Journal of Threatened Taxa | www.threatenedtaxa.org | 26 June 2025 | 17(6): 27141–27158

 

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) 

https://doi.org/10.11609/jott.9405.17.6.27141-27158

#9405 | Received 05 September 2024 | Final received 03 June 2025 | Finally accepted 13 June 2025

 

 

An annotated checklist of the genus Amorphophallus Blume ex Decne. (Araceae): an update on the distribution and conservation status of its species

 

Norilyn Fontarum-Bulawin 1, Michael A. Calaramo 2  & Grecebio Jonathan D. Alejandro 3

 

1,3 The Graduate School, University of Santo Tomas, Manila, 1008, Philippines.

1 Department of Education, National Capital Region, Division of Mandaluyong, Mandaluyong City, 1550, Philippines.

2 Northwestern University Ecological Park & Botanic Gardens. Airport Avenue, Bengcag, Laoag City, Ilocos Norte, 2900, Philippines.

3 Department of Biological Sciences, College of Science & Research Center for the Natural and Applied Sciences, Graduate School, University of Santo Tomas, Manila 1008, Philippines.

1 norilyn.bulawin.gs@ust.edu.ph (corresponding author), 2 michael.calaramo@nwu.edu.ph, 3 gdalejandro@ust.edu.ph

 

 

Editor: A.J. Solomon Raju, Andhra University, Visakhapatnam, India.         Date of publication: 26 June 2025 (online & print)

 

Citation: Fontarum-Bulawin, N., M.A. Calaramo & G.J.D. Alejandro (2025). An annotated checklist of the genus Amorphophallus Blume ex Decne. (Araceae): an update on the distribution and conservation status of its species. Journal of Threatened Taxa 17(6): 27141–27158. https://doi.org/10.11609/jott.9405.17.6.27141-27158

  

Copyright: © Fontarum-Bulawin et al. 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

 

Funding: The study is not funded.

 

Competing interests: The authors declare no competing interests.

 

Author details: Grecebio J.D. Alejandro is a full professor and currently the director of Graduate Research at the University of Santo Tomas. He was a fellow of the German Academic Exchange Program for doctoral studies and the Alexander von Humboldt for postdoctoral studies. He has published more than 150 papers in indexed Journals and authored and/or co-authored almost 90 Philippine endemic plants. Michael A. Calaramo is a director and curator of Northwestern University Ecotourism Park and Botanic Gardens. Head of the Biodiversity Research Unit. Also the research leader in the ARRCN Northern Light Project-Northwesterniana Team for the Asian Raptor Migration in Northern Luzon, Philippines. Norilyn F. Bulawin is affiliated with the Graduate School of the University of Santo Tomas, Manila, Philippines, and the Department of Education, National Capital Region, Division of Mandaluyong. She discovered, authored, and co-authored a study on the plant Amorphophallus and conducted additional research related to Amorphophallus species.

 

Author contributions:  GJDA: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Resources (equal); Supervision (equal); Writing – original draft (equal); Writing – review and editing (equal). MAC: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Project administration (equal); Supervision (equal); Writing – original draft (equal); Writing – review and editing (equal). NFB: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Project administration (equal); Supervision (equal); Writing – original draft (equal); Writing – review and editing (equal).

 

Acknowledgements: The authors are very grateful to the following online institution such as AD, B, BONN, MB, CALI, PE, FTG, BKF, GB, HBG, ITB, BO, HAST, UKMB, HNT, VNM, L, MO, HBG, TAI, K, LECB, SUK, WAG, CATE Araceae, Co’s Digital Flora of the Philippines, Global Biodiversity Information Facility, International Aroid Society, International Plant Names Index, Kew World Checklist of Selected Plant Families, Plant of the World Online, The World Flora Online, Tropicos, and World Checklist of Vascular Plants for information of Amorphophallus were used in this study. We also thank Jennifer S. Danila for the support during the data gathering.

 

 

Abstract: Araceae’s most remarkable genus is Amorphophallus, which is propagated for food, ornamental, and herbal medicine due to its medicinal properties. This checklist includes 241 accepted species of Amorphophallus, featuring their scientific names, covered countries, conservation and distribution status, ecological habitats, and biogeographical regions. Around 83% of Amorphophallus species are native, and 17% were endemic, and found in Burundi, Benin, Cambodia, Cameroon, Congo, China, Equatorial Guinea, India, Indonesia, Laos, Myanmar, Madagascar, Malaysia, Nigeria, Philippines, Thailand, and Vietnam. Thailand is the most species-rich country (66 spp.), while Indo-Malay is the most species-rich biogeographic region (56.65%). Furthermore, limestone areas are the typical ecological habitat in which Amorphophallus species can be found (9.76%). IUCN Red List of Threatened Species documents the genus as ‘Critically Endangered’ (4.15%), ‘Vulnerable’ (2.90%), ‘Endangered’ (0.83%), ‘Near Threatened’ (0.83%), ‘Least Concern’ (0.83%), ‘Data Deficient’ (0.83%); 76.35% (184 species out of 241) were not evaluated because the report’s scope for assessing threatened plants might be inadequate, and 13.70% have no record. This inventory from digital databases will assess a more holistic strategic conservation plan of Amorphophallus species worldwide.

 

Keywords: Amorphous, biogeography, diversity, ecological habitat, endemic, global databases, native, occurrences, phallus, worldwide.

 

 

 

INTRODUCTION

 

One of the globally biggest families is the Araceae (Moodley et al. 2016; Bulawin et al. 2024), and one of the largest genera of the family Araceae is Amorphophallus (Claudel 2021; Bulawin et al. 2024). About 241 accepted species of Amorphophallus are distributed worldwide (IPNI 2022; GBIF 2022; WCVP 2022; Bulawin et al. 2022–2024), and 70% of species can be found in southeastern Asia (Claudel et al. 2019). Most species are limited, and only a few are distributed over a large area (Grob et al. 2003). Amorphophallus species are native in southern and southeastern Asia, northern Australia & Oceania, China, Taiwan, Bangladesh, India, Sri Lanka, Laos, Burma, Thailand, Vietnam, Borneo Island, Java Island, Malaysia, Philippines, Celebes Island, Sumatra, New Guinea, Fiji, and Samoa extending from tropical and subtropical climates (Sivilla & Santos 2021).

Amorphophallus is derived from the Greek word amorphous which means deformed, and phallus meaning penis (Yuzammi 2009). Most parts of the plant manifest varied and unique appearances, one of which is the plant’s height (Claudel et al. 2017). Amorphophallus is well known for its colossal flowers and decaying flesh odor (Liu et al. 2017). The colorful spathe of the inflorescence is essential for breeding and laying eggs of the insects (Ulrich et al. 2016). The spadix at the center of the flower emits heat and odor that entices pollinators (Diaz & Kite 2006; Barthlott et al. 2009). The essential part of the flower is the appendix, an organ that draws the attention of insects for pollination (Chartier & Gibernau 2009). The tuber is the underground stem that serves as a storage organ and for plant propagation. Amorphophallus plant commonly grows with an individual leaf (Mc Pherson & Hetterscheid 2011), and the lamina has elliptical leaflets with acute to acuminate apex, similar to the leaves of young trees, and a lichen-like pattern covers the petiole (Claudel et al. 2019). The conspicuous characteristics of Amorphophallus that can be readily identified are the mark arrangement or pattern and the shade of the petiole (Gustini et al. 2017).

In the Philippines, India, Sri Lanka, and other southeastern Asian countries, Amorphophallus is used for human consumption, not only as an ornamental plant (Sivilla & Santos 2021), but also for medicinal purposes. Tubers, young branches, and inflorescence are the parts of Amorphophallus that are edible, and can be used in traditional healing (Anil et al. 2011; Phornvillay et al. 2015; Mastuti et al. 2018; Sookchaloem et al. 2018). Amorphophallus was a secondary food source, next to rice, and was utilized in land-clearing ceremonies as an offering of food in some countries (Mursyidin et al. 2022). It is also used in making chips (Misra et al. 2010) and pasta (Chua et al. 2010). Essential parts of plants can be utilized as a source of medicine and food ingredients (Rivai et al. 2022). Traditionally, it has been used as an herbal medicine due to its medicinal properties (Sharma et al. 2022). 

The contemporary inventory of accepted Amorphophallus species with scientific names, number of occurrences, countries, conservation & distribution status, ecological habitat, and biogeography is introduced in this world checklist. This study utilized digital databases to have a general checklist of Amorphophallus, distribution, and conservation status globally. Through this checklist, the different accepted species of Amorphophallus worldwide, the countries where the species were found, conservation status, habitat, and biogeography regions where the species were distributed are identified. This study will serve as a basic standard of information regarding the genus diversity, distribution, and global conservation to improve strategic management, and a sustainable plan.

 

 

MATERIALS AND METHODS

 

Knowledge about the ecology, characteristics, and habitats of most plants is limited or nonexistent. The plant’s global databases help address some of the plant’s growth forms (Taseski et al. 2019). This study provides a worldwide inventory of the accepted species of Amorphophallus, covered countries, conservation & distribution status, ecological habitat, and biogeographic regions (Table 3). All the acquired information on Amorphophallus species came from digital articles, online herbaria (Table 2) (Internet Directory for Botany 2022; NYBG 2022), and public access databases on biodiversity (Table 1) (Pelser et al. 2011 onwards; CATE Araceae 2022; GBIF 2022; IAS 2022; IPNI 2022; POWO 2022; Tropicos 2022; WCSP 2022; WCVP 2022; WFO 2022). Only the taxonomically accepted species of Amorphophallus were included in this paper. The checklist did not include synonyms and varieties. The well-known online international system, open access that provides a database for plant biodiversity is the Global Biodiversity Information Facility (GBIF) (Reyserhove et al. 2020). The scientific names of accepted species of Amorphophallus were obtained from the GBIF (2022) and cross-checked against the World Checklist of Vascular Plants (WCVP 2022), International Plant Names Index (IPNI 2022), and other online herbaria. Also, the number of occurrences, covered countries, biogeographic regions, and conservation status were added in the analysis. The information on distribution and ecological status of Amorphophallus species was acquired from the Plant of the World Online (POWO 2022), International Plant Names Index (IPNI 2022), and online herbaria worldwide. In this checklist, various online herbaria, biodiversity databases, and protologues were also utilized to verify the information of Amorphophallus species.

The status of occurrences was zero when a survey of a taxon at a specific time and place encountered no specimens. The NR abbreviation was used for no record occurrences based on online herbarium databases. Covered countries were documented by using ISO 3166-1 alpha-2 code (https://www.nationsonline.org/oneworld/country_code_list.htm). These countries where the various species of Amorphophallus were found aligned according to the counterpart biogeographic regions (Image 1), such as Neotropical—NE, Nearctic—NT, Afrotropical—AT, Palearctic—PA, Australasia—AS, and Indo-Malay—IM (Olson et al. 2001). On the one hand, the detailed conservation status was according to the IUCN Global Red List Category. The following abbreviation was used for the conservation status of Amorphophallus species: UA—Unassessed, DD—Data Deficient, LC—Least Concern, NT—Near Threatened, VU—Vulnerable, EN—Endangered, and CR—Critically Endangered. For those Amorphophallus species without a record, the NR abbreviation was used. Information about the distribution status of Amorphophallus species used the abbreviation EC for endemic Amorphophallus and NA for native species of Amorphophallus. The ecological habitat of various species of Amorphophallus were indicated (Figure 7), and those Amorphophallus species with unknown ecological habitat or no record based on online herbarium databases were given the abbreviation UK.

 

 

RESULTS AND DISCUSSION

 

Out of 241 species of Amorphophallus worldwide (Table 3) (Bulawin et al. 2022–2024), around 7,463 total occurrences of Amorphophallus species were recorded in global databases from different countries. Other countries had zero occurrences due to the absence of encountered specimens when a survey of a taxon at a specific time and place was conducted, and some species had no record in global databases. The species with the highest occurrences were Apaeoniifolius (12.31%), A. abyssinicus (10.49%), Abaumannii (5.21%), A. dracontiodes (4.98%), A. konjac (4.66%), A. galbra (4.45%), A. aphyllus (3.95%), A. titanium (2.99%), and A. variabilis (2.33%). Amorphophallus paeoniifolius had the highest occurrences of all the species of Amorphophallus, which was known for its geographical extent. This species can be cultivated in many regions, including southeastern Asia  (Gao et al. 2017; Bulawin et al. 2022). Most of the species with highest occurrences could be found in the following countries: Nigeria, Togo, Indonesia, Burkina Faso, Guinea, United States, and Belgium in Afrotropic, Indo-Malay, Nearctic, and Palearctic regions (Image 1). Table 3 presents the worldwide checklist of Amorphophallus species based on digital databases and herbarium records.

There were various accepted species of Amorphophallus from different countries worldwide. The most species-rich country based on the record of digital databases was Thailand with (66 species), followed by France (39 species), Vietnam (34 species), United States (34 species), Indonesia (32 species), Malaysia (30 species), Laos (28 species), India (22 species), Philippines (21 species), and China (18 species) (Figure 2). Manifesting distinct habitats for the diversity and bioresources of the species (Sungkajanttranon et al. 2018) made Thailand the most species-rich country of Amorphophallus species. Figure 3 presents the number of Amorphophallus species by country based on online herbarium and databases.

The generally recognized and accepted assessment criteria to identify the condition of the species for conservation design are the IUCN Red List of Threatened Species (Yudaputra et al. 2022). Based on the digital databases, 76.35% of Amorphophallus species were unassessed for conservation status, and 13.70% have no record. Around 4.15% of Amorphophallus species globally are CR, 2.90% VU, 0.83% EN, 0.83% NT, 0.83% LC, and 0.83% DD (Figure 4). This result shows that Amorphophallus species are included in the list of protected flora (Wulandari et al. 2022) since some were Critically Endangered, Vulnerable, Endangered, and Near Threatened according to IUCN Red List Criteria (2022).

Native species occur naturally in a region; endemic species are native and restricted to a specific area (Dempsey 2022). Globally, 83% of Amorphophallus species were native, and 17% were endemic (Figure 5). Based on the record of digital databases, the 10 most countries with native species of Amorphophallus were Vietnam (35 species), followed by Malaysia (31 species), Laos (30 species), Thailand (27 species), Indonesia (24 species), India (21 species), China (16 species), Myanmar (13 species), Democratic Republic of Congo (10 species), and the Cambodia (nine species). The 10 countries with endemic species of Amorphophallus were the following: Thailand (34 species), Philippines (20 species), Madagascar four species, Malaysia two species, Nigeria one species, Equatorial Guinea (one species), the Democratic Republic of Congo (one species), Cameroon (one species), Benin (one species), and Burundi (one species) (Figure 6). Most Amorphophallus had a broader extent of endemism because of a large scope of geographic adaptation that made it a diverse species (Anil et al. 2014).

Most of the ecological habitat of the Amorphophallus species was unknown based on digital databases, with 49.83% (Figure 7). Followed by others or different ecological habitats with 5.72%. Few of Amorphophallus species grown in limestone (9.76%), followed by deciduous forest (5.72%), savannah (4.04%), secondary forest (3.70%), primary forest (3.03%), dipterocarp forest (2.69%), shady area (2.69%), under bamboo (1.35%), forest margin (1.35%), open forest (1.01%), open woodland (1.01%), lowland forest (1.01%), rich soil with added loam (0.67%), and low land (0.67%). Some species occur in limestone areas rich in decaying organic matter (Nguyen et al. 2016).  Additionally, they are primarily found in secondary forests rather than primary forests, as they are considered pioneer species, and few have evolved in open fields (Liu et al. 2017).

Amorphophallus species are abundant in the biogeographical regions of Indo-Malay (56.65%), followed by the Palearctic (19.34%), the Afrotropics (11.85%), Nearctic (9.83%), Australasia (1.16%), and lastly the Neotropics (1.16%). No Amorphophallus species are distributed in Oceania and Antarctic biogeography regions. Indo-Malay includes those countries in southern, southeastern Asia, and the southern part of eastern Asia. Most of the Amorphophallus species have been discovered in southeastern Asia (Bulawin et al. 2022), and this result suggests that Amorphophallus species were abundant in Indo-Malay biogeography.

Based on the occurrences, it appears that the genus Amorphophallus has lower occurrences than other genera in the family Araceae, such as Anthurium, Arisaema, Arum, Caladium, Calocasia, Dieffenbachia, Monstera, Philodendron, Syngonium, Xanthosoma, and Zantedeschia, especially when it is not in season. The development or maturity of Amorphophallus varies across different species, and it is a seasonal plant that undergoes an annual cycle of activity and dormancy (Mc Pherson & Hetterscheid 2011).

Besides, Amorphophallus species need an appropriate environmental condition to grow because several factors can affect their growth and distribution such as habitat type, altitude, light, humidity and temperature (Wulandari et al. 2022). These were the reasons why some species of Amorphophallus have zero or absence of occurrences in some other countries (Sungkajanttranon et al.2018; Wulandari et al. 2022). A. paeoniifolius (Figure 1) had a higher percentage of occurrences because of its comestible tuber and medicinal properties (Anil et al. 2011). It is known for its geographical extent, as this species can be cultivated in many regions (Bulawin et al. 2022).

In describing the rate of biodiversity of a particular ecosystem, evaluation of plants, geographical distribution in terms of species richness, species evenness, endemism, and conservation status is fundamental (Batuyong et al. 2020). Out of 10 countries with a higher number of Amorphophallus species, Thailand is the most species-rich country because of its suitable environment for its growth, which has tropical, and subtropical climates (Figure 2) (Sivilla & Santos 2021). Species richness of plants is greater in the herbaceous forest area compared to other forest zones (Mbuni et al. 2019).

Based on the record of the United Nations, over a million species globally are at risk of extinction, and it was a discouraging report (Dapar et al. 2020). As a result of the climate crisis and anthropogenic activities, there is a consistently declining plant biodiversity (Onyancha et al. 2020; Pasta et al. 2020; Calaramo et al. 2022). IUCN Red List Criteria could assess the extinction risk (Yudaputra et al. 2022). It could figure out the danger rate for particular species globally (Brummitt et al. 2015). According to digital databases, 76.35% of Amorphophallus species were not evaluated for conservation status, and 13.70% have no record (Figure 4). Around 4.15% of Amorphophallus species globally were ‘Critically Endangered’, 2.90% ‘Vulnerable’, 0.83% Endangered, 0.83% ‘Near Threatened’, 0.83% ‘Least Concern’, and 0.83% ‘Data Deficient’. IUCN admitted that the report’s scope for assessing threatened plants might be inadequate (Brummitt et al. 2015).

Vietnam had the highest number of native Amorphophallus species, while Thailand had the highest number of endemic species, based on digital databases (Figure 6). The natural habitat of Vietnam sustained the diverse vegetation and higher biodiversity (Hung & Potokin 2019), which resulted in more native species surviving in the country. However, endemism is applied to species with a small population size with a very limited ecological distribution (Yudaputra et al. 2022). With the distinct habitat for diversity and bioresources of the species manifested by Thailand (Sungkajanttranon et al. 2018) higher number of endemic Amorphophallus species were able to survive and grow in the country. Endemic species in a particular area can adapt more readily and thrive in diverse environmental conditions (Wulandari et al. 2022).

Some Amorphophallus species are adapted in a partly shaded area, secondary forest, and grassland (Mc Pherson & Hetterscheid 2011). A few species grow in limestone or karst forest ecosystem (Figure 8) based on digital databases, with 9.76% because some of the Amorphophallus species have a shallow root that is susceptible to drought (Misra et al. 2010). Amorphophallus needs soil that allows water to drain moderately. For the plant to grow better, appropriate soil nutrients, and proper draining of water in the soil are required (Yuzammi et al. 2018). Also, limestone contains fragments of elements that can enhance soil quality. Because of this, most of the time, Amorphophallus species are found in limestone and granite soil (Nguyen et al. 2016).

According to digital databases, Amorphophallus species are mostly distributed in the Indo-Malay biogeography region (Figure 9) with 56.65% because 70% of various species of Amorphophallus can be found in southeastern Asia (Claudel et al. 2019), which is under Indo-Malay biogeography. The center of distribution of Amorphophallus is Thailand because, based on the record of digital databases, Thailand is the most species-rich country due to its ecological status suited for the diversity and bioresources of Amorphophallus species.

 

 

CONCLUSIONS AND RECOMMENDATIONS

 

The world checklist of Amorphophallus species revealed the current number of accepted species worldwide, their distribution status, ecological habitats, and conservation status. Out of 241 species as of this writing, A. paeoniifolius has the most significant number of occurrences, and Thailand is the most species-rich country of Amorphophallus. Many Amorphophallus species have not been evaluated, which can hinder the accurate assessment of the conservation status of some species. This data needs to be revisited, and more species should be included in the list for further protection. The majority of Amorphophallus species were adapted to limestone habitats. Therefore, the limestone ecosystem is one of the areas that people should protect from excessive degradation direct or indirect anthropogenic activities. Moreover, the primary goal of the checklist is to provide a record of all the Amorphophallus species worldwide. Ecologists, biogeographers, and taxonomists must review the digital databases of Amorphophallus species and update them to enhance their utility in gaining knowledge about species biodiversity, thereby filling the information gap and making biodiversity details more comprehensive and up-to-date.

 

 

Table 1. Databases used for a worldwide checklist of Amorphophallus species.

Database

Webpage URL

CATE Araceae

https://cate-araceae.myspecies.info/

Co’s Digital Flora of the Philippines

https://www.philippineplants.org/

Global Biodiversity Information Facility (GBIF)

https://www.gbif.org/

International Aroid Society

https://www.aroid.org/

International Plant Names Index (IPNI)

https://www.ipni.org/

World Checklist of Selected Plant Families (WCSP)

https://wcsp.science.kew.org/home.do

Plants of the World Online (POWO)

https://powo.science.kew.org/

The World Flora Online (WFO)

https://www.worldfloraonline.org/

Tropicos

https://www.tropicos.org/home

World Checklist of Vascular Plants (WCVP)

https://wcvp.science.kew.org/taxon/979828-1

 

 

Table 2. Herbaria used for the confirmation of Amorphophallus species [NYBG Steere Herbarium (2022) | Internet Directory for Botany (2022)].

 

Institution

Location

Herbarium code

Adelaide Botanic Garden

Australia

AD

Berlin-Dahlem Botanical Garden

Germany

B

Bonn Botanic Garden

Germany

BONN

Botanic Garden of Marburg University

Germany

MB

Calicut University Botanical Garden

India

CALI

Chinese National Herbarium

China

PE

Fairchild Tropical Botanic Garden

USA

FTG

Forest Herbarium

Thailand

BKF

Gothenburg Botanical Garden

Sweden

GB

Hamburg Botanical Garden

Germany

HBG

Herbarium Bandungense Jurusan Biologi

Indonesia

ITB

Herbarium Bogoriense

Indonesia

BO

Herbarium, Institute of Botany, Academia Sinica, Taipei

Taiwan

HAST

Herbarium Universiti of Kebangsaan

Malaysia

UKMB

Huntington Botanical Gardens

California

HNT

Institute of Tropical Biology

Vietnam

VNM

Leiden Botanic Garden

Netherlands

L

Missouri Botanic Garden

USA

MO

National Herbarium of the Netherlands or Herbarium Hamburgense

Netherlands

HBG

National Taiwan University Herbarium

Taiwan

TAI

Royal Botanic Garden

Australia

K

Saint Petersburg University

Russia

LECB

Shivaji University

India

SUK

Wageningen Herbarium

Netherlands

WAG

 

 

Table 3. Worldwide checklist of Amorphophallus species based on digital databases and herbarium records.

Species

Number of occurrences

Country

IUCN Red List status

Status of distribution

Ecological habitat

Biogeographic region

1. A. aberrans Hett.

5

TH, FR

UA

EC in TH

Dry savannah forest

IM, PA

2. A. abyssinicus (A.Rich.) N.E.Br.

 

783

BE, CD, BF, TZ, CI, CM, GN, NG, TG, CF

UA

NA to NG, BF, NE, TG, ZM, CM, NA, CF, TD, ET, ZA, TZ, UG, ZW

UK

PA, AT

3. A. adamsensis Magtoto, Mones, Ballada, Austria, R.M.Dizon, Alangui, Regina

NR

PH

NT

EC in PH

UK

IM

4. A. albisphathus Hett.

17

TH, BE, MY, US

UA

EC in TH

Limestone

IM, PA, NT

 5. A. albus P.Y.Liu & J.F.Chen

23

CN, FR, CH, BE, SE

UA

NA to CN

Open forest

PA

6. A. allenii A. Galloway, Malkm. Huss., Prehsler & Claudel

0

TH

NR

NA to TH

UK

IM

 7. A. amygdaloides Hett. & Sizemore

5

TH

UA

EC in TH

UK

IM

 8. A. andranogidroensis Hett. & Mangelsdorff

2

MG

UA

EC in MG

Deciduous forest

AT

 9. A. angolensis (Welw. ex. Schott)N.E.Br.

79

GA, CD, CF, AO, CN

UA

NA to AO, GA, SD, CD

UK

AT, PA

 10. A. angulatus Hett. & A.Vogel

11

MY

UA

NA to Borneo

UK

IM

11. A. angustispathus Hett.

4

MM

UA

NA to MM

UK

IM

12. A. ankarana Hett. Ittenb. & Bogner

25

MG, BE, FR

UA

EC in MG

Limestone

AT, PA

13. A. annulifer Hett.

2

ID

UA

NA to Java

UK

IM

14. A. antsingyensis Bogner, Hett. & Ittenbach

27

MG

UA

EC in MG

Primary & secondary forest/limestone

AT

15. A. aphyllus (Hook.) Hutch.

295

BJ, SN,GM, SL, GN, GW, ML, BE, TG, CI

UA

NA to BF, CF, TD, GW, ML, SN, SL,TG

Savannah/dry forest

AT, PA

16. A. arcuspadix A.Galloway, Ongsakul & Petra Schmidt

1

FR

UA

NA to LA

UK

PA

17. A. ardii Yuzammi & Hett.

NR

ID

NR

NA to Sulawesi

UK

IM

18. A. asper (Engl.) & Gehrm.

7

ID

UA

NA to Sumatra

UK

IM

19. A. asterostigmatus Bogner & Hett.

13

TH

UA

EC in TH

Limestone

IM

20. A. atrorubens Hett. & Sizemore

2

TH

UA

EC in TH

Limestone

IM

21. A. atroviridis Hett.

9

TH, BE

UA

EC in TH

Limestone

IM, PA

22. A. bangkokensis Gagnep

2

TH

UA

EC in TH

Low-lying waste ground

IM

23. A.barbatus A.Galloway & Ongsakul

0

LA

NR

NA to LA

UK

IM

24. A. barthlottii Ittenb. & Lobin

6

CI, LR

UA

NA to CI, LR

UK

AT

25. A. baumannii (Engl.) N.E.Br.

389

BE, GH, TG, SN, BF, NG, GW, SL, GM, NG

UA

NA to NG, BF, NE, NG, SN, SL, CF, TD, GM, GH, GW, LR, TG

Savannah/ open woodland/and stony soil

PA, AT

26. A. beccarii Engl.

26

ID, FR

UA

NA to Sumatera

UK

IM, PA

27. A. bequaertii De Wild.

4

CD

UA

EC in East CD

Primary forest

AT

28. A. blumei Schott, 1863

0

IN

NR

NR

UK

NR

29. A. bognerianus Sivad & Jaleel

2

IN

UA

NA to East Himalaya

UK

IM

30. A. bolikhamxayensis A.Galloway, Ongsakul & Petra Schmidt

1

FR

UA

NA to LA

UK

PA

31. A. bonaccordensis Sivad. & N.Mohanan

4

IN

UA

NA to IN

UK

IM

32. A. borneensis (Engl.) Engl. & Gehrm

18

MY, ID, BE, BN

UA

NA to Borneo

UK

IM, PA,

33. A. boyceanus Hett.

1

TH

UA

EC in TH

UK

IM

34. A. brachyphyllus Hett.

10

MY

UA

EC in Bau area, Kuching Div.

Lowland forest/ Limestone/evergreen forest

IM

35. A. brevipetiolatus A.Galloway, Ongsakul & Petra Schmidt

0

LA

NR

NA to LA

UK

IM

36. A. brevispathus Gagnep.

11

TH

UA

EC in TH

Limestone

IM

37. A. bubenensis J.T.Yin & Hett.

0

CN

NR

NA to CN South Central

UK

PA

38. A. bufo Ridl.

7

MY

UA

NA to Malaya

UK

IM

39. A. bulbifer (Roxb.) Blume

161

IN, US, CN, TH, BE, FR, NP, BT, ID

UA

NA to IN, CN, BD, IN, MM, NP

UK

IM, NT, PA,

40. A. calabaricus N.E.Br.

34

CM, NG, BJ, CD, GA, UG

UA

NA to NG, CM, KE, UG, CP

UK

AT

41. A. calcicola Tamayo, M.N., Magtoto, Liezel, L.M., Sumalinog, M. JR., Reyes, T.D. Jr., Austria, C.M.

NR

PH

CR

EC in PH

Forest/limestone

IM

42. A. canaliculatus Ittenb., Hett. & Lobin

6

GA

UA

NA to GA

UK

AT

43. A. candidissimus X.Gong & H.Li

0

VN

NR

NA to VN

UK

IM

44. A. carneus Ridl.

9

MY, TH

UA

NA to MY, TH

Limestone

IM

45. A. carnosus Engl.

9

VN

UA

NA to VN

UK

IM

46. A. caudatus Bustamante, R.A.A., Mansibang, J.A., Hetterscheid, W.L.A., Tamayo, M.N.

NR

PH

CR

EC in PH

Low land forest

IM

47. A. chlorospathus Kurz ex Hook.f.

3

IN, MM

UA

NA to IN, MM

UK

IM

48. A. cicatricifer Hett.

6

TH

UA

EC in Kanchanaburi

Evergreen forest

IM

49. A. cidarioides J.R.Callado, Medecilo & Hett.

NR

PH

NR

EC in PH

Watery areas

IM

50. A. cirrifer Stapf.

9

TH

UA

EC in TH

Deciduous forest/open forest

IM

51. A. claudelii A.Galloway & Ongsakul

1

FR

UA

NA to LA

UK

PA

52. A. coaetaneus S.V.Liu & S.J.Wei

18

VN, FR, CN, US

UA

NA to CN, VN

Forest valley

IM, PA, NT

53. A. commutatus (Schott) Engl.

56

IN

UA

NA to IN

UK

IM

54. A. consimilis Blume

80

SN, GM, BJ, ML, FR, GW, BE

UA

NA to GM, SN

Low land

AT, PA

55. A. corrugatus N.E.Br.

43

TH, US, VN

UA

NA to CN, MM, TH

Primary forest/evergreen forest

IM, NT

56. A. costatus Hett.

5

MY, ID

UA

NA to Borneo

UK

IM

57. A. coudercii (Bogner) Bogner

5

KH, VN

UA

NA to KH

UK

IM

58. A. crinitus A.Galloway, Luu, Malkm.-Huss., Prehsler & Claudel

0

VN

NR

NA to VN

UK

IM

59. A. crispifolius A.Galloway, Ongsakul & Petra Schmidt

0

LA

NR

NA to LA

UK

IM

60. A. croatii Hett. & Galloway

2

LA

UA

NA to LA

UK

IM

61. A. cruddasianus Prain

5

MM, TH, US

UA

NA to MM, TH, LA

UK

IM, NT

62. A. curvistylis Hett.

7

TH

VU

EC in Kanchanaburi

Limestone/deciduous forests

IM

63. A. declinatus Hett.

7

PH

UA

EC in PH

UK

IM

64. A. decus-silvae Backer & Alderw.

27

ID, US

UA

NA to Jawa

UK

IM, NT

65. A. discophorus Backer & Alderw.

5

ID

UA

NA to Jawa

UK

IM

66. A. dracontioides (Engl.) N.E.Br.

372

BJ, TG, CI, BF, GH, NG, GN

UA

NA to NG, BF, CF, GM, GH, CI, NE, TG

Dry savannah

AT

67. A. dunnii Tutcher

 

52

CN, HK, BE, DE, FR, US

UA

NA to CN

UK

IM, PA, NT

68. A. dzui Hett.

6

VN

UA

NA to VN

UK

IM

69. A. eburneus Bogner

23

MY

UA

EC in Padawan (Kuching Div.) and Tebedu (Samarahan Div,).

Lowland forest/limestone

IM

70. A. echinatus Bogner & Mayo

3

TH, LA

DD

EC in Kanchanaburi

Dense, moist forest

IM

71. A. eichleri (Engl.) Hook.f.

24

BE, FR, CD, CF, BR, CM

UA

NA to CD

Primary rain forest

PA, AT, NE

72. A. elatus Hook.f.

9

TH, FR, MY

UA

NA to MY, TH

Evergreen forest/deciduous forest

IM, PA

73. A. elegans Ridl.

5

MY, TH

UA

NA to MY, TH

Evergreen forest/limestone

IM

74. A. elliottii Hook.f.

12

SL, TH

UA

NA to SL

Forest between low grass

AT, IM

75. A. erythrororrhachis Hett., Pronk & R.Kaufmann

3

MG

UA

NA to MG

UK

AT

76. A. excentricus Hett.

8

TH, US

UA

NA to MY, TH

Evergreen forest

IM, NT

77. A. fallax (Serebryanyi) Hett. & Claudel

6

VN, LA

UA

NA to VN

UK

IM

78. A. ferruginosus A.Galloway

0

LA

NR

NA to LA

UK

IM

79. A.flammeus M.A.Calaramo, M.A.R. Batuyong, N.F.Bulawin, G.J.D.Alejandro

NR

PH

VU

EC to PH

Limestone forest thickets with loamy substrate

IM

80. A. flotoi (S.Y.Hu) Govaerts

67

TH, US, LA, FR, KH

UA

NA to KH, VN, LA, TH

UK

IM, NT. PA

81. A.fontarumii N.F.Bulawin, M.M.Medecilo-Guiang, G.J.D.Alejandro

NR

PH

CR

EC to PH

Limestone

IM

82. A. forbesii (Engl.) Engl. & Gehrm.

1

ID

UA

NA to Sumatra

UK

IM

83. A. fornicatus Hett., J.R.Collado & Wistuba

NR

PH

NR

EC to PH

Secondary forest

IM

84. A. fuscus Hett.

5

TH, BE

UA

NA to TH

Limestone

IM, PA

85. A. galbra F.M.Bailey

332

AU, PG, ID, US

UA

NA to PG, AU,

UK

AS, IM, NT

86. A. gallaensis (Engl.) N.E.Br.

14

KE, SO, IT, ET

UA

NA to KE, SO, ET

Dry Savannah/open woodland

AT, PA

87. A. gallowayi Hett.

4

FR, LA, VN

UA

NA to LA

UK

IM, PA

88. A. gigas Teijsm. & Binn.

39

ID, US

TD

NA to Sumatera

UK

IM, NT

89. A. glaucophyllus Hett. & Serebryanyi

0

TH

NR

EC in Kanchanaburi

UK

IM

90. A. gliruroides Engl.

1

TH

UA

NA to MM

UK

IM

91. A. glossophyllus Hett.

9

VN, FR

UA

NA to VN

UK

IM, PA

92. A. goetzei (Engl.) N.E.Br.

20

TZ, MW, MZ, CD

UA

NA to MZ, TZ, CD

Evergreen forest/ River valleys

AT

93. A. gomboczianus Pic. Serm.

24

ET, ZM

UA

NA to ET

Savannah/ open woodland/ forest margin/proximity of river

AT

94. A. gracilior Hutch.

3

NG, BJ

UA

EC in BJ, NG

Primary rain forest/swamps

AT

95. A. gracilis Engl.

2

ID

UA

NA to Sumatera

UK

IM

96. A. haematospadix Hook.f.

20

MY, FR, TH, US

UA

NA to MY, TH

Limestone

IM, PA, NT

97. A. harmandii Engl. & Gehrm

45

TH, KH, LA

UA

NA to KH, LA, TH, VN

Deciduous forest/under bamboo

IM

98. A. hayi Hett.

1

VN

DD

NA to VN, CN

Secondary forest

IM

99. A. hemicryptus Hett. & J.F.Maxwell

0

KH

NR

NA to KH

Deciduous forest/ Hardwood forest/

IM

100. A. henryi N.E.Br.

172

TH, CN, AR, BE, US

UA

NA to TH

Limestone/mixed forest/bamboo plantation

IM, PA,NE, NT

101. A. hetterscheidii Ittenb. & Lobin

3

CD, CF

UA

NA to CF, GA, CD

UK

AT

102. A. hewittii Alderw.

66

MY, ID

UA

NA to Borneo

UK

IM

103. A. hildebrandtii (Engl.) Engl. & Gehrm

104

MG

LC

NA to MG

UK

AT

104. A. hirsutus Teijsm. & Binn.

9

ID, IN, FR

UA

NA to Sumatera

UK

IM, PA

105. A. hirtus N.E.Br.

73

TH, CN, JP

UA

NA to TH

Dense grassland

IM, PA

106. A. hohenackeri (Schott) Engl. & Gehrm.

30

IN

UA

NA to IN

UK

IM

107. A. hottae Bogner & Hett.

12

MY

UA

NA to Borneo

UK

IM

108. A. impressus Ittenb.

10

MW, TZ BE

UA

NA to MW, TZ

UK

AT, PA

109. A. incurvatus Alderw.

0

ID

NR

NA to Sumatera

UK

IM

110. A. infundibuliformis Hett., A.Dearden & A.Vogel

10

MY

UA

NA to Borneo

Lowland/dipterocarp

IM

111. A. interruptus Engl. & Gehrm.

39

VN

CR

NA to VN

UK

IM

112. A. johnsonii N.E.Br.

210

GH, CI, BF, BN, ML, NG, LR, TG, GN, CM

UA

NA to NG, BF, GH, PG,CI, LR, ML

Savannah

AT, IM

113. A. josefbogneri Hett.

1

TH

UA

EC in South Western Thailand: Kanchanaburi

UK

IM

114. A. julaihii Ipor, Tawan & P.C.Boyce

3

MY

UA

NA to Borneo

UK

IM

115. A. juliae P.C.Boyce & Hett.

0

MY

NR

EC to Sarawak

UK

IM

 116. A. kachinensis Engl. Gehrm.

22

CN, MM, TH, LA

UA

NA to CN, LA, MM, TH

Limestone

PA, IM

 117. A. khammouanensis A.Galloway

0

LA

NR

NA to LA

UK

IM

 118. A. kienluongensis V.D.Nguyen, Luu & Hett.

0

VN

VU

NA to VN

UK

IM

 119. A. kiusianus (Makino) Makino

130

JP, CN, HK, US, BE, KR

VU

NA to CN, JP, TW

UK

PA, IM, NT

120. A. konjac K. Koch

348

CN, US, JP, MX, PH, NO, KR, FR, AT

UA

NA to CN

Forest margin/secondary forest

PA, NT, NE, IM

121. A. konkanensis Hett., S.R.Yadav & K.S.Patil

7

IN

UA

NA to IN

UK

IM

122. A. koratensis Gagnep

18

LA, TH, KH

UA

NA to KH, LA, TH

Deciduous/dipterocarp forest

IM

123. A. krausei Engl.

93

TH, MM, FR, LA

UA

NA to BD, CN, LA, MM, TH

Deciduous/depterocarp forest/ Evergreen forest

IM, PA

124. A. kuznetsovii (Serebryanyi) Hett. & Claudel

1

VN

UA

NA to VN

UK

IM

125. A. lacourii Linden & André

120

TH, VN, FR, US, KH, LA, AU, BE

UA

NA to KH, LA, TH, VN

UK

IM, PA, NT, AS

126. A. lambii Mayo & Widjaja

27

MY, FR, IN, BE, TH

UA

NA to Borneo

UK

IM, PA

127. A. lanceolatus (Serebryanyi) Hett. & Claudel

2

VN

UA

NA to VN

UK

IM

128. A. lanuginosus Hett.

3

VN

CR

NA to VN

UK

IM

129. A. laoticus Hett.

9

LA

UA

NA to LA

Evergreen/deciduous forest

IM

130. A. lewallei Malaisse & Bamps

11

BI, VE

CR

EC in Burundi

Savannah

AT, NE

131. A. linearis Gagnep

12

TH

UA

EC in TH

Evergreen/deciduous/dipterocarp forest/bamboo forest

IM

132. A. linguiformis Hett.

3

ID

UA

NA to Borneo

UK

IM

133. A. longicomus Hett. & Serebryanyi

1

VN

UA

NA to VN

UK

IM

134. A. longiconnectivus Bogner

8

IN

UA

NA to IN

UK

IM

135. A. longispathaceus Engl. & Gehrm

3

PH

UA

EC in PH

UK

IM

136. A. longistylus Kurz ex Hook.f.

2

IN

UA

NA to Andaman Is.

UK

IM

137. A. longituberosus (Engl.) Engl. & Gehrm

52

TH, MY, FR, BE

UA

NA to BD, TH, MY

Evergreen/Decidious/Dipterocarp forests

IM, PA

138. A. lunatus Hett. & Sizemore

2

TH

UA

EC in TH

Secondary forest

IM

139. A. luzoniensis Merr.

6

PH

UA

EC in PH

UK

IM

140. A. lyratus (Roxb.) Kunth

0

IN

NR

NA to IN

UK

IM

141. A. macrophyllus (Gagnep. Ex Serebryanyi) Hett. & Claudel

7

TH, FR, VN

UA

NA to TH VN

UK

IM, PA

 142. A. macrorhizus Craib

58

TH, CN

UA

EC in TH

Deciduous/Dipterocarp forests

IM, PA

143. A. malkmus-husseinii A.Galloway, Prehsler & Claudel

0

LA

NR

NA to LA

UK

IM

144. A. mangelsdorffii Bogner

8

MG, BE

UA

NA to MG

UK

AT, PA

145. A. manta Hett. & Ittenbach

3

ID

UA

NA to Malaya and Sumatera

UK

IM

146. A. margaritifer (Roxb.) Kunth

24

IN

UA

NA to IN, BD, MM

UK

IM

147. A. margretae Ittenb.

1

CD

UA

NA to CD

UK

AT

148. A. maximus (Engl.) N.E.Br.

41

TZ, SO, KE, MZ, ZW, BE, CM, MW

UA

NA to KE, MZ, SO, TZ, ZW

UK

AT, PA

149. A. maxwellii Hett.

11

TH, BE

UA

EC in Kanchanaburi

Deciduous forest/ limestone

IM, PA

150. A. mekongensis Engl. & Gehrm.

6

LA, VN

UA

NA to LA, VN

UK

IM

151. A. merrillii K.Krause

3

PH

UA

EC in PH

UK

IM

152. A. mildbraedii K.Krause

5

CM

UA

NA to CM

UK

AT

153. A. minimus Bustamante, R.A.A., Claudel, C., Altomonte, J.C.A., Udasco, L.C. Jr., Tamayo, M.N.

NR

PH

CR

EC in PH

Montane /dipterocarp/secondary forests

IM

154. A. minor Ridl.

2

MY

UA

NA to MY

UK

IM

155. A. mossambicensis (Schott ex Garcke) N.E.Br.

10

ZM, TZ, MZ, CD, US, ZW

UA

NA to MZ, TZ, ZM, CD, ZW

Savannah

AT, NT

156. A. muelleri Blume

106

TH, ID, IN, MM, MY, FR, US, TL

UA

NA to IN, TH, ID, MY, BN, MM

Secondary forests

IM, PA, NT

157. A. mullendersii Malaisse & Bamps

5

CD

UA

NA to AO, CD

Savannah/ Gallery forests

AT

158. A. myosuroides Hett. & A.Galloway

4

LA, BE, FR

UA

NA to LA

UK

IM, PA

159. A. mysorensis E.Barnes & C.E.C. Fisch.

11

IN

UA

NA to IN

UK

IM

160. A. napalensis (Wall.) Bogner & Mayo

49

IN, NP, TH, BT, BD, BE, US

UA

NA to IN BD, NP

UK

IM, PA, NT

161. A. napiger Gagnep.

15

TH, LA

UA

NA to KH, LA, TH, VN

Deciduous forests

IM

162. A. natolii Hett., Wistuba, V.B.Amoroso, Medecilo & Claudel

NR

PH

CR

EC in PH

Limestone

IM

163. A. niahensis P. C. Boyce & Hett.

4

MY

UA

NA to Borneo

Limestone/shady area

IM

164. A. nicolaii Hett.

0

VN

NR

NA to VN

UK

IM

165. A. nicolsonianus Sivadasan

11

IN

UA

NA to IN

UK

IM

166. A. obovoideus Alderw.

0

ID

NR

NA to Sumatera

UK

IM

167. A. obscurus Hett. & Sizemore

4

TH

UA

EC in Ubon Ratchathani

UK

IM

168. A. ochroleucus Hett. & V.D.Nguyen

8

FR, VN

NT

NA to VN

UK

PA, IM

169. A. oncophyllus Prain ex Hook.f.

0

CN

NR

NA to Andaman Is.

UK

PA

170. A. ongsakulii Hett. & A.Galloway

6

LA, FR, BE

UA

NA to LA

UK

IM, PA

171. A. operculatus Hett. & Sizemore

8

FR, TH

UA

EC in Chumphon

UK

PA, IM

172. A. opertus Hett.

1

VN

UA

NA to VN

UK

IM

173. A. paeoniifolius (Dennst.) Nicolson

919

AU,IN, ID, PH, TH, PF, PG, YT, CN

LC/UA

NA to IN, BD, MY, ID, CN, LA, KH, MM, PH

Secondary forest/shady places

AS, IM, AT, PA

174. A. palawanensis Bogner & Hett.

21

PH

CR

EC to PH

Rich soil with added loam

IM

175. A. paucisectus Alderw.

2

ID

UA

NA to Sumatera

UK

IM

176. A. pendulus Bogner & Mayo

18

MY, ID

UA

NA to Borneo

UK

IM

177. A. perakensis Engl.

2

MY

UA

NA to Malaya

UK

IM

178. A. perrieri Hett. & Wahlert

16

MG, US

UA

NA to MG

Semi-deciduous forest

AT, NT

179. A. pilosus Hett.

6

VN

UA

NA to VN

UK

IM

180. A. plicatus Bok & H.J.Lam

3

ID

UA

NA to Sulawesi

UK

IM

181. A. polyanthus Hett. & Sizemore

6

TH, US

UA

NA to TH

Deep shade, near base of rocky outcrop

IM, NT

182. A. prainii Hook. f.

53

MY, TH, US, ID, BE, IN

UA

NA to LA, MY, TH, Sumatera

Evergreen forest/Limestone

IM, NT, PA

183. A. preussii (Engl.) N.E.Br.

30

CM

VU

EC in CM

Primary shady forests

AT

184. A. prolificus Hett. & Galloway

3

TH

UA

EC in Central TH

UK

IM

185. A. pulchellus Hett. & Schuit

0

LA

NR

NA to Laos

Limestone

IM

186. A. purpurascens Kurz ex Hook.f.

8

MM

UA

NA to MM

UK

IM

187. A. pusillus Hett. & Serebryanyi

6

VN

UA

NA to VN

UK

IM

188. A. putii Gagnep

17

TH, MM, US

UA

NA to MM, TH

Evergreen forests/Shaded places

IM, NT

189. A. pygmaeus Hett.

13

TH, US

UA

EC in Prachuap Khiri Khan

Limestone

IM, NT

190. A. ranchanensis Ipor, A.Simon & Meekiong

4

MY

UA

NA to Borneo

UK

IM

191. A. ravenii V.D.Nguyen & Hett.

0

LA

NR

NA to LA

UK

IM

192. A. rayongii Hett. & Medecilo

NR

PH

NR

EC in PH

Near the beach

IM

193. A. reflexus Hett. & A.Galloway

3

TH

UA

EC in Khampaeng Phet.

Limestone

IM

194. A. rhizomatosus Hett.

8

LA, GQ, GA, GN, NG

UA

NA to LA, VN

UK

IM, AT

195. A. richardsiae Ittenb.

4

ZM

UA

NA to ZM

UK

AT

196. A. rostratus Hett.

1

PH

UA

EC to PH

Secondary forest

IM

197. A. rugosus Hett. & A.L. Lamb

0

MY

NR

NA to Borneo

UK

IM

198. A. sagittarius Steenis

3

ID

UA

NA to Jawa

UK

IM

199. A. salmoneus Hett.

5

PH

UA

EC in PH

Limestone

IM

200. A. saraburensis Gagnep

1

TH

UA

EC in Saraburi

Monsoonal savannah

IM

201. A. saururus Hett.

5

FR, TH, US

UA

EC in N. E. TH Loei

UK

PA, IM, NT

202. A. scaber Serebryanyi & Hett.

6

VN, LA

UA

NA to VN

UK

IM

203. A. schmidtiae Hett. & A.Galloway

1

LA

UA

NA to LA

UK

IM

204. A. scutatus Hett. & T.C. Chapm.

4

TH

UA

EC in Phetchabun

UK

IM

205. A. serrulatus Hett. & A.Galloway

1

TH

UA

EC in Northern Thailand

UK

IM

206. A. shyamsalilianus J.V.Gadpay., Somkuwar & A.A.Chaturv.

0

IN

NR

NA in IN

UK

IM

207. A. sinuatus Hett. & V.D.Nguyen

2

FR, VN

UA

NA to VN

UK

PA, IM

208. A. sizemoreae Hett.

3

TH, US

UA

EC in Nakhon Sawan

UK

IM, NT

209. A. smithsonianus Sivadasan

11

IN

UA

NA to IN

UK

IM

210. A.sparsiflorus Hook.f.

3

MY

UA

NA to Malaya

UK

IM

211. A. spectabilis (Miq.) Engl.

11

ID

UA

NA to Jawa

UK

IM

212. A. staudtii (Engl.) N.E.Br.

23

CM, CI

UA

NA to CM, CD

Primary rainforest/shaded rich soils

AT

213. A. stuhlmannii (Engl.) Engl. & Gehrm

46

TZ, CD, KE

UA

NA to KE, TL, CD

UK

AT

214. A. subcymbiformis Alderw.

1

ID

UA

NA to Sumatera

UK

IM

215. A. sumawongii (Bogner) Bogner & Mayo

25

TH, FR, BE, US

UA

EC in Sa Ksaeo, Wathana Nakhon

Dry dipterocarp forest

IM, PA, NT

216. A. suwidjianus Ipor, Tawan & Meekiong

0

ID

NR

NA to Borneo

UK

IM

217. A. sylvaticus (Roxb.) Kunth

31

IN, LK

UA

NA to IN, LK

UK

IM

218. A. symonianus Hett. & Sizemore

14

FR, TH

UA

EC in Loei, Udon Thani

Limestone/medium shade

PA, IM

219. A. synandrifer Hett. & V.D.Nguyen

1

VN

CR

NA to VN

UK

IM

220. A. taurostigma Ittenb., Hett. & Bogner

43

MG, BE

VU

EC in MG

Shady humus pockets

AT, PA

221. A. tenuispadix Hett.

9

TH, FR, US

UA

EC in south western & Peninsular TH

Rocks at the foot of the hill

IM, PA, NT

222. A. tenuistylis Hett.

12

TH, US

UA

NA to KH, TH

Open mixed bamboo & deciduous forests/ limestone

IM, NT

223. A. terrestris Hett & Claudel

0

TH

NR

NA to TH

UK

IM

224. A. teuszii (Engl.) Motte

11

CD, AO, LK

UA

NA to AO, CD

UK

AT, IM

225. A. thaiensis (S.Y.Hu) Hett.

18

FR, TH, US

UA

EC in Mae Hong Son

UK

PA, IM, NT

226. A. tinekeae Hett. & A.Vogel

5

MY

UA

NA to Borneo

UK

IM

227. A. titanum (Becc.) Becc.

223

AU, ID, US, BE, CA, SE

EN

NA to Sumatera

UK

AS, IM, NT, PA

228. A. tonkinensis Engl. & Gehrm

22

VN, LA

UA

NA to CN, VN

Dense tropical forests, moist, shaded places

IM

229. A. tuberculatus Hett. & V.D.Nguyen

7

BI

UA

NA to VN

UK

AT

230. A. umbrinus A.Galloway, Luu, Malkm. Huss., Prehsler & Claudel

2

VN

UA

NA to VN

UK

IM

231. A. urceolatus Hett., A.Galloway & Medecilo

NR

PH

NR

EC in PH

Secondary forest/exposed places

IM

232. A. variabilis Blume

174

ID, CN, BE, US

UA

NA to Jawa, Sunda

UK

IM, PA, NT

233. A. venustus Hett., A.Hay & Mood

0

MY

NR

NA to Borneo

UK

IM

234. A. verticillatus Hett.

10

VN, FR, BE, US

VU

NA to VN

UK

IM, PA, NT

235. A. villosus A.Galloway, Luu, Malkm.-Huss., Prehsler & Claudel

0

VN

NR

NA to VN

UK

IM

 236. A. vogelianus Hett. & Billensteiner

2

FR

UA

EC to TH Chiang Mai

UK

PA

237. A. xiei H.Li & Z.L.Dao

4

CN

UA

NA to CN South Central

Forest margins/tropical thickets

PA

238. A. yaoi A. Galloway, Hett., & Medecilo

NR

PH

NR

EC in PH

Hilly shaded areas

IM

 239. A. yuloensis H.Li

10

CN, FR, TH

UA

NA to CN, IN, MM

Dense primary evergreen valley forests/limestone

PA, IM

 240. A. yunnanensis Engl.

111

TH, CN, US, VN, BE, LA, MM

UA

NA to CN, LA, TH, VN

Primary evergreen/Deciduous/secondary forest/forest Margin

IM, PA, NT

241. A. zenkeri (Engl.) N.E.Br.

28

CM

UA

EC in Guineo-Congolese region: Fernando Po

UK

AT

Occurrences: NR—no record | 0—no specimens encountered | Country names ISO 3166-1 alpha – 2 codes | IUCN status: UA—Unassessed | DD—Data Deficient | LC—Least Concern | NT—Near Threatened | VU—Vulnerable | EN—Endangered | CR—Critically Endangered | NR—No Record) | Status of distribution: EC—Endemic | NA—Native | Ecological habitat: UK—Unknown | Biogeographic region: NE—Neotropic | NT—Nearctic | AT—Afrotropic | PA—Palearctic | AS—Australasia | IM—Indo-Malay. (Olson et al. 2001).

 

 

For figures & image - - click here for full PDF

 

REFERENCES

 

Anil, S.R., E.A. Siril & S.S. Beevy (2011). Morphological variability in 17 wild Elephant foot Yam Amorphophallus paeoniifolius collections from south west India. Genetic Resources and Crop Evolution 58: 1263–1274. https://doi.org/10.1007/s10722-011-9752-z

Anil, S.R., E.A. Siril & S.S. Beevy (2014). Diversity analysis in Amorphophallus using Isozyme markers. International Journal of Vegetable Science 20: 305–321. https://doi.org/10.1080/19315260.2013.803509

     Barthlott, W., J. Szarzynski, P. Vlek, W. Lobin & N. Korotkova (2009). A torch in the rain forest: Thermogenesis of the Titan Arum Amorphophallus titanum. Plant Biology 11(4): 499–505. https://doi.org/10.1111/j.1438-8677.2008.00147.x

Batuyong, M.A.R., M.A. Calaramo & G.J.D. Alejandro (2020). A checklist and conservation status of vascular plants in the limestone forests of Metropolitan Ilocos Norte Watershed Forest Reserve, Northwestern Luzon, Philippines. Biodiversitas 21(9): 3969–3981. https://doi.org/10.13057/biodiv/d210907

Brummitt, N.A., S.P. Bachman, J. Griffiths-Lee, M. Lutz, J.F. Moat, A. Farjon, A., J.S. Donaldson, C. Hilton-Taylor, T.R. Meagher, S. Albuquerque, E. Aletrari, A.K. Andrews, G. Atchison, E. Baloch, B. Barlozzini, A. Brunazzi, J. Carretero, M. Celesti, H. Chadburn, E. Cianfoni, C. Cockel, V. Coldwell, B. Concetti, S. Contu, V. Crook, P. Dyson, L. Gardiner, N. Ghanim, H. Greene, A. Groom, R. Harker, D. Hopkins, S. Khela, P. Lakeman-Fraser, H. Lindon, H. Lockwood, C. Loftus, D. Lombrici, L. Lopez-Poved, J. Lyon, P. Malcolm-Tompkins, K. Mc Gregor, L. Moreno, L. Murray, K. Nazar, E. Power, M.Q. Tuijtelaars, R. Salter, R. Segrott, H.Thacker, L.J. Thoms, S.Tingvoll, G. Watkinson, K. Wojtaszekova & E.M. Nic Lughadha (2015). Green plants in the red: a baseline global assessment for the IUCN sampled red list index for plants. PLOS ONE 10(8): e0135152. https://doi.org/10.1371/journal.pone.0135152

Bulawin, N.F., M.M.P. Medecilo-Guiang, G.J.D. Alejandro (2024).            Amorphophallus samarensis (Araceae), a new species endemic to Samar Island, Eastern Visayas, Philippines. Webbia 79(2): 295–303. https://doi.org/10.36253/jopt-16302

Bulawin, N.F., M.M.P. Medecilo-Guiang & G.J.D. Alejandro (2023). Palynology of Philippine Amorphophallus Blume ex Decne. (Araceae) and its taxonomic implications. Biodiversitas 24: 4095–4109. https://doi.org/10.13057/biodiv/d240748

Bulawin, N.F., M.M.P. Medecilo-Guiang & G.J.D. Alejandro (2022). Amorphophallus fontarumii (Araceae), a new species from Tanay Rizal, Luzon Island, Philippines. Nordic Journal of Botany e03643: 1–12. https://doi.org/10.1111/njb.03643

Calaramo, M.A., M.A.R. Batuyong, N.F. Bulawin & G.J.D. Alejandro (2022). Notes on the genus Amorphophallus Blume ex Decne. (Araceae) of northwestern Luzon, Philippines, including a new species. Nordic Journal of Botany e03491: 1–12. https://doi.org/10.1111/njb.03491   

CATE Araceae (2022). https://cate-araceae.myspecies.info/. Accessed on 30.i.2022.

Chartier, M. & M. Gibernau (2009). Size variations of flowering characters in Arum maculatum (Araceae). Aroideana 32: 153–158.

Chua, M., T.C. Baldwin, T.J. Hocking & K. Chan (2010). Traditional uses and potential health benefits of Amorphophallus Konjac K. Koch ex N.E. Br. Journal of Ethnopharmacology 128(2): 268–218. https://doi.org/10.1016/j.jep.2010.01.021  

Claudel, C., S. Buerki, L.W. Chatroo, A. Antonelli, N. Alvarez & W. Hetterscheid (2017). Large-scale phylogenetic analysis of Amorphophallus (Araceae) derived from nuclear and plastid sequences reveals new subgeneric delineation. Botanical Journal of the Linnean society 184(1): 32–45. https://doi.org/10.1093/botlinnean/box013  

Claudel, C., S. Yadun-Lev, W. Hetterscheid & M. Schultz (2019). Mimicry of lichens and cyanobacteria on tree sized Amorphophallus petioles results in their masquerade as inedible tree trunks. Botanical Journal of the Linnean Society 190(2): 192–214. https://doi.org/10.1093/botlinnean/boz014  

Claudel, C. (2021). The many elusive pollinators in the genus Amorphophallus. Arthropod-Plant Interactions 15: 833–844. https://doi.org/10.1007/s11829-021-09865-x  

Dapar, M.L.G., G.J.D. Alejandro, U. Meve & S.L. Schumann (2020). Ethnomedicinal importance and conservation status of medicinal trees among indigenous communities in Esperanza, Agusan de Sur Philippines. Journal of Complementary Medicine Research 11(1): 59–71. https://doi.org/10.5455/jcmr.2020.11.01.08  

Dempsey, C. (2022). Endemic, native, non-native, and invasive species. geography realm. https://www.geographyrealm.com/endemic-native-non-native-and-invasive-species/. Accessed on 25.iii.2022.

Diaz, A. & G. Kite (2006). Why be a rewarding trap? The evolution of floral rewards in Arum (Araceae) a genus characterized by Saprophilous pollination systems. Biological Journal of the Linnean Society 88(2): 257–268. https://doi.org/10.1111/j.1095-8312.2006.00612.x  

Gao, Y., S. Yin, L. Wu, D. Dai, H. Wang, C. Liu & L. Tang (2017). Genetic diversity and structure of wild and cultivated Amorphophallus paeoniifolius population in southwestern China as revealed by RAD Seq. Scientific Reports 7: 1–10. https://doi.org/10.1038/s41598-017-14738-6  

GBIF (2022). Global Biodiversity Information Facility. https://www.gbif.org/ Accessed on 30.i.2022.

Grob, G.B.J., B. Gravendeel & M.C.M. Eurlings (2003). Potential phylogenetic utility of the nuclear floricaula/leafy second intron: Comparison with three chloroplast DNA regions in Amorphophallus (Araceae). Molecular Phylogenetics and Evolution 30(1): 13–23. https://doi.org/10.1016/s1055-7903(03)00183-0  

Gustini, E., D.W. Praptomo & A. Rodliyati (2017). The phenetic relationships of Amorphophallus sp. based on their morphological characteristics in Laren Subdistrict Lamongan Regency. 8th International Conference on Global Resource Conservation 1908(1): 1–6. https://doi.org/10.1063/1.5012724

Hung, D.V. & A.F. Potokin (2019). Diversity of plant species composition and forest vegetation cover of Dong Nai Culture and Nature Reserve, Vietnam. IOP conference series: Earth and Environmental Science 316: 1–9. https://doi.org/10.1088/1755-1315/316/1/012009  

IAS (2022). International Aroid Society. http://www.aroid.org/. Accessed on 30.i.2022.

Internet Directory for Botany (2022). https://www.ou.edu/cas/botany-micro/idb- alpha/bot-di.html. Accessed on 25 March 2022

IPNI (2022). International Plant Names Index. https://www.ipni.org/. Accessed on 30.i.2022

ISO 3166-1 alpha-2 code (2022). https://www.nationsonline.org/oneworld/country_code_list.htm. Accessed on 30.i.2022.

      IUCN (2022). The IUCN Red List of Threatened Species. Version 2021-3 https://www.iucnredlist.org. Accessed on 30.i.2022.

Liu, K., N. Fadzly, A. Mansor, R. Zakaria, N. Ruppert & C.Y. Lee (2017). The dual defensive strategy of Amorphophallus throughout its ontogeny. Plant Signaling and Behavior 12(10): 1–6. https://doi.org/10.1080/15592324.2017.1371890  

Mastuti, R., N. Harijati, E.L. Arumingtyas & W. Widoretno (2018). Effect of bulbils position on leaf branches to plant growth responses and corms quality of Amorphophallus muelleri Blume. Journal of Experimental Life Science 8(1): 1–6. https://doi.org/10.21776/UB.JELS.2018.008.01.01   

Mbuni, Y.M., Y. Zhou, S. Wang, V.M. Ngumbau, P.M. Musili, F.M. Mutie, B. Njoroge, P.M. Kirika, G. Mwachala, K. Vivian, P.C. Rono, G. Hu & Q. Wang (2019). An annotated checklist of vascular plants of Cherangani Hills, western Kenya. Phytokeys 120: 1–90. https://doi.org/10.3897/phytokeys.120.30274   

Misra, R.S. & T. Osborn (2010). Konjac (Amorphophallus Konjac K. Koch): a high value crop. Aroideana 33: 215–207.

Mc Pherson, S. & W. Hetterscheid (2011). Amorphophallus in the wild and in cultivation. The Plantsman June: 90–97.

Moodley, D., S. Proches & J.R.U Wilson (2016). A Global assessment of a largemonocot family highlights the need for group-specific analyses of invasiveness. AoB Plants 8: 1–14. https://doi.org/10.1093/aobpla/plw009  

Mursyidin, D.H., M.A. Hernanda & Badruzsaufari (2022). Genetic diversity of Elephant Foot Yam Amorphophallus paeoniifolius and two other relatives from the Meratus mountains of south Kalimantan, Indonesia. Journal of Tropical Biodiversity and Biotechnology 7: 1–12. https://doi.org/10.22146/jtbb.66231

Nguyen, V.D., H.T. Luu & Q.D. Nguyen (2016). Amorphophallus kienluongensis (Araceae), a new species from the Mekong Delta, southern Vietnam. BlumeaBiodiversity, Evolution and Biogeography of Plants 61(1): 1–3. https://doi.org/10.3767/000651916X690395  

NYBG (2022). New York Botanical Garden. http://sweetgum.nybg.org/science/collections/. Accessed on 25.iii.2022

Olson, D.M., E. Dinerstein, E.D. Wikramanayake, N.D. Burgess, G.V.N. Powell, E.C. Underwood, J.A. D’amico, I. Itoua, H.E. Strand, J.C. Morrison, C.J. Loucks,T.F. Allnut, T.H. Ricketts,Y. Kura, J.F. Lamoreux, W.W. Wettengel, H. Prashant & Kassem (2001). Terrestrial ecoregions of the world: A new map of life on earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bio Science 51(11): 933–338. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2  

Onyancha, J.M., E.W.T Wakori, G.A. Moriasi, B.W. Waiganjo & H.M. Mwambeo (2020). Plant checklist of Mount Kenya University Botanic Garden Thika, Kenya. International Journal of Modern Botany 10(1): 1–8. https://doi.org/10.5923/j.ijmb.20201001.01  

Pasta, S., A. La Rosa, G. Garfi, C. Marceno, A.S. Cristina, F. Carimi & R. Guarino (2020). An updated checklist of the Sicilian Native Edible Plants: Preserving the traditional ecological knowledge of century-old agro-pastoral landscapes. Frontiers in Plant Science 11: 1–15. https://doi.org/10.3389/fpls.2020.00388  

Pelser, P.B., J.F. Barcelona & D.L. Nickrent (2011 onwards). Co’s Digital Flora of the Philippines. www.philippineplants.org. Accessed on 30.i.2022.

Phornvillay, S., S.H. Ahmad, N.A.P. Abdullah, A.B. Rosenani, N.K. Yusof & N.A.M. Rashid (2015). Morphological variations of Amorphophallus spp. Blume ex Decne. in Peninsula-Malaysia. Advances in Bioresearch 6(2): 128–135. https://doi.org/10.15515/abr.0976-4585.6.2.128135  

POWO (2022). Plant of the World Online. https://powo.science.kew.org/. Accessed on 30.i.2022

Reyserhove, L., P. Desmet, D. Oldoni, D.S. Adriaens, A.J.S. Davis, F.V. Vanderhoeven & Q. Groom (2020). A checklist recipe: making species data open and FAIR. Database 1.12. https://doi.org/10.1093/database/baaa084

Rivai, R.R., Y. Isnaini & Y. Yuzammi (2022). Elucidation of the radio-sensitivity level of Amorphophallus paeoniifolius (Dennst.) Nicolson embryogenic callus Induced by gamma ray irradiation. Biology and Life Sciences Forum 11(1): 93. https://doi.org/10.3390/IECPS2021-11951

Sharma, A., G. Bano & Ayushi (2022). Type – II delayed hypersensitivity reaction by processed Elephant Foot Yam Amorphophallus paeoniifolius. IP International Journal of Comprehensive and Advanced Pharmacology 7(1): 65–67. https://doi.org/10.18231/j.ijcaap.2022.011

Sivilla, R.G. & I.E.M. Santos (2021). On genus Amorphophallus Blume ex Decne (Araceae) in Cuba. Agrisost 27(1): 1–12. https://doi.org/10.5281/zenodo.7405811

Sookchaloem, D., O. Sungkajanttranon, S. Petchsri, S. Horadee, C. Huayhongthong, A. Vanapanich & C. Wongsawaddiwattana (2016). Leaf blade anatomy characteristics of the genus Amorphophallus Blume ex Decne. in Thailand. Agriculture and Nature Resources 50(6): 437–444. https://doi.org/10.1016/j.anres.2016.09.002

Sungkajanttranon, O., D. Marod & K. Thanompun (2018). Diversity and distribution of family Araceae in Doi Inthanon National Park Chiang Mai Province. Agriculture and Natural Resources 52(2): 125–131. https://doi.org/10.1016/j.anres.2018.06.009

Taseski, G.M., C.J. Beloe, R.V. Gallagher, J.Y. Chan, R.L Dalrymple & W.K. Cornwell (2019). A global growth-form database for 143, 616 vascular plant species. Ecology 100(3): e02614. https://doi.org/10.1002/ecy.2614

Tropicos (2022). Missouri Botanical Garden. https://www.tropicos.org/home. Accessed on 25.iii.2022.

Ulrich, S., M. Hesse, M. Weber & H. Halbritter (2016). Amorphophallus: new insights into pollen morphology and the chemical nature of the pollen wall. Grana 56(1): 1–36. https://doi.org/10.1080/00173134.2015.1133699  

WCSP (2022). World Checklist of Selected Plant. http://wcsp.science.kew.org/home.do. Accessed on 25.iii.2022.

WCVP (2022). World Checklist of Vascular Plants. https://wcvp.science.kew.org Accessed on 30.i.2022

WFO (2022). The World Flora Online. http://www.worldfloraonline.org. Accessed on 25.iii.2022.

Wulandari, R.S., S. Ivo & H. Darwati (2022). Population distribution of Amorphophallus at several altitudes in mount Poteng, Raya Pasi Nature Reserve, West Kalimantan. Jurnal Sylva Lestari 10(1): 167–179. https://doi.org/10.23960/jsl.v10i1.552

Yudaputra, A., J.R. Witono, I.P. Astuti, E. Munawaroh, Yuzammi, I.A. Fijridiyanto, R.N. Zulkarnaen, I. Robiansyah, P.D. Raharjo & W.P.J. Cropper (2022). Habitat suitability, population structure and conservation status of Pinanga arinasae (Arecaceae), an endemic palm in Bali Island, Indonesia. Diversity 14(10):1–16. https://doi.org/10.3390/d14010010  

Yuzammi, Y. (2009). The genus Amorphophallus Blume Ex Decaisne (Araceae-Thomsonieae) in Java. Reinwardtia 13(1): 1–12.

Yuzammi, Y., K.N. Tyas & Handayani (2018). The peculiar petiole calluses growth of Amorphophallus titanum (Becc.) ex Arcang and it’s implications for situ conservation efforts. Biotropica 25(1): 56–63. https://doi.org/10.11598/btb.2018.25.1.706