

Building evidence for conservation globally

Journal of Threatened TAXA

10.11609/jott.2025.17.6.27035-27170
www.threatenedtaxa.org

26 June 2025 (Online & Print)
17(6): 27035-27170
ISSN 0974-7907 (Online)
ISSN 0974-7893 (Print)

Open Access

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Ph: +91 9385339863 | www.threatenedtaxa.org

Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Board of Editors

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Copy Editors****Ms. Usha Madgunki**, Zooreach, Coimbatore, India**Ms. Trisa Bhattacharjee**, Zooreach. Coimbatore, India**Ms. Paloma Noronha**, Daman & Diu, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, Zooreach, Coimbatore, India**Mrs. Geetha**, Zooreach, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2021–2023****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annaheb Magar Mahavidyalaya, Maharashtra, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Banos, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: A mesmerising Indian Luna moth *Actias selene* is dancing through the starry night (by Vincent van Gogh) moonlit sky, displaying its ballistic display of feather tail. Digital artwork by Vyshnavee Sneha Jaijar.

Distribution, habitat use and conservation status of Smooth-coated Otter *Lutrogale perspicillata* along the Cauvery and Kabini rivers, Karnataka, India

Allison Amavisca¹ , Raghunath Belur² & Sugandhi Gadadhar³

¹ Royal Zoological Society of Scotland, 34 Corstorphine Road, Edinburgh, EH12 6TS, United Kingdom.

^{2,3} Aranya Parva Creations, G304, Adarsh Palace Apartments, 47th Cross, 5th Block Jayanagar, Bangalore, Karnataka 560041, India.

¹ marinebioally@gmail.com, ² ranabelur@gmail.com, ³ sugandhi.g@gmail.com (corresponding author)

Abstract: We documented the distribution and habitat use of the Smooth-coated Otter *Lutrogale perspicillata* along the Cauvery and Kabini rivers in Karnataka, India. In November–December 2024, we conducted systematic surveys covering approximately 80–100 km of each river using trained volunteer teams. Data collection included direct sightings and indirect signs (spraints, tracks, and holts). The Cauvery survey yielded 68 observations, including 21 direct sightings totalling 76 individual otters (mean group size = 3.3). The Kabini survey documented 42 observations, including 12 direct sightings totalling 39 individuals (mean group size = 2.8). Statistical analyses revealed no significant difference in otter presence between areas with and without fishing activity ($p = 0.428$), challenging prior assumptions about human-otter conflict. Areas with multiple human activities maintained substantial otter presence, with 44.4% of holts found in areas with three different types of human activity.

Keywords: Citizen science, conflict mitigation, dynamite fishing, freshwater ecosystem, habitat assessment, human-wildlife interactions, otter adaptability, river conservation, sand mining, volunteer surveys.

Editor: P.O. Nameer, Kerala Agricultural University, Thrissur, India.

Date of publication: 26 June 2025 (online & print)

Citation: Amavisca, A., R. Belur & S. Gadadhar (2025). Distribution, habitat use and conservation status of Smooth-coated Otter *Lutrogale perspicillata* along the Cauvery and Kabini rivers, Karnataka, India. *Journal of Threatened Taxa* 17(6): 27131–27140. <https://doi.org/10.11609/jott.9692.17.6.27131-27140>

Copyright: © Amavisca et al. 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: National Geographic Society Explorer-Educator Exchange; Zooreach Conservation Seed Grant (24ZCSG01F).

Author details: ALLY AMAVISCA is a community programmes leader and conservation educator with over a decade of experience in wildlife conservation and environmental education. Recently, Community & Discovery Programmes Manager at the Royal Zoological Society of Scotland, she specialises in community engagement, impact measurement, and inclusive conservation programmes connecting frontline communities with nature. RAGHUNATH BELUR is a freelance wildlife cinematographer and a founding partner at Aranya Parva Creations, India. He is a member of the IUCN Otter Specialist Group. SUGANDHI GADADHAR is a National Geographic Explorer. She is a wildlife filmmaker and a founding partner at Aranya Parva Creations, India. Her focus is on films related to wildlife and conservation. She is a member of the IUCN Otter Specialist Group.

Author contributions: Conceptualisation: Sugandhi Gadadhar, Raghunath Belur, Allison Amavisca. Methodology, analyses, validation and writing: Allison Amavisca. Supervision and project administration: Raghunath Belur, Sugandhi Gadadhar

Competing interests: The authors declare no competing interests.

Acknowledgements: We thank the National Geographic Society, Zooreach Conservation Seed Grant, Royal Zoological Society of Scotland, and Karnataka Forest Department for their support. Special thanks to Dr. Helen Taylor, survey lead Shivanna HB and survey volunteers Shreehari N, Sri Karthik D, Abhay Mahesh Baadkar, Renu Priyadarshani M, Athira A Sajan, Sukrutha L, Pranav G Bhat, and Darshini M B for their dedication, and EcoEdu, Bangalore, for logistical support. Lastly, we thank our two anonymous reviewers for their insightful comments, which significantly improved our paper.

CSR initiative by
BOSCH

zooreach
Conservation
SEED GRANTS
For early to mid-career conservationists

INTRODUCTION

The Smooth-coated Otter *Lutrogale perspicillata* is one of 13 otter species worldwide and among three found in India (Reuther 1999). Listed as 'Vulnerable' on the IUCN Red List (Khoo et al. 2021) and a Schedule 1 species in the Wildlife (Protection) Amendment Act (2022) due to an observed population decline of up to 30% across its range, the species faces multiple anthropogenic threats. In India, *L. perspicillata* occurs in all major river systems south of the Himalaya, where it serves as an apex predator in freshwater ecosystems (Hussain & Choudhury 1997).

The Cauvery River and its tributary, the Kabini, represent critical habitat for *L. perspicillata* in southern India (Image 1). Whilst several studies have documented otter populations within the Cauvery Wildlife Sanctuary (Shenoy et al. 2006; Khan et al. 2009), no systematic surveys have been conducted along the Kabini River. The human-wildlife interaction poses a significant threat to otter populations in this region, with declining fish stocks due to pollution, sand mining, and unsustainable fishing practices intensifying negative interactions between otters and fishing communities (Meena 2002; Anoop & Hussain 2004).

METHODS

Study Area

The surveys covered the Cauvery River from downstream of Srirangapatna Town to Sathegala Bridge and the Kabini River from Kabini Dam to T. Narsipura (Image 1). Both rivers flow through agricultural landscapes and human settlements outside protected areas. The climate is semi-arid with average temperatures above 25°C and annual rainfall of 60–100 cm (Jayaram 2000). Riparian vegetation includes *Terminalia arjuna* and *Salix tetrasperma*, with varying levels of human activity such as fishing, sand mining, and recreation. Representative habitat types from both rivers are shown in Image 2.

Data Collection

Surveys were conducted between November–December 2024 using methodology adapted from Hussain & Choudhury (1997), and Anoop & Hussain (2004). We divided the rivers into 1-km segments for walking and boat-based (coracle) surveys. Following standardised protocols (Reuther et al. 2000), observations included:

- direct sightings (location, group size, &

behaviour),

- indirect signs (spraints, tracks, & holts),
- habitat characteristics (substrate type, vegetation cover, & water quality), and
- human activities (fishing, sand mining, & recreation)

Habitat assessments were conducted at accessible locations, recording substrate composition, vegetation cover, distance to water, and human activity signs following methods established by Mason & Macdonald (1986). Examples of otter sign documentation methods are shown in Image 3.

Statistical Analysis

All analyses were performed using Python (version 3.8). We used independent t-tests to compare otter presence between areas with and without fishing activity. ANOVA tests evaluated the impact of multiple human activities, while chi-square tests examined relationships between human activities and various otter signs (Zar 1999).

RESULTS

Survey Overview

The Cauvery River survey yielded 68 total observations across approximately 75 km of river length. This included 21 direct sightings totalling 76 individual otters, with a mean group size of 3.3 (± 1.2 SD) otters. We documented 30 instances of otter prints, 20 spraint sites, and 13 tail marking locations (Table 1). Additionally, we identified 16 potential holt sites along this stretch.

The Kabini River survey covered approximately 85 km and produced 42 total observations. This included 12 direct sightings totalling 39 individual otters, with a mean group size of 2.8 (± 0.9 SD). We recorded 33 instances of prints, 24 spraint sites, and 10 tail markings (Table 1). Twelve potential holt sites were identified along this stretch.

While the Cauvery survey documented higher overall abundance compared to Kabini (Table 2), this difference was not statistically significant ($t = -0.796$, $p = 0.428$), suggesting that despite varying levels of human activity between the two rivers, otter populations appear to persist at similar densities.

Human-Otter Interactions

Statistical analyses revealed no significant difference in otter presence between areas with and without fishing activity ($t = -0.796$, $p = 0.428$; Table 2). The

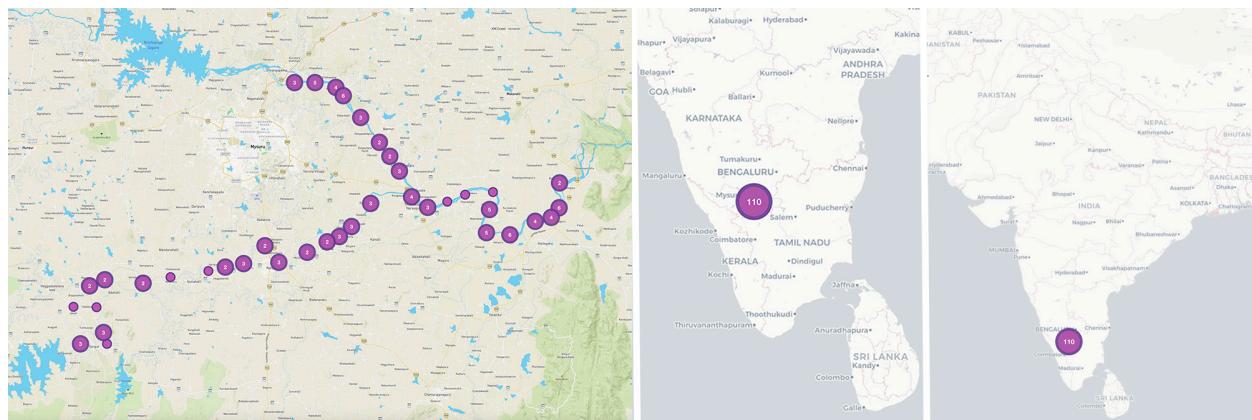
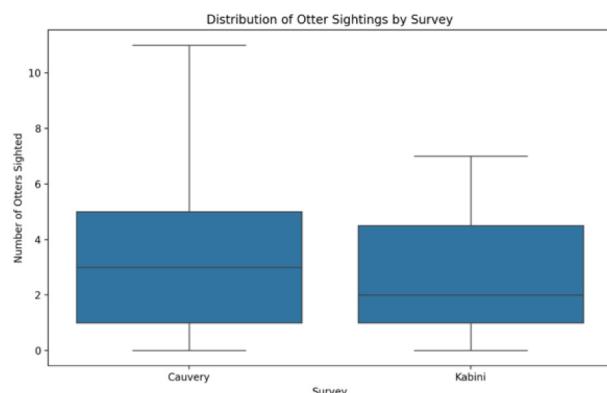


Image 1. The study area locations within Karnataka, India.

Image 2. Representative habitat types from both rivers: top left—Cauvery River showing typical sandy/rocky substrate and vegetation | top right—Kabini River showing characteristic riparian habitat. © Shreehari N (top left) | Sugandhi Gadadhar (top right) | Darshini MB (bottom left) | Raghunath Belur (bottom right).

pattern varied between rivers. In the Cauvery River, areas without fishing activity showed slightly higher mean otter sightings (1.42 ± 2.51 SD) compared to areas with fishing (0.60 ± 1.32 SD). Conversely, in the Kabini, areas with fishing activity showed higher mean otter sightings (1.20 ± 2.09 SD) compared to areas without


(0.68 ± 1.64 SD) (Table 3, Figure 1).

Habitat Use

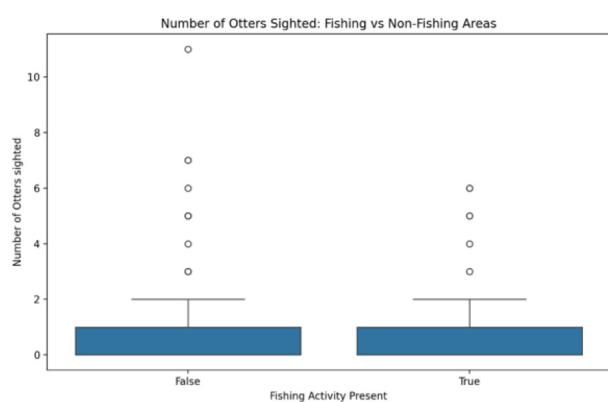

We recorded distinctive patterns in habitat selection across both river systems (Table 4). Riparian vegetation areas accounted for 51.8% of all otter signs, followed by

Image 3. Examples of otter sign documentation: a—Spraint site | b—Student volunteers collecting data | c—Tail markings | d—Typical holt entrance | e—Otter pug marks. © a, c, e—Raghunath Belur | b—Renu Priyadarshani M | d—Athira A Sajan.

Figure 1A. Distribution of otter sightings by river.

Figure 1B. Comparison of otter sightings in areas with/without fishing activity.

sandy banks (39.3%) and water/pool areas (27.7%). Holts were primarily constructed in loose sand ($\chi^2 = 12.4$, $p < 0.001$) with thick vegetation cover (mean canopy cover $76.3\% \pm 12.5$ SD). The distribution of otter evidence varied with human activity levels, as shown in Image 4. Breeding populations were confirmed in both river systems through observations of pups and family groups. Mean group sizes were $3.3 (\pm 1.2$ SD) for Cauvery and $2.8 (\pm 0.9$ SD) for Kabini, comparable to those reported in other studies (Hussain & Choudhury 1997; Anoop & Hussain 2004).

DISCUSSION

Otter Distribution and Adaptability

Our findings challenge common assumptions about otter avoidance of human-modified landscapes. The lack of a significant correlation between human activities and otter presence ($p > 0.05$; Table 2) suggests that *L. perspicillata* may be more adaptable to anthropogenic disturbance than previously documented (Hussain & Choudhury 1997; Anoop & Hussain 2004). Several key observations from our surveys evidence this adaptability:

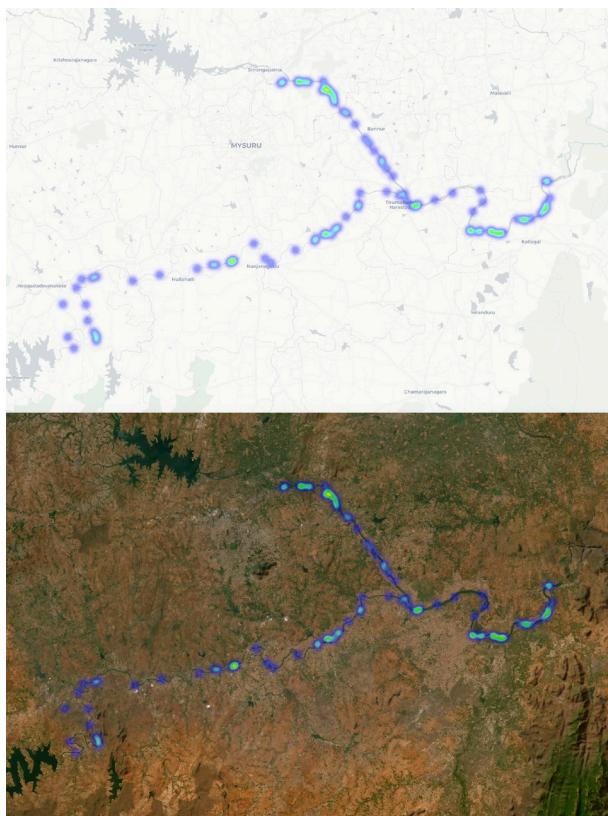

First, the presence of active den sites in areas with multiple human activities (44.4% of dens found in areas with three different types of human activity) indicates that otters are not completely avoiding high-disturbance

Table 1. Summary statistics for both rivers showing: Number of observations | Direct sightings | Indirect signs | Mean group sizes | Survey effort.

Cauvery River		Number of Otters sighted	Number of print instances	Number of spraint instances	Number of tail mark instances
Sample Size		76.0	30.0	20.0	11.0
Mean		1.118	1.867	1.381	1.154
Median		0.0	1.5	1.0	1.0
Mode		0.0	1.0	1.0	1.0
Std Dev		2.159	1.024	0.898	0.769
Min		0.0	1.0	0.0	0.0
Max		11.0	4.0	4.0	3.0
95% CI Lower		0.591	1.478	0.962	0.67
95% CI Upper		1.644	2.256	1.8	1.638
Kabini River		Number of Otters sighted	Number of print instances	Number of spraint instances	Number of tail mark instances
Sample Size		39.0	13.0	14.0	6.0
Mean		0.929	2.062	1.412	1.111
Median		0.0	1.5	1.0	1.0
Mode		0.0	1.0	1.0	1.0
Std Dev		1.844	1.853	1.191	1.1
Min		0.0	0.0	0.0	0.0
Max		7.0	6.0	4.0	3.0
95% CI Lower		0.347	1.043	0.781	0.214
95% CI Upper		1.51	3.082	2.043	2.008
Total Survey		Number of Otters sighted	Number of print instances	Number of spraint instances	Number of tail mark instances
Sample Size		115.0	43.0	34.0	17.0
Mean		1.045	1.935	1.395	1.136
Median		0.0	1.5	1.0	1.0
Mode		0.0	1.0	1.0	1.0
Std Dev		2.047	1.374	1.04	0.919
Min		0.0	0.0	0.0	0.0
Max		11.0	6.0	4.0	3.0
95% CI Lower		0.657	1.522	1.048	0.719
95% CI Upper		1.434	2.347	1.741	0.554

Table 2. Statistical comparison between areas with and without human activity.

	Mean (Human Activity)	Mean (No Activity)	Sample Size (Human Activity)	Sample Size (No Activity)	t-statistic	p-value	Cohen's d	Chi-square	df
Number of Otters sighted	1.164383562	0.810810811	73	37	0.851068861	0.396614152	0.173189299	1.448414599	1
Number of prints	1.931034483	1.941176471	29	17	-0.02363883	0.98124758	-0.007379626	0.037784729	1
Number of spraints	1.391304348	1.4	23	15	-0.02452817	0.980566774	-0.008371945	0.282092752	1
Number of tail marks	1.230769231	1	13	9	0.556234201	0.584221084	0.251557647	0.175558181	1

Image 4. Heat maps showing percentage of sites with different types of otter evidence and number of human activities present.

zones. Rather than abandoning these areas, otters appear to modify their behaviour, potentially becoming more nocturnal or adjusting their activity patterns to minimize direct contact with humans. Our findings align more closely with recent work suggesting behavioural adaptation to human presence (Anoop & Hussain 2004; Khan et al. 2009).

Second, while areas without fishing showed slightly higher mean otter sightings (1.17 compared to 0.87 in fishing areas), this difference was not statistically significant. This suggests that otters can maintain viable populations even in areas with regular fishing activity, contrary to previous assumptions about fishing-otter conflict driving local extinctions.

Third, the documentation of successful breeding, evidenced by observations of pups and family groups in both river systems, indicates that these populations are not just persisting but reproducing in human-modified landscapes. The mean group sizes observed (3.3 in Cauvery and 2.8 in Kabini) are comparable to those reported in less disturbed habitats, suggesting that human activity is not significantly impacting social structure or reproductive success.

Table 3. Comparison of otter presence in fishing vs non-fishing areas by river.

	mean	count	std	
Cauvery fishing absent	1.42	43	2.51	T-statistic: -1.7595779613762803
Cauvery fishing present	0.6	25	1.32	P-value: 0.0831459021468832
Kabini fishing absent	0.68	22	1.64	T-statistic: 0.886289848030455
Kabini fishing present	1.2	20	2.09	P-value: 0.3813371725366115

This adaptability to human presence has important implications for conservation strategies, suggesting that management efforts should focus on reducing direct threats (such as snares and dynamite fishing) rather than attempting to completely separate otter, and human activities. This apparent tolerance of human presence should not be interpreted as resilience to all forms of disturbance, as significant threats from habitat modification, particularly sand mining, and river bank alterations, continue to impact these populations.

Human-Wildlife Interaction

To address ongoing negative interactions between fishing communities and otters, we convened a workshop in November 2024, bringing together experts on species and human-wildlife interaction specialists. Participants included representatives from the IUCN Otter Specialist Group, Royal Zoological Society of Scotland (RZSS), Institute for Wildlife Conservation (ICAS), Budongo Conservation Field Station (BCFS), and several Indian research institutions. The workshop findings, when combined with our survey data, reveal important insights for conservation planning.

Our statistical analyses found no significant correlation between fishing activities and otter presence ($p = 0.428$; Table 2), challenging common assumptions about human-wildlife negative interactions in these systems. This aligns with workshop discussions that identified broader ecosystem threats rather than direct human-otter competition as key conservation challenges. While fishermen often perceive otters as a significant threat to their livelihood (Trivedi & Variya 2023), our data suggests a more complex reality. This aligns with workshop discussions that identified broader ecosystem threats rather than direct human-otter competition as key conservation challenges (Figure 2).

The workshop identified five interconnected areas for mitigation (Image 5):

Improvements to fishing technology and practices: Our survey documented the widespread use of

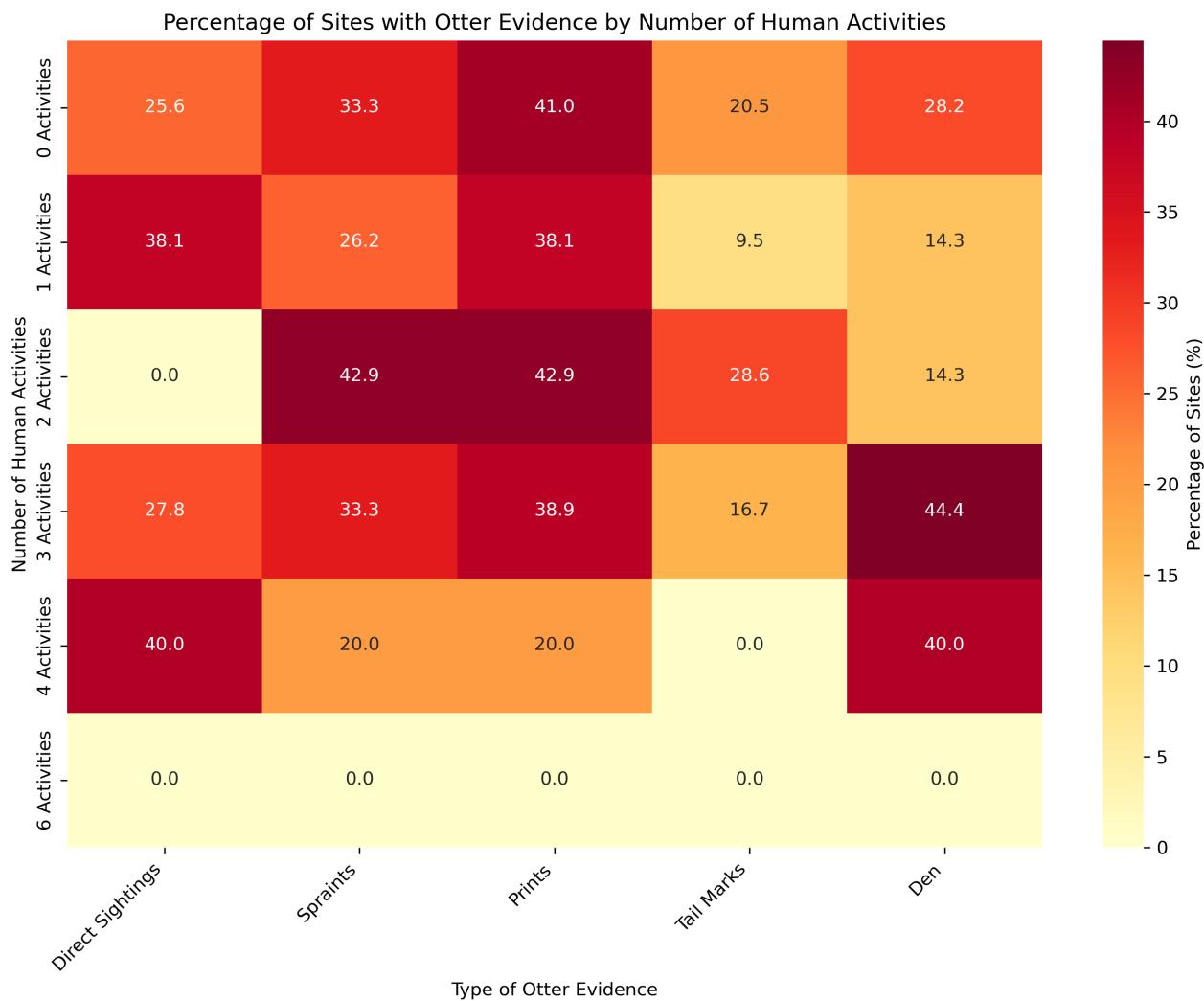


Figure 2. Conceptual model showing relationship between human activity types and otter presence.

Table 4. Habitat characteristics at otter presence sites vs random sites: Substrate composition | Vegetation cover | Distance to water.

Habitat Type	Total Sites	Sites with Direct Sightings	Sites with Spraints	Sites with Prints	Sites with Tail Marks	Total Sites Percentage	Sites with Direct Sightings Percentage	Sites with Spraints Percentage	Sites with Prints Percentage	Sites with Tail Marks Percentage
riparian vegetation	58	58	16	24	7	51.8	51.8	14.3	21.4	6.2
sandy bank	44	44	20	26	17	39.3	39.3	17.9	23.2	15.2
water/pool	31	31	7	5	2	27.7	27.7	6.2	4.5	1.8
human settlement area	12	12	4	7	3	10.7	10.7	3.6	6.2	2.7
rocky area	12	12	7	1	0	10.7	10.7	6.2	0.9	0
other	5	5	2	2	1	4.5	4.5	1.8	1.8	0.9

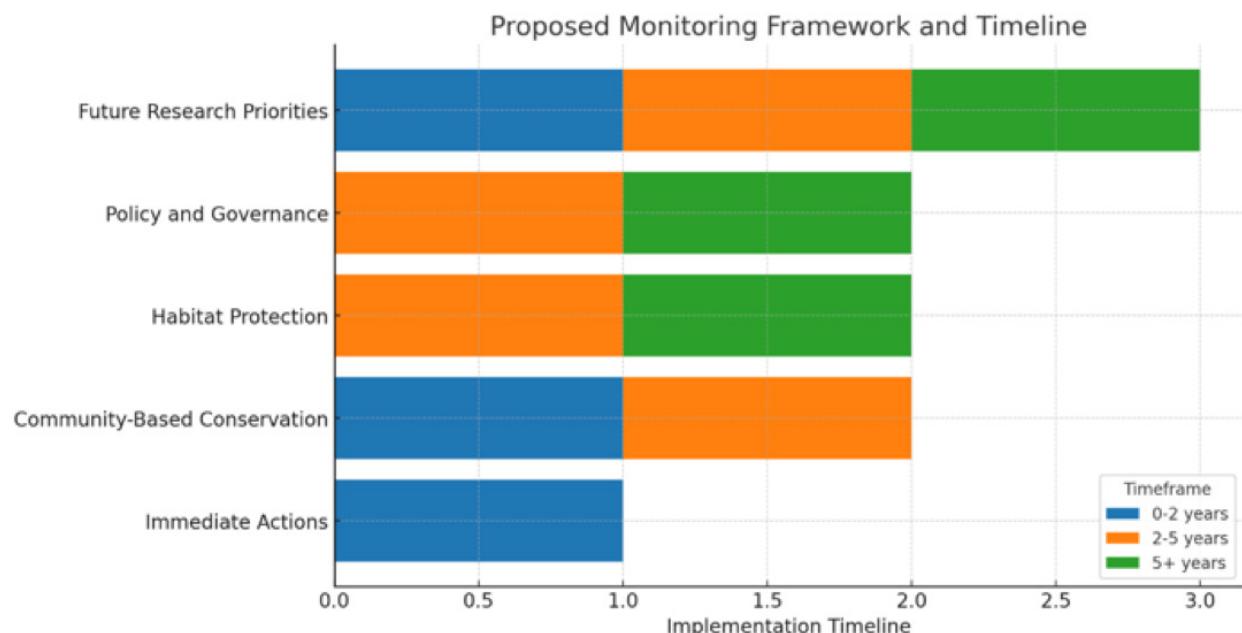


Figure 3. Proposed monitoring framework and timeline.

traditional fishing nets which are vulnerable to otter damage. Workshop participants proposed testing acoustic deterrents and stronger nets – solutions that could be particularly relevant along the Cauvery River where we recorded higher instances of human-otter negative interactions than the Kabini River.

- Legal/legislative changes: Survey data revealed ongoing sand mining and dynamite fishing, particularly along the Cauvery. Workshop participants emphasized the need for stronger inter-state regulations, as rivers often form state boundaries, complicating enforcement.

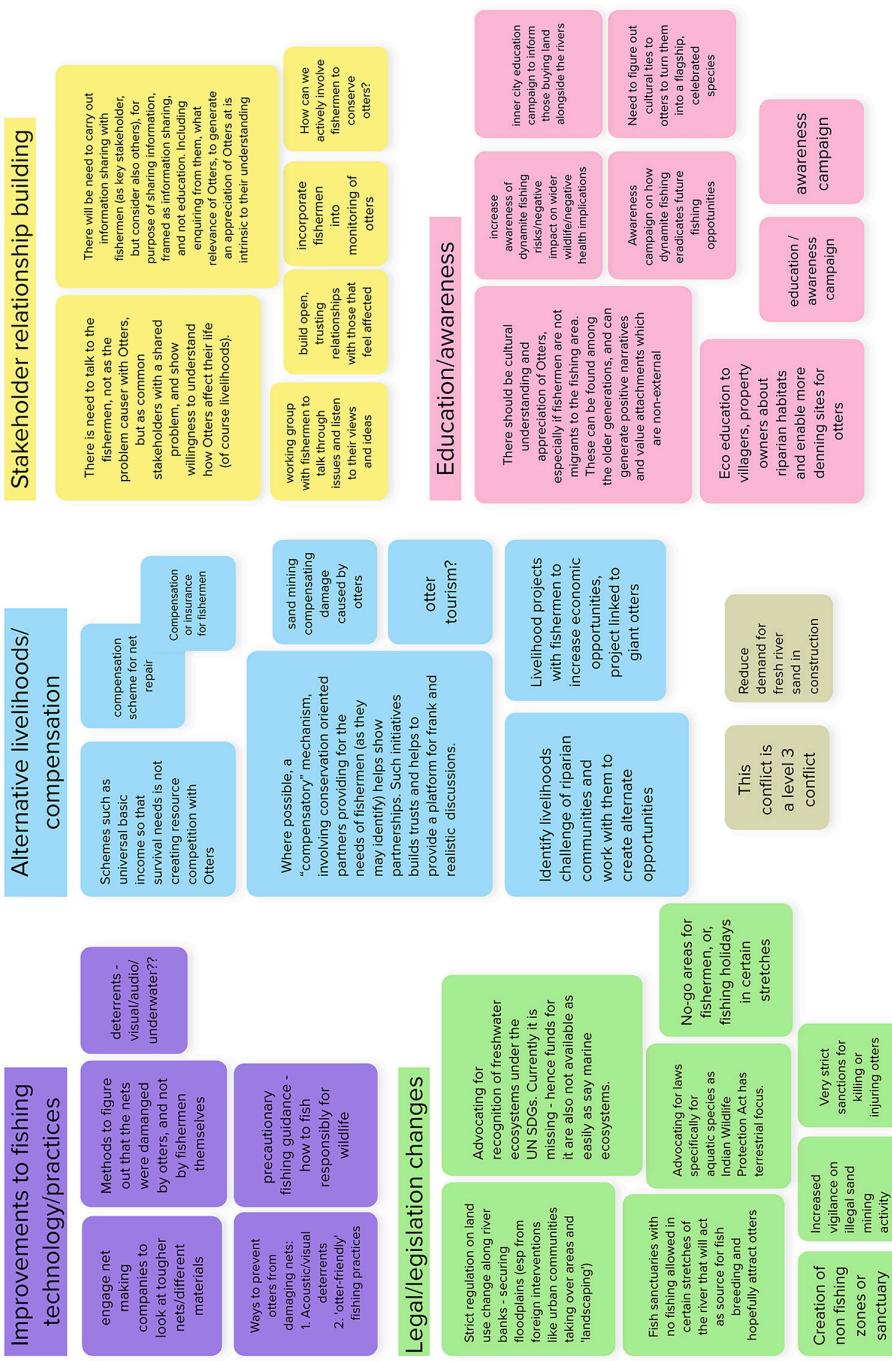
- Alternative livelihoods/compensation: The finding that areas with multiple human activities still maintain otter populations (44.4% den presence in areas with three activities) suggests potential for sustainable coexistence through properly managed alternative livelihoods, like ecotourism.

- Stakeholder relationship building: Our observation that otters adapt rather than avoid human presence (mean group size 3.3 in Cauvery despite higher human activity) supports workshop recommendations for engaging fishermen as conservation allies rather than adversaries.

- Education and awareness: The successful engagement of university students in our surveys demonstrates the potential for citizen science to build local capacity and awareness. Workshop participants emphasized expanding such programs to fishing communities.

These findings collectively suggest that successful conservation of *L. perspicillata* in human-modified landscapes requires an integrated approach addressing both immediate human-wildlife negative interactions and broader ecosystem threats. Our survey results indicate otters can persist alongside human activities when properly managed, while workshop recommendations provide practical pathways for improving coexistence.

Conservation Implications


Based on our survey findings and workshop outcomes, we developed a comprehensive monitoring framework to guide future conservation efforts (Figure 3). This framework emphasizes the need for both immediate interventions and long-term strategies, with clear timelines, and responsible stakeholders identified for each action. The framework particularly highlights the importance of integrating community-based monitoring with systematic scientific surveys, allowing for adaptive management as new information becomes available. Drawing from this framework and previous research (MacDonald & Mason 1990; Hussain 1993), we recommend:

Immediate actions:

1. Addressing direct threats
 - increased enforcement against dynamite fishing, which has been documented as a threat to otters in the Cauvery system (Shenoy et al. 2006),

Smooth coated otter workshop - November 2024

Image 5. Mural collaboration results.

- protection of documented holt sites (n = 28 across both rivers), and
 - regulation of sand mining operations.
2. Community-based conservation
- implementation of fishing gear improvements based on successful models (Khan et al. 2009),
 - development of community-managed insurance schemes, and
 - engagement of local fishermen in otter monitoring.

Long-term strategies:

- 1. Habitat protection
 - preservation of dense riparian vegetation,
 - protection of sandbanks used for denning, and
 - maintenance of river connectivity following Hussain & Choudhury's (1997) recommendations
- 2. Policy and governance
 - inter-state coordination for river protection,
 - integration of otter conservation into river management plans, and
 - implementation of evidence-based sand mining regulations.

Future research priorities building on current findings, we recommend:

- expansion of surveys to additional river systems,
- long-term monitoring of identified populations,
- assessment of genetic connectivity between populations, and
- evaluation of mitigation measure effectiveness

REFERENCES

- Anoop, K.R. & S.A. Hussain (2004). Factors affecting habitat selection by Smooth-coated Otters (*Lutra perspicillata*) in Kerala, India. *Journal of Zoology* 263(4): 417–423. <https://doi.org/10.1017/S0952836904005461>
- Khoo, M., S. Basak, N. Sivasothi, P.K. de Silva & I.R. Lubis (2021). *Lutrogale perspicillata*. The IUCN Red List of Threatened Species 2021: e.T12427A164579961. <https://doi.org/10.2305/IUCN.UK.2021-3.RLTS.T12427A164579961.en>. Accessed on 28.v.2025.
- Hussain, S.A. (1993). Aspects of the ecology of smooth-coated otters *Lutra perspicillata* in National Chambal Sanctuary. Ph.D. Thesis. Centre for Wildlife and Ornithology, Aligarh Muslim University, Aligarh, India.
- Hussain, S.A. & B.C. Choudhury (1997). Distribution and status of the Smooth-coated Otter *Lutra perspicillata* in National Chambal Sanctuary, India. *Biological Conservation* 80(2): 199–206. [https://doi.org/10.1016/S0006-3207\(96\)00033-X](https://doi.org/10.1016/S0006-3207(96)00033-X)
- Jayaram, K.C. (ed.) (2000). *Kaveri Riverine System: An Environmental Study*. Madras Science Foundation, Chennai, 150 pp.
- Khan, W.A., M. Qasim & E. Ahmad (2009). A survey of Smooth-coated Otters (*Lutrogale perspicillata sindica*) in the Sindh Province of Pakistan. *IUCN Otter Specialist Group Bulletin* 26(1): 15–31.
- Mason, C.F. & S.M. Macdonald (1986). *Otters: Ecology and Conservation* - 1. Cambridge University Press, Cambridge, 236pp.
- MacDonald, S. & C. Mason (1990). *Otters: An Action Plan For Their Conservation*. (P. Foster-Turley, Ed.). IUCN.
- Meena, V. (2002). Otter poaching in Palni Hills. *Zoos' Print Journal* 17(2): 696–698. <https://doi.org/10.11609/JOTT.ZPJ.17.2.696-8>
- Reuther, C. (1999). The global status of otters. *IUCN Otter Specialist Group Bulletin* 16(2): 1–7.
- Reuther, C., E.V.A. Fischotterschutz & GN-Gruppe Naturschutz GmbH (eds.) (2000). Surveying and monitoring distribution and population trends of the Eurasian otter (*Lutra lutra*): guidelines and evaluation of the standard method for surveys as recommended by the European Section of the IUCN/SSC Otter Specialist Group1. ed. Gruppe Naturschutz, Hankensbüttel, 148 pp.
- Shenoy, K., S. Varma & K.V. Devi Prasad (2006). Factors determining habitat choice of the Smooth-coated Otter, *Lutra perspicillata* in a south Indian river system. *Current Science* 91(5): 637–643.
- Trivedi, K. & M. Variya (2023). Interactions between fishermen and Smooth-coated Otters (*Lutrogale perspicillata*) in the Tapti River of Surat District: a case study on conflict mitigation. *IUCN Otter Specialist Group Bulletin* 40(2): 64–71.
- Zar, J.H. (1999). *Biostatistical Analysis* - 4th Edition. Prentice Hall International, Upper Saddle River, NJ, 663 pp.

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Mr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh KV, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raja Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

OPEN ACCESS

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under [Creative Commons Attribution 4.0 International License](#) unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

www.threatenedtaxa.org

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

June 2025 | Vol. 17 | No. 6 | Pages: 27035–27170

Date of Publication: 26 June 2025 (Online & Print)

DOI: [10.11609/jott.2025.17.6.27035-27170](https://doi.org/10.11609/jott.2025.17.6.27035-27170)

Articles

Inventory of traditional medicinal plants and ethnobotanical knowledge from Hassan District, Karnataka, India

– Kushavara Venkatesh Amara, Gotravalli Manjunatha Prashanth Kumar & Rajkumar Hanumanthrao Garampalli, Pp. 27035–27063

An annotated checklist of lianas in Manipur, India

– Longjam Malemnganbee Chanu & Debjyoti Bhattacharyya, Pp. 27064–27074

New records and typification in family Poaceae from western Himalaya, India

– Smita Tiwari, Dileshwar Prasad, Sangam Sharma, Supriya Tiwari & Priyanka Agnihotri, Pp. 27075–27086

Collection and lipid analysis of marine unicellular cyanobacteria: a case study from the southeastern coast of India

– Selvam Selvapriya & Sundaram Rajakumar, Pp. 27087–27097

Range expansion of Indian Grey Hornbill population: a case study based on land use, land cover, and vegetation changes in Vadodara, Gujarat, India

– Parikshit Dhaduk & Geeta Padate, Pp. 27098–27109

Communications

A pioneer study of orchids on Nusa Barung Island of Indonesia

– Toni Artaka, Bina Swasta Sitepu, Fajar Dwi Nur Aji, Suryadi & Tri Atmoko, Pp. 27110–27115

A bibliometric visualization of trends in Philippine sharks studies published in Scopus-indexed journals over the past five decades

– Merfat Ampong Sali, Najeeb Razul Ampong Sali, Araniza M. Diansuy, Anina Haslee A. Julkanain-Ong & Richard Nami Muallil, Pp. 27116–27124

First camera-trap evidence of Dhole *Cuon alpinus* Pallas, 1811 (Carnivora: Canidae) from the Kaziranga-Karbi Anglong landscape, Assam, India

– Mujahid Ahamad, Jyotish Ranjan Deka, Priyanka Borah, Umar Saeed, Ruchi Badola & Syed Ainul Hussain, Pp. 27125–27130

Distribution, habitat use and conservation status of Smooth-coated Otter *Lutrogale perspicillata* along the Cauvery and Kabini rivers, Karnataka, India

– Allison Amavisca, Raghunath Belur & Sugandhi Gadadhar, Pp. 27131–27140

Review

An annotated checklist of the genus *Amorphophallus* Blume ex Decne. (Araceae): an update on the distribution and conservation status of its species

– Norilyn Fontarum-Bulawin, Michael A. Calaramo & Grecebio Jonathan D. Alejandro, Pp. 27141–27158

Short Communications

***Embelia ribes* Burm.f. (Primulaceae) – an ayurvedic plant with ethnobotanical notes from Manipur, India**

– Robert Panmei, Soyala Kashung, Lanrilu Dangmei, Akojam Surviya & Ungpemmi Ningshen, Pp. 27159–27162

First record of marine isopod *Synidotea variegata* (Collinge, 1917), (Crustacea: Isopoda: Valvifera) from the Gulf of Kutch, Gujarat, northwestern coast of India

– Deep D. Dudiya, Mansi S. Goswami & Pranav J. Pandya, Pp. 27163–27166

Lesser Blue-wing *Rhyothemis triangularis* Kirby, 1889 (Insecta: Libellulidae), a new addition to the dragonfly diversity of Rajasthan, India

– Anil Sarsavan, Manohar Pawar, Satish Kumar Sharma & Vinod Paliwal, Pp. 27167–27170

Publisher & Host

Threatened Taxa