

Building evidence for conservation globally

Journal of Threatened Taxa

40
zooreach
Zoo Outreach Organisation
Years

10.11609/jott.2025.17.7.27171-27322
www.threatenedtaxa.org

26 July 2025 (Online & Print)
17(7): 27171-27322
ISSN 0974-7907 (Online)
ISSN 0974-7893 (Print)

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India

Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA

Ms. Priyanka Iyer, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Board of Editors

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors

Mrs. Mira Bhojwani, Pune, India

Dr. Fred Pluthero, Toronto, Canada

Copy Editors

Ms. Usha Madgunki, Zooreach, Coimbatore, India

Ms. Trisa Bhattacharjee, Zooreach. Coimbatore, India

Ms. Paloma Noronha, Daman & Diu, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting

Mrs. Radhika, Zooreach, Coimbatore, India

Mrs. Geetha, Zooreach, Coimbatore India

Fundraising/Communications

Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2021–2023

Fungi

Dr. B. Shivaraju, Bengaluru, Karnataka, India

Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India

Dr. Vatsavaya S. Raju, Kakatiya University, Warangal, Andhra Pradesh, India

Dr. M. Krishnappa, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India

Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India

Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India

Dr. Kiran Ramchandra Ranadive, Annaheb Magar Mahavidyalaya, Maharashtra, India

Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India

Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India

Dr. Shonil Bhagwat, Open University and University of Oxford, UK

Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India

Dr. Ferdinand Boero, Università del Salento, Lecce, Italy

Dr. Dale R. Calder, Royal Ontario Museum, Toronto, Ontario, Canada

Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines

Dr. F.B. Vincent Florens, University of Mauritius, Mauritius

Dr. Merlin Franco, Curtin University, Malaysia

Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India

Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India

Dr. Pankaj Kumar, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA.

Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India

Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Vijayasankar Raman, University of Mississippi, USA

Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantapur, India

Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India

Dr. Aparna Watve, Pune, Maharashtra, India

Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China

Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia

Dr. M.K. Vasudeva Rao, Shiv Ranjan Housing Society, Pune, Maharashtra, India

Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Manda Datar, Agharkar Research Institute, Pune, Maharashtra, India

Dr. M.K. Janarthanam, Goa University, Goa, India

Dr. K. Karthigeyan, Botanical Survey of India, India

Dr. Errol Vela, University of Montpellier, Montpellier, France

Dr. P. Lakshminarasiham, Botanical Survey of India, Howrah, India

Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA

Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India

Dr. Analinda Manila-Fajard, University of the Philippines Los Banos, Laguna, Philippines

Dr. P.A. Siru, Central University of Kerala, Kasaragod, Kerala, India

Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India

Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India

Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA

Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India

Dr. A.G. Pandurangan, Thiruvananthapuram, Kerala, India

Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India

Dr. Kannan C.S. Warrier, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India

Dr. D.B. Bastawade, Maharashtra, India

Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India

Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India

Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa

Dr. Rory Dow, National Museum of natural History Naturalis, The Netherlands

Dr. Brian Fisher, California Academy of Sciences, USA

Dr. Richard Gallon, Ilandudno, North Wales, LL30 1UP

Dr. Hemant V. Ghate, Modern College, Pune, India

Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: A Southern Rockhopper Penguin *Eudyptes chrysocome* stands on Tussock Grass on Westpoint Island. Painted in poster colors, this artwork is a reproduction of a photograph by Phillip Colla. Thanks to the photographer for the original image. © Pooja Patil.

Diet composition of three syntopic, ecologically divergent frogs (*Euphlyctis*, *Minervarya*, *Polypedates*) from paddy fields of Kohima, Nagaland, India

Thejavitso Chase¹ & Santa Kalita²

^{1,2} Department of Environmental Science, Tezpur University, Napaam, Tezpur, Assam 784028, India.

¹thejachase@gmail.com, ²santa@tezu.ac.in (corresponding author)

Abstract: Monitoring indicator species like amphibians is crucial to assess habitat health. The diet of 129 anurans belonging to the three most abundant species found in the paddy fields of Kohima district in Nagaland, northeastern India—the aquatic *Euphlyctis adolfi*, the terrestrial *Minervarya nepalensis* and the arboreal *Polypedates himalayensis*—was studied. Results revealed 302 intact prey items belonging to 11 prey categories, gleaned through the stomach-flushing method. While Coleoptera was the most abundant prey found in all three species; Clitellata (terrestrial earthworms), Diptera, and Orthoptera were also important prey items. The high degree of overlap in the dietary niche of the three species despite their diverged microhabitat associations, could be the result of abundant prey items and the segregation of microhabitats. Lastly, as these frogs share a common prey base, they evidently segregate their foraging microhabitats to avoid competition.

Keywords: Aquatic, arboreal, class, index of relative importance, northeastern India, order, terrestrial.

Editor: S.R. Ganesh, Kalinga Foundation, Agumbe, India.

Date of publication: 26 July 2025 (online & print)

Citation: Chase, T. & S. Kalita (2025). Diet composition of three syntopic, ecologically divergent frogs (*Euphlyctis*, *Minervarya*, *Polypedates*) from paddy fields of Kohima, Nagaland, India. *Journal of Threatened Taxa* 17(7): 27242–27248. <https://doi.org/10.11609/jott.9370.17.7.27242-27248>

Copyright: © Chase & Kalita 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: None.

Competing interests: The authors declare no competing interests.

Author details: THEJAVITSO CHASE is currently pursuing PhD from the Department of Environmental Science at Tezpur University, Assam, India. DR. SANTA KALITA is an assistant professor in the Department of Environmental Science at Tezpur University, Assam, India and the PhD supervisor of Thejavitso Chase.

Author contributions: First author (TC) collected the diet content from the field and identified the diet content for analysis and drafted the manuscript. Corresponding author (SK) supervised the work, checked the manuscript and communicated it to the journal.

Acknowledgements: We would like to thank Nisapi Pucho, Sudeviko Chase, and Methaheto Chase for providing accommodation which facilitated this work. We thank the people of Viswema, Nerhema, Kohima, Jotsoma, Khonoma, and Dzuleke for their support, and cooperation.

INTRODUCTION

Anurans (frogs & toads) are the most diverse order of amphibians and are ecological indicator species that require close monitoring (AmphibiaWeb 2025). India is home to a vast number of little-known, threatened, and endemic amphibians, despite harbouring a very high human population and this is particularly true for the northeastern India that is one of the country's three biodiversity hotspots (Dinesh et al. 2024). The Kohima District of Nagaland has a hilly terrain and very less naturally occurring standing water. Rice terrace cultivation is a widely practiced form of agriculture in this region. Paddy fields serve as crucial habitats for anurans, providing essential standing water for breeding and supporting tadpole development, especially in regions with limited natural aquatic environments (Elphick 2000). Despite the high anuran diversity in this region (Talukdar & Sengupta 2020), a comprehensive literature review revealed only three published studies on the diet of adult anurans in northeastern India, indicating a significant research gap in this area (Chanda 1993; Ao et al. 2001; Sarkar & Dey 2022). Despite the reduced habitat heterogeneity in paddy fields, resilient generalist species inhabit these fields (Piatti et al. 2010). Paddy fields serve as surrogate habitats for aquatic species (Elphick 2000), including anurans from surrounding areas (Seshadri et al. 2020).

While some taxa demonstrate a restricted trophic niche, relying on a limited range of prey items, others exhibit a broader diet, consuming a diverse assemblage of prey organisms. Primarily, anurans feed on arthropods and they can be important pest control agents in agro-ecosystems (Khatiwada et al. 2016). Anurans play a crucial role in the food chain due to the diet they consume and also because they are prey to animals in the higher trophic levels. Niche overlap does not equate to an increase in competition among species when there are enough resources for all species (Pianka 1974). Niche partitioning studies can give insights into a community's species diversity, abundance, and distribution (Toft 1985). Information on diet helps in the understanding of ecology, natural history (Donnelly 1991), niche partitioning (Toft 1985), and community structure (Toft 1980). The present study focussed on the following two parameters: (i) to assess the composition of anurans in paddy fields; (ii) to compare the diet of the three most abundant species observed in the local paddy fields, with respect to three syntopic, ecologically-dissimilar frog species.

MATERIALS AND METHODS

Study species

Three co-occurring or syntopic frog species that have divergent habitat utilisation patterns were chosen for the study. They were: the aquatic skittering frog *Euphlyctis adolfi* (Günther, 1860), the terrestrial cricket frog *Minervarya nepalensis* (Dubois, 1975) and the arboreal tree frog *Polypedates himalayensis* (Annandale, 1912). These species depend on stagnant water for breeding and other vital life processes including metamorphosis (Chanda 2002). These species use the water from embankments for breeding during summer. While *E. adolfi* primarily inhabits water, *M. nepalensis*, and *P. himalayensis* occur primarily in the periphery of embankments on land, and on vegetation, respectively. For taxonomic definitions of the studied frog species see Sanchez et al. (2018), Saikia et al. (2020), and Dufresnes et al. (2022).

Study sites

Six paddy fields, one each from five villages and one sub-urban locality in Kohima District, Nagaland, were surveyed. The six paddy fields were located in Nehrema Village, Kohima Town, Viswema Village, Jotsoma Village, Khonoma Village, and Dzuleke Village. The closest paddy fields were 2.46 km apart.

Sampling

Sampling was carried out from March to June, i.e., pre-monsoon to monsoon during 2021–2022. Stomach-flushing was done following Solé et al. (2005) immediately after capture of each individual frog from 1800 h to 2100 h. Following the stomach-flushing, all individuals were released back into the environment. Each stomach was flushed thrice. The stomach content was stored in 70% ethanol in screw cap vials. Diet content of 129 individuals of anurans belonging to three species- *Euphlyctis adolfi* (n = 45), *Minervarya nepalensis* (n = 51), and *Polypedates himalayensis* (n = 33) were examined during the study. Diet contents were identified up to the order level under a dissecting microscope. Partially digested food items, stones, and plant materials were categorized as miscellaneous and were not considered for analysis. A significant amount of diet contents observed was either partially digested or partially eaten; hence, intact bodies of prey items were a representation of the total prey consumed. Identification keys for diet contents were taken from Gibb & Oseto (2006). Prey items were measured with Mitutoyo 505–730 dial calipers (0.02 mm accuracy). Data analysis was

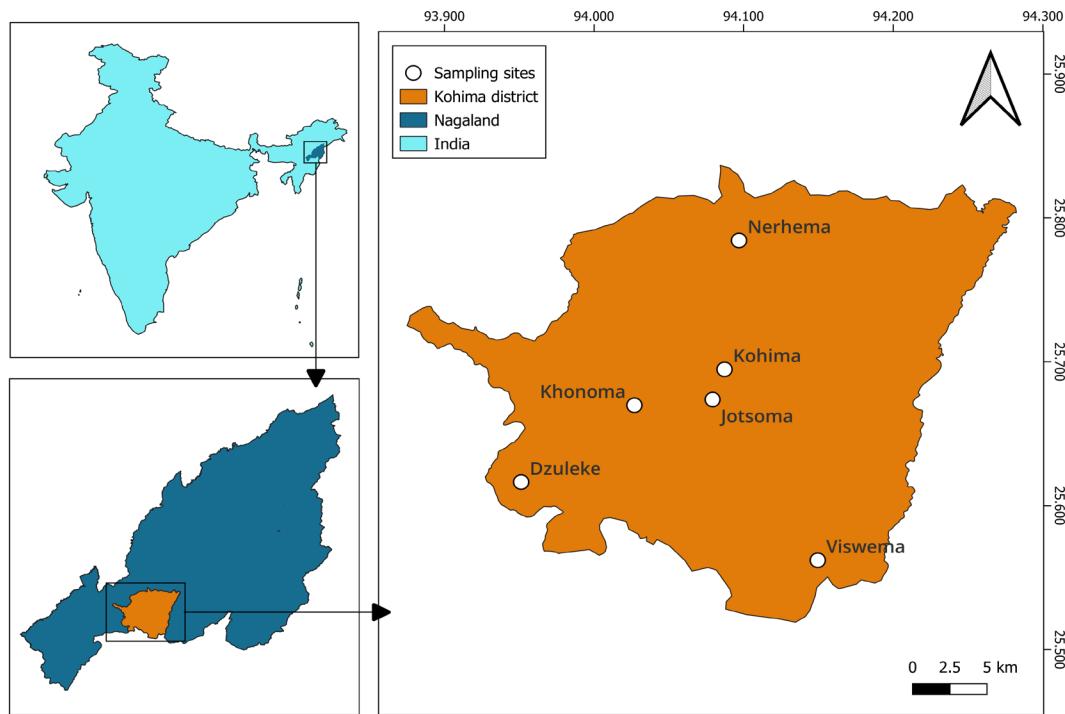


Figure 1. Map showing the study sites in Kohima District, Nagaland, northeastern India.

done using MS Excel and RStudio.

Data analysis

Vacuity index was measured as the proportion of empty stomachs to the total number of individuals of each species sampled. The volume of prey items was calculated using the formula for ellipsoid bodies (Colli & Zamboni 1999):

$$V = \frac{4}{3}\pi \left(\frac{L}{2}\right) \left(\frac{W}{2}\right)^2$$

Where, V is the volume, L is the length, and W is the width of a prey item.

The importance of diet contents was determined by ranking them using the index of relative importance (IRI) (Pinkas 1971):

$$IRI = (N + V)F$$

Where IRI = index of relative importance, N = numerical percentage, V = volumetric percentage, and F = frequency of occurrence percentage. Trophic niche breadth was calculated using the pliing non-Wiener index (Shannon & Weaver 1949):

$$H' = \sum P_i \log (P_i)$$

Where H' is the Shannon-Weaver index, P_i is the proportion of individuals found to consume prey i . The H' value was standardized using the evenness index (Shannon & Weaver 1949):

$$J' = \frac{H'}{\ln(n)}$$

Where J' is the measure of evenness and n is the number of species. Species were paired to calculate niche breadth by following Pianka's niche breadth formula:

$$O_{jk} = \frac{\sum_i^n P_{ij} P_{ik}}{\sqrt{\sum_i^n P_{ij}^2 \sum_i^n P_{ik}^2}}$$

Where \hat{O}_{jk} is Pianka's measure of niche overlap, \hat{P}_{ij} is the proportion of i^{th} resource used by j^{th} species and \hat{P}_{ik} is the proportion of i^{th} resource used by k^{th} species.

RESULTS

Out of the 169 individual anurans belonging to the three species that were examined, 129 individuals contained food items in their stomachs. A total of 302 intact prey items were recovered which belonged to three classes (Insecta, Clitellata and Malacostraca) and 11 categories (Araneae, Coleoptera, Diptera, Orthoptera, Blattodea, Hemiptera, Lepidoptera (larva), Hymenoptera, Trichoptera, Clitellata, Decapoda), respectively. It was observed that several individuals had empty stomachs: 21 individuals of *Minervarya nepalensis* (vacuity index

= 29.58%), 14 individuals of *Euphlyctis adolfi* (vacuity index = 23.73%), and five individuals of *Polypedates himalayensis* (vacuity index = 13.16%). Partially digested prey was observed in several individuals of anurans while intact prey was relatively fewer. Results showed that *E. adolfi* consumed prey of eight categories while *M. nepalensis* and *P. himalayensis* consumed prey of nine categories, respectively. Statistical analysis revealed that the difference in the total number of prey consumed among the species was not significant (Kruskal-Wallis chi-squared = 2, df = 2, p = 0.3679).

Euphlyctis adolfi consumed the highest number of prey followed by *P. himalayensis* and *M. nepalensis*. *Polypedates himalayensis* on average consumed the highest number of prey per individual (Table 1). There was a statistically significant difference between the total number of prey consumed by the individuals of the three species (Kruskal-Wallis test = 28.232, df = 2, p <0.05). Coleoptera was the most common prey item in all the three species (relative occurrence: 34.88% relative occurrence in *E. adolfi*, 32% in *M. nepalensis* and 48.98% in *P. himalayensis*).

Table 1. Average prey consumed per individual of each species.

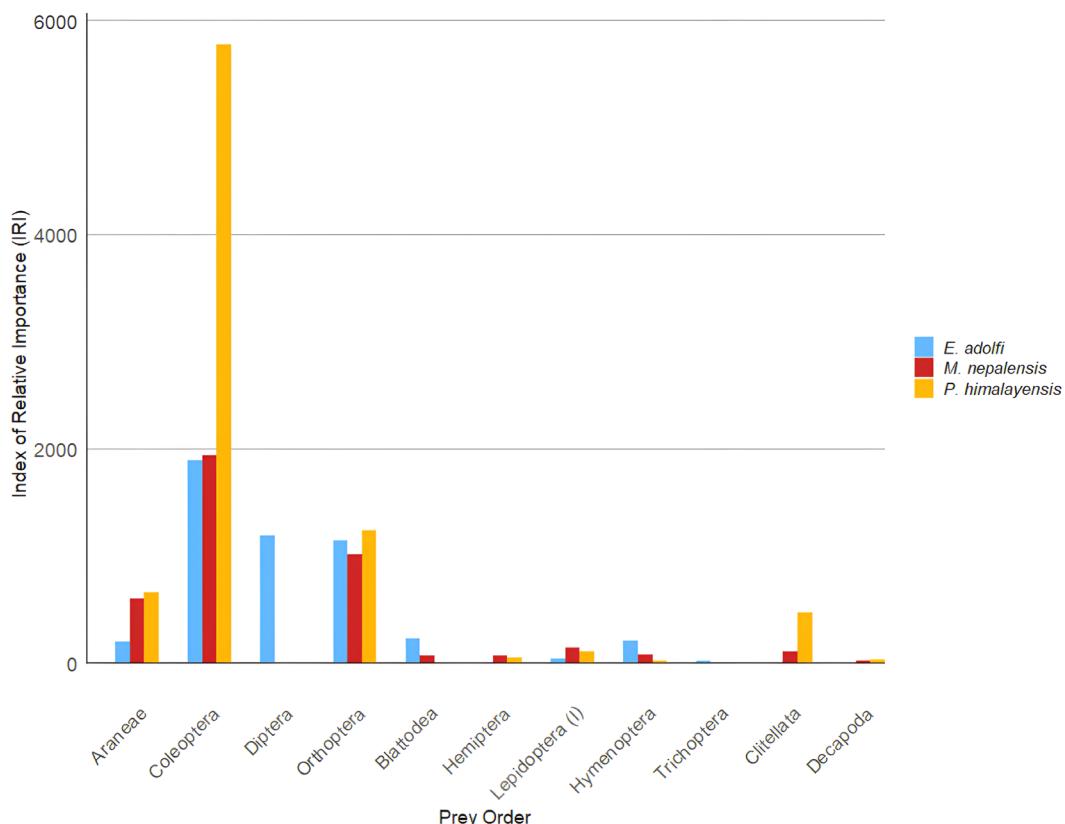

Frog species	No. of anurans	No. of prey (n)	Mean	SD
<i>E. adolfi</i>	45	129	2.867	2.06
<i>M. nepalensis</i>	51	75	1.471	1.17
<i>P. himalayensis</i>	33	98	2.97	1.49

Table 2. Niche breadth values measured with Shannon-Weaver index and evenness measure.

Frog species	H'	J'
<i>M. nepalensis</i>	1.87	0.851
<i>E. adolfi</i>	1.67	0.805
<i>P. himalayensis</i>	1.59	0.722

Table 3. Niche overlap values measured with Pianka's measure.

Frog species	<i>M. nepalensis</i>	<i>E. adolfi</i>	<i>P. himalayensis</i>
<i>M. nepalensis</i>	1	0.728	0.949
<i>E. adolfi</i>	0.728	1	0.765
<i>P. himalayensis</i>	0.949	0.765	1

Figure 2. Index of relative importance values across prey orders of *Euphlyctis adolfi*, *Minervarya nepalensis* and *Polypedates himalayensis*.

Niche breadth and niche overlap

Dietary niche breadth was broadest in *M. nepalensis* and narrowest in *P. himalayensis* (Table 2). Niche overlap was highest between *M. nepalensis* and *P. himalayensis* and lowest between *M. nepalensis* and *E. adolfi* (Table 3). There was a high degree of overlap in the dietary niche of the three species.

Index of relative importance

Coleoptera (beetles) were the most abundant prey order found to be consumed by all three species studied. Prey categories Coleoptera, Orthoptera, and Clitellata were the highest contributors to the IRI value by volume for *M. nepalensis* (Table 5). In *P. himalayensis*, the diet volume was contributed mostly by class Clitellata (terrestrial earthworms) (Table 6). On the other hand, the largest volume contributors to the diet of *E. adolfi* were the orthopterans (Table 4). For all three species, coleopterans had the highest score for the Index of Relative Importance (IRI). Other important prey orders for *E. adolfi* were Diptera and Orthoptera. Orthoptera and Araneae were the highest contributors to IRI values in both *M. nepalensis* and *P. himalayensis*. The total prey volume was the highest in *E. adolfi* (568.36 cm³, n = 45), while *M. nepalensis*, and *P. himalayensis* had similar volume (189.95 cm³, n = 51 and 276.41 cm³, n = 33, respectively).

DISCUSSION

Each of the three studied species have wide distribution across northeastern India (Chanda 2002; Ao et al. 2003; Dinesh et al. 2024) and was found to be the most abundant species in paddy field habitats in the studied areas. Due to their resilience and generalist behaviour, these species can thrive in this altered habitat. Other co-occurring species, viz., *Hyla annectans*, *Duttaphrynus melanostictus*, *Microhyla* sp., *Zhangixalus burmanus*, and *Zhangixalus smaragdinus* were excluded from this study due to small sample size present in our observations. The vacuity index reveals a relatively high proportion of individuals with empty stomachs. A similar study found that anurans feed at a lower intensity during drier periods (Das 1996a). The high degree of dietary niche overlap is attributable to the similarity of IRI ratings of prey items among the three species. Coleoptera was the most important prey order according to the IRI values across all species. Diptera and Orthoptera ranked second and third in IRI values for *E. adolfi* respectively; while Orthoptera and Araneae ranked second and third

Table 4. Index of relative importance and its variables for *Euphlyctis adolfi*.

Prey Order / Class	Volume (%)	Frequency (%)	Number (%)	IRI
Araneae	3.19	15.56	9.30	194.38
Coleoptera	9.41	42.22	34.88	1870.27
Diptera	6.74	31.11	30.23	1150.36
Orthoptera	42.20	20	9.30	1030.05
Blattodea	28.96	11.11	4.65	373.50
Hemiptera	0	0	0	0
Lepidoptera (larva)	5.94	4.44	2.33	36.73
Hymenoptera	3.05	13.33	6.98	133.68
Trichoptera	0.50	6.67	2.33	18.83
Clitellata	0	0	0	0
Decapoda	0	0	0	0

Table 5. Index of relative importance and its variables for *Minervarya nepalensis*.

Prey Order / Class	Volume (%)	Frequency (%)	Number (%)	IRI
Araneae	12.41	19.61	17.33	583.29
Coleoptera	22.07	35.29	32.00	1908.42
Diptera	0	0	0	0
Orthoptera	20.62	25.49	20.00	1035.47
Blattodea	4.55	7.84	5.33	77.53
Hemiptera	8.30	5.88	4.00	72.35
Lepidoptera (larva)	6.25	7.84	9.33	122.21
Hymenoptera	0.85	9.80	6.67	73.69
Trichoptera	0	0	0	0
Clitellata	23.14	3.92	2.67	101.20
Decapoda	3.54	3.92	2.67	24.34

Table 6. Index of relative importance and its variables for *Polypedates himalayensis*.

Prey Order / Class	Volume (%)	Frequency (%)	Number (%)	IRI
Araneae	7.53	30.30	13.27	630.21
Coleoptera	29.69	72.73	48.98	5721.20
Diptera	0	0	0	0
Orthoptera	13.72	39.39	17.35	1223.66
Blattodea	0.98	3.03	1.02	6.05
Hemiptera	3.76	6.06	4.08	47.50
Lepidoptera (larva)	4.83	9.09	6.12	99.53
Hymenoptera	0.28	6.06	3.06	20.24
Trichoptera	0	0	0	0
Clitellata	30.18	12.12	4.08	415.30
Decapoda	9.05	6.06	2.04	67.22

in IRI values for *M. nepalensis* and *P. himalayensis*, respectively. Clitellata was absent in the diet of *E. adolfi* owing to the anuran's aquatic habitat. Though *P. himalayensis* is a tree frog, it is often observed on the ground in paddy fields during the breeding period. We have observed that they consume prey of Clitellata (terrestrial earthworms) during this period.

Das (1996) reported that the related, peninsular Indian species *P. maculatus* feeds both on ground and trees and classified it as a terrestrial feeder. *Polypedates himalayensis* have been reported to deposit eggs on forest floors. Individuals of this species were observed calling from holes in the ground and paddy fields (Rangad et al. 2012), indicating that this species spends its breeding period on ground, descending from the nearby bushes. Therefore, niche overlap values indicate a high degree of overlap in the diet of these anurans. Diptera and Trichoptera were found only in *E. adolfi* while Clitellata, Hemiptera, and Decapoda were found only in *M. nepalensis* and *P. himalayensis*. The decapod prey items observed were freshwater shrimps.

Although several studies have reported the presence of stones and plant materials in the diet of anurans, the cause for ingesting such materials has not been ascertained (Modak et al. 2018; Bahuguna et al. 2019). The presence of such materials may be attributed to accidental ingestion. This study also reveals that all the three observed species lack specialization in the food intake and are hence considered generalists in their feeding habit. Previous studies on *E. adolfi* also reported that coleopterans occupied the highest volume percentage amongst all arthropod prey items consumed (Das & Coe 1994; Das 1996b).

It was observed that although there is a high dietary niche overlap among the species, the three species occupied different microhabitats, thus minimizing the chances of competition between species. *E. adolfi* individuals were primarily observed swimming or floating on water. *Polypedates himalayensis* were recorded from microhabitats with less water, such as wet soil, and moist edges of embankments within paddy fields. *Minervarya nepalensis* individuals were observed to be wide-ranging, their microhabitats overlapping between *E. adolfi*, and *P. himalayensis*. Within the embankments, *M. nepalensis* was seen at the edges and did not swim / float unless while escaping from the observer.

CONCLUSION

In this study eight species of anurans were recorded from paddy fields; out of which three were studied for

their diet preferences. The study site has a hilly terrain with several torrential streams. The landscape has limited areas of wetland habitats, which make paddy fields a vital refuge for anurans as they require wetlands for breeding, larval development, and a source of food for both adults, and tadpoles. While some species may use the paddy field areas for breeding only, the studied species have been found outside their breeding period in this habitat. This indicates that these three species are resilient generalists (Piatti et al. 2010). Among the three species, *E. adolfi* was the only species that had been studied previously (Das & Coe 1994). The present study revealed a high degree of overlap of prey among the three species with a low number of ingested prey. The niche overlap and coexistence of the species suggest two hypotheses. Firstly, the interspecific competition caused by the niche overlap is not enough to drive any species to competitive exclusion due to the abundance of prey base. Secondly, the existing competition has not lasted long enough for species to evolve different diets. These have been supported by Pianka (1974) and Piatti & Souza (2011). Although the dietary niche overlap is high among the species, the overall niche may be differentiated according to observations in microhabitat usage. Future studies are recommended to include prey diversity studies and extend the sampling period through the monsoon to the post-monsoon seasons. To determine the overall niche differentiation among these three syntopic frog species, we suggest the inclusion of other niche dimensions such as aural niche, in addition to spatial, and trophic niches studied here.

REFERENCES

Ao, M., S. Bordoloi & A. Dutta (2001). Food and feeding behaviour of *Hyla annectans* (Jerdon, 1870) in Nagaland, India. *Zoos' Print Journal* 16: 535–536. <https://doi.org/10.11609/JoTT.ZPJ.16.7.535-6>

AmphibiaWeb (2025). University of California, Berkeley, California. <https://amphibiaweb.org> Accessed 15.iii.2025.

Bahuguna, V., A. Chowdhary, S. Singh & S. Bahuguna (2019). A food spectrum analysis of three bufonid species (Anura: Bufonidae) from Uttarakhand region of the western Himalaya, India. *Journal of Threatened Taxa* 11(13): 14663–14671. <https://doi.org/10.11609/jott.4335.11.13.14663-14671>

Chanda, S. (1993). Food and Feeding habits of some Amphibian species of northeast India. *Records of the Zoological Survey of India* 93: 15. <https://doi.org/10.26515/rzsi/v93/i1-2/1993/160858>

Chanda, S.K. (2002). *Handbook. Indian Amphibians*. Zoological Survey of India, Calcutta, India, 335 pp.

Colli, G.R. & D.S. Zamboni (1999). Ecology of the Worm-Lizard *Amphisbaena alba* in the Cerrado of Central Brazil. *Copeia* 1999(3): 733–742. <https://doi.org/10.2307/1447606>

Das, I. (1996a). Folivory and seasonal changes in diet in *Rana hexadactyla* (Anura: Ranidae). *Journal of Zoology* 238(4): 785–794. <https://doi.org/10.1111/j.1469-7998.1996.tb05430.x>

Das, I. (1996b). Resource use and foraging tactics in a south Indian

amphibian community. *Journal of South Asian Natural History* 2(1): 30.

Das, I. & M. Coe (1994). Dental morphology and diet in anuran amphibians from south India. *Journal of Zoology* 233: 417–427. <https://doi.org/10.1111/j.1469-7998.1994.tb05274.x>

Dinesh, K.P., K. Deuti & B. Saikia (2024). Checklist of Fauna of India: *Animalia, Chordata, Amphibia*. E-checklist. Publications of the Zoological Survey of India, 21 pp.

Donnelly, M. (1991). Feeding Patterns of the Strawberry Poison Frog, *Dendrobates pumilio* (Anura: Dendrobatidae). *Copeia* 1991: 723. <https://doi.org/10.2307/1446399>

Dufresnes, C., S. Mahony, V.K. Prasad, R.G. Kamei, R. Masroor, M.A. Khan, A.M. Al-Johany, K.B. Gautam, S.K. Gupta, L.J. Borkin, D.A. Melnikov, J.M. Rosanov, D.V. Skorinov, A. Borzée, D. Jablonski & S.N. Litvinchuk (2022). Shedding light on taxonomic chaos: Diversity and distribution of South Asian skipper frogs (Anura, Dic平glossidae, *Euphlyctis*). *Systematics and Biodiversity* 20(2102686): 1–25. <https://doi.org/10.1080/1477200.2022.2102686>

Elphick, C. (2000). Functional Equivalency between Rice Fields and Seminatural Wetland Habitats. *Conservation Biology* 14: 181–191. <https://doi.org/10.1046/j.1523-1739.2000.98314.x>

Gibb, T. & C. Oseto (2006). *Arthropod Collection and Identification Field and Laboratory Techniques*. Elsevier Academic Press, Amsterdam, Boston, 311 pp.

Khatiwada, J.R., S. Ghimire, S. Paudel Khatiwada, B. Paudel, R. Bischof, J. Jiang & T. Haugaasen (2016). Frogs as potential biological control agents in the rice fields of Chitwan, Nepal. *Agriculture, Ecosystems & Environment* 230: 307–314. <https://doi.org/10.1016/j.agee.2016.06.025>

Modak, N., H. Chunekar & A. Padhye (2018). Life History of Western Ghats endemic and threatened Anuran – Matheran Leaping Frog, (*Indiranana leithii*) with notes on its feeding preferences. *Journal of Natural History* 52: 27–28. <https://doi.org/10.1080/00222933.2018.1488008>

Pianka, E. (1974). Niche Overlap and Diffuse Competition. *Proceedings of the National Academy of Sciences of the United States of America* 71: 2141–2145. <https://doi.org/10.1073/pnas.71.5.2141>

Piatti, L. & F. Souza (2011). Diet and resource partitioning among anurans in irrigated rice fields in Pantanal, Brazil. *Brazilian Journal of Biology = Revista Brasileira de Biologia* 71: 653–661. <https://doi.org/10.1590/S1519-69842011000400009>

Piatti, L., F. Souza & P.L. Filho (2010). Anuran assemblage in a rice field agroecosystem in the Pantanal of central Brazil. *Journal of Natural History* 44: 1215–1224. <https://doi.org/10.1080/00222930903499804>

Pinkas, L. (1971). Food habits of albacore, bluefin tuna, and bonito in California waters. *Fish Bulletin U.S.* 152: 1–139.

Rangad, D., R.K.L. Tron & R.N.K. Hooroo (2012). Geographic distribution: *Polypedates himalayensis*. *Herpetological Review* 43(4): 614.

Saikia, B., A. Bora, B. Sinha & J. Purkayastha (2020). A note on the type locality of Himalayan Treefrog, *Polypedates himalayensis* (Annandale, 1912) (Anura: Rhacophoridae). *Reptiles & Amphibians* 27: 517–518.

Sanchez, E., S.D. Biju, M.M. Islam, M.K. Hasan, A. Ohler, M. Vences & A. Kurabayashi (2018). Phylogeny and classification of fejervaryan frogs (Anura: Dic平glossidae). *Salamandra* 54: 109–116.

Sarkar, S. & M. Dey (2022). Feeding Selectivity in Anuran Species from a Tea Cultivation Area of Barak Valley, Assam, India. *Russian Journal of Herpetology* 29: 127–136. <https://doi.org/10.30906/1026-2296-2022-29-3-127-136>

Seshadri, K.S., J. Alwin, S. Karimbumkara & G. Tg (2020). Anuran assemblage and its trophic relations in rice-paddy fields of South India. *Journal of Natural History* 54: 2745–2762. <https://doi.org/10.1080/00222933.2020.1867772>

Shannon, C. & W. Weaver (1949). *The Mathematical Theory of Communication*. Univ. Illinois Press, Urbana, 117 pp.

Solé, M., O. Beckmann, B. Pelz, A. Kwet & W. Engels (2005). Stomach-flushing for diet analysis in anurans: An improved protocol evaluated in a case study in Araucaria forests, southern Brazil. *Studies on Neotropical Fauna and Environment* 40: 23–28. <https://doi.org/10.1080/01650520400025704>

Talukdar, S. & S. Sengupta (2020). Edible frog species of Nagaland. *Journal of Environmental Biology* 41(4): 927–930.

Toft, C.A. (1980). Feeding ecology of thirteen syntopic species of anurans in a seasonal tropical environment. *Oecologia* 45(1): 131–141. <https://doi.org/10.1007/BF00346717>

Toft, C.A. (1985). Resource partitioning in amphibians and reptiles. *Copeia* 1985(1): 1–21. <https://doi.org/10.2307/1444785>

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Mr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh KV, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

Articles

Two new species of bush frogs (Anura: Rhacophoridae: Raorchestes) from Meghalaya, northeastern India

– Holiness Warjri, Jayaditya Purkayastha, Hmar Tlawnme Lalremsanga & Madhurima Das, Pp. 27171–27194

Cataloguing biodiversity of freshwater communities in two lakes of Gadchiroli area of central India using environmental DNA analysis

– Maheshkumar Seelamwar, Pankaj Chavan & Mandar S. Paingankar, Pp. 27195–27206

Additions to the Agaricales of Kolhapur District, Maharashtra, India

– Anjali Rajendra Patil & Sushant Ishwar Bornak, Pp. 27207–27225

Communications

First camera-trap records of Dhole *Cuon alpinus* (Pallas, 1811) (Mammalia: Canidae) and Spotted Linsang *Prionodon pardicolor* (Hodgson, 1841) (Mammalia: Carnivora: Prionodontidae) in Makalu Barun National Park, Nepal

– Hari Basnet, Nawang Sing Gurung, Shyam Kumar Shah, Dukpa Thikepa Bhote, Khagendra Sangam, Naomi Bates & Daniel Carl Taylor, Pp. 27226–27232

Redescription of a leaf-footed bug *Homoeocerus glossatus* Ahmad & Perveen (Heteroptera: Coreidae) from Dhule, Maharashtra, India

– Digvijay R. Jadhav, Archana A. Sharbidre & Hemant V. Ghate, Pp. 27233–27241

Diet composition of three syntopic, ecologically divergent frogs (Euphlyctis, Minervarya, Polypedates) from paddy fields of Kohima, Nagaland, India

– Thejavitso Chase & Santa Kalita, Pp. 27242–27248

Review

A checklist of avifauna of Telengana, India

– Chelmala Srinivasulu & Sriram Reddy, Pp. 27249–27282

Short Communications

First photographic evidence of Marbled Cat *Pardofelis marmorata* (Martin, 1836) (Mammalia: Carnivora: Felidae) in Kakoi Reserve Forest, Assam, India

– Hiranmoy Chetia, Abhijit Konwar & Anshuman Gogoi, Pp. 27283–27287

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

July 2025 | Vol. 17 | No. 7 | Pages: 27171–27322

Date of Publication: 26 July 2025 (Online & Print)

DOI: [10.11609/jott.2025.17.7.27171-27322](https://doi.org/10.11609/jott.2025.17.7.27171-27322)

A new species of millipede of the genus *Xiphidiogonus* Carl, 1932 (Paradoxosomatidae: Polydrepantini) from Satara District, Maharashtra State, India

– S.B. Mane, M.D. Aswathy, P.P. Badade & V.Y. Deshpande, Pp. 27288–27294

Mucuna interrupta Gagnep. (Magnoliopsida: Fabaceae): a new plant record for Nagaland, India

– Vieneite-o Koza, Gyati Yam & Joynath Pegu, Pp. 27295–27299

Notes

Sighting of Royle's Pika *Ochotona roylei* Ogilby, 1839 (Mammalia: Lagomorpha: Ochotonidae) in Kishtwar District, Jammu & Kashmir, India

– Umar Mushtaq & Kaleem Ahmed, Pp. 27300–27302

First record of an Amber Snail *Succinea daucina* Pfeiffer, 1855 (Gastropoda: Succineidae) from Bihar, India

– Dipty Kumari, Dilip Kumar Paul, Sheikh Sajan & Tamal Mondal, Pp. 27303–27307

First record of the ladybird beetle *Novius pumilus* (Weise, 1892) (Coleoptera: Coccinellidae: Noviini) from West Bengal, India, with notes on its ecology

– Tamoghno Majumder & Kusal Roy, Pp. 27308–27311

Boesenbergia tiliifolia (Baker) Kuntze (Zingiberaceae) - a new record for Maharashtra, India

– Vijay A. Paithane, Anil S. Bhuktar & Sanjay J. Sawant, Pp. 27312–27315

Acrospelion alpestre (Avenae: Poaceae) in India: a new generic record from northwestern Himalaya

– Kuntal Saha, Manoj Chandran, Ranjana Negi & Saurabh Guleri, Pp. 27316–27320

Response

Lesser Noddy *Anous tenuirostris* breeding in the Adam's Bridge Islands, India – a rectification

– Moditha Hiranya Kodikara Arachchi, Pp. 27321–27322

Publisher & Host

Threatened Taxa