Journal of Threatened
Taxa | www.threatenedtaxa.org | 26 June 2025 | 17(6): 27141–27158
ISSN 0974-7907 (Online)
| ISSN 0974-7893 (Print)
https://doi.org/10.11609/jott.9405.17.6.27141-27158
#9405 | Received 05
September 2024 | Final received 03 June 2025 | Finally accepted 13 June 2025
An annotated
checklist of the genus Amorphophallus Blume ex Decne. (Araceae): an
update on the distribution and conservation status of its species
Norilyn
Fontarum-Bulawin 1, Michael A. Calaramo 2 & Grecebio Jonathan D. Alejandro
3
1,3 The Graduate School,
University of Santo Tomas, Manila, 1008, Philippines.
1 Department of
Education, National Capital Region, Division of Mandaluyong, Mandaluyong City,
1550, Philippines.
2 Northwestern
University Ecological Park & Botanic Gardens. Airport Avenue, Bengcag,
Laoag City, Ilocos Norte, 2900, Philippines.
3 Department of
Biological Sciences, College of Science & Research Center for the Natural
and Applied Sciences, Graduate School, University of Santo Tomas, Manila 1008,
Philippines.
1 norilyn.bulawin.gs@ust.edu.ph
(corresponding author), 2 michael.calaramo@nwu.edu.ph, 3 gdalejandro@ust.edu.ph
Editor: A.J. Solomon Raju, Andhra University,
Visakhapatnam, India. Date of publication: 26 June 2025
(online & print)
Citation: Fontarum-Bulawin, N., M.A. Calaramo & G.J.D. Alejandro (2025). An annotated checklist of the genus Amorphophallus
Blume ex Decne. (Araceae): an update on the distribution and conservation
status of its species. Journal
of Threatened Taxa 17(6): 27141–27158. https://doi.org/10.11609/jott.9405.17.6.27141-27158
Copyright: © Fontarum-Bulawin et al. 2025. Creative Commons Attribution 4.0
International License. JoTT allows unrestricted use, reproduction, and
distribution of this article in any medium by providing adequate credit to the
author(s) and the source of publication.
Funding: The study is not funded.
Competing interests: The authors declare no competing interests.
Author details: Grecebio J.D. Alejandro is a full professor and currently
the director of Graduate Research at the University of Santo Tomas. He was a
fellow of the German Academic Exchange Program for doctoral studies and the
Alexander von Humboldt for postdoctoral studies. He has published more than 150 papers in indexed Journals and authored and/or co-authored
almost 90 Philippine endemic plants. Michael A. Calaramo is a director and curator of
Northwestern University Ecotourism Park and Botanic Gardens. Head of the
Biodiversity Research Unit. Also the research leader in the
ARRCN Northern Light Project-Northwesterniana Team for the Asian Raptor
Migration in Northern Luzon, Philippines. Norilyn F. Bulawin is affiliated with the Graduate
School of the University of Santo Tomas, Manila, Philippines, and the Department of Education, National Capital Region, Division
of Mandaluyong. She discovered, authored, and co-authored a study on the plant Amorphophallus and conducted additional research
related to Amorphophallus species.
Author contributions: GJDA: Conceptualization (equal);
Data curation (equal); Formal analysis (equal); Investigation (equal);
Methodology (equal); Resources (equal); Supervision (equal); Writing – original
draft (equal); Writing – review and editing (equal).
MAC: Conceptualization (equal); Data curation (equal); Formal analysis (equal);
Investigation (equal); Methodology (equal); Project administration (equal);
Supervision (equal); Writing – original draft (equal); Writing – review and
editing (equal). NFB: Conceptualization (equal); Data
curation (equal); Formal analysis (equal); Investigation (equal); Methodology
(equal); Project administration (equal); Supervision (equal); Writing –
original draft (equal); Writing – review and editing (equal).
Acknowledgements:
The authors are very grateful to
the following online institution such as AD, B, BONN, MB, CALI, PE, FTG, BKF,
GB, HBG, ITB, BO, HAST, UKMB, HNT, VNM, L, MO, HBG, TAI, K, LECB, SUK, WAG,
CATE Araceae, Co’s Digital Flora of the Philippines, Global Biodiversity Information Facility, International Aroid Society,
International Plant Names Index, Kew World Checklist of Selected Plant
Families, Plant of the World Online, The World Flora Online, Tropicos, and
World Checklist of Vascular Plants for information
of Amorphophallus were used in this study. We also
thank Jennifer S. Danila for the support during the data gathering.
Abstract: Araceae’s most
remarkable genus is Amorphophallus, which is propagated for food,
ornamental, and herbal medicine due to its medicinal properties. This checklist
includes 241 accepted species of Amorphophallus, featuring their
scientific names, covered countries, conservation and distribution status,
ecological habitats, and biogeographical regions. Around 83% of Amorphophallus species
are native, and 17% were endemic, and found in Burundi, Benin, Cambodia,
Cameroon, Congo, China, Equatorial Guinea, India, Indonesia, Laos, Myanmar,
Madagascar, Malaysia, Nigeria, Philippines, Thailand, and Vietnam. Thailand is
the most species-rich country (66 spp.), while Indo-Malay is the most
species-rich biogeographic region (56.65%). Furthermore, limestone areas are
the typical ecological habitat in which Amorphophallus species can be
found (9.76%). IUCN Red List of Threatened Species documents the genus as
‘Critically Endangered’ (4.15%), ‘Vulnerable’ (2.90%), ‘Endangered’ (0.83%),
‘Near Threatened’ (0.83%), ‘Least Concern’ (0.83%), ‘Data Deficient’ (0.83%);
76.35% (184 species out of 241) were not evaluated because the report’s scope
for assessing threatened plants might be inadequate, and 13.70% have no record.
This inventory from digital databases will assess a more holistic strategic
conservation plan of Amorphophallus species worldwide.
Keywords: Amorphous,
biogeography, diversity, ecological habitat, endemic, global databases, native,
occurrences, phallus, worldwide.
INTRODUCTION
One of the globally biggest families is
the Araceae (Moodley et al. 2016; Bulawin et al. 2024), and one of the largest
genera of the family Araceae is Amorphophallus (Claudel 2021;
Bulawin et al. 2024). About 241 accepted species of Amorphophallus are
distributed worldwide (IPNI 2022; GBIF 2022; WCVP 2022; Bulawin et al.
2022–2024), and 70% of species can be found in southeastern Asia (Claudel et
al. 2019). Most species are limited, and only a few are distributed over a
large area (Grob et al. 2003). Amorphophallus species are
native in southern and southeastern Asia, northern Australia & Oceania,
China, Taiwan, Bangladesh, India, Sri Lanka, Laos, Burma, Thailand, Vietnam,
Borneo Island, Java Island, Malaysia, Philippines, Celebes Island, Sumatra, New
Guinea, Fiji, and Samoa extending from tropical and subtropical climates
(Sivilla & Santos 2021).
Amorphophallus is derived from the Greek word
amorphous which means deformed, and phallus meaning penis (Yuzammi 2009). Most
parts of the plant manifest varied and unique appearances, one of which is the
plant’s height (Claudel et al. 2017). Amorphophallus is well
known for its colossal flowers and decaying flesh odor (Liu et al. 2017). The
colorful spathe of the inflorescence is essential for breeding and laying eggs
of the insects (Ulrich et al. 2016). The spadix at the center of the flower emits
heat and odor that entices pollinators (Diaz & Kite 2006; Barthlott et al.
2009). The essential part of the flower is the appendix, an organ that draws
the attention of insects for pollination (Chartier & Gibernau 2009). The
tuber is the underground stem that serves as a storage organ and for plant
propagation. Amorphophallus plant commonly grows with an individual
leaf (Mc Pherson & Hetterscheid 2011), and the lamina has elliptical
leaflets with acute to acuminate apex, similar to the leaves of young trees,
and a lichen-like pattern covers the petiole (Claudel et al. 2019). The
conspicuous characteristics of Amorphophallus that can be
readily identified are the mark arrangement or pattern and the shade of the
petiole (Gustini et al. 2017).
In the Philippines, India, Sri Lanka, and
other southeastern Asian countries, Amorphophallus is used for
human consumption, not only as an ornamental plant (Sivilla & Santos 2021),
but also for medicinal purposes. Tubers, young branches, and inflorescence are
the parts of Amorphophallus that are edible, and can be used in
traditional healing (Anil et al. 2011; Phornvillay et al. 2015; Mastuti et al.
2018; Sookchaloem et al. 2018). Amorphophallus was a secondary food
source, next to rice, and was utilized in land-clearing ceremonies as an
offering of food in some countries (Mursyidin et al. 2022). It is also used in
making chips (Misra et al. 2010) and pasta (Chua et al. 2010). Essential parts
of plants can be utilized as a source of medicine and food ingredients (Rivai
et al. 2022). Traditionally, it has been used as an herbal medicine due to its
medicinal properties (Sharma et al. 2022).
The contemporary inventory of
accepted Amorphophallus species with scientific names, number
of occurrences, countries, conservation & distribution status, ecological
habitat, and biogeography is introduced in this world checklist. This study
utilized digital databases to have a general checklist of Amorphophallus,
distribution, and conservation status globally. Through this checklist, the
different accepted species of Amorphophallus worldwide, the
countries where the species were found, conservation status, habitat, and
biogeography regions where the species were distributed are identified. This
study will serve as a basic standard of information regarding the genus diversity,
distribution, and global conservation to improve strategic management, and a
sustainable plan.
MATERIALS AND METHODS
Knowledge about the ecology,
characteristics, and habitats of most plants is limited or nonexistent. The
plant’s global databases help address some of the plant’s growth forms (Taseski
et al. 2019). This study provides a worldwide inventory of the accepted species
of Amorphophallus, covered countries, conservation &
distribution status, ecological habitat, and biogeographic regions (Table 3).
All the acquired information on Amorphophallus species came from digital
articles, online herbaria (Table 2) (Internet Directory for Botany 2022; NYBG
2022), and public access databases on biodiversity (Table 1) (Pelser et al.
2011 onwards; CATE Araceae 2022; GBIF 2022; IAS 2022; IPNI 2022; POWO 2022;
Tropicos 2022; WCSP 2022; WCVP 2022; WFO 2022). Only the taxonomically accepted
species of Amorphophallus were included in this paper. The
checklist did not include synonyms and varieties. The well-known online
international system, open access that provides a database for plant
biodiversity is the Global Biodiversity Information Facility (GBIF) (Reyserhove
et al. 2020). The scientific names of accepted species of Amorphophallus were
obtained from the GBIF (2022) and cross-checked against the World Checklist of
Vascular Plants (WCVP 2022), International Plant Names Index (IPNI 2022), and
other online herbaria. Also, the number of occurrences, covered countries, biogeographic
regions, and conservation status were added in the analysis. The information on
distribution and ecological status of Amorphophallus species was
acquired from the Plant of the World Online (POWO 2022), International Plant
Names Index (IPNI 2022), and online herbaria worldwide. In this checklist,
various online herbaria, biodiversity databases, and protologues were also
utilized to verify the information of Amorphophallus species.
The status of occurrences was zero when a
survey of a taxon at a specific time and place encountered no specimens. The NR
abbreviation was used for no record occurrences based on online herbarium
databases. Covered countries were documented by using ISO 3166-1 alpha-2 code (https://www.nationsonline.org/oneworld/country_code_list.htm).
These countries where the various species of Amorphophallus were found
aligned according to the counterpart biogeographic regions (Image 1), such as
Neotropical—NE, Nearctic—NT, Afrotropical—AT, Palearctic—PA, Australasia—AS,
and Indo-Malay—IM (Olson et al. 2001). On the one hand, the detailed
conservation status was according to the IUCN Global Red List Category. The
following abbreviation was used for the conservation status of Amorphophallus species:
UA—Unassessed, DD—Data Deficient, LC—Least Concern, NT—Near Threatened,
VU—Vulnerable, EN—Endangered, and CR—Critically Endangered. For those Amorphophallus
species without a record, the NR abbreviation was used. Information about the
distribution status of Amorphophallus species used the abbreviation EC
for endemic Amorphophallus and NA for native species of Amorphophallus.
The ecological habitat of various species of Amorphophallus were
indicated (Figure 7), and those Amorphophallus species with
unknown ecological habitat or no record based on online herbarium databases
were given the abbreviation UK.
RESULTS AND DISCUSSION
Out of 241 species of Amorphophallus worldwide
(Table 3) (Bulawin et al. 2022–2024), around 7,463 total occurrences of Amorphophallus species
were recorded in global databases from different countries. Other countries had
zero occurrences due to the absence of encountered specimens when a survey of a
taxon at a specific time and place was conducted, and some species had no
record in global databases. The species with the highest occurrences were A. paeoniifolius
(12.31%), A. abyssinicus (10.49%), A. baumannii (5.21%),
A. dracontiodes (4.98%), A. konjac (4.66%), A.
galbra (4.45%), A. aphyllus (3.95%), A. titanium (2.99%),
and A. variabilis (2.33%). Amorphophallus paeoniifolius had
the highest occurrences of all the species of Amorphophallus, which was
known for its geographical extent. This species can be cultivated in many
regions, including southeastern Asia
(Gao et al. 2017; Bulawin et al. 2022). Most of the species with highest
occurrences could be found in the following countries: Nigeria, Togo,
Indonesia, Burkina Faso, Guinea, United States, and Belgium in Afrotropic,
Indo-Malay, Nearctic, and Palearctic regions (Image 1). Table 3 presents the
worldwide checklist of Amorphophallus species based on digital databases
and herbarium records.
There were various accepted species
of Amorphophallus from different countries worldwide. The most
species-rich country based on the record of digital databases was Thailand with
(66 species), followed by France (39 species), Vietnam (34 species), United
States (34 species), Indonesia (32 species), Malaysia (30 species), Laos (28
species), India (22 species), Philippines (21 species), and China (18 species)
(Figure 2). Manifesting distinct habitats for the diversity and bioresources of
the species (Sungkajanttranon et al. 2018) made Thailand the most species-rich
country of Amorphophallus species. Figure 3 presents the
number of Amorphophallus species by country based on online
herbarium and databases.
The generally recognized and accepted
assessment criteria to identify the condition of the species for conservation
design are the IUCN Red List of Threatened Species (Yudaputra et al. 2022).
Based on the digital databases, 76.35% of Amorphophallus species
were unassessed for conservation status, and 13.70% have no record. Around
4.15% of Amorphophallus species globally are CR, 2.90% VU, 0.83%
EN, 0.83% NT, 0.83% LC, and 0.83% DD (Figure 4). This result shows that Amorphophallus species
are included in the list of protected flora (Wulandari et al. 2022) since some
were Critically Endangered, Vulnerable, Endangered, and Near Threatened
according to IUCN Red List Criteria (2022).
Native species occur naturally in a
region; endemic species are native and restricted to a specific area (Dempsey
2022). Globally, 83% of Amorphophallus species were native,
and 17% were endemic (Figure 5). Based on the record of digital databases, the
10 most countries with native species of Amorphophallus were Vietnam (35
species), followed by Malaysia (31 species), Laos (30 species), Thailand (27
species), Indonesia (24 species), India (21 species), China (16 species),
Myanmar (13 species), Democratic Republic of Congo (10 species), and the
Cambodia (nine species). The 10 countries with endemic species of Amorphophallus were
the following: Thailand (34 species), Philippines (20 species), Madagascar four
species, Malaysia two species, Nigeria one species, Equatorial Guinea (one
species), the Democratic Republic of Congo (one species), Cameroon (one
species), Benin (one species), and Burundi (one species) (Figure 6). Most Amorphophallus
had a broader extent of endemism because of a large scope of geographic
adaptation that made it a diverse species (Anil et al. 2014).
Most of the ecological habitat of the Amorphophallus
species was unknown based on digital databases, with 49.83% (Figure 7).
Followed by others or different ecological habitats with 5.72%. Few of Amorphophallus
species grown in limestone (9.76%), followed by deciduous forest (5.72%),
savannah (4.04%), secondary forest (3.70%), primary forest (3.03%), dipterocarp
forest (2.69%), shady area (2.69%), under bamboo (1.35%), forest margin
(1.35%), open forest (1.01%), open woodland (1.01%), lowland forest (1.01%),
rich soil with added loam (0.67%), and low land (0.67%). Some species occur in
limestone areas rich in decaying organic matter (Nguyen et al. 2016). Additionally, they are primarily found in
secondary forests rather than primary forests, as they are considered pioneer
species, and few have evolved in open fields (Liu et al. 2017).
Amorphophallus species are abundant in the
biogeographical regions of Indo-Malay (56.65%), followed by the Palearctic
(19.34%), the Afrotropics (11.85%), Nearctic (9.83%), Australasia (1.16%), and
lastly the Neotropics (1.16%). No Amorphophallus species are
distributed in Oceania and Antarctic biogeography regions. Indo-Malay includes
those countries in southern, southeastern Asia, and the southern part of
eastern Asia. Most of the Amorphophallus species have been
discovered in southeastern Asia (Bulawin et al. 2022), and this result suggests
that Amorphophallus species were abundant in Indo-Malay
biogeography.
Based on the occurrences, it appears that
the genus Amorphophallus has lower occurrences than other genera in the
family Araceae, such as Anthurium, Arisaema, Arum, Caladium,
Calocasia, Dieffenbachia, Monstera, Philodendron, Syngonium, Xanthosoma,
and Zantedeschia, especially when it is not in season. The development or
maturity of Amorphophallus varies across different species, and it is a
seasonal plant that undergoes an annual cycle of activity and dormancy (Mc
Pherson & Hetterscheid 2011).
Besides, Amorphophallus species
need an appropriate environmental condition to grow because several factors can
affect their growth and distribution such as habitat type, altitude, light,
humidity and temperature (Wulandari et al. 2022). These were the reasons why
some species of Amorphophallus have zero or absence of occurrences in
some other countries (Sungkajanttranon et al.2018; Wulandari et al. 2022). A.
paeoniifolius (Figure 1) had a higher percentage of occurrences because of
its comestible tuber and medicinal properties (Anil et al. 2011). It is known
for its geographical extent, as this species can be cultivated in many regions
(Bulawin et al. 2022).
In describing the rate of biodiversity of
a particular ecosystem, evaluation of plants, geographical distribution in
terms of species richness, species evenness, endemism, and conservation status
is fundamental (Batuyong et al. 2020). Out of 10 countries with a higher number
of Amorphophallus species, Thailand is the most species-rich country
because of its suitable environment for its growth, which has tropical, and
subtropical climates (Figure 2) (Sivilla & Santos 2021). Species richness
of plants is greater in the herbaceous forest area compared to other forest zones
(Mbuni et al. 2019).
Based on the record of the United Nations,
over a million species globally are at risk of extinction, and it was a
discouraging report (Dapar et al. 2020). As a result of the climate crisis and
anthropogenic activities, there is a consistently declining plant biodiversity
(Onyancha et al. 2020; Pasta et al. 2020; Calaramo et al. 2022). IUCN Red List
Criteria could assess the extinction risk (Yudaputra et al. 2022). It could
figure out the danger rate for particular species globally (Brummitt et al.
2015). According to digital databases, 76.35% of Amorphophallus species
were not evaluated for conservation status, and 13.70% have no record (Figure
4). Around 4.15% of Amorphophallus species globally were
‘Critically Endangered’, 2.90% ‘Vulnerable’, 0.83% Endangered, 0.83% ‘Near
Threatened’, 0.83% ‘Least Concern’, and 0.83% ‘Data Deficient’. IUCN admitted
that the report’s scope for assessing threatened plants might be inadequate
(Brummitt et al. 2015).
Vietnam had the highest number of native Amorphophallus
species, while Thailand had the highest number of endemic species, based
on digital databases (Figure 6). The natural habitat of Vietnam sustained the
diverse vegetation and higher biodiversity (Hung & Potokin 2019), which
resulted in more native species surviving in the country. However,
endemism is applied to species with a small population size with a very limited
ecological distribution (Yudaputra et al. 2022). With the distinct habitat for
diversity and bioresources of the species manifested by Thailand
(Sungkajanttranon et al. 2018) higher number of endemic Amorphophallus species
were able to survive and grow in the country. Endemic species in a particular
area can adapt more readily and thrive in diverse environmental conditions (Wulandari
et al. 2022).
Some Amorphophallus species are
adapted in a partly shaded area, secondary forest, and grassland (Mc Pherson
& Hetterscheid 2011). A few species grow in limestone or karst forest
ecosystem (Figure 8) based on digital databases, with 9.76% because some of the
Amorphophallus species have a shallow root that is susceptible to
drought (Misra et al. 2010). Amorphophallus needs soil that allows water
to drain moderately. For the plant to grow better, appropriate soil nutrients,
and proper draining of water in the soil are required (Yuzammi et al. 2018).
Also, limestone contains fragments of elements that can enhance soil quality.
Because of this, most of the time, Amorphophallus species are found in
limestone and granite soil (Nguyen et al. 2016).
According to digital databases, Amorphophallus
species are mostly distributed in the Indo-Malay biogeography region (Figure 9)
with 56.65% because 70% of various species of Amorphophallus can be
found in southeastern Asia (Claudel et al. 2019), which is under Indo-Malay
biogeography. The center of distribution of Amorphophallus is Thailand
because, based on the record of digital databases, Thailand is the most
species-rich country due to its ecological status suited for the diversity and
bioresources of Amorphophallus species.
CONCLUSIONS AND RECOMMENDATIONS
The world checklist of Amorphophallus
species revealed the current number of accepted species worldwide, their
distribution status, ecological habitats, and conservation status. Out of 241
species as of this writing, A. paeoniifolius has the most
significant number of occurrences, and Thailand is the most species-rich
country of Amorphophallus. Many Amorphophallus species
have not been evaluated, which can hinder the accurate assessment of the conservation
status of some species. This data needs to be revisited, and more species
should be included in the list for further protection. The majority of Amorphophallus
species were adapted to limestone habitats. Therefore, the limestone ecosystem
is one of the areas that people should protect from excessive degradation
direct or indirect anthropogenic activities. Moreover, the primary goal of the
checklist is to provide a record of all the Amorphophallus species
worldwide. Ecologists, biogeographers, and taxonomists must review the digital
databases of Amorphophallus species and update them to enhance
their utility in gaining knowledge about species biodiversity, thereby filling
the information gap and making biodiversity details more comprehensive and
up-to-date.
Table 1.
Databases used for a worldwide checklist of Amorphophallus species.
|
Database |
Webpage URL |
|
CATE Araceae |
https://cate-araceae.myspecies.info/ |
|
Co’s Digital Flora of the Philippines |
https://www.philippineplants.org/ |
|
Global Biodiversity Information Facility
(GBIF) |
https://www.gbif.org/ |
|
International Aroid Society |
https://www.aroid.org/ |
|
International Plant Names Index (IPNI) |
https://www.ipni.org/ |
|
World Checklist of Selected Plant Families
(WCSP) |
https://wcsp.science.kew.org/home.do |
|
Plants of the World Online (POWO) |
https://powo.science.kew.org/ |
|
The World Flora Online (WFO) |
https://www.worldfloraonline.org/ |
|
Tropicos |
https://www.tropicos.org/home |
|
World Checklist of Vascular Plants
(WCVP) |
https://wcvp.science.kew.org/taxon/979828-1 |
Table 2.
Herbaria used for the confirmation of Amorphophallus species [NYBG
Steere Herbarium (2022) | Internet Directory for Botany (2022)].
|
Institution |
Location |
Herbarium code |
|
Adelaide Botanic Garden |
Australia |
AD |
|
Berlin-Dahlem Botanical Garden |
Germany |
B |
|
Bonn Botanic Garden |
Germany |
BONN |
|
Botanic Garden of Marburg University |
Germany |
MB |
|
Calicut University Botanical Garden |
India |
CALI |
|
Chinese National Herbarium |
China |
PE |
|
Fairchild Tropical Botanic Garden |
USA |
FTG |
|
Forest Herbarium |
Thailand |
BKF |
|
Gothenburg Botanical Garden |
Sweden |
GB |
|
Hamburg Botanical Garden |
Germany |
HBG |
|
Herbarium Bandungense Jurusan Biologi |
Indonesia |
ITB |
|
Herbarium Bogoriense |
Indonesia |
BO |
|
Herbarium, Institute of Botany, Academia
Sinica, Taipei |
Taiwan |
HAST |
|
Herbarium Universiti of Kebangsaan |
Malaysia |
UKMB |
|
Huntington Botanical Gardens |
California |
HNT |
|
Institute of Tropical Biology |
Vietnam |
VNM |
|
Leiden Botanic Garden |
Netherlands |
L |
|
Missouri Botanic Garden |
USA |
MO |
|
National Herbarium of the Netherlands or
Herbarium Hamburgense |
Netherlands |
HBG |
|
National Taiwan University Herbarium |
Taiwan |
TAI |
|
Royal Botanic Garden |
Australia |
K |
|
Saint Petersburg University |
Russia |
LECB |
|
Shivaji University |
India |
SUK |
|
Wageningen Herbarium |
Netherlands |
WAG |
Table 3.
Worldwide checklist of Amorphophallus species based on digital databases
and herbarium records.
|
Species |
Number of occurrences |
Country |
IUCN Red List status |
Status of distribution |
Ecological habitat |
Biogeographic region |
|
1. A. aberrans Hett. |
5 |
TH, FR |
UA |
EC in TH |
Dry savannah forest |
IM, PA |
|
2. A. abyssinicus (A.Rich.)
N.E.Br. |
783 |
BE, CD, BF, TZ, CI, CM, GN, NG, TG, CF |
UA |
NA to NG, BF, NE, TG, ZM, CM, NA, CF,
TD, ET, ZA, TZ, UG, ZW |
UK |
PA, AT |
|
3. A. adamsensis Magtoto, Mones, Ballada, Austria,
R.M.Dizon, Alangui, Regina |
NR |
PH |
NT |
EC in PH |
UK |
IM |
|
4. A. albisphathus Hett. |
17 |
TH, BE, MY, US |
UA |
EC in TH |
Limestone |
IM, PA, NT |
|
5. A. albus P.Y.Liu & J.F.Chen |
23 |
CN, FR, CH, BE, SE |
UA |
NA to CN |
Open forest |
PA |
|
6. A. allenii A. Galloway, Malkm.
Huss., Prehsler & Claudel |
0 |
TH |
NR |
NA to TH |
UK |
IM |
|
7. A. amygdaloides Hett. &
Sizemore |
5 |
TH |
UA |
EC in TH |
UK |
IM |
|
8. A. andranogidroensis Hett. &
Mangelsdorff |
2 |
MG |
UA |
EC in MG |
Deciduous forest |
AT |
|
9. A. angolensis (Welw. ex.
Schott)N.E.Br. |
79 |
GA, CD, CF, AO, CN |
UA |
NA to AO, GA, SD, CD |
UK |
AT, PA |
|
10. A. angulatus Hett. & A.Vogel |
11 |
MY |
UA |
NA to Borneo |
UK |
IM |
|
11. A. angustispathus Hett. |
4 |
MM |
UA |
NA to MM |
UK |
IM |
|
12. A. ankarana Hett. Ittenb.
& Bogner |
25 |
MG, BE, FR |
UA |
EC in MG |
Limestone |
AT, PA |
|
13. A. annulifer Hett. |
2 |
ID |
UA |
NA to Java |
UK |
IM |
|
14. A. antsingyensis Bogner,
Hett. & Ittenbach |
27 |
MG |
UA |
EC in MG |
Primary & secondary forest/limestone |
AT |
|
15. A. aphyllus (Hook.) Hutch. |
295 |
BJ, SN,GM, SL, GN, GW, ML, BE, TG, CI |
UA |
NA to BF, CF, TD, GW, ML, SN, SL,TG |
Savannah/dry forest |
AT, PA |
|
16. A. arcuspadix A.Galloway,
Ongsakul & Petra Schmidt |
1 |
FR |
UA |
NA to LA |
UK |
PA |
|
17. A. ardii Yuzammi & Hett. |
NR |
ID |
NR |
NA to Sulawesi |
UK |
IM |
|
18. A. asper (Engl.) & Gehrm. |
7 |
ID |
UA |
NA to Sumatra |
UK |
IM |
|
19. A. asterostigmatus Bogner
& Hett. |
13 |
TH |
UA |
EC in TH |
Limestone |
IM |
|
20. A. atrorubens Hett. &
Sizemore |
2 |
TH |
UA |
EC in TH |
Limestone |
IM |
|
21. A. atroviridis Hett. |
9 |
TH, BE |
UA |
EC in TH |
Limestone |
IM, PA |
|
22. A. bangkokensis Gagnep |
2 |
TH |
UA |
EC in TH |
Low-lying waste ground |
IM |
|
23. A.barbatus A.Galloway &
Ongsakul |
0 |
LA |
NR |
NA to LA |
UK |
IM |
|
24. A. barthlottii Ittenb. &
Lobin |
6 |
CI, LR |
UA |
NA to CI, LR |
UK |
AT |
|
25. A. baumannii (Engl.) N.E.Br. |
389 |
BE, GH, TG, SN, BF, NG, GW, SL, GM, NG |
UA |
NA to NG, BF, NE, NG, SN, SL, CF, TD,
GM, GH, GW, LR, TG |
Savannah/ open woodland/and stony soil |
PA, AT |
|
26. A. beccarii Engl. |
26 |
ID, FR |
UA |
NA to Sumatera |
UK |
IM, PA |
|
27. A. bequaertii De Wild. |
4 |
CD |
UA |
EC in East CD |
Primary forest |
AT |
|
28. A. blumei Schott, 1863 |
0 |
IN |
NR |
NR |
UK |
NR |
|
29. A. bognerianus Sivad &
Jaleel |
2 |
IN |
UA |
NA to East Himalaya |
UK |
IM |
|
30. A. bolikhamxayensis
A.Galloway, Ongsakul & Petra Schmidt |
1 |
FR |
UA |
NA to LA |
UK |
PA |
|
31. A. bonaccordensis Sivad.
& N.Mohanan |
4 |
IN |
UA |
NA to IN |
UK |
IM |
|
32. A. borneensis (Engl.) Engl.
& Gehrm |
18 |
MY, ID, BE, BN |
UA |
NA to Borneo |
UK |
IM, PA, |
|
33. A. boyceanus Hett. |
1 |
TH |
UA |
EC in TH |
UK |
IM |
|
34. A. brachyphyllus Hett. |
10 |
MY |
UA |
EC in Bau area, Kuching Div. |
Lowland forest/ Limestone/evergreen
forest |
IM |
|
35. A. brevipetiolatus
A.Galloway, Ongsakul & Petra Schmidt |
0 |
LA |
NR |
NA to LA |
UK |
IM |
|
36. A. brevispathus Gagnep. |
11 |
TH |
UA |
EC in TH |
Limestone |
IM |
|
37. A. bubenensis J.T.Yin &
Hett. |
0 |
CN |
NR |
NA to CN South Central |
UK |
PA |
|
38. A. bufo Ridl. |
7 |
MY |
UA |
NA to Malaya |
UK |
IM |
|
39. A. bulbifer (Roxb.) Blume |
161 |
IN, US, CN, TH, BE, FR, NP, BT, ID |
UA |
NA to IN, CN, BD, IN, MM, NP |
UK |
IM, NT, PA, |
|
40. A. calabaricus N.E.Br. |
34 |
CM, NG, BJ, CD, GA, UG |
UA |
NA to NG, CM, KE, UG, CP |
UK |
AT |
|
41. A. calcicola Tamayo, M.N.,
Magtoto, Liezel, L.M., Sumalinog, M. JR., Reyes, T.D. Jr., Austria, C.M. |
NR |
PH |
CR |
EC in PH |
Forest/limestone |
IM |
|
42. A. canaliculatus Ittenb.,
Hett. & Lobin |
6 |
GA |
UA |
NA to GA |
UK |
AT |
|
43. A. candidissimus X.Gong &
H.Li |
0 |
VN |
NR |
NA to VN |
UK |
IM |
|
44. A. carneus Ridl. |
9 |
MY, TH |
UA |
NA to MY, TH |
Limestone |
IM |
|
45. A. carnosus Engl. |
9 |
VN |
UA |
NA to VN |
UK |
IM |
|
46. A. caudatus Bustamante,
R.A.A., Mansibang, J.A., Hetterscheid, W.L.A., Tamayo, M.N. |
NR |
PH |
CR |
EC in PH |
Low land forest |
IM |
|
47. A. chlorospathus Kurz ex
Hook.f. |
3 |
IN, MM |
UA |
NA to IN, MM |
UK |
IM |
|
48. A. cicatricifer Hett. |
6 |
TH |
UA |
EC in Kanchanaburi |
Evergreen forest |
IM |
|
49. A. cidarioides J.R.Callado,
Medecilo & Hett. |
NR |
PH |
NR |
EC in PH |
Watery areas |
IM |
|
50. A. cirrifer Stapf. |
9 |
TH |
UA |
EC in TH |
Deciduous forest/open forest |
IM |
|
51. A. claudelii A.Galloway &
Ongsakul |
1 |
FR |
UA |
NA to LA |
UK |
PA |
|
52. A. coaetaneus S.V.Liu &
S.J.Wei |
18 |
VN, FR, CN, US |
UA |
NA to CN, VN |
Forest valley |
IM, PA, NT |
|
53. A. commutatus (Schott) Engl. |
56 |
IN |
UA |
NA to IN |
UK |
IM |
|
54. A. consimilis Blume |
80 |
SN, GM, BJ, ML, FR, GW, BE |
UA |
NA to GM, SN |
Low land |
AT, PA |
|
55. A. corrugatus N.E.Br. |
43 |
TH, US, VN |
UA |
NA to CN, MM, TH |
Primary forest/evergreen forest |
IM, NT |
|
56. A. costatus Hett. |
5 |
MY, ID |
UA |
NA to Borneo |
UK |
IM |
|
57. A. coudercii (Bogner) Bogner |
5 |
KH, VN |
UA |
NA to KH |
UK |
IM |
|
58. A. crinitus A.Galloway, Luu, Malkm.-Huss.,
Prehsler & Claudel |
0 |
VN |
NR |
NA to VN |
UK |
IM |
|
59. A. crispifolius A.Galloway, Ongsakul & Petra
Schmidt |
0 |
LA |
NR |
NA to LA |
UK |
IM |
|
60. A. croatii Hett. &
Galloway |
2 |
LA |
UA |
NA to LA |
UK |
IM |
|
61. A. cruddasianus Prain |
5 |
MM, TH, US |
UA |
NA to MM, TH, LA |
UK |
IM, NT |
|
62. A. curvistylis Hett. |
7 |
TH |
VU |
EC in Kanchanaburi |
Limestone/deciduous forests |
IM |
|
63. A. declinatus Hett. |
7 |
PH |
UA |
EC in PH |
UK |
IM |
|
64. A. decus-silvae Backer &
Alderw. |
27 |
ID, US |
UA |
NA to Jawa |
UK |
IM, NT |
|
65. A. discophorus Backer &
Alderw. |
5 |
ID |
UA |
NA to Jawa |
UK |
IM |
|
66. A. dracontioides (Engl.)
N.E.Br. |
372 |
BJ, TG, CI, BF, GH, NG, GN |
UA |
NA to NG, BF, CF, GM, GH, CI, NE, TG |
Dry savannah |
AT |
|
67. A. dunnii Tutcher |
52 |
CN, HK, BE, DE, FR, US |
UA |
NA to CN |
UK |
IM, PA, NT |
|
68. A. dzui Hett. |
6 |
VN |
UA |
NA to VN |
UK |
IM |
|
69. A. eburneus Bogner |
23 |
MY |
UA |
EC in Padawan (Kuching Div.) and Tebedu
(Samarahan Div,). |
Lowland forest/limestone |
IM |
|
70. A. echinatus Bogner &
Mayo |
3 |
TH, LA |
DD |
EC in Kanchanaburi |
Dense, moist forest |
IM |
|
71. A. eichleri (Engl.) Hook.f. |
24 |
BE, FR, CD, CF, BR, CM |
UA |
NA to CD |
Primary rain forest |
PA, AT, NE |
|
72. A. elatus Hook.f. |
9 |
TH, FR, MY |
UA |
NA to MY, TH |
Evergreen forest/deciduous forest |
IM, PA |
|
73. A. elegans Ridl. |
5 |
MY, TH |
UA |
NA to MY, TH |
Evergreen forest/limestone |
IM |
|
74. A. elliottii Hook.f. |
12 |
SL, TH |
UA |
NA to SL |
Forest between low grass |
AT, IM |
|
75. A. erythrororrhachis Hett., Pronk & R.Kaufmann |
3 |
MG |
UA |
NA to MG |
UK |
AT |
|
76. A. excentricus Hett. |
8 |
TH, US |
UA |
NA to MY, TH |
Evergreen forest |
IM, NT |
|
77. A. fallax (Serebryanyi) Hett.
& Claudel |
6 |
VN, LA |
UA |
NA to VN |
UK |
IM |
|
78. A. ferruginosus A.Galloway |
0 |
LA |
NR |
NA to LA |
UK |
IM |
|
79. A.flammeus M.A.Calaramo,
M.A.R. Batuyong, N.F.Bulawin, G.J.D.Alejandro |
NR |
PH |
VU |
EC to PH |
Limestone forest thickets with loamy
substrate |
IM |
|
80. A. flotoi (S.Y.Hu) Govaerts |
67 |
TH, US, LA, FR, KH |
UA |
NA to KH, VN, LA, TH |
UK |
IM, NT. PA |
|
81. A.fontarumii N.F.Bulawin,
M.M.Medecilo-Guiang, G.J.D.Alejandro |
NR |
PH |
CR |
EC to PH |
Limestone |
IM |
|
82. A. forbesii (Engl.) Engl.
& Gehrm. |
1 |
ID |
UA |
NA to Sumatra |
UK |
IM |
|
83. A. fornicatus Hett.,
J.R.Collado & Wistuba |
NR |
PH |
NR |
EC to PH |
Secondary forest |
IM |
|
84. A. fuscus Hett. |
5 |
TH, BE |
UA |
NA to TH |
Limestone |
IM, PA |
|
85. A. galbra F.M.Bailey |
332 |
AU, PG, ID, US |
UA |
NA to PG, AU, |
UK |
AS, IM, NT |
|
86. A. gallaensis (Engl.) N.E.Br. |
14 |
KE, SO, IT, ET |
UA |
NA to KE, SO, ET |
Dry Savannah/open woodland |
AT, PA |
|
87. A. gallowayi Hett. |
4 |
FR, LA, VN |
UA |
NA to LA |
UK |
IM, PA |
|
88. A. gigas Teijsm. & Binn. |
39 |
ID, US |
TD |
NA to Sumatera |
UK |
IM, NT |
|
89. A. glaucophyllus Hett. &
Serebryanyi |
0 |
TH |
NR |
EC in Kanchanaburi |
UK |
IM |
|
90. A. gliruroides Engl. |
1 |
TH |
UA |
NA to MM |
UK |
IM |
|
91. A. glossophyllus Hett. |
9 |
VN, FR |
UA |
NA to VN |
UK |
IM, PA |
|
92. A. goetzei (Engl.) N.E.Br. |
20 |
TZ, MW, MZ, CD |
UA |
NA to MZ, TZ, CD |
Evergreen forest/ River valleys |
AT |
|
93. A. gomboczianus Pic. Serm. |
24 |
ET, ZM |
UA |
NA to ET |
Savannah/ open woodland/ forest
margin/proximity of river |
AT |
|
94. A. gracilior Hutch. |
3 |
NG, BJ |
UA |
EC in BJ, NG |
Primary rain forest/swamps |
AT |
|
95. A. gracilis Engl. |
2 |
ID |
UA |
NA to Sumatera |
UK |
IM |
|
96. A. haematospadix Hook.f. |
20 |
MY, FR, TH, US |
UA |
NA to MY, TH |
Limestone |
IM, PA, NT |
|
97. A. harmandii Engl. &
Gehrm |
45 |
TH, KH, LA |
UA |
NA to KH, LA, TH, VN |
Deciduous forest/under bamboo |
IM |
|
98. A. hayi Hett. |
1 |
VN |
DD |
NA to VN, CN |
Secondary forest |
IM |
|
99. A. hemicryptus Hett. &
J.F.Maxwell |
0 |
KH |
NR |
NA to KH |
Deciduous forest/ Hardwood forest/ |
IM |
|
100. A. henryi N.E.Br. |
172 |
TH, CN, AR, BE, US |
UA |
NA to TH |
Limestone/mixed forest/bamboo plantation |
IM, PA,NE, NT |
|
101. A. hetterscheidii Ittenb.
& Lobin |
3 |
CD, CF |
UA |
NA to CF, GA, CD |
UK |
AT |
|
102. A. hewittii Alderw. |
66 |
MY, ID |
UA |
NA to Borneo |
UK |
IM |
|
103. A. hildebrandtii (Engl.)
Engl. & Gehrm |
104 |
MG |
LC |
NA to MG |
UK |
AT |
|
104. A. hirsutus Teijsm. &
Binn. |
9 |
ID, IN, FR |
UA |
NA to Sumatera |
UK |
IM, PA |
|
105. A. hirtus N.E.Br. |
73 |
TH, CN, JP |
UA |
NA to TH |
Dense grassland |
IM, PA |
|
106. A. hohenackeri (Schott)
Engl. & Gehrm. |
30 |
IN |
UA |
NA to IN |
UK |
IM |
|
107. A. hottae Bogner & Hett. |
12 |
MY |
UA |
NA to Borneo |
UK |
IM |
|
108. A. impressus Ittenb. |
10 |
MW, TZ BE |
UA |
NA to MW, TZ |
UK |
AT, PA |
|
109. A. incurvatus Alderw. |
0 |
ID |
NR |
NA to Sumatera |
UK |
IM |
|
110. A. infundibuliformis Hett.,
A.Dearden & A.Vogel |
10 |
MY |
UA |
NA to Borneo |
Lowland/dipterocarp |
IM |
|
111. A. interruptus Engl. &
Gehrm. |
39 |
VN |
CR |
NA to VN |
UK |
IM |
|
112. A. johnsonii N.E.Br. |
210 |
GH, CI, BF, BN, ML, NG, LR, TG, GN, CM |
UA |
NA to NG, BF, GH, PG,CI, LR, ML |
Savannah |
AT, IM |
|
113. A. josefbogneri Hett. |
1 |
TH |
UA |
EC in South Western Thailand:
Kanchanaburi |
UK |
IM |
|
114. A. julaihii Ipor, Tawan
& P.C.Boyce |
3 |
MY |
UA |
NA to Borneo |
UK |
IM |
|
115. A. juliae P.C.Boyce &
Hett. |
0 |
MY |
NR |
EC to Sarawak |
UK |
IM |
|
116. A. kachinensis Engl. Gehrm. |
22 |
CN, MM, TH, LA |
UA |
NA to CN, LA, MM, TH |
Limestone |
PA, IM |
|
117. A. khammouanensis A.Galloway |
0 |
LA |
NR |
NA to LA |
UK |
IM |
|
118. A. kienluongensis V.D.Nguyen,
Luu & Hett. |
0 |
VN |
VU |
NA to VN |
UK |
IM |
|
119. A. kiusianus (Makino) Makino |
130 |
JP, CN, HK, US, BE, KR |
VU |
NA to CN, JP, TW |
UK |
PA, IM, NT |
|
120. A. konjac K. Koch |
348 |
CN, US, JP, MX, PH, NO, KR, FR, AT |
UA |
NA to CN |
Forest margin/secondary forest |
PA, NT, NE, IM |
|
121. A. konkanensis Hett.,
S.R.Yadav & K.S.Patil |
7 |
IN |
UA |
NA to IN |
UK |
IM |
|
122. A. koratensis Gagnep |
18 |
LA, TH, KH |
UA |
NA to KH, LA, TH |
Deciduous/dipterocarp forest |
IM |
|
123. A. krausei Engl. |
93 |
TH, MM, FR, LA |
UA |
NA to BD, CN, LA, MM, TH |
Deciduous/depterocarp forest/ Evergreen
forest |
IM, PA |
|
124. A. kuznetsovii (Serebryanyi)
Hett. & Claudel |
1 |
VN |
UA |
NA to VN |
UK |
IM |
|
125. A. lacourii Linden &
André |
120 |
TH, VN, FR, US, KH, LA, AU, BE |
UA |
NA to KH, LA, TH, VN |
UK |
IM, PA, NT, AS |
|
126. A. lambii Mayo & Widjaja |
27 |
MY, FR, IN, BE, TH |
UA |
NA to Borneo |
UK |
IM, PA |
|
127. A. lanceolatus (Serebryanyi)
Hett. & Claudel |
2 |
VN |
UA |
NA to VN |
UK |
IM |
|
128. A. lanuginosus Hett. |
3 |
VN |
CR |
NA to VN |
UK |
IM |
|
129. A. laoticus Hett. |
9 |
LA |
UA |
NA to LA |
Evergreen/deciduous forest |
IM |
|
130. A. lewallei Malaisse &
Bamps |
11 |
BI, VE |
CR |
EC in Burundi |
Savannah |
AT, NE |
|
131. A. linearis Gagnep |
12 |
TH |
UA |
EC in TH |
Evergreen/deciduous/dipterocarp
forest/bamboo forest |
IM |
|
132. A. linguiformis Hett. |
3 |
ID |
UA |
NA to Borneo |
UK |
IM |
|
133. A. longicomus Hett. &
Serebryanyi |
1 |
VN |
UA |
NA to VN |
UK |
IM |
|
134. A. longiconnectivus Bogner |
8 |
IN |
UA |
NA to IN |
UK |
IM |
|
135. A. longispathaceus Engl.
& Gehrm |
3 |
PH |
UA |
EC in PH |
UK |
IM |
|
136. A. longistylus Kurz ex
Hook.f. |
2 |
IN |
UA |
NA to Andaman Is. |
UK |
IM |
|
137. A. longituberosus (Engl.)
Engl. & Gehrm |
52 |
TH, MY, FR, BE |
UA |
NA to BD, TH, MY |
Evergreen/Decidious/Dipterocarp forests |
IM, PA |
|
138. A. lunatus Hett. &
Sizemore |
2 |
TH |
UA |
EC in TH |
Secondary forest |
IM |
|
139. A. luzoniensis Merr. |
6 |
PH |
UA |
EC in PH |
UK |
IM |
|
140. A. lyratus (Roxb.) Kunth |
0 |
IN |
NR |
NA to IN |
UK |
IM |
|
141. A. macrophyllus (Gagnep. Ex
Serebryanyi) Hett. & Claudel |
7 |
TH, FR, VN |
UA |
NA to TH VN |
UK |
IM, PA |
|
142. A. macrorhizus Craib |
58 |
TH, CN |
UA |
EC in TH |
Deciduous/Dipterocarp forests |
IM, PA |
|
143. A. malkmus-husseinii
A.Galloway, Prehsler & Claudel |
0 |
LA |
NR |
NA to LA |
UK |
IM |
|
144. A. mangelsdorffii Bogner |
8 |
MG, BE |
UA |
NA to MG |
UK |
AT, PA |
|
145. A. manta Hett. & Ittenbach |
3 |
ID |
UA |
NA to Malaya and Sumatera |
UK |
IM |
|
146. A. margaritifer (Roxb.)
Kunth |
24 |
IN |
UA |
NA to IN, BD, MM |
UK |
IM |
|
147. A. margretae Ittenb. |
1 |
CD |
UA |
NA to CD |
UK |
AT |
|
148. A. maximus (Engl.) N.E.Br. |
41 |
TZ, SO, KE, MZ, ZW, BE, CM, MW |
UA |
NA to KE, MZ, SO, TZ, ZW |
UK |
AT, PA |
|
149. A. maxwellii Hett. |
11 |
TH, BE |
UA |
EC in Kanchanaburi |
Deciduous forest/ limestone |
IM, PA |
|
150. A. mekongensis Engl. &
Gehrm. |
6 |
LA, VN |
UA |
NA to LA, VN |
UK |
IM |
|
151. A. merrillii K.Krause |
3 |
PH |
UA |
EC in PH |
UK |
IM |
|
152. A. mildbraedii K.Krause |
5 |
CM |
UA |
NA to CM |
UK |
AT |
|
153. A. minimus Bustamante,
R.A.A., Claudel, C., Altomonte, J.C.A., Udasco, L.C. Jr., Tamayo, M.N. |
NR |
PH |
CR |
EC in PH |
Montane /dipterocarp/secondary forests |
IM |
|
154. A. minor Ridl. |
2 |
MY |
UA |
NA to MY |
UK |
IM |
|
155. A. mossambicensis (Schott ex
Garcke) N.E.Br. |
10 |
ZM, TZ, MZ, CD, US, ZW |
UA |
NA to MZ, TZ, ZM, CD, ZW |
Savannah |
AT, NT |
|
156. A. muelleri Blume |
106 |
TH, ID, IN, MM, MY, FR, US, TL |
UA |
NA to IN, TH, ID, MY, BN, MM |
Secondary forests |
IM, PA, NT |
|
157. A. mullendersii Malaisse
& Bamps |
5 |
CD |
UA |
NA to AO, CD |
Savannah/ Gallery forests |
AT |
|
158. A. myosuroides Hett. & A.Galloway |
4 |
LA, BE, FR |
UA |
NA to LA |
UK |
IM, PA |
|
159. A. mysorensis E.Barnes &
C.E.C. Fisch. |
11 |
IN |
UA |
NA to IN |
UK |
IM |
|
160. A. napalensis (Wall.) Bogner
& Mayo |
49 |
IN, NP, TH, BT, BD, BE, US |
UA |
NA to IN BD, NP |
UK |
IM, PA, NT |
|
161. A. napiger Gagnep. |
15 |
TH, LA |
UA |
NA to KH, LA, TH, VN |
Deciduous forests |
IM |
|
162. A. natolii Hett., Wistuba, V.B.Amoroso, Medecilo
& Claudel |
NR |
PH |
CR |
EC in PH |
Limestone |
IM |
|
163. A. niahensis P. C. Boyce
& Hett. |
4 |
MY |
UA |
NA to Borneo |
Limestone/shady area |
IM |
|
164. A. nicolaii Hett. |
0 |
VN |
NR |
NA to VN |
UK |
IM |
|
165. A. nicolsonianus Sivadasan |
11 |
IN |
UA |
NA to IN |
UK |
IM |
|
166. A. obovoideus Alderw. |
0 |
ID |
NR |
NA to Sumatera |
UK |
IM |
|
167. A. obscurus Hett. &
Sizemore |
4 |
TH |
UA |
EC in Ubon Ratchathani |
UK |
IM |
|
168. A. ochroleucus Hett. & V.D.Nguyen |
8 |
FR, VN |
NT |
NA to VN |
UK |
PA, IM |
|
169. A. oncophyllus Prain ex
Hook.f. |
0 |
CN |
NR |
NA to Andaman Is. |
UK |
PA |
|
170. A. ongsakulii Hett. &
A.Galloway |
6 |
LA, FR, BE |
UA |
NA to LA |
UK |
IM, PA |
|
171. A. operculatus Hett. &
Sizemore |
8 |
FR, TH |
UA |
EC in Chumphon |
UK |
PA, IM |
|
172. A. opertus Hett. |
1 |
VN |
UA |
NA to VN |
UK |
IM |
|
173. A. paeoniifolius (Dennst.)
Nicolson |
919 |
AU,IN, ID, PH, TH, PF, PG, YT, CN |
LC/UA |
NA to IN, BD, MY, ID, CN, LA, KH, MM, PH |
Secondary forest/shady places |
AS, IM, AT, PA |
|
174. A. palawanensis Bogner &
Hett. |
21 |
PH |
CR |
EC to PH |
Rich soil with added loam |
IM |
|
175. A. paucisectus Alderw. |
2 |
ID |
UA |
NA to Sumatera |
UK |
IM |
|
176. A. pendulus Bogner &
Mayo |
18 |
MY, ID |
UA |
NA to Borneo |
UK |
IM |
|
177. A. perakensis Engl. |
2 |
MY |
UA |
NA to Malaya |
UK |
IM |
|
178. A. perrieri Hett. &
Wahlert |
16 |
MG, US |
UA |
NA to MG |
Semi-deciduous forest |
AT, NT |
|
179. A. pilosus Hett. |
6 |
VN |
UA |
NA to VN |
UK |
IM |
|
180. A. plicatus Bok &
H.J.Lam |
3 |
ID |
UA |
NA to Sulawesi |
UK |
IM |
|
181. A. polyanthus Hett. &
Sizemore |
6 |
TH, US |
UA |
NA to TH |
Deep shade, near base of rocky outcrop |
IM, NT |
|
182. A. prainii Hook. f. |
53 |
MY, TH, US, ID, BE, IN |
UA |
NA to LA, MY, TH, Sumatera |
Evergreen forest/Limestone |
IM, NT, PA |
|
183. A. preussii (Engl.) N.E.Br. |
30 |
CM |
VU |
EC in CM |
Primary shady forests |
AT |
|
184. A. prolificus Hett. &
Galloway |
3 |
TH |
UA |
EC in Central TH |
UK |
IM |
|
185. A. pulchellus Hett. &
Schuit |
0 |
LA |
NR |
NA to Laos |
Limestone |
IM |
|
186. A. purpurascens Kurz ex
Hook.f. |
8 |
MM |
UA |
NA to MM |
UK |
IM |
|
187. A. pusillus Hett. &
Serebryanyi |
6 |
VN |
UA |
NA to VN |
UK |
IM |
|
188. A. putii Gagnep |
17 |
TH, MM, US |
UA |
NA to MM, TH |
Evergreen forests/Shaded places |
IM, NT |
|
189. A. pygmaeus Hett. |
13 |
TH, US |
UA |
EC in Prachuap Khiri Khan |
Limestone |
IM, NT |
|
190. A. ranchanensis Ipor,
A.Simon & Meekiong |
4 |
MY |
UA |
NA to Borneo |
UK |
IM |
|
191. A. ravenii V.D.Nguyen &
Hett. |
0 |
LA |
NR |
NA to LA |
UK |
IM |
|
192. A. rayongii Hett. &
Medecilo |
NR |
PH |
NR |
EC in PH |
Near the beach |
IM |
|
193. A. reflexus Hett. &
A.Galloway |
3 |
TH |
UA |
EC in Khampaeng Phet. |
Limestone |
IM |
|
194. A. rhizomatosus Hett. |
8 |
LA, GQ, GA, GN, NG |
UA |
NA to LA, VN |
UK |
IM, AT |
|
195. A. richardsiae Ittenb. |
4 |
ZM |
UA |
NA to ZM |
UK |
AT |
|
196. A. rostratus Hett. |
1 |
PH |
UA |
EC to PH |
Secondary forest |
IM |
|
197. A. rugosus Hett. & A.L.
Lamb |
0 |
MY |
NR |
NA to Borneo |
UK |
IM |
|
198. A. sagittarius Steenis |
3 |
ID |
UA |
NA to Jawa |
UK |
IM |
|
199. A. salmoneus Hett. |
5 |
PH |
UA |
EC in PH |
Limestone |
IM |
|
200. A. saraburensis Gagnep |
1 |
TH |
UA |
EC in Saraburi |
Monsoonal savannah |
IM |
|
201. A. saururus Hett. |
5 |
FR, TH, US |
UA |
EC in N. E. TH Loei |
UK |
PA, IM, NT |
|
202. A. scaber Serebryanyi &
Hett. |
6 |
VN, LA |
UA |
NA to VN |
UK |
IM |
|
203. A. schmidtiae Hett. &
A.Galloway |
1 |
LA |
UA |
NA to LA |
UK |
IM |
|
204. A. scutatus Hett. & T.C.
Chapm. |
4 |
TH |
UA |
EC in Phetchabun |
UK |
IM |
|
205. A. serrulatus Hett.
& A.Galloway |
1 |
TH |
UA |
EC in Northern Thailand |
UK |
IM |
|
206. A. shyamsalilianus
J.V.Gadpay., Somkuwar & A.A.Chaturv. |
0 |
IN |
NR |
NA in IN |
UK |
IM |
|
207. A. sinuatus Hett. &
V.D.Nguyen |
2 |
FR, VN |
UA |
NA to VN |
UK |
PA, IM |
|
208. A. sizemoreae Hett. |
3 |
TH, US |
UA |
EC in Nakhon Sawan |
UK |
IM, NT |
|
209. A. smithsonianus Sivadasan |
11 |
IN |
UA |
NA to IN |
UK |
IM |
|
210. A.sparsiflorus Hook.f. |
3 |
MY |
UA |
NA to Malaya |
UK |
IM |
|
211. A. spectabilis (Miq.) Engl. |
11 |
ID |
UA |
NA to Jawa |
UK |
IM |
|
212. A. staudtii (Engl.) N.E.Br. |
23 |
CM, CI |
UA |
NA to CM, CD |
Primary rainforest/shaded rich soils |
AT |
|
213. A. stuhlmannii (Engl.) Engl.
& Gehrm |
46 |
TZ, CD, KE |
UA |
NA to KE, TL, CD |
UK |
AT |
|
214. A. subcymbiformis Alderw. |
1 |
ID |
UA |
NA to Sumatera |
UK |
IM |
|
215. A. sumawongii (Bogner)
Bogner & Mayo |
25 |
TH, FR, BE, US |
UA |
EC in Sa Ksaeo, Wathana Nakhon |
Dry dipterocarp forest |
IM, PA, NT |
|
216. A. suwidjianus Ipor, Tawan
& Meekiong |
0 |
ID |
NR |
NA to Borneo |
UK |
IM |
|
217. A. sylvaticus (Roxb.) Kunth |
31 |
IN, LK |
UA |
NA to IN, LK |
UK |
IM |
|
218. A. symonianus Hett. &
Sizemore |
14 |
FR, TH |
UA |
EC in Loei, Udon Thani |
Limestone/medium shade |
PA, IM |
|
219. A. synandrifer Hett. & V.D.Nguyen |
1 |
VN |
CR |
NA to VN |
UK |
IM |
|
220. A. taurostigma Ittenb.,
Hett. & Bogner |
43 |
MG, BE |
VU |
EC in MG |
Shady humus pockets |
AT, PA |
|
221. A. tenuispadix Hett. |
9 |
TH, FR, US |
UA |
EC in south western & Peninsular TH |
Rocks at the foot of the hill |
IM, PA, NT |
|
222. A. tenuistylis Hett. |
12 |
TH, US |
UA |
NA to KH, TH |
Open mixed bamboo & deciduous
forests/ limestone |
IM, NT |
|
223. A. terrestris Hett &
Claudel |
0 |
TH |
NR |
NA to TH |
UK |
IM |
|
224. A. teuszii (Engl.) Motte |
11 |
CD, AO, LK |
UA |
NA to AO, CD |
UK |
AT, IM |
|
225. A. thaiensis (S.Y.Hu) Hett. |
18 |
FR, TH, US |
UA |
EC in Mae Hong Son |
UK |
PA, IM, NT |
|
226. A. tinekeae Hett. &
A.Vogel |
5 |
MY |
UA |
NA to Borneo |
UK |
IM |
|
227. A. titanum (Becc.) Becc. |
223 |
AU, ID, US, BE, CA, SE |
EN |
NA to Sumatera |
UK |
AS, IM, NT, PA |
|
228. A. tonkinensis Engl. &
Gehrm |
22 |
VN, LA |
UA |
NA to CN, VN |
Dense tropical forests, moist, shaded
places |
IM |
|
229. A. tuberculatus Hett. &
V.D.Nguyen |
7 |
BI |
UA |
NA to VN |
UK |
AT |
|
230. A. umbrinus A.Galloway, Luu,
Malkm. Huss., Prehsler & Claudel |
2 |
VN |
UA |
NA to VN |
UK |
IM |
|
231. A. urceolatus Hett.,
A.Galloway & Medecilo |
NR |
PH |
NR |
EC in PH |
Secondary forest/exposed places |
IM |
|
232. A. variabilis Blume |
174 |
ID, CN, BE, US |
UA |
NA to Jawa, Sunda |
UK |
IM, PA, NT |
|
233. A. venustus Hett., A.Hay
& Mood |
0 |
MY |
NR |
NA to Borneo |
UK |
IM |
|
234. A. verticillatus Hett. |
10 |
VN, FR, BE, US |
VU |
NA to VN |
UK |
IM, PA, NT |
|
235. A. villosus A.Galloway, Luu,
Malkm.-Huss., Prehsler & Claudel |
0 |
VN |
NR |
NA to VN |
UK |
IM |
|
236. A. vogelianus Hett. &
Billensteiner |
2 |
FR |
UA |
EC to TH Chiang Mai |
UK |
PA |
|
237. A. xiei H.Li & Z.L.Dao |
4 |
CN |
UA |
NA to CN South Central |
Forest margins/tropical thickets |
PA |
|
238. A. yaoi A. Galloway, Hett.,
& Medecilo |
NR |
PH |
NR |
EC in PH |
Hilly shaded areas |
IM |
|
239. A. yuloensis H.Li |
10 |
CN, FR, TH |
UA |
NA to CN, IN, MM |
Dense primary evergreen valley
forests/limestone |
PA, IM |
|
240. A. yunnanensis Engl. |
111 |
TH, CN, US, VN, BE, LA, MM |
UA |
NA to CN, LA, TH, VN |
Primary evergreen/Deciduous/secondary
forest/forest Margin |
IM, PA, NT |
|
241. A. zenkeri (Engl.) N.E.Br. |
28 |
CM |
UA |
EC in Guineo-Congolese region: Fernando Po |
UK |
AT |
Occurrences: NR—no record | 0—no specimens
encountered | Country names ISO 3166-1 alpha – 2 codes | IUCN status:
UA—Unassessed | DD—Data Deficient | LC—Least Concern | NT—Near Threatened |
VU—Vulnerable | EN—Endangered | CR—Critically Endangered | NR—No Record) |
Status of distribution: EC—Endemic | NA—Native | Ecological habitat: UK—Unknown
| Biogeographic region: NE—Neotropic | NT—Nearctic | AT—Afrotropic |
PA—Palearctic | AS—Australasia | IM—Indo-Malay. (Olson et al. 2001).
For
figures & image - - click here for full PDF
REFERENCES
Anil,
S.R., E.A. Siril & S.S. Beevy (2011). Morphological variability in 17 wild
Elephant foot Yam Amorphophallus paeoniifolius collections from south
west India. Genetic Resources and Crop Evolution 58: 1263–1274. https://doi.org/10.1007/s10722-011-9752-z
Anil,
S.R., E.A. Siril & S.S. Beevy (2014). Diversity analysis in Amorphophallus
using Isozyme markers. International Journal of Vegetable Science 20:
305–321. https://doi.org/10.1080/19315260.2013.803509
Barthlott, W., J. Szarzynski, P. Vlek, W.
Lobin & N. Korotkova (2009). A torch in the rain forest: Thermogenesis of the Titan Arum Amorphophallus
titanum. Plant Biology 11(4): 499–505. https://doi.org/10.1111/j.1438-8677.2008.00147.x
Batuyong,
M.A.R., M.A. Calaramo & G.J.D. Alejandro (2020). A checklist and conservation status of
vascular plants in the limestone forests of Metropolitan Ilocos Norte Watershed
Forest Reserve, Northwestern Luzon, Philippines. Biodiversitas 21(9):
3969–3981. https://doi.org/10.13057/biodiv/d210907
Brummitt,
N.A., S.P. Bachman, J. Griffiths-Lee, M. Lutz, J.F. Moat, A. Farjon, A., J.S.
Donaldson, C. Hilton-Taylor, T.R. Meagher, S. Albuquerque, E. Aletrari, A.K.
Andrews, G. Atchison, E. Baloch, B. Barlozzini, A. Brunazzi, J. Carretero, M.
Celesti, H. Chadburn, E. Cianfoni, C. Cockel, V. Coldwell, B. Concetti, S.
Contu, V. Crook, P. Dyson, L. Gardiner, N. Ghanim, H. Greene, A. Groom, R.
Harker, D. Hopkins, S. Khela, P. Lakeman-Fraser, H. Lindon, H. Lockwood, C.
Loftus, D. Lombrici, L. Lopez-Poved, J. Lyon, P. Malcolm-Tompkins, K. Mc
Gregor, L. Moreno, L. Murray, K. Nazar, E. Power, M.Q. Tuijtelaars, R. Salter,
R. Segrott, H.Thacker, L.J. Thoms, S.Tingvoll, G. Watkinson, K. Wojtaszekova
& E.M. Nic Lughadha (2015). Green plants in the red: a baseline global assessment for the IUCN
sampled red list index for plants. PLOS ONE 10(8): e0135152. https://doi.org/10.1371/journal.pone.0135152
Bulawin,
N.F., M.M.P. Medecilo-Guiang, G.J.D. Alejandro (2024). Amorphophallus samarensis (Araceae), a new species endemic to Samar
Island, Eastern Visayas, Philippines. Webbia 79(2): 295–303.
https://doi.org/10.36253/jopt-16302
Bulawin,
N.F., M.M.P. Medecilo-Guiang & G.J.D. Alejandro (2023). Palynology of Philippine Amorphophallus
Blume ex Decne. (Araceae) and its taxonomic implications. Biodiversitas
24: 4095–4109. https://doi.org/10.13057/biodiv/d240748
Bulawin,
N.F., M.M.P. Medecilo-Guiang & G.J.D. Alejandro (2022). Amorphophallus fontarumii (Araceae),
a new species from Tanay Rizal, Luzon Island, Philippines. Nordic
Journal of Botany e03643: 1–12. https://doi.org/10.1111/njb.03643
Calaramo,
M.A., M.A.R. Batuyong, N.F. Bulawin & G.J.D. Alejandro (2022). Notes on the genus Amorphophallus Blume
ex Decne. (Araceae) of northwestern Luzon, Philippines, including a new
species. Nordic Journal of Botany e03491: 1–12. https://doi.org/10.1111/njb.03491
CATE
Araceae (2022). https://cate-araceae.myspecies.info/.
Accessed on 30.i.2022.
Chartier,
M. & M. Gibernau (2009). Size variations of flowering characters in Arum maculatum
(Araceae). Aroideana 32: 153–158.
Chua,
M., T.C. Baldwin, T.J. Hocking & K. Chan (2010). Traditional uses and potential health
benefits of Amorphophallus Konjac K. Koch ex N.E. Br. Journal of
Ethnopharmacology 128(2): 268–218. https://doi.org/10.1016/j.jep.2010.01.021
Claudel,
C., S. Buerki, L.W. Chatroo, A. Antonelli, N. Alvarez & W. Hetterscheid
(2017).
Large-scale phylogenetic analysis of Amorphophallus (Araceae) derived
from nuclear and plastid sequences reveals new subgeneric delineation. Botanical
Journal of the Linnean society 184(1): 32–45. https://doi.org/10.1093/botlinnean/box013
Claudel,
C., S. Yadun-Lev, W. Hetterscheid & M. Schultz (2019). Mimicry of lichens and cyanobacteria on
tree sized Amorphophallus petioles results in their masquerade as
inedible tree trunks. Botanical Journal of the Linnean Society 190(2):
192–214. https://doi.org/10.1093/botlinnean/boz014
Claudel,
C. (2021). The many
elusive pollinators in the genus Amorphophallus. Arthropod-Plant
Interactions 15: 833–844. https://doi.org/10.1007/s11829-021-09865-x
Dapar,
M.L.G., G.J.D. Alejandro, U. Meve & S.L. Schumann (2020). Ethnomedicinal importance and
conservation status of medicinal trees among indigenous communities in
Esperanza, Agusan de Sur Philippines. Journal of Complementary Medicine Research
11(1): 59–71. https://doi.org/10.5455/jcmr.2020.11.01.08
Dempsey,
C. (2022). Endemic,
native, non-native, and invasive species. geography realm. https://www.geographyrealm.com/endemic-native-non-native-and-invasive-species/.
Accessed on 25.iii.2022.
Diaz,
A. & G. Kite (2006). Why be a rewarding trap? The evolution of floral rewards in Arum
(Araceae) a genus characterized by Saprophilous pollination systems. Biological
Journal of the Linnean Society 88(2): 257–268. https://doi.org/10.1111/j.1095-8312.2006.00612.x
Gao,
Y., S. Yin, L. Wu, D. Dai, H. Wang, C. Liu & L. Tang (2017). Genetic diversity and structure of wild
and cultivated Amorphophallus paeoniifolius population in southwestern
China as revealed by RAD Seq. Scientific Reports 7: 1–10. https://doi.org/10.1038/s41598-017-14738-6
GBIF
(2022). Global
Biodiversity Information Facility. https://www.gbif.org/ Accessed on 30.i.2022.
Grob,
G.B.J., B. Gravendeel & M.C.M. Eurlings (2003). Potential phylogenetic utility of the
nuclear floricaula/leafy second intron: Comparison with three chloroplast DNA
regions in Amorphophallus (Araceae). Molecular Phylogenetics and
Evolution 30(1): 13–23. https://doi.org/10.1016/s1055-7903(03)00183-0
Gustini,
E., D.W. Praptomo & A. Rodliyati (2017). The phenetic relationships of Amorphophallus
sp. based on their morphological characteristics in Laren Subdistrict
Lamongan Regency. 8th International Conference on Global Resource
Conservation 1908(1): 1–6. https://doi.org/10.1063/1.5012724
Hung,
D.V. & A.F. Potokin (2019). Diversity of plant species composition and forest vegetation cover of
Dong Nai Culture and Nature Reserve, Vietnam. IOP conference series: Earth
and Environmental Science 316: 1–9. https://doi.org/10.1088/1755-1315/316/1/012009
IAS
(2022).
International Aroid Society. http://www.aroid.org/. Accessed on 30.i.2022.
Internet
Directory for Botany (2022). https://www.ou.edu/cas/botany-micro/idb- alpha/bot-di.html. Accessed on
25 March 2022
IPNI
(2022).
International Plant Names Index. https://www.ipni.org/. Accessed on 30.i.2022
ISO
3166-1 alpha-2 code (2022). https://www.nationsonline.org/oneworld/country_code_list.htm. Accessed
on 30.i.2022.
IUCN (2022). The IUCN Red List of Threatened Species.
Version 2021-3 https://www.iucnredlist.org. Accessed on 30.i.2022.
Liu,
K., N. Fadzly, A. Mansor, R. Zakaria, N. Ruppert & C.Y. Lee (2017). The dual defensive strategy of Amorphophallus
throughout its ontogeny. Plant Signaling and Behavior 12(10): 1–6. https://doi.org/10.1080/15592324.2017.1371890
Mastuti,
R., N. Harijati, E.L. Arumingtyas & W. Widoretno (2018). Effect of bulbils position on leaf
branches to plant growth responses and corms quality of Amorphophallus
muelleri Blume. Journal of Experimental Life Science 8(1): 1–6. https://doi.org/10.21776/UB.JELS.2018.008.01.01
Mbuni,
Y.M., Y. Zhou, S. Wang, V.M. Ngumbau, P.M. Musili, F.M. Mutie, B. Njoroge, P.M.
Kirika, G. Mwachala, K. Vivian, P.C. Rono, G. Hu & Q. Wang (2019). An annotated checklist of vascular plants
of Cherangani Hills, western Kenya. Phytokeys 120: 1–90. https://doi.org/10.3897/phytokeys.120.30274
Misra,
R.S. & T. Osborn (2010). Konjac (Amorphophallus Konjac K. Koch): a high value crop. Aroideana
33: 215–207.
Mc
Pherson, S. & W. Hetterscheid (2011). Amorphophallus in the wild and in
cultivation. The Plantsman June: 90–97.
Moodley,
D., S. Proches & J.R.U Wilson (2016). A Global assessment of a largemonocot
family highlights the need for group-specific analyses of invasiveness. AoB
Plants 8: 1–14. https://doi.org/10.1093/aobpla/plw009
Mursyidin,
D.H., M.A. Hernanda & Badruzsaufari (2022). Genetic diversity of Elephant Foot Yam Amorphophallus
paeoniifolius and two other relatives from the Meratus mountains of south
Kalimantan, Indonesia. Journal of Tropical Biodiversity and Biotechnology 7:
1–12. https://doi.org/10.22146/jtbb.66231
Nguyen,
V.D., H.T. Luu & Q.D. Nguyen (2016). Amorphophallus kienluongensis
(Araceae), a new species from the Mekong Delta, southern Vietnam. Blumea
– Biodiversity, Evolution and Biogeography of Plants 61(1): 1–3. https://doi.org/10.3767/000651916X690395
NYBG
(2022). New York
Botanical Garden. http://sweetgum.nybg.org/science/collections/. Accessed on
25.iii.2022
Olson,
D.M., E. Dinerstein, E.D. Wikramanayake, N.D. Burgess, G.V.N. Powell, E.C.
Underwood, J.A. D’amico, I. Itoua, H.E. Strand, J.C. Morrison, C.J. Loucks,T.F.
Allnut, T.H. Ricketts,Y. Kura, J.F. Lamoreux, W.W. Wettengel, H. Prashant &
Kassem (2001). Terrestrial
ecoregions of the world: A new map of life on earth: A new global map of
terrestrial ecoregions provides an innovative tool for conserving biodiversity.
Bio Science 51(11): 933–338. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
Onyancha,
J.M., E.W.T Wakori, G.A. Moriasi, B.W. Waiganjo & H.M. Mwambeo (2020). Plant checklist of Mount Kenya University
Botanic Garden Thika, Kenya. International Journal of Modern Botany
10(1): 1–8. https://doi.org/10.5923/j.ijmb.20201001.01
Pasta,
S., A. La Rosa, G. Garfi, C. Marceno, A.S. Cristina, F. Carimi & R. Guarino
(2020). An updated
checklist of the Sicilian Native Edible Plants: Preserving the traditional
ecological knowledge of century-old agro-pastoral landscapes. Frontiers in
Plant Science 11: 1–15. https://doi.org/10.3389/fpls.2020.00388
Pelser,
P.B., J.F. Barcelona & D.L. Nickrent (2011 onwards). Co’s Digital Flora of the Philippines.
www.philippineplants.org. Accessed on 30.i.2022.
Phornvillay,
S., S.H. Ahmad, N.A.P. Abdullah, A.B. Rosenani, N.K. Yusof & N.A.M. Rashid
(2015). Morphological
variations of Amorphophallus spp. Blume ex Decne. in Peninsula-Malaysia.
Advances in Bioresearch 6(2): 128–135. https://doi.org/10.15515/abr.0976-4585.6.2.128135
POWO
(2022). Plant of
the World Online. https://powo.science.kew.org/. Accessed on 30.i.2022
Reyserhove,
L., P. Desmet, D. Oldoni, D.S. Adriaens, A.J.S. Davis, F.V. Vanderhoeven &
Q. Groom (2020). A
checklist recipe: making species data open and FAIR. Database 1.12. https://doi.org/10.1093/database/baaa084
Rivai,
R.R., Y. Isnaini & Y. Yuzammi (2022). Elucidation of the radio-sensitivity
level of Amorphophallus paeoniifolius (Dennst.) Nicolson embryogenic
callus Induced by gamma ray irradiation. Biology and Life Sciences Forum 11(1):
93. https://doi.org/10.3390/IECPS2021-11951
Sharma,
A., G. Bano & Ayushi (2022). Type – II delayed hypersensitivity reaction by processed Elephant Foot
Yam Amorphophallus paeoniifolius. IP International Journal of
Comprehensive and Advanced Pharmacology 7(1): 65–67. https://doi.org/10.18231/j.ijcaap.2022.011
Sivilla,
R.G. & I.E.M. Santos (2021). On genus Amorphophallus Blume ex Decne (Araceae) in Cuba. Agrisost
27(1): 1–12. https://doi.org/10.5281/zenodo.7405811
Sookchaloem,
D., O. Sungkajanttranon, S. Petchsri, S. Horadee, C. Huayhongthong, A.
Vanapanich & C. Wongsawaddiwattana (2016). Leaf blade anatomy characteristics of the
genus Amorphophallus Blume ex Decne. in Thailand. Agriculture and
Nature Resources 50(6): 437–444. https://doi.org/10.1016/j.anres.2016.09.002
Sungkajanttranon,
O., D. Marod & K. Thanompun (2018). Diversity and distribution of family
Araceae in Doi Inthanon National Park Chiang Mai Province. Agriculture and
Natural Resources 52(2): 125–131. https://doi.org/10.1016/j.anres.2018.06.009
Taseski,
G.M., C.J. Beloe, R.V. Gallagher, J.Y. Chan, R.L Dalrymple & W.K. Cornwell
(2019). A global
growth-form database for 143, 616 vascular plant species. Ecology
100(3): e02614. https://doi.org/10.1002/ecy.2614
Tropicos
(2022). Missouri
Botanical Garden. https://www.tropicos.org/home. Accessed on 25.iii.2022.
Ulrich,
S., M. Hesse, M. Weber & H. Halbritter (2016). Amorphophallus: new
insights into pollen morphology and the chemical nature of the pollen wall. Grana
56(1): 1–36. https://doi.org/10.1080/00173134.2015.1133699
WCSP
(2022). World
Checklist of Selected Plant. http://wcsp.science.kew.org/home.do. Accessed on
25.iii.2022.
WCVP
(2022). World
Checklist of Vascular Plants. https://wcvp.science.kew.org Accessed on
30.i.2022
WFO
(2022). The World
Flora Online. http://www.worldfloraonline.org. Accessed on 25.iii.2022.
Wulandari,
R.S., S. Ivo & H. Darwati (2022). Population distribution of Amorphophallus
at several altitudes in mount Poteng, Raya Pasi Nature Reserve, West
Kalimantan. Jurnal Sylva Lestari 10(1): 167–179. https://doi.org/10.23960/jsl.v10i1.552
Yudaputra,
A., J.R. Witono, I.P. Astuti, E. Munawaroh, Yuzammi, I.A. Fijridiyanto, R.N.
Zulkarnaen, I. Robiansyah, P.D. Raharjo & W.P.J. Cropper (2022). Habitat suitability, population structure
and conservation status of Pinanga arinasae (Arecaceae), an endemic palm in
Bali Island, Indonesia. Diversity 14(10):1–16. https://doi.org/10.3390/d14010010
Yuzammi,
Y. (2009). The genus Amorphophallus
Blume Ex Decaisne (Araceae-Thomsonieae) in Java. Reinwardtia 13(1):
1–12.
Yuzammi, Y., K.N. Tyas & Handayani
(2018). The
peculiar petiole calluses growth of Amorphophallus titanum (Becc.) ex
Arcang and it’s implications for situ conservation efforts. Biotropica
25(1): 56–63. https://doi.org/10.11598/btb.2018.25.1.706