

Building evidence for conservation globally

# Journal of Threatened Taxa

10.11609/jott.2025.17.2.26443-26570

[www.threatenedtaxa.org](http://www.threatenedtaxa.org)

26 February 2025 (Online & Print)

17(2): 26443-26570

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

**zoOreach @ 40**



Open Access





## Publisher

**Wildlife Information Liaison Development Society**[www.wild.zooreach.org](http://www.wild.zooreach.org)

Host

**Zoo Outreach Organization**[www.zooreach.org](http://www.zooreach.org)

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India  
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India  
Ph: +91 9385339863 | [www.threatenedtaxa.org](http://www.threatenedtaxa.org)  
Email: sanjay@threatenedtaxa.org

## EDITORS

## Founder &amp; Chief Editor

**Dr. Sanjay Molur**

Wildlife Information Liaison Development (WILD) Society &amp; Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

## Assistant Editor

**Dr. Chaithra Shree J.**, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

## Managing Editor

**Mr. B. Ravichandran**, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

## Associate Editors

**Dr. Mandar Paingankar**, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

## Board of Editors

**Dr. Russel Mittermeier**

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

**Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy**

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

**Stephen D. Nash**

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

**Dr. Fred Pluthero**

Toronto, Canada

**Dr. Priya Davidar**

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

**Dr. John Fellowes**

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

**Prof. Dr. Mirco Solé**

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

**Dr. Rajeev Raghavan**

Professor of Taxonomy, Kerala University of Fisheries &amp; Ocean Studies, Kochi, Kerala, India

**English Editors****Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Copy Editors****Ms. Usha Madgunki**, Zooreach, Coimbatore, India**Ms. Trisa Bhattacharjee**, Zooreach. Coimbatore, India**Ms. Paloma Noronha**, Daman & Diu, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, Zooreach, Coimbatore, India**Mrs. Geetha**, Zooreach, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2021–2023****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annaheb Magar Mahavidyalaya, Maharashtra, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Banos, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit [https://threatenedtaxa.org/index.php/JoTT/aims\\_scope](https://threatenedtaxa.org/index.php/JoTT/aims_scope)For Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit [https://threatenedtaxa.org/index.php/JoTT/policies\\_various](https://threatenedtaxa.org/index.php/JoTT/policies_various)

continued on the back inside cover

Cover: Tamil Lacewing *Cethosia nietneri* with colour pencils and watercolours for the background; detailing with fine liners by Elakshi Mahika Molur.



## Ultra-structure of antenna, eye, mouthparts and sensilla of *Cheilomenes sexmaculata* Fabricius, 1781 (Coccinellidae: Coleoptera)

Prakash Ghagargunde<sup>1</sup>  & Mandar S. Paingankar<sup>2</sup> 

<sup>1,2</sup> Zoology Department, Government Science College, Chamorshi Road, Gadchiroli, Maharashtra 442605, India.

<sup>1</sup> Zoology Department, Rashtrapita Mahatma Gandhi College, Saoli, Chandrapur, Maharashtra 441224, India.

<sup>1</sup> pgghagargunde4u@gmail.com, <sup>2</sup> mandarpaingankar@gmail.com (corresponding author)

**Abstract:** *Cheilomenes sexmaculata* Fabricius, 1781 is a well-known ladybird beetle that feeds primarily on aphids, mealy bugs, phytophagous mites, scale insects, and other small insects and is an important bio-control agent of aphids. Evolution in the structure of mouthparts is known to be associated with the composition of food material and feeding behaviour. The sensilla present on mouthparts plays a pivotal role in feeding mechanisms. Feeding mechanism of ladybird beetles will be better understood if the fine structure of mouthparts, modifications in the structures, and presence of different sensilla on the mouthparts of *C. sexmaculata* are understood. Using scanning electron microscopy, the functional morphology of mouthparts of *C. sexmaculata* was studied and compared with the fine structures with those of other Lady Beetles. The labrum, mandibles, maxillae, labium, and hypopharynx make up the mouthpart of *C. sexmaculata*. This study includes a thorough description of each mouthpart and the different kinds of sensilla. In the current study, three types of sensilla chaetica, four types of sensilla basiconica, two types of sensilla styloconica, one type of sensilla placodea, one type of sensilla coeloconica, one type of sensilla campaniformia, and one type of cuticular pore using characters like the length, morphology, and distribution of the sensilla were studied. The structure of the mouthparts and the purposes of the sensilla on them is discussed with reference to other coleopterans. The results obtained in the current study will provide better insights into the functional morphology of lady beetles.

**Keywords:** Functional morphology, labrum, labium, ladybird beetles, mandible, maxilla, scanning electron microscopy, sensilla.

**Editor:** Anonymity requested.

**Date of publication:** 26 February 2025 (online & print)

**Citation:** Ghagargunde, P. & M.S. Paingankar (2025). Ultra-structure of antenna, eye, mouthparts and sensilla of *Cheilomenes sexmaculata* Fabricius, 1781 (Coccinellidae: Coleoptera). *Journal of Threatened Taxa* 17(2): 26468-26478. <https://doi.org/10.11609/jott.9367.17.2.26468-26478>

**Copyright:** © Ghagargunde & Paingankar 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

**Funding:** District Planning Committee Gadchiroli, Maharashtra –Grant for Infrastructure development of colleges - Government Science College Gadchiroli (2202-C748-ME-52).

**Competing interests:** The authors declare no competing interests.

**Author details:** PRAKASH GHAGARGUNDE is working as assistant professor in Zoology Department, Rashtrapita Mahatma Gandhi College, Saoli, Chandrapur, Maharashtra, India. Passionate about insect biology, focusing on understanding the functional morphology of Coleopteran beetles. DR. MANDAR PAINGANKAR is working as assistant professor, Department of Zoology, Government Science College Gadchiroli, Chamorshi Road Gadchiroli, Maharashtra, India. His research focuses on biodiversity, conservation and molecular phylogeny of fishes and Coleopteran beetles.

**Author contributions:** PGG, MSP involved in the designing experiments, conduct of experiments, data analysis and manuscript writing. All authors have read and approved the final manuscript.

**Acknowledgements:** We are thankful to Principal, Government Science College for providing the facilities. We are thankful to District Planning Committee Gadchiroli Maharashtra for providing financial assistant for infrastructure development in Government Science College Gadchiroli.



## INTRODUCTION

One environmentally friendly way to combat the threat of pests is through the use of biological control agents (Ayer et al. 1976). The biological control of aphids, mealy bugs, phytophagous mites, and scale insects is attributed to some species of lady beetles (Samways et al. 1997; Sarwar & Saqib 2010; Li et al. 2012). In most coleopterans, mouthparts have evolved for chewing solid food material (Belhouchine et al. 2013). The members of the Coccinellidae family are equipped with chewing mouthparts (Ayer et al. 1976). Several mouthparts, including the mandible, maxilla, labium, and palpi, are significant in feeding behavior (Seo & Youn 2000; Wang et al. 2000; Luo et al. 2006; Wei et al. 2015; Hao et al. 2019). In ladybird beetles, the feeding process is quite complicated, and the maxillary palpi and labial palpi play a crucial role in contact reception and the chewing process (Hao et al. 2019). Most of these structures are generally classified as the labio-maxillary complex and may show differences in type and feature depending on their feeding mechanism. Sensilla, or sensory structures are present in the insect body and are home to neurons responsible for smell, taste, sound, touch, proprioception, and perception of temperature, humidity, and space (Ruschioni et al. 2019). The variation in feeding behavior is mainly influenced by sensilla presented on mouthparts (Brožek & Bourgoin 2013). In addition to aiding in identifying food resources, these sensilla are crucial for determining the precise microhabitat and assessing the quality of food (Ruschioni et al. 2019). Similarly, mouthparts and antennal sensilla help in finding mating partners and in finding suitable oviposition sites on the host plants (Li et al. 2022). In this context, a detailed study of mouthparts is important for understanding the feeding mechanism of bio-control agents and for developing effective management strategies against pests (Rani & Madhavendra 1995, 2005; Hao et al. 2019). Numerous studies have been carried out to comprehend the functional morphology of the mouthparts of beetles earlier (Eilers et al. 2012; Wilhelmi & Krenn 2012; Belhouchine et al. 2013; Moon 2015; Chen et al. 2016).

Very few have described the ultra-structure of the mouthparts of the predatory lady beetles (Thornham et al. 2007; Hao et al. 2019). *C. sexmaculata* Fabricius, 1781 is a member of Coccinellidae and is well known for predating on aphids and small insects (Yilda et al. 2017). Understanding the ultrastructure of mouthparts will provide better insight into the feeding mechanism and will be helpful in designing and implementing an

effective biological control program. To the best of the knowledge, no previous attempts have been made to elucidate the fine structure of mouthparts of *C. sexmaculata* using scanning electron microscopy. In this study, the functional morphology of mouthparts, especially the fine morphology of labrum, labium, mandibles, maxillae, eye, antenna, and various sensilla of *C. sexmaculata*, was studied using the scanning electron microscope. Additionally, the importance of the structure of mouthparts and sensilla in the feeding habit of *C. sexmaculata* were also discussed.

## MATERIAL AND METHODS

### Collection sites

*Cheilomenes sexmaculata* adults were collected from Alapalli (19.430 °N, 80.047 °E) and Gadchiroli (20.158 °N, 79.998 °E) areas of central India, eastern Vidarbha region of Maharashtra. The Gadchiroli district's forest includes reserved and protected forest areas measuring 218,529.27 ha excluding 882.22 ha Zudpi jungle (<https://mahaforest.gov.in>). Forest cover mainly consists of dry deciduous miscellaneous forests.

### Sample collection

The specimens were collected by net and handpicking and then kept in the laboratory at 4°C after being preserved in 70% ethanol. Voucher specimens are deposited in the Government Science College specimen voucher repository (Accession Number GSC/Zoo/2021/Coleoptera-6).

### Sample preparation for scanning electron microscopy

The mouthparts of *Cheilomenes sexmaculata* were dissected using a stereo microscope (Stemi 509, Carl Zeiss, Germany) using fine needles and then cleaned using 70% ethanol. After that, the samples were dehydrated for 30 min each in ethanol grades of 80%, 90%, & 95%; for 45 min in 100% ethanol; and subsequently dried in a desiccator. The dried mouthparts and whole head were glued to aluminium stubs using conducting carbon tape and coated with gold/palladium (40/60) using a high-resolution sputter coater (Quorum, United Kingdom) for a thickness of about 10 nm. The samples were subsequently examined with a Tescan Wega 3 scanning electron microscope (Tescan, Czech Republic) operated at 20 kV using an SE detector. Mouthparts of five males and five females were observed initially under a stereo microscope (Stemi 509 stereomicroscope equipped with camera and imaging software, Zeiss, Germany) and no

clear sex-dependent morphological differences were found in the mouthparts. The description of sensilla was followed as per the nomenclature given by Altner & Prillinger (1980), and Brožek & Bourgoin (2013). Using Tescan Wega threes software, the length, diameter, and distribution of each type of sensilla from 10 adult male and 10 adult female specimens of *Cheiromenes sexmaculata* were measured. Each type of sensilla's length, base, and diameter are measured from 146 microphotographs of various mouthparts, and the results are tabulated as mean  $\pm$  SD (Tescan Electron Microscope Software, Wega 3, Tescan Czech Republic) (Table 1).

## RESULTS

Mouthparts in *C. sexmaculata* consist of the mandibles, maxillae, labium, labrum, and hypopharynx. Only the labrum and the maxillary palp can be seen on the front of the head when observed dorsally. From the ventral view, part of the mandibles appears below the labrum. The labium is positioned between the left and right maxillae in the central part (Image 1). There is a non-sclerotized hypopharynx on the labium's inner wall. The eyes and antennae are visible from the dorsal side.

### Morphology of the labrum.

The anterior border of the anteclypeus has an oval-shaped labrum attached to it. Sensilla chaetica 3 (Sch3) are found arranged in a row close to the frontal margin on the dorsal surface of the labrum, while sensilla chaetica 2 (Sch2) are arranged on the left and right margins (Images 2). Sensilla basiconica 1 and 2 (Sb1, Sb2) and several cuticular pores (cp) are present at the margin (Image 2). Sensilla coeloconica (sco) is observed on the ventral surface of the labrum, close to a row of sensilla chaetica 3 (Image 2). Campaniform sensilla (Sca) are also observed on the ventral surface. The ventral surface of the labrum was concave (Image 2) and covered with different cuticular, spiny (Image 2), and palmate processes (Image 2).

### Morphology of mandibles

Left and right mandibles are found attached to the head with dorsal and ventral articulations (Image 3). The inner margin of the mandible is divided into two main regions: the molar region and the incisor region (Image 3). The incisor region possesses pointed teeth apically. The mandible's dorsal view revealed a rough cuticle (Image 3), a lot of cuticular pores (Cp) strewn across

the surface, and sensilla chaetica 1 (Sch1) near the condyle (Image 3). The ventral surface of the mandible also appears rough, and palmate cuticular processes are seen close to the ventral condyle; no other sensilla are noticed (Image 3). Petaloid cuticular processes covered the upper portion of the dorsal condyle (Image 3). Single tubercle forms the molar region (Image 3). On mandibles, a prostheca with short, comb-like setae extends along the incisor margin up to the base of the incisor projection (Image 3). The prostheca has a smooth surface with low cuticular pores (Cp). The articulating surface is hemispheric with a smooth surface ventrally and oval with cuticular processes dorsally (Image 3). Around the ventral condyles, the cuticle is smooth and has many cuticular pores (Cp) (Image 3). On the margin of the ventral region, there is an additional cluster of spiny cuticular processes.

### Morphology of maxillae

The paired maxillae are found placed in longitudinal clefts on either side of the labium (Image 1) and show the usual parts: cardo, stipites, galea, lacinia, and maxillary palps (Image 1 & 4). The cuticle of the semicircular cardines (Image 4) has Cp on it. The stipites are flat plates with sensilla chaetica 1 and 2 (sch1, sch2) on the surface (Image 4). The maxilla includes the inner lacinia and outer galea, the two distal lobes (Image 4). The galea is a spoon-like structure, and it is covered with sensilla basiconica 3, 4 (Sb3, Sb4) and cuticular pores (Cp) (Images 4A,B,J,K). A triangular depression is present on the top of the galea (Images 4J,K). Brush-like lacinia is located below the galea, and sensilla basiconica 3 (Sb3) is present at the edge and on the whole apical area of lacinia and sensilla basiconica 4 (Sb4) on the ventral side (Image 4). In *C. sexmaculata*, the maxillary palpi are well developed and comprise four articles that widen gradually; the final article has a somewhat triangular shape (Image 4). Maxillary palpi surfaces are scaly, with cuticular pores (Cp), sensilla chaetica 2 (Sch2), and sensilla basiconica 1 and 2 (sb1 and sb2) dispersed across each segment (Image 4). In the middle region, two main types of sensilla styloconica (Sty1 and Sty2) and sensilla placodea 1 (Sp1) at the margin of the sensory field of the maxillary palp are present (Image 4I).

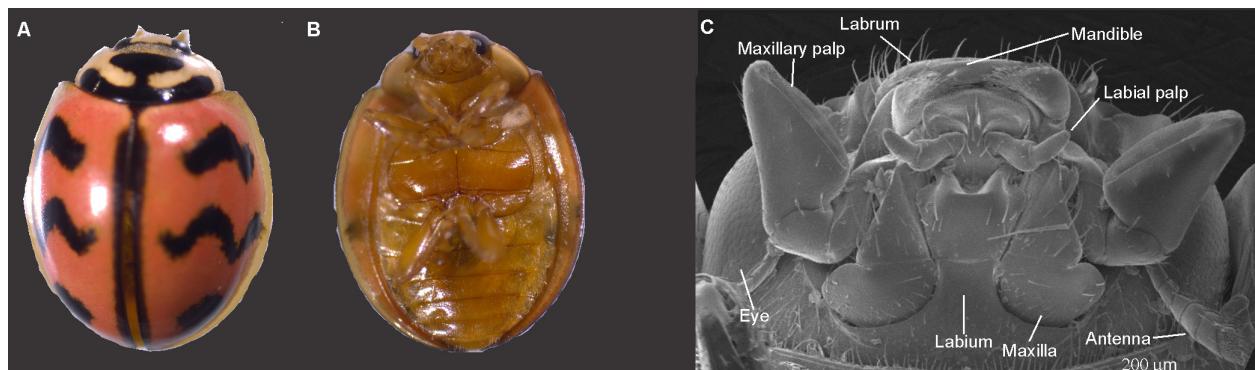
### Morphology of labium

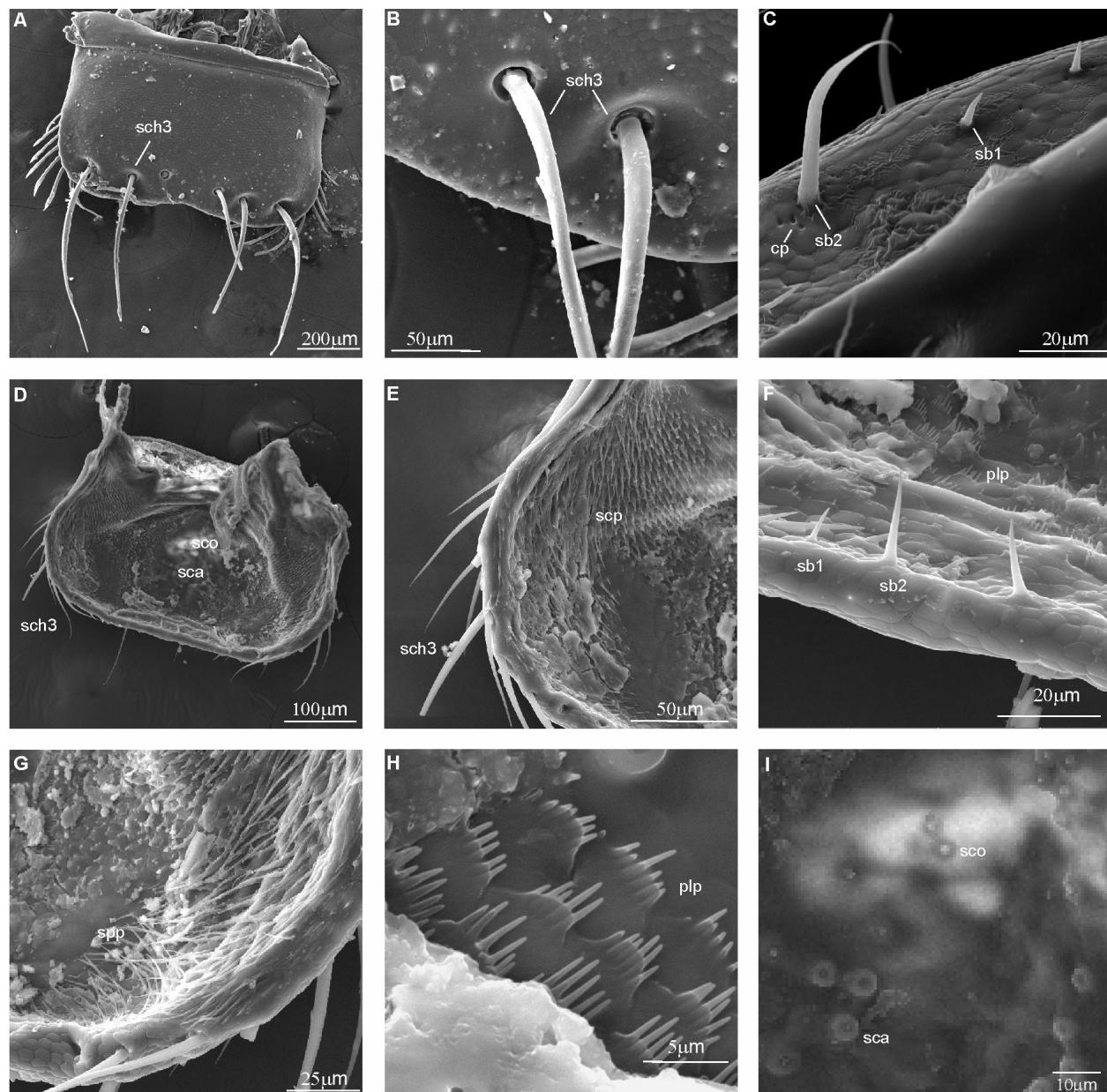
In general, the labium of an insect mouthpart is composed of the prementum, postmentum, glossae, paraglossae, and labial palpi. In *C. sexmaculata*, the paraglossa and glossa formed a combined structure named ligula (Image 5). The prementum is wider and

Table 1. Morphology measurements and distribution of sensilla on mouthpart of *Cheiromenes sexmaculata*.

| Type | Shape       | Socket  | Surface | Pore | Length (μm) with average and standard deviation | Basal diameter (μm) with average and standard deviation | Distribution                       |
|------|-------------|---------|---------|------|-------------------------------------------------|---------------------------------------------------------|------------------------------------|
| Sch1 | Hair, peg   | Concave | Grooved | No   | 34.02 (6.83)                                    | 3.7 (0.75)                                              | lig, mx, mp, antenna, lm           |
| Sch2 | Hair        | Concave | Grooved | No   | 62.2 (15.99)                                    | 4.47 (0.93)                                             | lm, lig, prm, mp, mx, lp           |
| Sch3 | Hair, peg   | Concave | Grooved | No   | 348.54 (137.15)                                 | 13.2 (7.45)                                             | lm, lig, mp                        |
| Sb1  | Peg         | Concave | Smooth  | No   | 6.44 (2.25)                                     | 2.1 (0.73)                                              | lm, lp, prm, md, mp, mx, gal, lig, |
| Sb2  | Peg         | Concave | Smooth  | No   | 15.64 (4.32)                                    | 3.27 (1.17)                                             | lm, md, mp, gal, lac, lig, mp, lp  |
| Sb3  | Hair, peg   | Concave | Smooth  | No   | 34.94 (9.06)                                    | 5.41 (0.45)                                             | lm, md, mx, lac, lig               |
| Sb4  | Hair, peg   | Concave | Smooth  | No   | 67.65 (7.00)                                    | 4.55 (0.76)                                             | gal, lac                           |
| Sty1 | Conical     | Convex  | Grooved | Tp   | 3.12 (0.52)                                     | 1.61 (0.27)                                             | lp, mp                             |
| Sty2 | Cylindrical | Convex  | Grooved | Tp   | 2.64 (0.35)                                     | 1.99 (0.38)                                             | mp                                 |
| Sco  | Round       |         |         |      |                                                 |                                                         | lm                                 |
| Sca  | Round       |         |         |      |                                                 |                                                         | lm                                 |
| Cp   | Round       |         |         |      |                                                 |                                                         | lm, lig, mx                        |

Sch 1–3—sensilla chaetica I–III | Sb 1–4—sensilla basiconica I–IV | Sty 1–2—sensilla styloconica I–II | Sco—sensilla coeloconica | Sca—sensilla campaniformia | Cp—cuticular pore | Tp—terminal pore | mp—maxillary palp | gal—galea | lac—lacinia | lb—labium | lm—labrum | lp—labial palp | md—mandible | mx—maxillae.





Image 1. Stereo microscope images of adult *Cheiromenes sexmaculata* and scanning electron micrographs of its mouthparts: A—dorsal view | B—ventral view | C—SEM ventral view of head showing the position and morphology of labrum, mandibles, maxillae, maxillary palpi, labium, and labial palpi. © Mandar Paingankar & Prakash Ghagargunde.

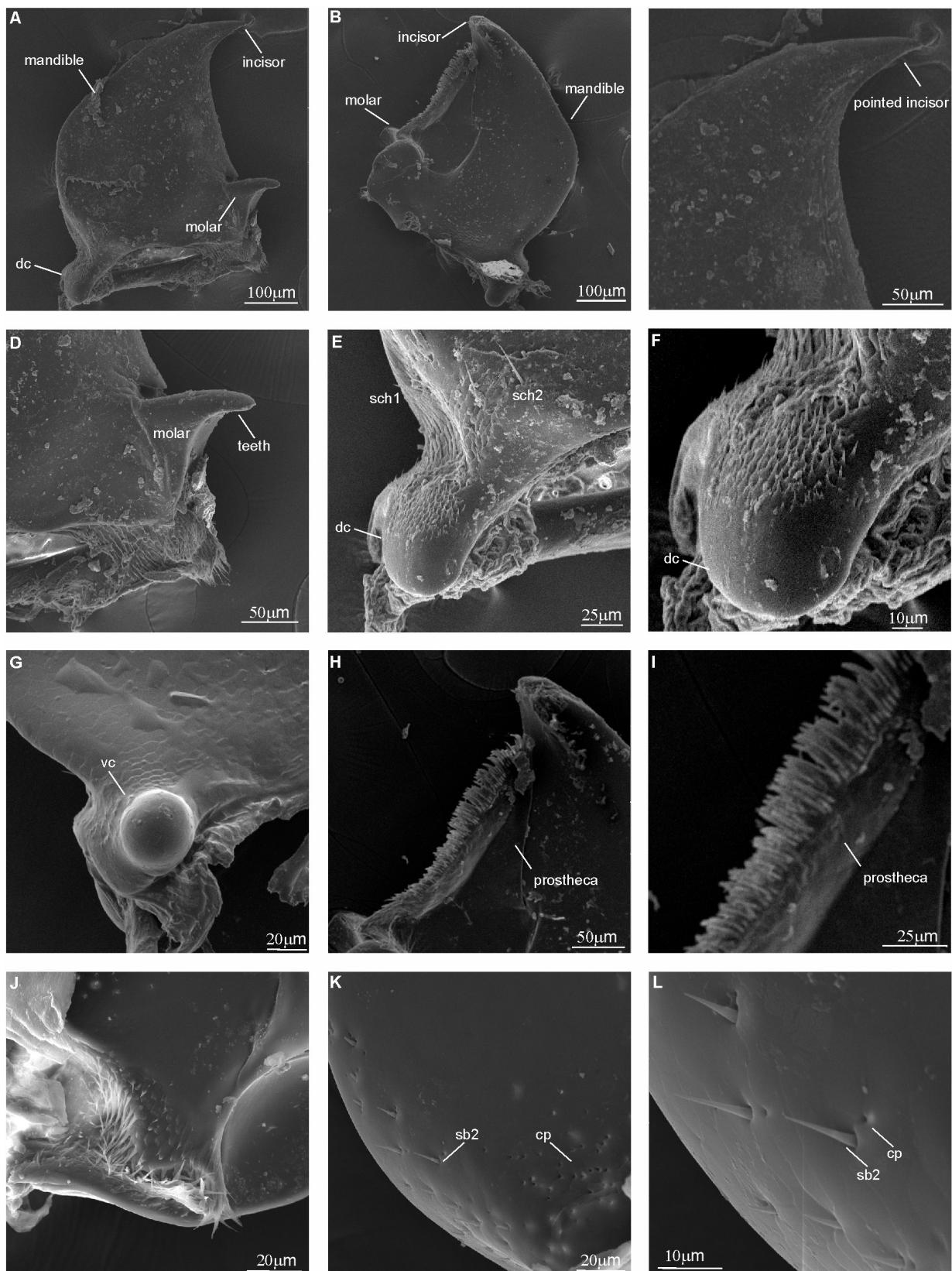
elevated at the upmost end while a little narrow and without elevation at the bottom (Image 5). The cuticle of the postmentum is smooth with numerous cuticular pores (Cp) and sensilla chaetica 2 (Sch2) (Images 1 & 5). Two symmetrical labial palpi are present on the ligula, which are inserted into the prementum (Image 5). Sensilla basiconica 2 (Sb2), spiny and palmate processes cover the terminal portion of the ligula (Images 5), while sensilla chaetica 1 and 2 (Sch1, 2) and cuticular pores (Cp) are present in the proximal part (Image 5). The labial palp is elongated and shows three segments. The basal segment is short, bearing almost no sensillum (Image 5). With a reticulated surface, the elongated middle segment progressively widens from base to top

and bears sensilla chaetica 1 (Sch1), sensilla basiconica 1 and 3 (Sb1, Sb3) (Image 5). With a single circular sensory field at the distal end, the final segment has a bullet-like shape (Image 5). In this sensory field, there are 18 sensilla styloconica 1 (Sty1), but no other sensilla or cuticular pore is observed. (Image 5).

#### Types of sensilla

The mouthparts of *C. sexmaculata* exhibit 13 different subtypes of sensilla in total: these are three types of sensilla chaetica, four types of sensilla basiconica, two types of sensilla styloconica, one type of sensilla placodea, one type of sensilla coeloconica, one type of sensilla campaniformia, and one type of cuticular pore




**Image 2. Scanning electron micrographs of the labrum of *Cheiromenes sexmaculata*:** A—dorsal view of labrum | B—sensilla chaetica3 (sch3) | C—cuticular pores (cp), sensilla basiconica1 and 2 (sb1,2) at margin | D—ventral view of labrum | E—scaly process on epipharynx | F—sensilla basiconica1,2 (sb1,2) at margin and palmate process on epipharynx | G—spiny process on epipharynx | H—palmate processes | I—sensilla campaniformia (sca), sensilla coeloconica (sco) on epipharynx. © Mandar Paingankar & Prakash Ghagargunde.

(Table 1).

Based on length and diameter, three types of sensilla chaetica, sensilla chaetica 1 (Sch1), sensilla chaetica 2 (Sch2), and sensilla chaetica 3 (Sch3) are observed on the mouthpart surfaces of *C. sexmaculata*. Sensilla chaetica 1 (Sch1) are short, robust sensilla that resemble hair or pegs and are placed into a round, concave socket. They are present on the mandibles, stipites of maxilla, ligula, prementum, and labial palp of labium (Images 3,4,5, I,K). Sensilla chaetica 2 (Sch2) has an external morphology

resembling a peg. They are distributed on the lateral margin of the labrum, mandibles, stipites of the maxilla, ligula, and prementum of the labium (Images 3,4,5,D,I). Sensilla chaetica 3 (Sch3) resembles sensilla chaetica 1 and 2 (Sch1, Sch2) in terms of their morphology and resembles hair or pegs. Sensilla chaetica 3 (Sch3) tapers toward the apical end from a broad base. They are dispersed throughout the ligula of the labium and the outer front margin of the labrum (Images 2 & 5).

Four types of sensilla basiconica, sensilla basiconica



**Image 3.** Scanning electron micrographs of the mandible of *Cheiromenes sexmaculata*: A—dorsal view | B—ventral view with dorsal and ventral teeth (Dt, Vt) | C—pointed incisor | D—molar teeth | E—dorsal condyle | F—close view of dorsal condyle | G—ventral condyle | H—prostheca | I—setae of prostheca | J—spiny processes close to molar teeth | K—sensilla basiconica 2 (Sb2) and cuticular pores (cp) on mandible | L—sensilla basiconica 2 and cuticular pores. © Mandar Paingankar & Prakash Ghagargunde.

1 (Sb1), sensilla basiconica 2 (Sb2), sensilla basiconica 3 (Sb3), and sensilla basiconica 4 (Sb4) are observed on different mouthparts of *C. sexmaculata*. Sensilla basiconica 1 (Sb1) is inserted into a round, concave socket and is short, straight, thick at the base, and sharp at the tip. Sensilla basiconica 1 (Sb1) has a smooth surface. They are found distributed on the side margin of the labrum, maxillary palp, and labial palp (Images 2,4). Sensilla basiconica 2 (Sb2) is relatively straight and longer than sensilla basiconica 1 (Sb1), has a smooth surface, and is thick at the base while sharp at the tip (Images 2,3). These are distributed on the ventral margin of the labrum and mandibles. Placed in concave sockets, sensilla basiconica 3 (Sb3) is stronger than sensilla basiconica 1 and 2 (Sb1, Sb2). Sensilla basiconica 3 (Sb3) has a smooth exterior devoid of pores. Sensilla basiconica 4 (Sb4) was found to be stronger and longer than the other, hair- and peg-like sensilla with a smooth surface bearing no pores, and they are only present on the galea and lacinia of the maxilla (Images 4).

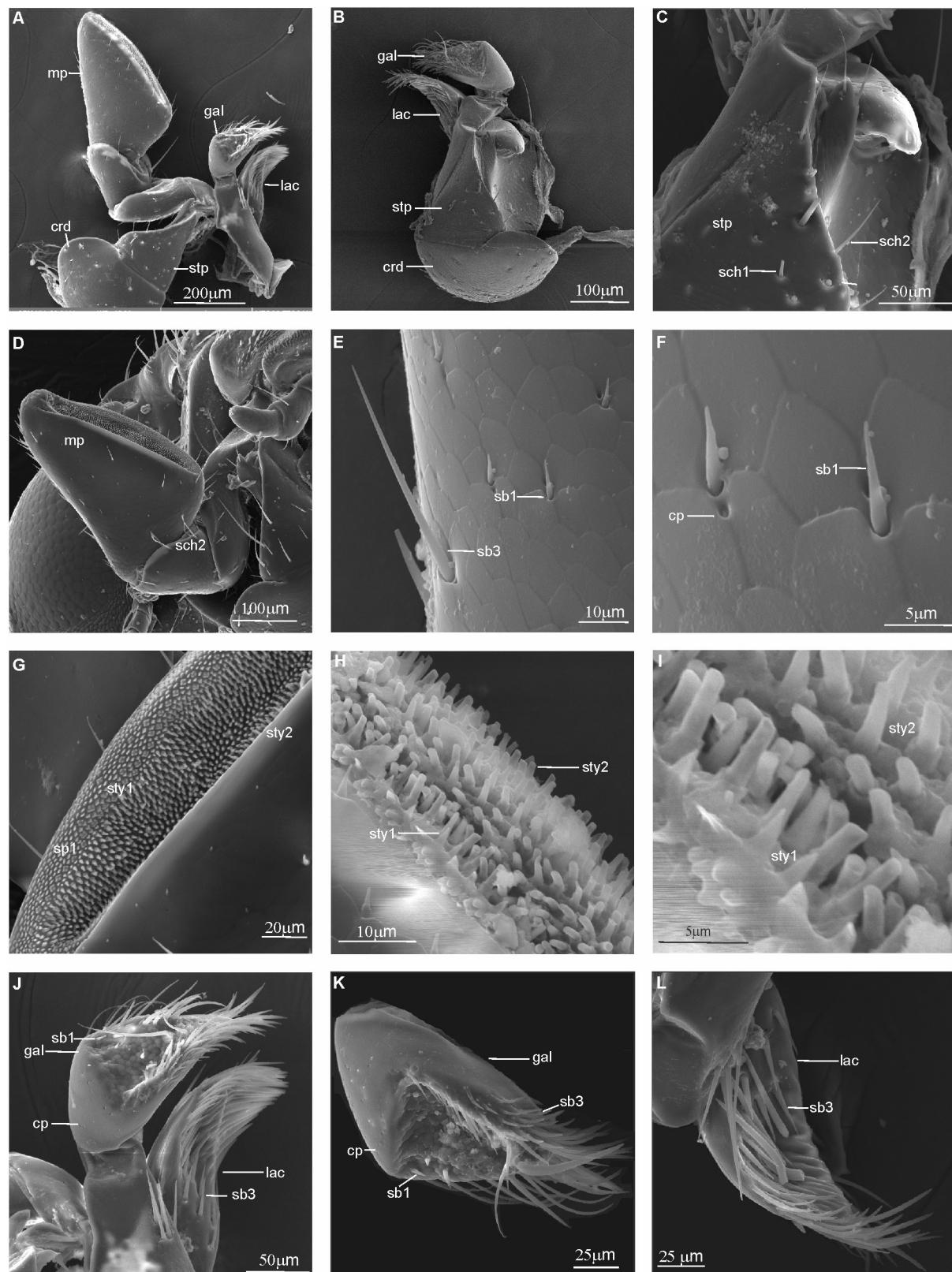
Sensilla styloconica 1 (Sty1) is a conical structure with a petal-shaped convex socket. They are present on the central part of the maxillary palpi and labial palpi (Images 4,5). The cylindrical sensilla styloconica 2 (Sty2) is placed into a convex socket. These sensilla's tips are flat, and their upper surfaces are smooth. They are visible on the central region of the maxillary palpi (Image 4).

At the margin of the sensory field of maxillary palp, spiny, triangular, non-sensory, dentiform cuticular projections are distributed among these circular, slightly convex, rugose sensilla placodea 1 (sp1) found embedded (Images 4H–I).

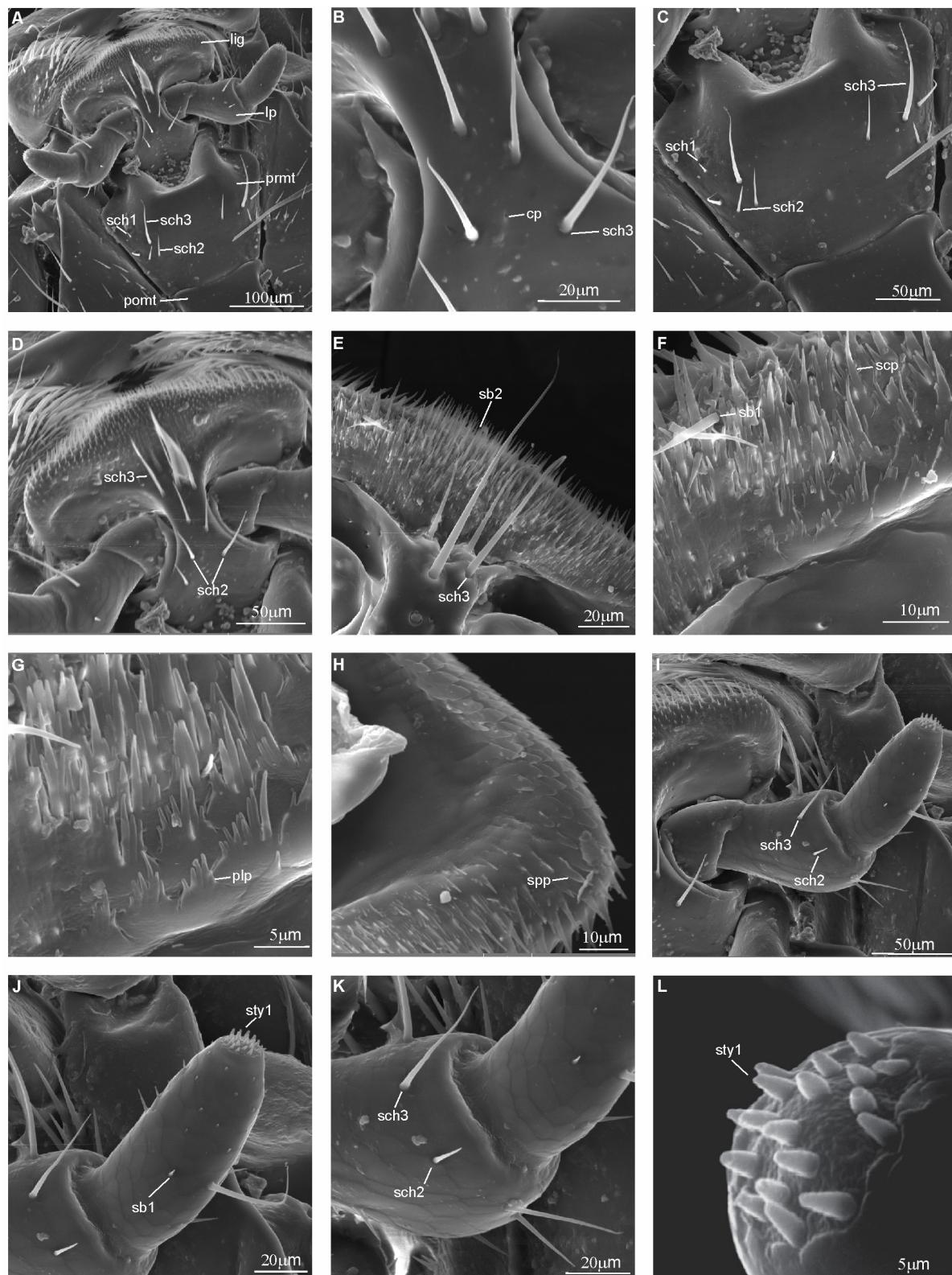
Sensilla coeloconica (Sco) are round structures with bumps in the center that cannot be distinguished clearly. They are present on the ventral surface of the labrum (Image 2).

Sensilla campaniformia (Sca) are round with a circular depression at the center and observed only on the ventral surface of the labrum (Image 2). The labrum, mandibles, maxilla, and labium all have small, round, pores called cuticular pores (Cp) (Images 2,3,4,5).

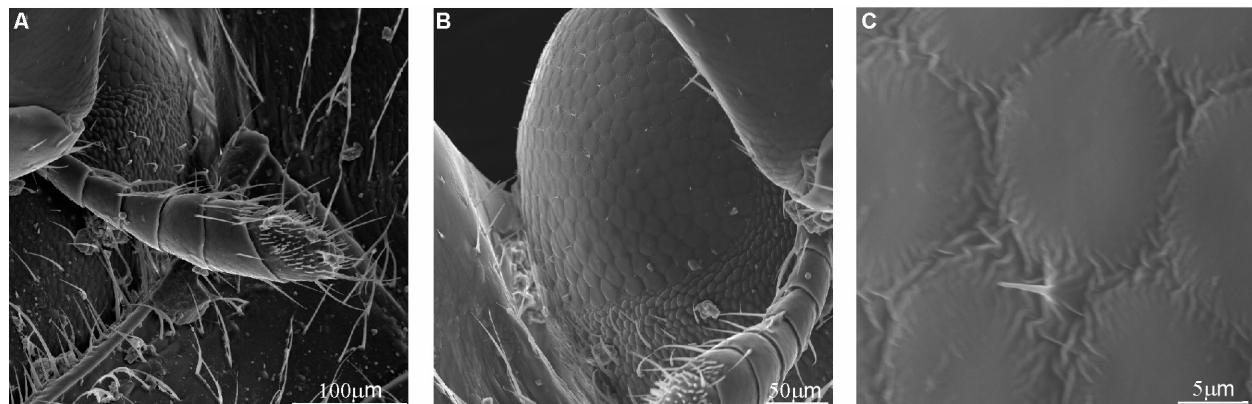
### Morphology of antenna and eye


The antennae of *C. sexmaculata* are made up of a scape, pedicel, and flagellum. There are nine flagellomeres in the flagellum; the first flagellomere has sensilla chaetica 1 and 2 (Sch1, Sch2), while the scape has sensilla chaetica 3 (Sch3). Sensilla basiconica 1 and 2 (Sb1, Sb2) are present on the tip of the ninth flagellomere and lower part of scape (Image 6). *C. sexmaculata* has

compound eyes made up of ommatidia. The surface of the ommatidia is smooth; only a few randomly distributed interommatidial hairs are present (Image 6).


### DISCUSSION

Information about the feeding ecology of several insect species has been well documented in the literature; very few studies have been targeted to describe the mouthparts at the ultra-microscopic level (Belhocine et al. 2013; Moon 2015; Chen et al. 2016; Nel et al. 2018; Hao et al. 2019). Ample literature is available on the mouthpart structures and feeding mechanisms of ground beetles, coccinellid beetles, and other coleopterans (Forsythe 1982, 1983; Ricci & Stella 1988; Pradhan 1938; Samways et al. 1997; Moon 2008; Karolyi et al. 2016), very few studies are available on predatory lady beetles. Lady beetles are known as potent bio-control agents, therefore, understanding the ultrastructure of mouthpart morphology will provide better insights into the feeding mechanism of *C. sexmaculata*. The better understanding of the ultrastructure of mouthparts will be helpful in designing and implementing an effective biological control program (Karolyi et al. 2016). One significant aphidophagous predator in Asia is the ladybird *Cheilomenes sexmaculata* (F.) (Agarwala & Yasuda 2000). Aphids such as *Aphis craccivora* (Koch) (Agarwala et al. 2001), *Aphis gossypii* (Glover), *Rhopalosiphum maidis* (Fitch), *Myzus persicae* (Sulzer), *Uroleucon compositae* (Theobald), *Lipaphis erysimi* (Kaltenbach), and *Aphis nerii* (Boyer de Fonscolombe) have all been observed to be among its prey (Omkar & Bind 2004). In high-temperature agroecosystems and greenhouses, its voracity and heat endurance may make it an effective biological control agent (Wang et al. 2013). In the current study, using scanning electron microscopy, the morphology of mouthparts of *C. sexmaculata* was described. This may be the first attempt to comprehensively describe the fine structures and various sensilla present on its mouthparts.


The scanning electron microscopic studies showed typical chewing types of mouthparts of *C. sexmaculata*. The ultrastructure of mouthparts of *C. sexmaculata* showed a resemblance with other ladybird beetles such as *C. transversguttata* and *H. variegata* (Hao et al. 2019). Unlike other zoophagous species, *C. sexmaculata* shares a mandibular morphology with polyphagous species, which are versatile, non-specialized, and lack particular adaptations for crushing or capturing prey (Forsythe 1983). Unlike *C. sexmaculata*, zoophagous species,



**Image 4.** Scanning electron micrographs of the maxilla of *Cheiromenes sexmaculata*: A—ventral view | B—galea, lacinia, stipes and cardo | C—stipes | D—maxillary palp | E—sensilla basiconica1 and 3 (sb1,3) on maxillary palp | F—sensilla basiconica 1 (sb1) and cuticular pore (cp) close view | G—sensory field of maxillary palp | H—sensory field on maxillary palp | I—sensilla styloconica 1 and 2 (sty1,2) | J—galea, lacinia with sensilla basiconica 1 and 3 (sb1,3) | K—galea showing sensilla basiconica 1, 3 (sb1,3) and cuticular pores (Cp) | L—lacinia showing sensilla basiconica 3, 4 (sb3,4). © Mandar Paingankar & Prakash Ghagargunde.



**Image 5. Scanning electron micrographs of the labium of *Cheiromenes sexmaculata*:** A—ventral view showing ligula, labial palp, prementum, postmentum | B—sensilla chaetica 3 (sch3) and cuticular pore (cp) on ligula | C—sensilla chaetica 1, 2, 3 (sch1,2,3) on prementum | D—sensilla chaetica 2, 3 (sch2,3) on ligula close view | E—sensilla chaetica 3 (sch3) and sensilla basiconica 2 (sb2) on ligula | F—scaly and palmate processes | G—palmate processes | H—scaly processes | I—sensilla chaetica 2, 3 (sch2,3) on labial palp | J—sensilla styloconica 1 (sty1) on last segment of labial palp | K—sensilla chaetica 2, 3 (sch2,3) on middle segment of labial palp | L—sensilla styloconica 1 (sty1) and sensilla placodea 1 (sp1) at sensory field on top of last segment of labial palp. © Mandar Paingankar & Prakash Ghagargunde.



**Image 6. Ultrastructure of the antenna and eye of *Cheilomenes sexmaculata*: A—antenna showing flagellum, scape, and sensilla | B—compound eye | C—hexagonal ommatidia with interommatidial hairs. © Mandar Paingankar & Prakash Ghagargunde.**

such as tiger beetles, have mandibles that are trigonal in dorso-ventral aspect (Ball et al. 2011). Phytophagous species ingest plant juices by scraping leaf surfaces with multidentate mandibles, whereas insectivorous species use unidentate or bifid incisors of mandibles for piercing the prey. During the scarcity of natural prey, few insectivorous species feed on pollen as an alternative source (Samways et al. 1997). It was observed that *C. sexmaculata*'s mandibular morphology resembles that of insectivorous beetles like *Coccinella transversoguttata* (Hao et al. 2019). Gut content analysis of *C. sexmaculata* showed the presence of traces of plant material in a few specimens. These observations suggest that when there is limited availability of prey, *C. sexmaculata* might be feeding on plant material. *C. sexmaculata* has a setal row on its prostheca. In scavenger carabids like *Carabus*, *Calosoma*, *Cychrus*, and *Scarites*, a brush of dense setae was present on the ventral surface of each mandible (Evans & Forsythe 1985), but in *C. sexmaculata* it is present between the incisor and molar region. In the submolar region of some mandibulate Carabidae, a tuft of mesally projecting setae and, more posteriorly, a soft flap-like structure was observed (Evans & Forsythe 1985)

A long incisor tooth with two or three terebral teeth has been documented in the majority of Cicindelidae taxa (Ball et al. 2011). Smooth dorsal surface of the mandible with sch1, Cp, bifid incisor, ventral teeth smaller than dorsal teeth, and molars formed by single triangular and sharp teeth are observed in *C. sexmaculata*, which is significantly different from other zoophagous species and indicate the special adaptations for crushing and capturing prey (Forsythe 1983). In this study, two types of sensilla styloconica (Sty1 and Sty2) were found: one type of sensilla placodea (sp1) at the distal end of the maxillary palp and sensilla styloconica (sty1) at the tip of

the labial palps, indicating the role of sensilla in gustatory, mechanical, and contact reception while searching for aphids. The base of sensilla styloconica (sty2) was bigger in size as compared to sty1 in *C. sexmaculata*, which indicates that these sensilla might be olfactory in nature.

In the current study, one type of sensilla placodea, one type of sensilla coeloconica, one type of sensilla campaniformia, three types of sensilla chaetica, four types of sensilla basiconica, two types of sensilla styloconica, and one type of cuticular pore are identified on the various mouthparts of *C. sexmaculata*. Interestingly, the mouthparts of *C. sexmaculata* show similarities with some polyphagous and mixed feeder beetles. The results obtained in this study provide baseline information on the ultrastructure of mouthparts and sensilla of *C. sexmaculata* and provide the basis for further investigations on the role of sensilla and feeding mechanisms in the Coccinellidae family. To comprehend the feeding mechanism and the evolution of the remarkably varied feeding habits in the Coccinellidae, more research into the structural features of mouthparts and their functional significance is necessary.

## REFERENCES

Agarwala, B.K., P. Bardhanroy, H. Yasuda & T. Takizawa (2001). Prey consumption and oviposition of the aphidophagous predator *Menochilus sexmaculatus* (Coleoptera: Coccinellidae) in relation to prey density and adult size. *Environmental Entomology* 30: 1182–1187.

Agarwala, B. & H. Yasuda (2000). Competitive ability of ladybird predators of aphids: a review of *Cheilomenes sexmaculata* (Fabr.) (Coleoptera: Coccinellidae) with a worldwide checklist of preys. *Journal of Aphidology* 14: 1–20.

Altner, H. & L. Prillinger (1980). Ultrastructure of invertebrate chemo, thermo, and hygro receptors and its functional significance. *International Review of Cytology-a Survey of Cell Biology* 67: 69–

139. [https://doi.org/10.1016/S0074-7696\(08\)62427-4](https://doi.org/10.1016/S0074-7696(08)62427-4)

**Ayer, W.A., M.J. Bennett, L.M. Browne & J.T. Purdham (1976).** Defensive substances of *Coccinella transversoguttata* and *Hippodamia caseyi*, ladybugs indigenous to western Canada. *Canadian Journal of Chemistry* 54: 1807–1813. <https://doi.org/10.1139/v76-256>

**Ball, G.E., J.H. Acorn & D. Shpeley (2011).** Mandibles and labrum, epipharynx of tiger beetles basic structure and evolution (Coleoptera, Carabidae, Cicindelitae). *Zookeys* 147: 39–83. <https://doi.org/10.3897/zookeys.147.2052>

**Belhocine, L., R.T. Bouhraoua, E. Prats & J.P. Villar (2013).** Fine structure and functional comments of mouthparts in *Platypus cylindrus* (Coleoptera, Curculionidae: Platypodinae). *Micron* 45: 74–82.

**Brožek, J. & T. Bourgoin (2013).** Morphology and distribution of the external labial sensilla in *Fulgoromorpha* (Insecta: Hemiptera). *Zoomorphology* 132: 33–65.

**Chen, F., C.N. Zhang & W. Dai (2016).** Fine structure and sensory apparatus of the mouthparts of the maize weevil, *Sitophilus zeamais* Motschulsky (Coleoptera: Curculionoidea: Dryophthoridae). *Annals of the Entomological Society of America* 109(6): 881–889.

**Eilers, E.J., G. Talarico, B.S. Hansson, M. Hilker & A. Reinecke (2012).** Sensing the underground-ultrastructure and function of sensory organs in root-feeding *Melolontha melolontha* (Coleoptera: Scarabaeinae) larvae. *PLoS ONE* 7(7): e41357. <https://doi.org/10.1371/journal.pone.0041357>

**Evans, M.E.G. & T.G. Forsythe (1985).** Feeding mechanisms and their variation in form, of some adult ground-beetles (Coleoptera: Carabidae). *Journal the Zoological Society of London (A)* 206: 113–143.

**Forsythe, T.G. (1982).** Feeding mechanisms of certain ground beetles (Coleoptera: Carabidae). *The Coleopterists Bulletin* 36: 26–73. <https://doi.org/10.2307/4007976>

**Forsythe, T.G. (1983).** Mouthparts and feeding of certain ground beetles (Coleoptera: Carabidae). *Zoological Journal of the Linnean Society* 79(4): 319–376. <https://doi.org/10.1111/j.1096-3642.1983.tb01170.x>

**Hao, Y.N., Y.X. Sun & C.Z. Liu (2019).** Functional morphology of the mouthparts of lady beetle *Coccinella transversoguttata* (Coccinellidae, Coleoptera) with reference to their feeding mechanism. *Journal of Morphology* 280: 701–711. <https://doi.org/10.1002/jmor.20976>

**Hao, Y.N., Y.X. Sun & C.Z. Liu (2019).** Functional morphology of the mouthparts of lady beetle *Hippodamia variegata* (Coleoptera: Coccinellidae), with reference to their feeding mechanism. *Zoomorphology* 139: 199–212. <https://doi.org/10.1007/s00435-019-00474-0>

**Karolyi, F., T. Hansal, H.W. Krenn & J.F. Colville (2016).** Comparative morphology of the mouthparts of the megadiverse South African monkey beetles (Scarabaeidae: Hopliini): feeding adaptations and guild structure. *PeerJ* 4: e1597. <https://doi.org/10.7717/peerj.1597>

**Li, X., D. Chi, Y. Zhu, Z. Zhang & J. Yu (2012).** The comparative study on adult surface ultrastructure of *Harmonia axyridis* Pallas (Coleoptera: Coccinellidae). *African Journal of Agricultural Research* 7: 5779–5791. <https://doi.org/10.5897/AJAR11.565>

**Li, Y.Y., K.M. Shao, D. Liu & L. Chen (2022).** Structure and distribution of antennal sensilla in *Pseudosymmachia flavescent* (Brensker) (Coleoptera: Scarabaeidae: Melolonthinae). *Microscopy Research and Technique* 85(4): 1588–1596. <https://doi.org/10.1002/jemt.24020>

**Luo, H.W., J. Huang & Z.H. Wang (2006).** Observation of predatory behavior of *Delphastus catalinae* on *Bemisia tabaci*. *Chinese Journal of Biological Control* 22: 14–16.

**Moon, M.J. (2015).** Microstructure of mandibulate mouthparts in the greater rice weevil, *Sitophilus zeamais* (Coleoptera: Curculionidae). *Entomological Research* 45(1): 9–15. <https://doi.org/10.1111/1748-5967.12086>

**Nel, P., S. Bertrand & A. Nel (2018).** Diversification of insects since the Devonian: a new approach based on morphological disparity of mouthparts. *Scientific Reports* 8(1): 3516. <https://doi.org/10.1038/s41598-018-21938-1>

**Omkar, O. & R.B. Bind (2004).** Prey quality- dependent growth, development and reproduction of a biocontrol agent, *Cheiromenes sexmaculata* (Fabricius) (Coleoptera: Coccinellidae). *Biocontrol Science and Technology* 14: 665–673.

**Pradhan S. (1938).** Neuromuscular study of the mouthparts of *Coccinella septempunctata* with comparison in carnivorous and herbivorous coccinellids. *Records of the Zoological Survey of India* 40(4): 341–358. <https://doi.org/10.26515/rzsi/v40/i4/1938/162243>

**Rani, P.U. & S.S. Madhavendra (1995).** Morphology and distribution of antennal sense organs and diversity of mouthpart structures in *Odontopus nigricornis* (Stål) and *Nezara viridula* L. (Hemiptera). *International Journal of Insect Morphology and Embryology* 24: 119–132. [https://doi.org/10.1016/0020-7322\(94\)00020-Q](https://doi.org/10.1016/0020-7322(94)00020-Q)

**Rani, P.U. & S.S. Madhavendra (2005).** External morphology of antennal and rostral sensillae in four hemipteran insects and their possible role in host plant selection. *International Journal of Tropical Insect Science* 25: 198–207. <https://doi.org/10.1079/IJT200577>

**Ricci C., & J. Stella (1988).** *Relationship between morphology and function in some Palaearctic Coccinellidae*. Ecology and effectiveness of Aphidophaga; Dixon, AFG, Ed; Academic Publishing: The Hague, The Netherland, 21–25 pp.

**Ruschioni, S., N. Loreto, N. Isidoro & P. Riolo (2019).** Sensory structures on maxillary and labial palps of *Tenebrio molitor*. *Bulletin of Insectology* 72(2): 309–316.

**Samways, M.J., R. Osborn & T.L. Saunders (1997).** Mandible form relative to the main food type in ladybirds (Coleoptera: Coccinellidae). *Biocontrol Science and Technology* 7(2): 275–286. <https://doi.org/10.1080/09583159730974>

**Sarwar, M. & S.M. Saqib (2010).** Rearing of predatory seven spotted ladybird beetle *Coccinella septempunctata* L. (Coleoptera: Coccinellidae) on natural and artificial diets under laboratory conditions. *Pakistan Journal of Zoology* 42: 47–51.

**Seo, M.J. & Y.N. Youn (2000).** The asian ladybird, *Harmonia axyridis*, as biological control agents: I. predacious behavior and feeding ability. *Korean Journal of Applied Entomology* 39(2): 59–72.

**Thornham, D.G., M.E. Wakefield, A. Blackwell, K.A. Evans & K.F.A. Walters (2007).** Sexual dimorphism in the distribution and biometrics of the palpal sensilla of *Coccinella septempunctata*, and a description of a new sensillum. *Acta Entomologica Sinica* 50: 667–674.

**Wang, J.Z., Y. Wang & S.L. Sun (2000).** Sequence of predatory behavior of the adult lady bird beetle, *Coccinella septempunctata* L. (Coleoptera: Coccinellidae) on aphids. *Entomological Knowledge* 37: 195–197.

**Wang, S., X.L. Tan, X.J. Guo & F. Zhang (2013).** Effect of temperature and photoperiod on the development, reproduction, and predation of the predatory ladybird *Cheiromenes sexmaculata* (Coleoptera: Coccinellidae). *Journal of Economic Entomology* 106: 1–9.

**Wei, K.J., Z.R. Zhan, B. Lin, L.H. Zhang & C.L. Zhang (2015).** Observation on the predatory behavior of *Synonycha grandis* on *Pseudoregma bambusicola*. *Forest Pest and Disease* 4: 26–29.

**Wilhelmi, A.P. & H.W. Krenn (2012).** Elongated mouthparts of nectar feeding Meloidae (Coleoptera). *Zoomorphology* 131: 325–337. <https://doi.org/10.1007/s00435-012-0162-3>

**Yilda, C., D.T. Chirinos, G. Gonzalez, N. Lemos, A. Fuentes, R. Castro & T. Kondo (2017).** *Tamarixia radiata* (Waterston) and *Cheiromenes sexmaculata* (Fabricius) as biological control agents of *Diaphorina citri* Kuwayama in Ecuador. *Chilean Journal of Agricultural Research* 77(2): 180–184. <https://doi:10.4067/S0718-58392017000200180>



Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.  
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK  
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India  
Dr. John Noyes, Natural History Museum, London, UK  
Dr. Albert G. Orr, Griffith University, Nathan, Australia  
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium  
Dr. Nancy van der Poorten, Toronto, Canada  
Dr. Karen Schnabel, NIWA, Wellington, New Zealand  
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India  
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India  
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India  
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India  
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India  
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India  
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain  
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong  
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India  
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait  
Dr. Himender Bharti, Punjabi University, Punjab, India  
Mr. Purnendu Roy, London, UK  
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan  
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India  
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam  
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India  
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore  
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.  
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India  
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil  
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany  
Dr. James M. Carpenter, American Museum of Natural History, New York, USA  
Dr. David M. Claborn, Missouri State University, Springfield, USA  
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand  
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil  
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India  
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia  
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia  
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA  
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India  
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia  
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia  
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.  
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan  
Dr. Keith V. Wolfe, Antioch, California, USA  
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA  
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic  
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway  
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India  
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India  
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

#### Fishes

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México  
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore  
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India  
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK  
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India  
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia  
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India  
Dr. Akhilesh KV, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India  
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India  
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

#### Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India  
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

#### Reptiles

Dr. Gernot Vogel, Heidelberg, Germany  
Dr. Raja Vyas, Vadodara, Gujarat, India  
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.  
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey  
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India  
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India  
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

**Journal of Threatened Taxa** is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

#### Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia  
Mr. H. Biju, Coimbatore, Tamil Nadu, India  
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK  
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India  
Dr. J.W. Duckworth, IUCN SSC, Bath, UK  
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India  
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India  
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India  
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India  
Mr. J. Praveen, Bengaluru, India  
Dr. C. Srinivasulu, Osmania University, Hyderabad, India  
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA  
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia  
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel  
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands  
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK  
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK  
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India  
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia  
Dr. Simon Dowell, Science Director, Chester Zoo, UK  
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal  
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA  
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

#### Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy  
Dr. Anwaruddin Chowdhury, Guwahati, India  
Dr. David Mallon, Zoological Society of London, UK  
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India  
Dr. Angie Appel, Wild Cat Network, Germany  
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India  
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK  
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA  
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.  
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India  
Dr. Mewa Singh, Mysore University, Mysore, India  
Dr. Paul Racey, University of Exeter, Devon, UK  
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India  
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India  
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy  
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India  
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India  
Dr. Paul Bates, Harison Institute, Kent, UK  
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA  
Dr. Dan Challender, University of Kent, Canterbury, UK  
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK  
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA  
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India  
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal  
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia  
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

#### Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)  
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)  
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)  
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)  
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)  
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil  
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand  
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa  
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India  
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India  
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India  
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka  
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

#### Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:  
The Managing Editor, JoTT,  
c/o Wildlife Information Liaison Development Society,  
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,  
Tamil Nadu 641006, India  
ravi@threatenedtaxa.org & ravi@zooreach.org

## Articles

### Culture and provisioning: the case of Human-Long-tailed Macaque *Macaca fascicularis* (Raffles, 1821) interactions in Sumile, Butuan City, Philippines

– Fritche H. Lapore, Debbie S. Aseñas & Sherryl L. Paz, Pp. 26443–26458

### Noteworthy comments on birds for mega-diverse Myanmar

– Swen C. Renner, Saw Moses, Lay Win, Thein Aung, Myint Kyaw, Saw Myat Ohnmar, Thiri Dae We Aung, Kay Thwe Myint, Sai Sein Lin Oo, Paul J.J. Bates & Marcela Suarez-Rubio, Pp. 26459–26467

### Ultra-structure of antenna, eye, mouthparts and sensilla of *Cheiromenes sexmaculata* Fabricius, 1781 (Coccinellidae: Coleoptera)

– Prakash Ghagargunde & Mandar S. Paingankar, Pp. 26468–26478

### Morphological characterization and ecological insights of *Pseudonapaeus cf. candelaris* (L. Pfeiffer, 1846) in the Pir Panjal Range of western Himalaya

– Hilal Ahmed, Imtiaz Ahmed & N.A. Aravind, Pp. 26479–26486

## Communications

### Diet and nutrient balance of wild Asian Elephants *Elephas maximus* in Nepal

– Raj Kumar Koirala & Sean C.P. Coogan, Pp. 26487–26493

### Avian diversity in wetlands of southwestern Kerala of India during COVID

– Vijayakumari Sudhakaran Bindu & S. Sajitha, Pp. 26494–26503

### Checklist on the ichthyofaunal resources and conservation status of Dikhu River, Nagaland, India

– Metevinu Kechu & Pranay Punj Pankaj, Pp. 26504–26514

### A study on the diversity of butterflies in selected landscapes of the Indian Institute of Technology, Guwahati campus, Assam, India

– Uma Dutta, Sonali Dey & Deepshikha Moran, Pp. 26515–26529

### *Sphaeroma taborans* sp. nov., a new species of wood-boring isopod (Crustacea: Isopoda: Sphaeromatidae) from Munroe Island, Ashtamudi Estuary, Kerala, India

– M.S. Arya, A. Biju & Dani Benchamin, P. 26530–26537

### A report on Conidae (Gastropoda) from the Karnataka coast – distribution and shell morphometry

– B.S. Chandan, R. Shyama Prasad Rao & Mohammed S. Mustak, Pp. 26538–26546

### New distribution record and DNA barcoding of the steno-endemic plant *Cordia diffusa* (Boraginaceae)

– M. Haritha, D. Leena Lavanya & H. Abinaya, Pp. 26547–26552

## Short Communications

### First record of the sea slug *Lobiger serratifalci* (Calcaria, 1840) (Gastropoda: Sacoglossa: Oxynoidae) from the Indian coast

– Dimpal Dodiya & Paresh Poriya, Pp. 26553–26557

### *Impatiens damrongii* (Balsaminaceae), a new record for the flora of Vietnam

– Ha Van Dang, Leonid Vladimirovich Averyanov & Cuong Huu Nguyen, Pp. 26558–26561

### Invasive record of Brazilian Petunia *Ruellia elegans* Poir. (Acanthaceae) from northeastern India

– Mamita Kalita, Pp. 26562–26565

## Note

### *Cuphea carthagenensis* (Jacq.) J.F.Macbr. (Lythraceae)

– a new non-native plant record for the Eastern Ghats of India

– Prabhat Kumar Das, Bishal Kumar Majhi, Shashi Sourav Hansda, Samarendra Narayan Mallick, Purnendu Panda & Pratap Chandra Panda, Pp. 26566–26570

## Publisher & Host



Threatened Taxa