

Building evidence for conservation globally

Journal of Threatened TAXA

10.11609/jott.2026.18.1.28151-28262
www.threatenedtaxa.org

26 January 2026 (Online & Print)
18 (1): 28151-28262
ISSN 0974-7907 (Online)
ISSN 0974-7893 (Print)

Open Access

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Ph: +91 9385339863 | www.threatenedtaxa.org

Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Board of Editors

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors

Mrs. Mira Bhojwani, Pune, India**Dr. Fred Pluthero**, Toronto, Canada

Copy Editors

Ms. Usha Madgunki, Zooreach, Coimbatore, India**Ms. Trisa Bhattacharjee**, Zooreach, Coimbatore, India**Ms. Paloma Noronha**, Daman & Diu, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting

Mrs. Radhika, Zooreach, Coimbatore, India**Mrs. Geetha**, Zooreach, Coimbatore India

Fundraising/Communications

Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2021–2023

Fungi

Dr. B. Shivaraju, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annaheb Magar Mahavidyalaya, Maharashtra, India

Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Banos, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Golden-headed Lion Tamarin *Leontopithecus chrysomelas*. Watercolor and acrylics by P. Kritika.

Tricho-taxonomic prey identifications from faeces of Indian Rock Python *Python molurus* (Linnaeus, 1758) (Reptilia: Squamata: Pythonidae) in Moyar River Valley, Tamil Nadu, India

Jyoti Nagarkoti¹ , C.S. Vishnu² , Chinnasamy Ramesh³ & Archana Bahuguna⁴

^{1–3} Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand 248002, India.

⁴ Zoological Survey of India, Northern Regional Centre, Kaulagarh, Dehradun, Uttarakhand 248003, India.

¹jyotinagarkoti6@gmail.com, ²vishnusreedharannair@gmail.com, ³ramesh.czoo@gmail.com (corresponding author),

⁴archana.bahuguna65@gmail.com

Abstract: Identifying the prey species is crucial for successful conservation and landscape-level management of large predators whose feeding ecology is incompletely known. Assessment of faecal samples is a viable method for achieving this goal. The Indian Rock Python *Python molurus*, one of India's largest snakes, is an ambush predator trophically-equated to apex predator in its ecosystem. Yet, compared to trophically-similar big cats and canids there is a notable lack of research on its prey items in southern Indian regions. In this study, 31 faecal samples from radio-tagged pythons and other pythons inhabiting the Moyar River Valley were studied. These samples were dried and washed to obtain the hairs to identify the species. Hairs were obtained from 11 faecal samples, and prey species were identified using the tricho-taxonomy. Our findings revealed that mammals constitute the majority of consumed prey. Pythons preferred the palm squirrel *Funambulus palmarum* as the most desirable prey. Other large prey species include the Sloth Bear *Melursus ursinus*, the Sambar Deer *Rusa unicolor*, and the Spotted Deer *Axis axis*. Seasonal variation in prey species intake peaked during September–November, while no prey species were recorded during April–August.

Keywords: Behavior, diet, ecology, feeding, giant snake, hair, mammals, predation, prey, reptile.

Editor: S.R. Ganesh, Kalinga Foundation, Agumbe, India.

Date of publication: 26 January 2026 (online & print)

Citation: Nagarkoti, J., C.S. Vishnu, C. Ramesh & A. Bahuguna (2026). Tricho-taxonomic prey identifications from faeces of Indian Rock Python *Python molurus* (Linnaeus, 1758) (Reptilia: Squamata: Pythonidae) in Moyar River Valley, Tamil Nadu, India. *Journal of Threatened Taxa* 18(1): 28167–28173. <https://doi.org/10.11609/jott.9442.18.1.28167-28173>

Copyright: © Nagarkoti et al. 2026. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: DST-SERB supported the research work (EMR/2016/06/003963) and (SERB-DST: CRG/2021/005095).

Competing interests: The authors declare no competing interests.

Author details: JYOTI NAGARKOTI is a researcher at the Wildlife Institute of India. C.S. VISHNU works as a researcher at Wildlife Institute of India. CHINNASAMY RAMESH, PhD, serves as a scientist-E at Wildlife Institute of India with an interest in ecology, human-wildlife interactions, invasive species, climate change, biodiversity conservation and marine research. ARCHANA BAHUGUNA serves as additional director, Zoological Survey of India, MoEFCC. Expert of herpetofauna, trichotaxonomy, molecular systematics and Wildlife forensics. Presently she is the founder and director of the Himalayan Centre for Art, Culture and science, Dehradun, Uttarakhand, India.

Author contributions: All authors contributed to the study. JN: manuscript writing (original draft), visualization, formal analysis, methodology, writing, review, & editing. CR: writing, review, editing, project administration, supervision, methodology, investigation, funding acquisition, & conceptualization. CSV: sample collection, writing, review, & editing. AB: writing, review, editing, validation, methodology, formal analysis, investigation, & supervision.

Acknowledgements: This research was carried out with the approval of the Ministry of Environment, Forest and Climate Change, Government of India, and the Tamil Nadu Forest Department (No. WL5 (A)/17699/2017; Permit No. 82/2017). The methodology followed the Ethical Principles and Guidelines for the Use of Animals for Scientific Purposes issued by the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Ministry of Environment & Forests (Animal Welfare Division), Government of India, and also adhered to the ARRIVE guidelines. Our heartfelt thanks go to the principal chief conservator of forests and chief wildlife warden, Tamil Nadu, chief conservator of forests, and district forest officers of Sathyamangalam and Mudumalai Tiger Reserves for granting permission to survey the area and for their timely assistance during the fieldwork. Special thanks also to Mr. Thirumurugan for this invaluable assistance in the field, and Dr. K. Ashokan and his veterinary team for their support during the study. Our deepest gratitude is extended to the dean, director, registrar and Dr. Abhijit Das, Dr. Gautam Talukdar at the Wildlife Institute of India, Dehradun, for their unwavering support and encouragement.

भारतीय वन्यजीव संस्थान
Wildlife Institute of India

INTRODUCTION

Food is central to all animals' biology and life history, and recognising, locating, capturing, ingesting, and digesting prey are critical activities for their survival and reproductive success (Slip & Shine 1988). Diet studies provide knowledge about species trophic ecology and population dynamics necessary for species management and conservation policies (Morrison et al. 1990; Sutherland et al. 2004; Marti et al. 2007). The feeding habits of giant snakes are of particular interest due to their remarkable adaptations for locating, capturing, subduing, and ingesting large prey (Slip & Shine 1988). They rely on several sources of sensory input to locate food, including vision, vibration, heat, and colour (Slip & Shine 1988). Since large-bodied snakes such as pythons are mostly restricted to tropical areas, presumably due to thermal constraints in temperate climates, detailed information on thermal biology, diet, and other ecological factors for giant snakes inhabiting tropical regions is scarce (Shine & Madsen 1996; Shine et al. 1998). The Indian rock python *Python molurus* is a giant-bodied non-venomous and habitat generalist snake species with a mean adult snout-vent length of 3–4.5 m, with some individuals exceeding 6 m (Bhupathy 1990). It is widely distributed in India, Sri Lanka, Nepal, and parts of Pakistan (Smith 1943; Whitaker 1993; Daniel 2002; Whittaker et al. 2004) inhabiting a wide range of habitats, including wetlands, open forests, scrublands, harsh deserts, rainforests, woodlands, grassy marshes, river valleys, rocky slopes, and savannas (Murphy & Henderson 1997).

Its home range size in the Moyar River Valley Landscape, southern India, is 4.2 km² (Vishnu et al. 2023a). Python often functions as a top-level predator that may influence local prey populations, including reptiles, birds, and small to medium-sized mammals, particularly in ecosystems where they are abundant (Bhupathy et al. 2014; Gangaiamaran et al. 2023). Avian prey has been routinely recorded in the diets of giant snakes, such as pythons and anacondas, many times, indicating that almost all of the giants do eat birds (Murphy & Henderson 1997). Six species of birds were found in the diet of *P. molurus* in Keoladeo National Park, Rajasthan (Bhupathy & Vijayan 1989), often including domestic birds (Murphy & Henderson 1997). Studies in Pakistan and Sri Lanka have also reported reptiles such as monitor lizards *Varanus* sp. as prey species of *P. molurus* (Deraniyagala 1955; Minton 1966). Mammals most likely comprise the bulk of the diet of giant snakes (Ernst & Zug 1996; Bhupathy et al. 2014). Mammals of

suitable size that overlap spatially and temporally with *P. molurus* may be vulnerable to predation (Murphy & Henderson 1997). Pythons' diet also frequently include domesticated cats and dogs, rodents, ungulates, and monkeys (Murphy & Henderson 1997). Unusual prey like horned mammals with the potential to cause serious injuries when swallowed have also been recorded in the diet of *P. molurus*, *P. sebae*, and *Malayopython reticulatus* (Duarte 2003). These prey include small to medium-sized bovids such as *Kobus kob* (Hay & Martin 1966), *Aepyceros melampus* (Gasc 1994), *Axis porcinus*, *Gazella thomsoni*, *Munticaua muntjac* (Greene 1997), and antelopes (Spawls & Branch 1995).

Several methods have been used to study the food habits of reptiles, especially the gut content analysis (Delany & Abercrombie 1986; Lobo et al. 2005; Dove et al. 2011), including stomach flushing (Fitzgerald 1989; Rivas et al. 1996), and faecal sample analysis (Sylber 1988; Bhupathy et al. 2014). Passive and non-abrasive approaches, such as faecal analysis, can be used to determine the feeding behaviour of the study of animals without disrupting their habitat ecology. In snakes, bone and tooth fragments are often poorly preserved in faecal matter due to digestive efficiency, whereas, hair remains relatively undigested and can serve as a reliable tool for prey identification (Quadros & Monteiro-Filho 1998). Data on the diet of *P. molurus* in northern India were reported by Bhupathy et al. (2014) from Keoladeo National Park. Therefore, to provide more information on the dietary patterns of *P. molurus* from southern region of India, we studied the prey items of *P. molurus*, using tricho-taxonomic analysis on faecal samples collected from the Moyar River Valley, Tamil Nadu.

MATERIALS AND METHODS

Study area and field method

The study was conducted in Moyar River Valley, between two protected areas, Sathyamangalam and Mudumalai Tiger Reserves in Tamil Nadu (Figure 1). The region is known for its rich biodiversity assemblage (Thirumurugan et al. 2021). During radio-tracking field surveys, faecal samples ($n = 31$) from pythons were opportunistically collected between 2018 and 2020. The samples ($n = 20$) were collected from 11 tagged python individuals, while the remaining samples were collected from other individuals in the wild. The samples were collected in zip-lock bags and labelled with markers. Subsequently, the samples were dried in the shade and then stored in a refrigerator at temperatures below

30°C for almost a year with proper packaging to prevent contamination.

Laboratory method

Hair analyses were done as per Souza & Azevedo (2021). Evidence of mammalian prey species found in the faecal samples was identified following tricho-taxonomy techniques (Bahuguna et al. 2010). The dried faecal samples ($n = 31$) were at least one year old and were broken down with the help of a mortar and pestle and then cleaned with the help of the sieving method. The hairs were extracted using the forceps. The hair samples obtained from the faecal samples were washed in acetone to remove any dirt present in them. Microslides were prepared to identify the hair of the potential prey species of the Indian Rock Python. The medulla was identified, and a cross-section was done to determine the shape of the medulla, which is visible through cross-section (Bahuguna et al. 2010). All photographs used in the identification were captured using a digital micro

camera. The nomenclature of the hair medulla type was adopted from Wildman (1954), and the cuticular and cross-section types were followed as given by Brunner & Coman (1974); Medulla: to identify the medulla type, the whole amount of cleaned hair samples was mounted in DPX (Dibutylphthalate Polystyrene Xylene) without staining, allowing visualisation of internal structures. It was ensured that the hairs were well separated, and individual hairs could be observed. The medulla was observed using a light microscope at 40x magnification. Cross Section: for the present study, hair cross-sections were obtained by simple hand sectioning after mounting the hair in paraffin wax and sectioning the wax block by using surgical blades. The cross-sections were selected based on the clarity of the structure. This method was successfully followed by Bahuguna et al. (2010). No microtome was used for cross-sections. These sections were placed on slides coated with egg albumen and observed at 100x. Scale Casts: to study the scale pattern, 3% gelatin as a special medium was used to obtain

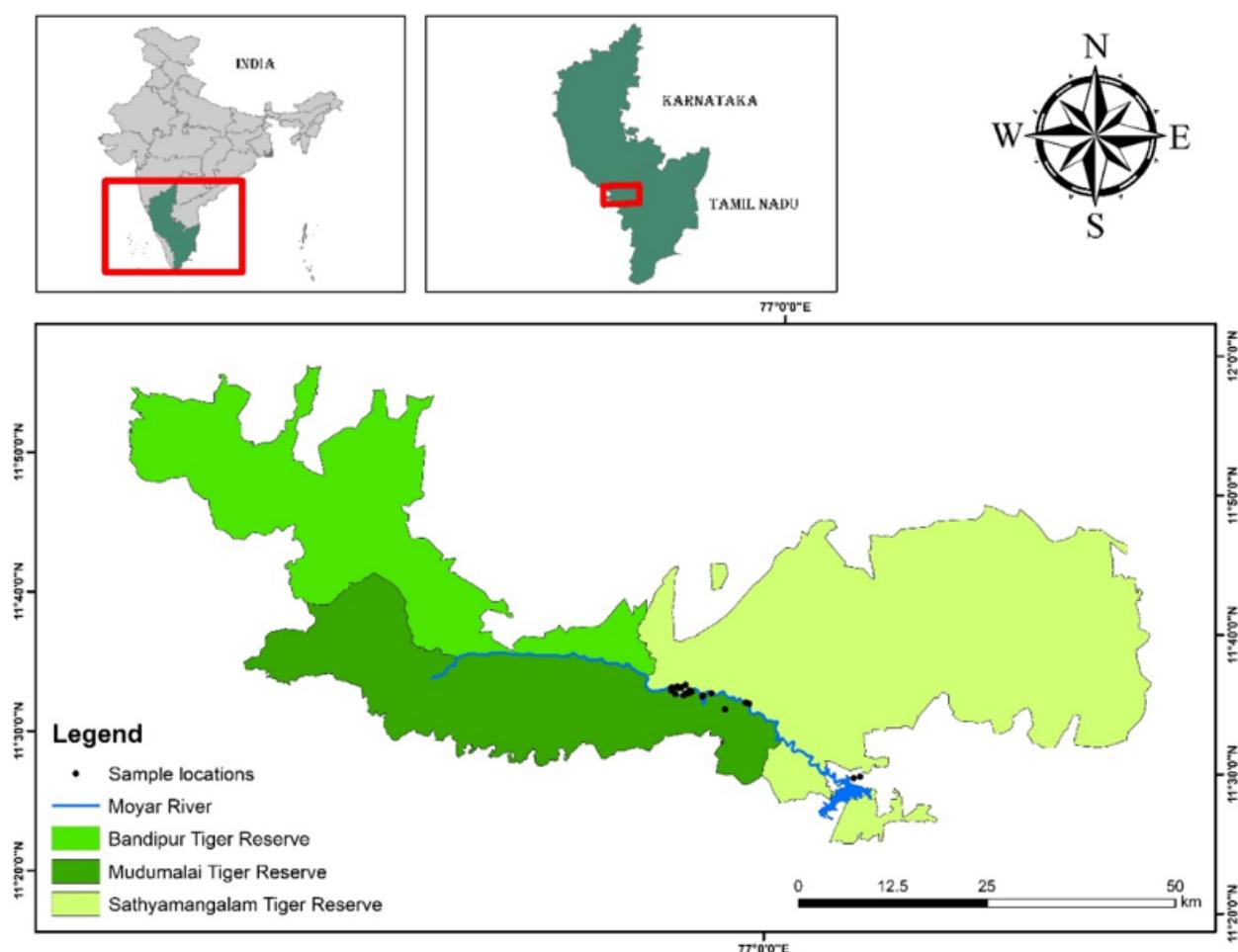


Figure 1. Sampling sites along the Moyar River Valley, India, from where python faecal samples were studied.

the hair impressions. The gelatin is a special medium prepared by mixing the gelatin powder in lukewarm water at a temperature of 50°C. Eosin or hematoxylin was mixed directly into the gelatin mixture to observe the impressions properly. For getting the hair impression or cast, the method by Brunner & Coman (1974) was followed. A thin film of gelatin medium was made. The cleaned hair samples were then directly placed into the glass slide using fine forceps. After drying of gelatin, the hair was removed gently using forceps. This left the hair impression on the glass slide. Different regions (distal, mid and proximal) of hair were examined through 40x microscope to study cuticle patterns.

RESULTS

Hairs were examined from 11 faecal samples out of 31 collected samples because the remaining samples ($n = 20$) either lacked identifiable remains or were too degraded to analyse. Only the mid-portion of the hair was considered, along with other major factors for scale pattern and cuticular surface. To differentiate the hairs obtained from faecal samples, the hair microstructure (cuticle and medulla) and hair macrostructure (thickness and colour), were taken into consideration (Table 1). Eight mammals were found in the faecal samples of *P. molurus* (Table 2). Of the prey species identified from the samples, the Three-striped Palm-squirrel *Funambulus palmarum* was identified in eight out of the 11 samples contributing to at least 22% of prey individuals, followed by the Grey Mongoose *Herpestes edwardsii* as 20% ($n = 7$), the Sambar Deer *Rusa unicolor* as 17.14% ($n = 6$), the Spotted Deer *Axis axis* 14.28% ($n = 5$), the Black-footed Gray Langur *Semnopithecus hypoleucus* 5.71% ($n = 2$), the Jungle Cat *Felis chaus* 8.57% ($n = 3$), the Sloth Bear *Melursus ursinus* 8.57% ($n = 3$), and the Wild Boar *Sus*

scrofa 2.85% ($n = 1$) in terms of percentage composition of individuals ingested by *P. molurus*. Feathers were present in one sample, which could not be identified to the genus or species level because of severe digestion. Feather types can be identified through DNA extraction; since this study is limited to morphology, the feather types were not identified up to the species level. The variation in feeding of *P. molurus* shows higher prey species in September–November ($n = 25$) as more (Table 2) faecal samples with identifiable prey remains were also found in these months (Figure 2), suggesting higher feeding activity during the post-monsoon period. A few instances of feeding were also observed from January–March. No feeding records were found for April–August and December.

DISCUSSION

The predominance of mammals in the diet of *P. molurus* in the Moyar River Valley of southern India aligns with findings from other ecosystems, such as Keoladeo National Park in northern India (Bhupathy et al. 2014), for *P. bivittatus* in Everglades National Park in Florida (Snow et al. 2007), and the carpet python *Morelia spilota* in Australia (Slip & Shine 1988). Although prey composition varies based on regional faunal availability and habitat structure, mammals consistently form an important component of the diets of other pythons, with large individuals capable of taking large prey (Pope 1961; Branch & Hacke 1980). Avian prey has always been a part of the diet of giant snakes, including pythons (Snow et al. 2007; Bhupathy et al. 2014). In the present study, the lower occurrence of avian prey may reflect either feeding preference, habitat use or the greater digestibility of feathers relative to hairs. One python was observed feeding on poultry (quail &

Table 1. Prey species and their detailed hair characteristics, analysed from faecal samples of *Python molurus* in Moyar River Valley, India.

Prey species (Scientific names)	Prey species (Common names)	Medulla pattern	Scale pattern (mid)	Colour of hair	Cuticular surface (medial margins)
<i>Axis axis</i>	Spotted Deer	wide simple	regular wave	light brown	smooth
<i>Rusa unicolor</i>	Sambar Deer	wide simple	irregular wave	brown	crenate
<i>Semnopithecus hypoleucus</i>	Black-footed Gray Langur	simple fragmented	irregular wave	white	crenate
<i>Felis chaus</i>	Jungle Cat	Simple	irregular wave	grey brown	crenate
<i>Herpestes edwardsii</i>	Grey Mongoose	simple	irregular wave	banded (black and white bands)	crenate
<i>Melursus ursinus</i>	Sloth Bear	narrow simple	irregular wave	black	crenate
<i>Sus scrofa</i>	Wild Boar	narrow simple	irregular wave	brown	rippled
<i>Funambulus palmarum</i>	Three-striped Palm Squirrel	multiseriate	regular wave	brown	crenate

chicken) before faecal collection, suggesting potential anthropogenic feeding opportunities. The low incidence of birds in the diet may also reflect the frequency of arboreal activity as reported by Slip & Shine (1988) in their study on the Australian carpet pythons *Morelia spilota* complex. Use of microhabitats such as burrows, dry bushes, rock crevices, and water bodies by pythons inhabiting the Moyar River valley region (Vishnu et al. 2023b) may facilitate opportunistic predation and access to a broader prey base.

Typical food items consumed by the *P. molurus* include fishes, amphibians, reptiles like lizards and snakes, birds, and mammals (Ernst & Zug 1996). In the Moyar River valley region, *Funambulus palmarum* was found to be the principal prey species of *P. molurus*, having a maximum share. The frequent occurrence of *F. palmarum* in the faecal samples may reflect significant spatial overlap in microhabitats shared by the python and this species. The abundance of small to medium-sized rodents and lagomorphs makes them prime candidates for prey (Murphy & Henderson 1997). *Herpestes edwardsii* was the second most consumed species, which could be attributed to the burrows commonly used by Pythons as well. Pythons have been observed sharing the same burrows with porcupines

Hystrix sp. and other small mammals (Bhupathy et al. 2014). The presence of hairs of large mammalian species such as Sloth Bear Sambar Deer, and Spotted Deer in the samples suggests possible predation or scavenging, though confirmation of active predation requires further evidence such as kill observations or telemetry data. Similar predation on large mammals by pythons has been reported from studies in India, USA (non-native), and Indonesia (Fredriksson 2005; Snow et al. 2007; Bhupathy et al. 2014). Occurrence of species such as *M. ursinus*, *F. chaus*, and *S. scrofa* is almost similar to that reported by Bhupathy et al. (2014) from northern India.

Prey intake peaked between September–November, consistent with post-monsoon prey availability (Figure 2). These results are consistent with the seasonal variation reported in northern India at Keoladeo National Park, Rajasthan, by Bhupathy et al. (2014). No feeding incidents occurred in the colder month of December, corresponding to the start of mating season when snakes are found near ground burrows, basking in the sun (Ramesh & Bhupathy 2010). Reproductively active snakes typically stop feeding during the breeding season, as feeding is inconsistent with reproductive activities, a pattern seen in colubrids (Shine et al. 2003), viperids, and pythonids (Alridge & Brown 1995; Madsen & Shine

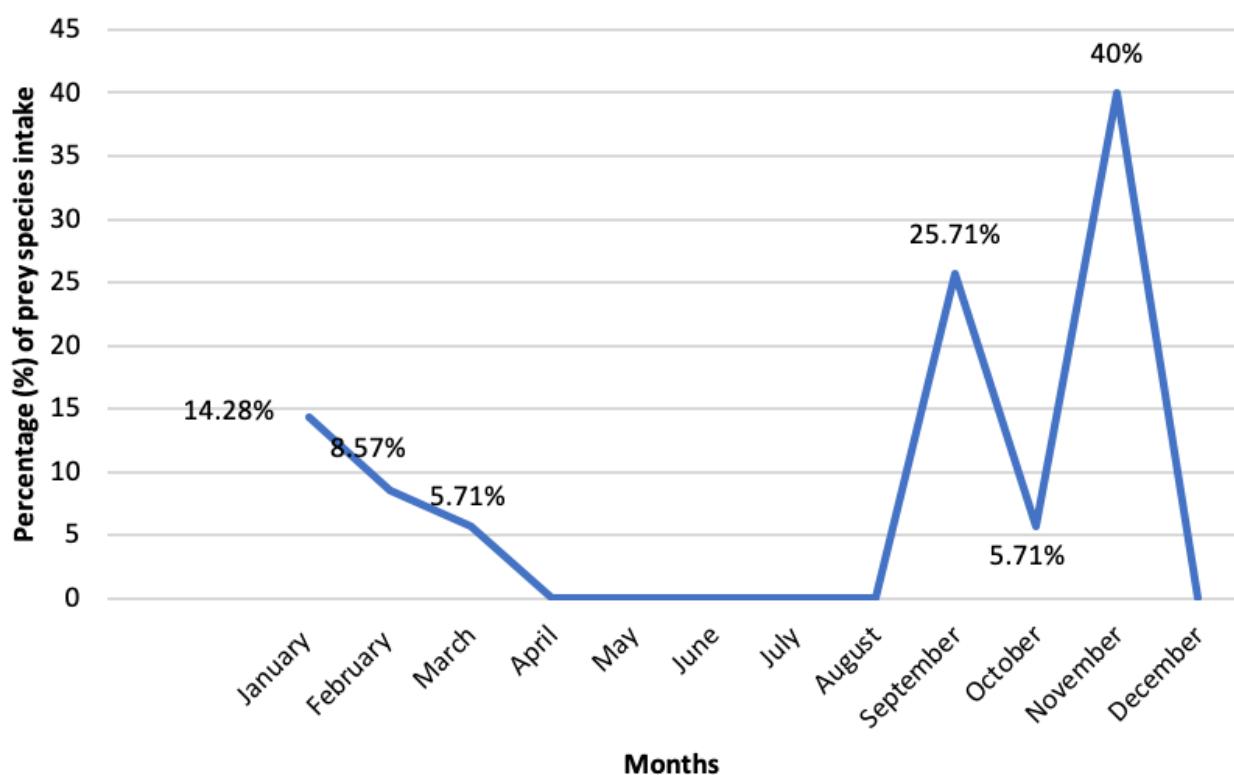


Figure 2. Monthly feeding trends of *P. molurus* as noted through frequency of faecal samples.

Table 2. Month- and species-wise break-up of prey intake of *Python molurus* studied in Moyar River Valley, southern India.

Month	No. of samples	Counts / sample	<i>Axis axis</i>	<i>Rusa unicolor</i>	<i>Semnopithecus hypoleucus</i>	<i>Felis chaus</i>	<i>Herpestes edwardsii</i>	<i>Melursus ursinus</i>	<i>Sus scrofa</i>	<i>Funambulus palmarum</i>
January	2	5	1	1	0	0	1	0	0	2
February	1	3	0	1	0	0	1	0	0	1
March	1	2	0	1	0	0	1	0	0	0
April	0	0	0	0	0	0	0	0	0	0
May	0	0	0	0	0	0	0	0	0	0
June	0	0	0	0	0	0	0	0	0	0
July	0	0	0	0	0	0	0	0	0	0
August	0	0	0	0	0	0	0	0	0	0
September	2	9	1	1	1	2	2	1	0	1
October	1	2	1	0	0	0	1	0	0	0
November	4	14	2	2	1	1	1	2	1	4
December	0	0	0	0	0	0	0	0	0	0
Total	11	35	5	6	2	3	7	3	1	8

1993). Feeding may resume to a limited extent during the mating months of January and February (Ramesh et al. 2019), as few faecal samples were recorded during these months, suggesting some individual variation in reproductive or foraging behaviour (Figure 2). The absence of samples during the summer months (April–June) is consistent with reduced feeding, possibly due to warmer and drier conditions, partial aestivation, and breeding activities (Ramesh & Bhupathy 2010).

Cessation of feeding is recorded in different python species during the breeding season, demonstrating a behavioural trade-off, as foraging is incompatible with incubation and egg development (Slip & Shine 1988; Ramesh & Bhupathy 2010). These activities may also reflect adaptive strategies for temperature regulation and reproductive success. Occasional reports of fruit remains (e.g., Indian Jujube *Ziziphus jujuba*) in python's stomach contents may result from secondary ingestion via herbivorous prey and not direct frugivory (Wall 1912; Pope 1961; Bhupathy et al. 2014). Our data shows that mammals are the key prey of the Indian Rock Python in southern India, which is consistent with similar studies by Ernst & Zug (1966) and Snow et al. (2007). Pythons here prefer mammals of different sizes, from Sambar Deer to Three-striped Palm Squirrels. This variation could be due to different prey distributions in the different habitat types, seasonal variations and population abundance of the prey species (Smith & Vrieze 1993; Madsen & Shine 1999; Snow et al. 2007). Studies on the feeding habits of large snakes like pythons are crucial to determine their preying technique, energy intake, feeding habits, prey ecology and ecological value. Thus, detailed studies on

the foraging ecology and prey size range for the different python species are important.

REFERENCES

Aldridge, R.D. & W.S. Brown (1995). Male reproductive cycle, age at maturity, and cost of reproduction in the timber rattlesnake (*Crotalus horridus*). *Journal of Herpetology* 29: 399–407. <https://doi.org/10.2307/1564990>

Bahuguna, A., V. Sahajpal, S.P. Goyal, S.K. Mukherjee & V. Thakur (2010). Species identification from Guard Hair of Selected Indian Mammals: A Reference Guide. Wildlife Institute of India, Dehradun, India, 447 pp.

Bhupathy, S. & V.S. Vijayan (1989). Status, distribution and general ecology of the Indian Python (*Python molurus molurus*) in Keoladeo National Park, Bharatpur, Rajasthan. *Journal of the Bombay Natural History Society* 86: 381–387.

Bhupathy, S. (1990). Blotch structure in individual identification of the Indian Python (*Python molurus molurus*) and its possible usage in population estimation. *Journal of the Bombay Natural History Society* 87: 399–404.

Bhupathy, S., C. Ramesh & A. Bahuguna (2014). Feeding habits of Indian Rock Pythons in Keoladeo National Park, Bharatpur, India. *Herpetological Journal* 24(1): 59–64.

Brunner, H. & B.J. Coman (1974). *The identification of mammalian hair*. Inkata Press, Victoria, Australia, 196 pp.

Branch, W.R. & W.D. Hacke (1980). A fatal attack on a young boy by an African Rock Python *Python sebae*. *Journal of Herpetology* 14: 305–307. <https://doi.org/10.2307/1563557>

Daniel, J.C. (2002). *The Book of Indian Reptiles and Amphibians*. Bombay Natural History Society, Mumbai, India, 248 pp.

Delany, M.P. & C.L. Abercrombie (1986). American alligator food habits in Northcentral Florida. *Journal of Wildlife Management* 50: 348–353. <https://doi.org/10.2307/3801926>

Deraniyagala, P.E.P. (1955). *A Colored Atlas of Some Vertebrates from Ceylon: Serpentoid Reptilia*. Ceylon Government Press, Colombo, 121 pp.

Dove C.J., R.W. Snow, M.R. Rochford & F.J. Mazzotti (2011). Birds consumed by the Invasive Burmese Python (*Python molurus bivittatus*) in Everglades National Park, Florida, USA. *Wilson Journal*

of Ornithology 123: 126–131. <https://doi.org/10.1676/10-092.1>

Duarte, M.R. (2003). Prickly food: Snakes Preying upon Porcupines. *Phyllomedusa: Journal of Herpetology* 2(2): 109–112.

Ernst, C.H. & F.J. Zug (1996). *Snakes in question: The Smithsonian Answer Book*. Smithsonian Institution Press, Washington D.C., USA, 194 pp.

Fitzgerald, L.A. (1989). An evaluation of stomach-flushing techniques for crocodilians. *Journal of Herpetology* 23: 170–172. <https://doi.org/10.2307/1564024>.

Fredriksson, G.M. (2005). Predation on sun bears by reticulated python in East Kalimantan, Indonesian Borneo. *The Raffles Bulletin of Zoology* 53(1): 165–168.

Gangiamaran, P., A.A. Usmani, C.S. Vishnu, R. Badola & S.A. Hussain (2023). Westward range extension of Burmese Python *Python bivittatus* in and around the Ganga Basin, India: a response to changing climatic factors. *Journal of Threatened Taxa* 15(4): 23061–23074. <https://doi.org/10.11609/jott.8330.15.4.23061-23074>

Gasc, J.P. (1994). Predation and nutrition, pp. 108–121. In: Bauchot, R. (ed). *Snakes- A Natural History*, Sterling Publishing, New York.

Greene, H.W. (1997). *Snakes- The Evolution of Mystery in Nature*. University of California Press, Berkeley, 351 pp.

Hay, P.W. & P.W. Martin (1966). Python predation on Uganda kob. *African Journal of Ecology* 4(1): 151–152. <https://doi.org/10.1111/j.1365-2028.1966.tb00892.x>

Lobo, A.S., K. Vasudevan & B. Pandav (2005). Trophic Ecology of *Lapemis curtus* (Hydrophiinae) along the Western Coast of India. *Copeia* 3: 636–640. <https://doi.org/10.1643/CH-04-076R1>

Madsen, T. & R. Shine (1993). Costs of reproduction in a population of European adders. *Oecologia* 94: 488–495. <https://doi.org/10.1007/BF00566963>

Madsen, T. & Shine, R. (1999). Life history consequences of nest-site variation in tropical pythons (*Liasis fuscus*). *Ecology* 80(3): 989–997.

Marti, C.D., M.J. Bechard & F.M. Jaksic (2007). Food Habits, pp. 129–151. In: Bird, D.M. & K.L. Bildstein (eds). *Raptor Research and Management Techniques*. Hancock House Publishers, Washington, USA, 463 pp.

Minton, S.A. (1966). A contribution to the herpetology of West Pakistan. *Bulletin of the American Museum of Natural History* 134 article 2. 184 pp.

Morrison, M.L., C.J. Ralph, J. Verner & J.R. Jehl Jr (1990). *Avian foraging: Theory, methodology and applications*. Copper Ornithological Society, Los Angeles, USA. 551 pp.

Murphy, J.R. & R.W. Henderson (1997). *Tales of Giant Snakes. A Natural Historical History of Anacondas and Pythons*. Krieger Publishing Company, USA, 221 pp.

Pope, C.H. (1961). *The Giant Snakes*. Alfred A. Knopf, New York, 290 pp.

Quadros, J. & E.L.A. Monteiro-Filho (1998). Effects of digestion, putrefaction and taxidermy processes on *Didelphis albiventris* hair morphology. *Journal of Zoology* 244(3): 331–334. <https://doi.org/10.1111/j.1469-7998.1998.tb00037.x>

Ramesh, C. & S. Bhupathy (2010). Breeding biology of *Python molurus molurus* in Keoladeo National Park, Bharatpur, India. *Herpetological Journal* 20: 157–163.

Ramesh, C., P. Nehru, C. S. Vishnu, S. Karthy, V.T. Murugan, A. Das & G. Talukdar (2019). Indian Rock Python: Mating behaviour of *Python molurus molurus* (Linnaeus, 1758) in Moyar River Valley, Tamil Nadu, India. *Zoo's Print* 34(2): 10–14.

Rivas, J.A., C.R. Molina & T.M. Avila (1996). A non-flushing stomach wash technique for large lizards. *Herpetological Review* 27(2): 72–73.

Slip, D.J. & R. Shine (1988). Feeding habits of the diamond python, *Morelia s. spilota*: ambush predation by a boid snake. *Journal of Herpetology* 22(3): 323–330. <https://doi.org/10.2307/1564156>

Shine, R. & T. Madsen (1996). Is Thermoregulation Unimportant for Most Reptiles? An Example Using Water Pythons (*Liasis fuscus*) in Tropical Australia. *Physiological Zoology* 69(2): 252–269. <https://www.jstor.org/stable/30164182>

Shine, R., H.R. Harlow, J.S. Keogh & Boeadi (1998). The influence of sex body size on food habits of a giant tropical snake, *Python reticulatus*. *Functional Ecology* 12(2): 248–258. <https://doi.org/10.1046/j.1365-2435.1998.00179.x>

Shine, R., B. Phillips, H. Waye & R.T. Mason (2003). Behavioural shifts associated with reproduction in garter snakes. *Behavioural Ecology* 14(2): 251–256. <https://doi.org/10.1093/beheco/14.2.251>

Spawls, S. & B. Branch (1995). *Dangerous Snakes of Africa: Natural History*. Sanibel Island, Ralph Curtis Publishing, Sanibel Island, Florida, 192 pp.

Smith, M.A. (1943). *The Fauna of British India: Reptilia and Amphibia, including the Whole of the Indo-Chinese Region*. Vol. III- Serpentes. Taylor and Francis, London, 598 pp.

Snow, R.W., M.L. Brien, M.S. Cherkiss, L. Wilkins & F.J. Mazzotti (2007). Dietary habits of the Burmese python, *Python molurus bivittatus*, in Everglades National Park, Florida. *Herpetological Bulletin* 101: 5–7.

Sutherland, W.J., I. Newton & R. Green (2004). *Bird Ecology and Conservation: a handbook of techniques*. Oxford University Press, Oxford, 386 pp.

Sylber, C.K. (1988). Feeding habits of the lizard *Sauromalus varius* and *S. spilogaster* in the Gulf of California. *Journal of Herpetology* 22: 413–424. <https://doi.org/10.2307/1564336>

Souza, F.C. & F.C.C. Azevedo (2021). Hair as a tool for the identification of predators and prey: a study based on scats of jaguars (*Panthera onca*) and Pumas (*Puma concolor*). *Biota Neotropica* 21(1): 1–10. <https://doi.org/10.1590/1676-0611-BN-2020-1044>

Thirumurugan, V., N. Prabakaran, V.S. Nair & C. Ramesh (2021). Ecological importance of two large heritage trees in Moyar River valley, southern India. *Journal of Threatened Taxa* 13(1): 17587–17591. <https://doi.org/10.11609/jott.6095.13.1.17587-17591>

Vishnu, C.S., B.M. Marshall & C. Ramesh (2023a). Home range ecology of Indian rock pythons (*Python molurus*) in Sathyamangalam and Mudumalai Tiger Reserves, Tamil Nadu, Southern India. *Scientific Reports* 13(1): 9749–9749. <https://doi.org/10.1038/s41598-023-36974-9>

Vishnu, C.S., C. Ramesh, G. Talukdar & V. Thirumurugan (2023b). Microhabitat of Indian rock pythons (*Python molurus*) in Moyar river valley, tropical India. *Indian Journal of Ecology* 50(5): 1271–1275. <https://doi.org/10.55362/IJE/2023/4046>

Wall, F. (1912). A popular treatise on the common Indian snakes. *Journal of the Bombay Natural History Society* 21: 447–476.

Wildman, A.B. (1954). The Microscopy of Animal Textile Fibers. Wool Industries Research Association, Britain, 209 pp.

Whitaker, R. (1993). Population status of the Indian Python (*Python molurus*) on the Indian subcontinent. *Herpetological Natural History* 1(1): 87–89.

Whitaker R., A. Captain & F. Ahmed (2004). *Snakes of India: The Field Guide*. Draco Books, Chennai, India, 479 pp.

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Mr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh KV, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Kalinga Foundation, Agumbe, India.
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumar, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, Sri S. Ramasamy Naidu Memorial College, Virudhunagar, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilakantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraja, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Manda S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Hellern Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bahar Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

Articles

Biological validation of fecal glucocorticoid and triiodothyronine measures in free-ranging Golden-headed Lion Tamarins (Kühl, 1820), (Mammalia: Primates: Callitrichidae: *Leontopithecus chrysomelas*): effects of the stress of capture and body condition

– Roberto Fiorini-Torrico, Leonardo de Carvalho Oliveira, Damián Escrivano, José Joaquín Cerón & Kristel Myriam de Vleeschouwer, Pp. 28151–28166

Tricho-taxonomic prey identifications from faeces of Indian Rock Python *Python molurus* (Linnaeus, 1758) (Reptilia: Squamata: Pythonidae) in Moyar River Valley, Tamil Nadu, India

– Jyoti Nagarkoti, C.S. Vishnu, Chinnasamy Ramesh & Archana Bahuguna, Pp. 28167–28173

Field observations and citizen science reveal ecological insights into rare and threatened parrots in the Philippines

– Vince Angelo G. Gicaraya & Carmela P. Espa  ola, Pp. 28174–28185

People's perceptions on the impacts of select linear infrastructure projects on avifauna in Chhattisgarh, India

– C.P. Ashwin, J.M. Alby & P.R. Arun, Pp. 28186–28193

Communications

Habitat associations and feeding ecology of adult Tamdil Leaf-litter Frog *Leptobrachella tamdil* (Amphibia: Megophryidae) from the type locality – the Tamdil wetland, Mizoram, India

– Malsawmdawngiana, Esther Lalhminglani, Samuel Lalronunga, Lalrinmawia & Lalnuntluanga, Pp. 28194–28200

An inventory of hymenopteran insects from division Jammu of Jammu & Kashmir, India

– Charul, Anjoo Dhar, Shash Pal, Shivalika Loona, Neha Choudhary, Sourabh Sharma & Rakesh Kumar Panjaliya, Pp. 28201–28214

Four new additions to the angiosperm flora of Manipur, India

– Bimol Kumar Singh Sadokpam, Sanatombi Devi Yumkham, Dhaneshwor Waikhom & Sorokhaibam Sureshkumar Singh, Pp. 28215–28222

Review

Historical records of the Jaguar *Panthera onca* (Linnaeus, 1758) (Mammalia: Carnivora: Felidae) in the state of Santa Catarina, Brazil

– Jackson F  bio Preuss & Pedro Henrique Amancio Padilha, Pp. 28223–28234

Short Communications

First photographic record of Red-naped Ibis *Pseudibis papillosa* Temminck, 1824 in Sikkim Himalaya, India

– Laxmi Rai, Kritan Rai & Bijoy Chhetri, Pp. 28235–28238

New distribution record of *Sonoita lightfooti* G.W. Peckham & E.G. Peckham, 1903 (Araneae: Salticidae) from Gujarat, India

– Subhash I. Parmar, Pranav J. Pandya & Vivek U. Chauhan, Pp. 28239–28241

Garcinia pedunculata (Clusiaceae), a new record for Bhutan and its ethnopharmacological potential

– Jigme Wangchuk, Ugyen Dorji, Sherab Dorji, Yograj Chhetri & Tsethup Tshering, Pp. 28242–28245

Notes

First record of Indian Fox *Vulpes bengalensis* in Dang, Gujarat, India

– Aadil Kazi, Mohmad Navaz Dahya, Rohit Chaudhary & Pravin Chaudhari, Pp. 28246–28248

First record with photographic evidence of Dhole *Cuon alpinus* (Pallas, 1811) from Panshet, Pune, Maharashtra, India

– Sonali Shinde & Chinmay Sonawane, Pp. 28249–28251

First photographic evidence of Spot-bellied Eagle Owl *Ketupa nipalensis* (Strigiformes: Strigidae) in Palamau Tiger Reserve, Jharkhand, India

– Arshyaan Shahid, Shahzada Iqbal & Orus Ilyas, Pp. 28252–28254

Sighting of Sooty Gull *Ichthyaetus hemprichii* from the salt pans of Nagapattinam Coast, Tamil Nadu, India

– S. Babu, Anand Shibu & M. Kishore, Pp. 28255–28258

First record of *Colytus bilineatus* Thorell, 1891 (Arachnida: Araneae: Salticidae) from India

– Monica Chetry, John T.D. Caleb & Parthankar Choudhury, Pp. 28259–28262

Publisher & Host

Threatened Taxa