal Pradesh, Mizoram, Meghalaya, Nagaland, Manipur), higher hills of Darjeeling in West Bengal, and now from Koraput, Odisha located in the eastern region of the country indicating its spread as an invasive species.

Specimens examined: 2544/CBT, 20.iv.2024, India, Odisha, Koraput, Sunabeda, Central University of Odisha campus, 18.701 N & 83.012 E, 2,112 m, coll. P.K. Das & P.C. Panda; 2545/CBT, 14.v.2024, India, Odisha, Koraput, Pendajam waterfall, on the way to Putsil, 18.739 N & 82.808 E, 1,976 m, coll. P.K. Das and S.N. Mallick.

Specimen images viewed online: 1650 (K), 600 m, coll. M. Etuge, Mt. Kupe, Cameroon (K000026893); 9500 (K), 2,000 m, coll. M. Cheek, Muanenguba, Cameroon (K000026892); 9559 (K), 1,200 m, coll. M. Cheek, Muambong to Mwabag, Cameroon (K000026894).

References

Bradley, K. (2022). *Cuphea carthagenensis* (Colombian wax weed), CABI Compendium. CABI, Wallingford, Oxfordshire, United Kingdom. <https://www.cabidigitallibrary.org/doi/10.1079/cabiccompendium.113690>. Accessed 24 June 2024.

Das, A.P. & S. Chanda (1987). Flowering calendar of the angiospermic flora of Darjeeling Hills, West Bengal (India). *Transactions of the Bose Research Institute* 50(4): 99–133.

Graham, S.A. (2017). A revision of *Cuphea* Section *Brachyandra* s. s. (Lythraceae). *Systematic Botany* 42 (4): 859–919. <https://doi.org/10.1600/036364417X696528>

Naithani, H.B. (1990). *Flowering Plants of India, Nepal and Bhutan: Not recorded in Sir J.D. Hooker's Flora of British India*. Surya Publications, Dehra Dun, India, 711 pp.

Naithani, H.B. & S.S.R. Bennet (1990). Note on the occurrence of *Cuphea carthagenensis* from India. *Indian Forester* 116(5): 423–424.

Panmei, R., P.R. Gajurel & B. Singh (2019). Ethnobotany of medicinal plants used by the Zeliangrong ethnic group of Manipur, northeast India. *Journal of Ethnopharmacology* 235: 164–182. <https://doi.org/10.1016/j.jep.2019.02.009>

Paul, T.K. & A. Kumar (2012). Two new plant records for West Bengal, India from Mahananda Wildlife Sanctuary, Darjeeling District. *Pleione* 6(1): 244–246.

Paul, T.K. & A. Kumar (2023). *Flora of Mahananda Wildlife Sanctuary, Darjeeling, West Bengal*. Botanical Survey of India, Kolkata, 177 pp.

Singh, N.P., D.K. Singh & K.P. Singh (2002). *Flora of Mizoram*, Vol. 2. Botanical Survey of India, Kolkata, 649 pp.

Singh, N.P., P. Lakshminarasimhan, S. Karthikeyan & P.V. Prasanna (2000). *Flora of Maharashtra State: Dicotyledons*, Vol. 2 (Combrataceae to Ceratophyllaceae). Botanical Survey of India, Kolkata, 988 pp.

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

Articles

Culture and provisioning: the case of Human-Long-tailed Macaque *Macaca fascicularis* (Raffles, 1821) interactions in Sumile, Butuan City, Philippines

– Fritche H. Lapore, Debbie S. Aseñas & Sherryl L. Paz, Pp. 26443–26458

Noteworthy comments on birds for mega-diverse Myanmar

– Swen C. Renner, Saw Moses, Lay Win, Thein Aung, Myint Kyaw, Saw Myat Ohnmar, Thiri Dae We Aung, Kay Thwe Myint, Sai Sein Lin Oo, Paul J.J. Bates & Marcela Suarez-Rubio, Pp. 26459–26467

Ultra-structure of antenna, eye, mouthparts and sensilla of *Cheiromenes sexmaculata* Fabricius, 1781 (Coccinellidae: Coleoptera)

– Prakash Ghagargunde & Mandar S. Paingankar, Pp. 26468–26478

Morphological characterization and ecological insights of *Pseudonapaeus cf. candelaris* (L. Pfeiffer, 1846) in the Pir Panjal Range of western Himalaya

– Hilal Ahmed, Imtiaz Ahmed & N.A. Aravind, Pp. 26479–26486

Communications

Diet and nutrient balance of wild Asian Elephants *Elephas maximus* in Nepal

– Raj Kumar Koirala & Sean C.P. Coogan, Pp. 26487–26493

Avian diversity in wetlands of southwestern Kerala of India during COVID

– Vijayakumari Sudhakaran Bindu & S. Sajitha, Pp. 26494–26503

Checklist on the ichthyofaunal resources and conservation status of Dikhu River, Nagaland, India

– Metevinu Kechu & Pranay Punj Pankaj, Pp. 26504–26514

A study on the diversity of butterflies in selected landscapes of the Indian Institute of Technology, Guwahati campus, Assam, India

– Uma Dutta, Sonali Dey & Deepshikha Moran, Pp. 26515–26529

Sphaeroma taborans sp. nov., a new species of wood-boring isopod (Crustacea: Isopoda: Sphaeromatidae) from Munroe Island, Ashtamudi Estuary, Kerala, India

– M.S. Arya, A. Biju & Dani Benchamin, P. 26530–26537

A report on Conidae (Gastropoda) from the Karnataka coast – distribution and shell morphometry

– B.S. Chandan, R. Shyama Prasad Rao & Mohammed S. Mustak, Pp. 26538–26546

New distribution record and DNA barcoding of the steno-endemic plant *Cordia diffusa* (Boraginaceae)

– M. Haritha, D. Leena Lavanya & H. Abinaya, Pp. 26547–26552

Short Communications

First record of the sea slug *Lobiger serratifalci* (Calcaria, 1840) (Gastropoda: Sacoglossa: Oxynoidae) from the Indian coast

– Dimpal Dodiya & Paresh Poriya, Pp. 26553–26557

Impatiens damrongii (Balsaminaceae), a new record for the flora of Vietnam

– Ha Van Dang, Leonid Vladimirovich Averyanov & Cuong Huu Nguyen, Pp. 26558–26561

Invasive record of Brazilian Petunia *Ruellia elegans* Poir. (Acanthaceae) from northeastern India

– Mamita Kalita, Pp. 26562–26565

Note

Cuphea carthagenensis (Jacq.) J.F.Macbr. (Lythraceae)

– a new non-native plant record for the Eastern Ghats of India

– Prabhat Kumar Das, Bishal Kumar Majhi, Shashi Sourav Hansda, Samarendra Narayan Mallick, Purnendu Panda & Pratap Chandra Panda, Pp. 26566–26570

Publisher & Host

Threatened Taxa