

Building evidence for conservation globally

Journal of Threatened TAXA

10.11609/jott.2024.16.12.26187-26330

www.threatenedtaxa.org

26 December 2024 (Online & Print)

16(12): 26187-26330

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Open Access

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Deputy Chief Editor

Dr. Neelesh Dahanukar

Noida, Uttar Pradesh, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Editorial Board

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors

Mrs. Mira Bhojwani, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhu Stothra Bhashyam**, Hyderabad, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting

Mrs. Radhika, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India

Fundraising/Communications

Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2021–2023

Fungi

Dr. B. Shivaraju, Bengaluru, Karnataka, India

Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India

Dr. Vatsavaya S. Raju, Kakatiya University, Warangal, Andhra Pradesh, India

Dr. M. Krishnappa, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India

Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India

Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India

Dr. Kiran Ramchandra Ranadive, Annasaheb Magar Mahavidyalaya, Maharashtra, India

Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India

Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India

Dr. Shonil Bhagwat, Open University and University of Oxford, UK

Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India

Dr. Ferdinand Boero, Università del Salento, Lecce, Italy

Dr. Dale R. Calder, Royal Ontario Museum, Toronto, Ontario, Canada

Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines

Dr. F.B. Vincent Florens, University of Mauritius, Mauritius

Dr. Merlin Franco, Curtin University, Malaysia

Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India

Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India

Dr. Pankaj Kumar, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA

Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India

Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Vijayasankar Raman, University of Mississippi, USA

Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantapur, India

Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India

Dr. Aparna Watve, Pune, Maharashtra, India

Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China

Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia

Dr. M.K. Vasudeva Rao, Shiv Ranjan Housing Society, Pune, Maharashtra, India

Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Manda Datar, Agharkar Research Institute, Pune, Maharashtra, India

Dr. M.K. Janarthanam, Goa University, Goa, India

Dr. K. Karthigeyan, Botanical Survey of India, India

Dr. Errol Vela, University of Montpellier, Montpellier, France

Dr. P. Lakshminarasiham, Botanical Survey of India, Howrah, India

Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA

Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India

Dr. Analinda Manila-Fajard, University of the Philippines Los Banos, Laguna, Philippines

Dr. P.A. Siru, Central University of Kerala, Kasaragod, Kerala, India

Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India

Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India

Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA

Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India

Dr. A.G. Pandurangan, Thiruvananthapuram, Kerala, India

Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India

Dr. Kannan C.S. Warrier, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India

Dr. D.B. Bastawade, Maharashtra, India

Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India

Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India

Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa

Dr. Rory Dow, National Museum of natural History Naturalis, The Netherlands

Dr. Brian Fisher, California Academy of Sciences, USA

Dr. Richard Gallon, Llandudno, North Wales, LL30 1UP

Dr. Hemant V. Ghate, Modern College, Pune, India

Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Life and death in one night - wolf hunting the hare. Mixed media—gouache, acrylics, pen & colour pencils. © Dupati Poojitha.

Six new reports of corticioid fungi from India

Poonam¹ , Avneet Pal Singh² & Gurpaul Singh Dhingra³

¹ Department of Botany, Government Post Graduate College, Chamba, Himachal Pradesh 176314, India.

^{2,3} Department of Botany, Punjabi University, Patiala, Punjab 147002, India.

¹ poonamriddham777@gmail.com, ² avneetbot@gmail.com (corresponding author), ³ dhingragurpaul@gmail.com

Abstract: The objective of the present paper is to describe and illustrate six species of corticioid fungi collected from four tehsils of the Chamba District of Himachal Pradesh (India). The described species, *Brevicellicium exile* (H.S.Jacks.) K.H.Larss. & Hjortstam, *Kurtia magnargillacea* (Boidin & Gilles) Karasiński, *Physodontia lundellii* Ryvarden & H.Solheim, *Rhizochaete violascens* (Fr.) K.H.Larss., *Sistotrema coroniferum* (Höhn. & Litsch.) D.P.Rogers & H.S.Jacks, and *Tubulicrinis cinctus* G.Cunn. are new additions to corticioid fungi reported from India.

Keywords: Agaricomycetes, Basidiomycota, diversity, northwestern Himalaya, taxonomy.

Editor: Kiran R. Ranadive, Annasaheb Magar Mahavidyalaya, Hadapsar, India.

Date of publication: 26 December 2024 (online & print)

Citation: Poonam, A.P. Singh & G.S. Dhingra (2024). Six new reports of corticioid fungi from India. *Journal of Threatened Taxa* 16(12): 26272-26282. <https://doi.org/10.11609/jott.9322.16.12.26272-26282>.

Copyright: © Poonam et al. 2024. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: The authors are thankful to University Grants Commission (UGC), New Delhi and SERB, DST, New Delhi financial assistance under SAP DSA Level-1 programme.

Competing interests: The authors declare no competing interests.

Author details: DR. POONAM is currently working as assistant professor, Department of Botany, Government Post Graduate College, Chamba (Himachal Pradesh). She has worked on the taxonomy of corticioid fungi from district Chamba for her PhD research work. He has thoroughly surveyed district Kullu and collected 486 specimens of the corticioid fungi. She has described and illustrated 191 taxa including 20 new records for India and 43 first reports for Himachal Pradesh. DR. AVNEET PAL SINGH, assistant professor, Department of Botany, Punjabi University, Patiala is a mycologist and works on the taxonomy, histo-pathology and evaluation of corticioid and polyporoid fungi (Agaricomycetes, Basidiomycota). He actively engaged in the research work for more than two decades and has published about eighty research papers describing nearly three hundred and ten taxa based on morphological and DNA sequence based molecular phylogenetic studies. He has to his credit two new genera and twenty two new species of corticioid and poroid fungi. DR. GURPAUL SINGH DHINGRA retired as professor from Department of Botany, Punjabi University, Patiala (Punjab) and has more than three decades of teaching and research experience. His area of specialization is mycology and plant pathology with special interest in corticioid and poroid fungi. He and has described large number of new genera and species of these fungi from different parts of India. He has worked on the antidiabetic, CNS and anticancer activity of medicinally important poroid fungi.

Author contributions: Poonam has thoroughly surveyed the study area and collected the corticioid specimens. She has worked out the morphological details of the collected specimens and prepared the standard descriptions along with illustrations. Avneet Pal Singh has explored the taxonomic literature for identity of the worked out specimens and identified the worked out specimens. He has also contributed to the draft of manuscript and photography of the specimens described presently. Dr. Gurpaul Singh Dhingra is an expert in the field of taxonomy of corticioid fungi and confirmed the identification. He critically analyzed the draft and made valuable suggestions.

Acknowledgements: The authors are thankful to Head, Department of Botany, Punjabi University, Patiala for providing necessary laboratory facilities and University Grants Commission, New Delhi for financial assistance under SAP DSA Level-1 programme.

INTRODUCTION

Corticioid fungi are a group of higher fungi (Basidiomycota, Agaricomycetes) that mostly grow in association with different forms of wood substrate. These are also referred to as crust fungi because of the formation of macroscopic sporophores with unilateral hymenium that are mostly resupinate or sheet-like. The hymenial surface is usually smooth, occasionally varies from tuberculate, ridged, warty, toothed, to meruliod. The colour of the hymenophore mostly ranges from whitish to shades of grey, yellow, orange, red, or brown. The sporophores are quite diverse with reference to hyphal type, ancillary structures, shape and size of basidia and basidiospores. On the basis of morphological features most of corticioid fungi were earlier placed in the family Corticiaceae (Aphylophorales). The molecular phylogenetic studies indicated the family to be an unnatural group. Hence, these fungi have been currently distributed into twelve orders of the class Agaricomycetes (Agaricomycotina, Basidiomycota).

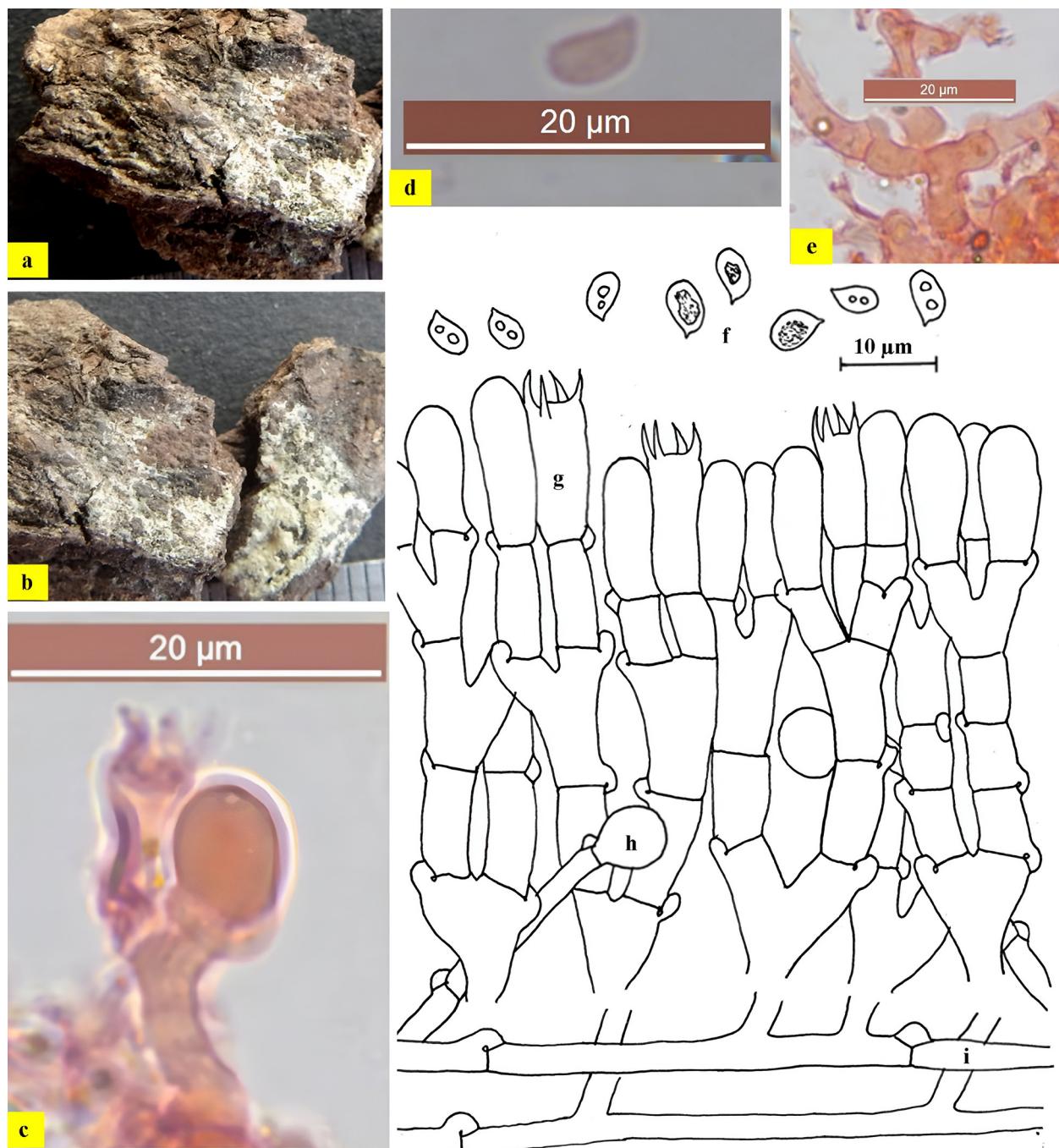
Corticioids are ecologically significant because of their role in the recycling of wood and agricultural residues. These fungi breakdown different kinds of organic matter, decompose soil components and regulate the balance of carbon and other nutrients for maintaining soil health (Tong et al. 2022). The members of corticioid fungi have ability to produce extracellular enzymes and actively transform carbon and other nutrients, water, and oxygen along a highly branching hyphal network (Boddy 1991; Cragg et al. 2015). The secretion of lignin or cellulose decaying enzymes makes this group capable of colonizing different types of wood in a forest ecosystem and are responsible for white or brown rot, respectively.

Four tehsils of the Chamba District (Himachal Pradesh, India) were thoroughly surveyed for the collection of sporophore specimens of corticioid fungi. These were identified as *Brevicellicium exile* (H.S. Jacks.) K.H.Larss. & Hjortstam, *Kurtia magnargillacea* (Boidin & Gilles) Karasiński, *Physodontia lundellii* Ryvarden & H.Solheim, *Rhizochaete violascens* (Fr.) K.H.Larss., *Sistotrema coroniferum* (Höhn. & Litsch.) D.P.Rogers & H.S.Jacks., and *Tubulicrinis cinctus* G.Cunn. on the basis of macroscopic and microscopic features and their comparison with the published literature (Eriksson & Ryvarden 1973; Eriksson et al. 1981, 1984; Hjortstam et al. 1988; Boidin et al. 1991; Bernicchia & Gorjón 2010; Hakimi et al. 2013; Manoharachary et al. 2022; fungifromindia.com 2024; Mycobank 2024). The species

documented presently are new records for India.

MATERIAL AND METHODS

During the years 2013–2018, extensive fungal excursions were carried out in four tehsils of the Chamba District of Himachal Pradesh (India) for the purpose of gathering sporophore specimens of corticioid fungi. The sporophores were gently separated from the substrate using a chisel and hammer. All the collected specimens were thoroughly cleaned and dried either in sun or on an electric drier. The macroscopic characteristics of the sporophores were observed and noted with the help of a hand lens. Kornerup & Wanscher (1978) was referred for the colour citation. The microscopic features were examined by preparing crush mounts and free-hand cut sections in 3%, 5%, and 10% potassium hydroxide (KOH) solution. The microscopic preparations were stained in cotton blue (1% in lactophenol), congo red (1% in distilled water), phloxine (1% in distilled water), and Melzer's reagent (0.5 g iodine, 1.5 g potassium iodide, 20 g chloral hydrate and 20 ml distilled water). Details of the microscopic structures were outlined as line diagrams using a camera lucida at different magnifications (100x, 400x, and 1,000x) of the compound microscope. Taxonomic descriptions comprising the macro and microscopic features were prepared and subsequently compared with the literature for identification. The specimens of these corticioid species were deposited in the Herbarium, Department of Botany at Punjabi University, Patiala (PUN).


RESULTS

Brevicellicium exile (H.S.Jacks.) K.H.Larss. & Hjortstam, Mycotaxon 7(1): 118 (1978). (Image 1)

Corticium exile H.S.Jacks., Canadian Journal of Research 28(6): 721 (1950).

Sporophore resupinate, effused, adnate, ≤ 160 μm thick in section; hymenial surface smooth both in fresh and dry state; yellowish white to pale yellow both in fresh and dry state; margins fibrillose, paler concolorous when determinate.

Hyphal system monomitic. Generative hyphae subhyaline, septate, clamped, smooth, thin-walled; subcircular hyphae horizontal, ≤ 2.5 μm wide, less branched; subhymenial hyphae vertical, ≤ 4.5 μm wide, richly branched, almost isodiametric. Sphaerocysts spherical, 10– 12 \times 6– 7 μm , thin-walled, with basal

Image 1. *Brevicellicium exile*: a–b—Sporophore showing hymenial surface Fresh (a) and Dry (b) | c–e—Photomicrographs showing sphaerocyst (c), basidiospore (d), and generative hyphae (e) | f–i—Line diagrams depicting the outline of basidiospores (f), basidium (g), sphaerocyst (h), and generative hyphae (i). © Poonam.

clamp. Basidia cylindrical, $11–13 \times 5.5–6.7 \mu\text{m}$, basally clamped, four sterigmate; sterigma $\leq 5 \mu\text{m}$ long. Basidiospores ellipsoid to broadly ellipsoid, distinctly apiculate, $4.5–5.5 \times 2.8–3.5 \mu\text{m}$, thin-walled, smooth, acyanophilous, inamyloid, with oily contents.

Collection examined: India, Himachal Pradesh: Chamba, Dalhousie, Jandrighat, on stump of *Cedrus*

deodara, Poonam 9198 (PUN), 05 November 2013.

Remarks: *Brevicellicium exile* is peculiar in having smooth hymenial surface, basally clamped sphaerocysts and ellipsoid to broadly ellipsoid basidiospores. *Brevicellicium olivascens* (Bres.) K.H.Larss. & Hjortstam differs in having grandinoid to slightly hydnoid hymenophore and subglobose to somewhat angular

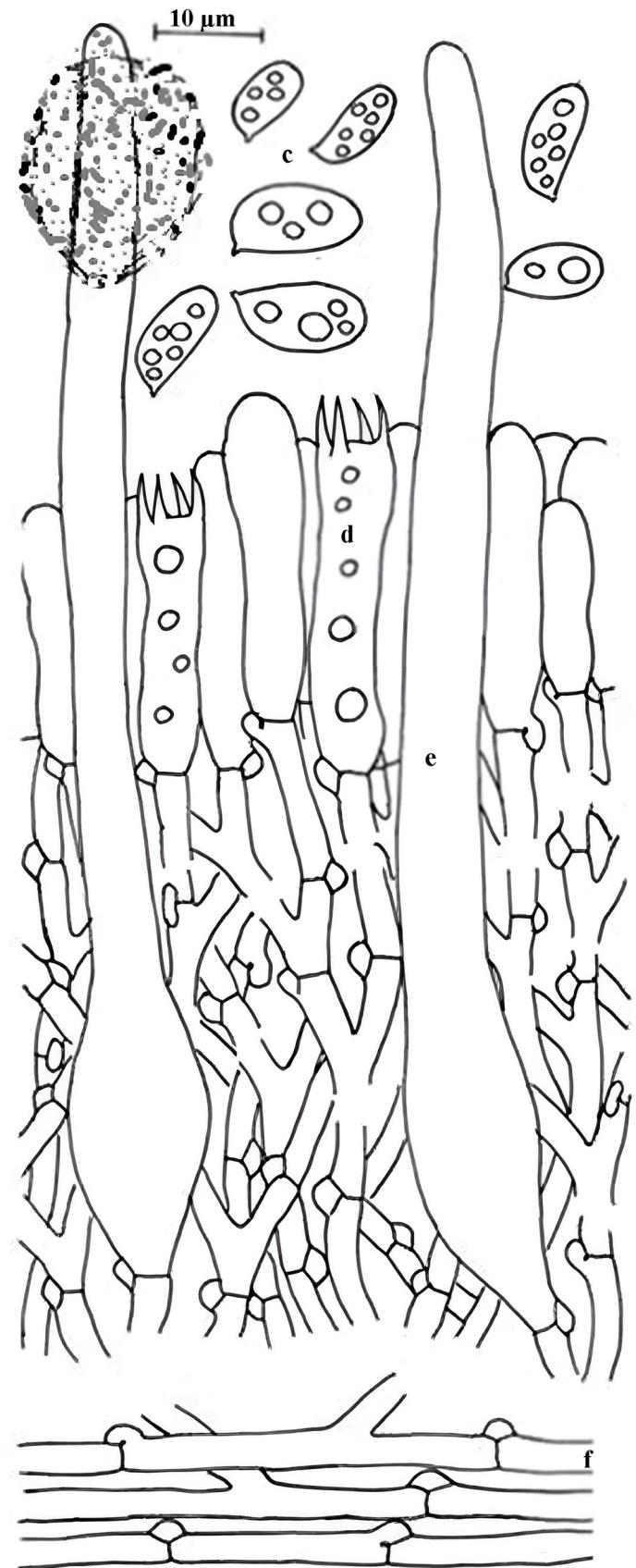
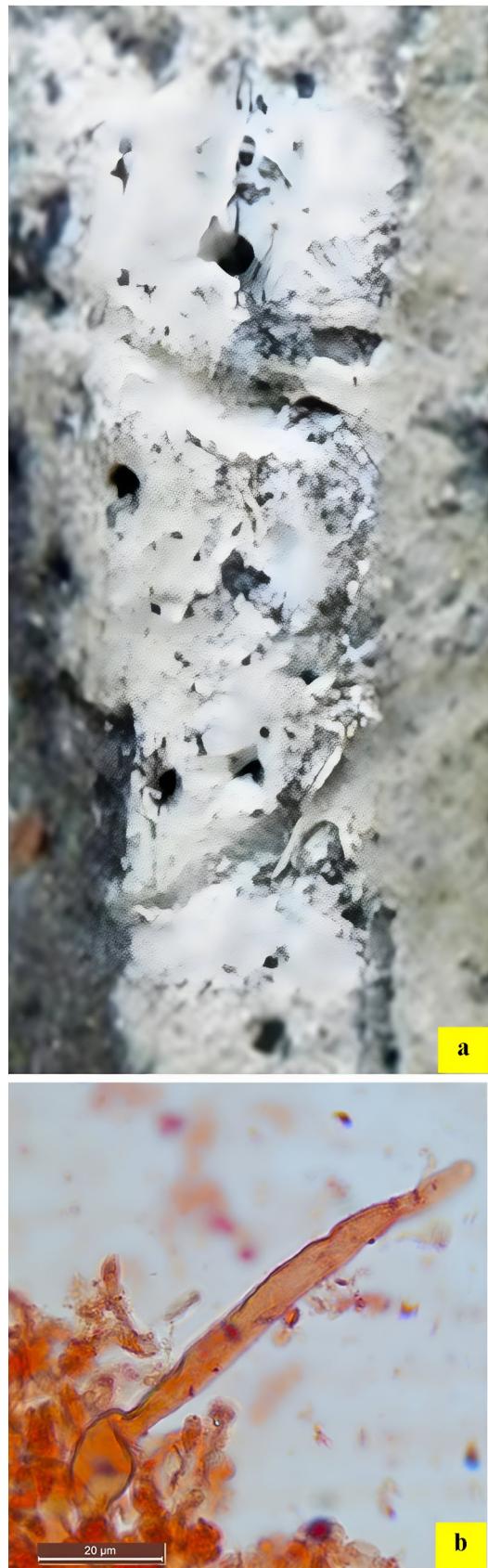



Image 2. *Kurtia magnargillacea*: a—Sporophore showing hymenial | b—Photomicrograph showing a cystidium | c-f—Line diagrams depicting the outline of basidiospores (c), basidium (d), cystidium (e), and generative hyphae (f). © Poonam.

basidiospores (Bernicchia & Gorjón, 2010). Earlier it has been reported from Belgium, France, United Kingdom, Sweden, Italy, Denmark, Norway, Finland and Spain (Mycobank 2024).

Kurtia magnargillacea (Boidin & Gilles) Karasiński, Index Fungorum 141: 1 (2014). (Image 2)

Hyphoderma magnargillaceum Boidin & Gilles, Cryptogamie Mycologie 12(2): 113 (1991).

Sporophore resupinate, effused, adnate, ≤ 200 μm thick in section; hymenial surface smooth both in fresh and dry state; yellowish white to greyish-yellow both in fresh and dry state; margins fibrillose, paler concolorous when determinate.

Hyphal system monomitic. Generative hyphae ≤ 3 μm wide, subhyaline, septate, clamped, thin-walled, smooth; subcircular hyphae horizontal, less branched; subhymenial hyphae vertical, richly branched. Cystidia subfusiform, basally widened, narrowing towards apex, $122-135 \times 12-14$ μm , thin-walled, with basal clamp, with resinous deposits at the tip; projecting ≤ 40 μm out of the hymenium. Basidia clavate to subclavate, with subburniform constriction to sinuous, $23-31 \times 6-7.2$ μm , basally clamped, with oily contents, four sterigmate; sterigma ≤ 5 μm long. Basidiospores subcylindrical to ellipsoid to broadly ellipsoid, distinctly apiculate, $7.2-12 \times 3.8-6.2$ μm , thin-walled, smooth, acyanophilous, inamyloid, with oily contents.

Collection examined: India, Himachal Pradesh: Chamba, Bharmour, Holi, on a dried branch of *Picea smithiana*, Poonam 10101 (PUN), 23 August 2015.

Remarks: *Kurtia magnargillacea* is characteristic of having subfusiform cystidia with resinous deposits at the tip and subcylindrical to ellipsoid to broadly ellipsoid basidiospores. *Hyphoderma argillaceum* (Bres.) Donk differs from *K. magnargillacea* in having comparatively smaller basidiospores. Earlier, it had been described only from France (Boidin & Gilles 1991; Mycobank 2024).

Physodontia lundellii Ryvarden & H. Solheim, Mycotaxon 6(2): 375 (1977). (Image 3)

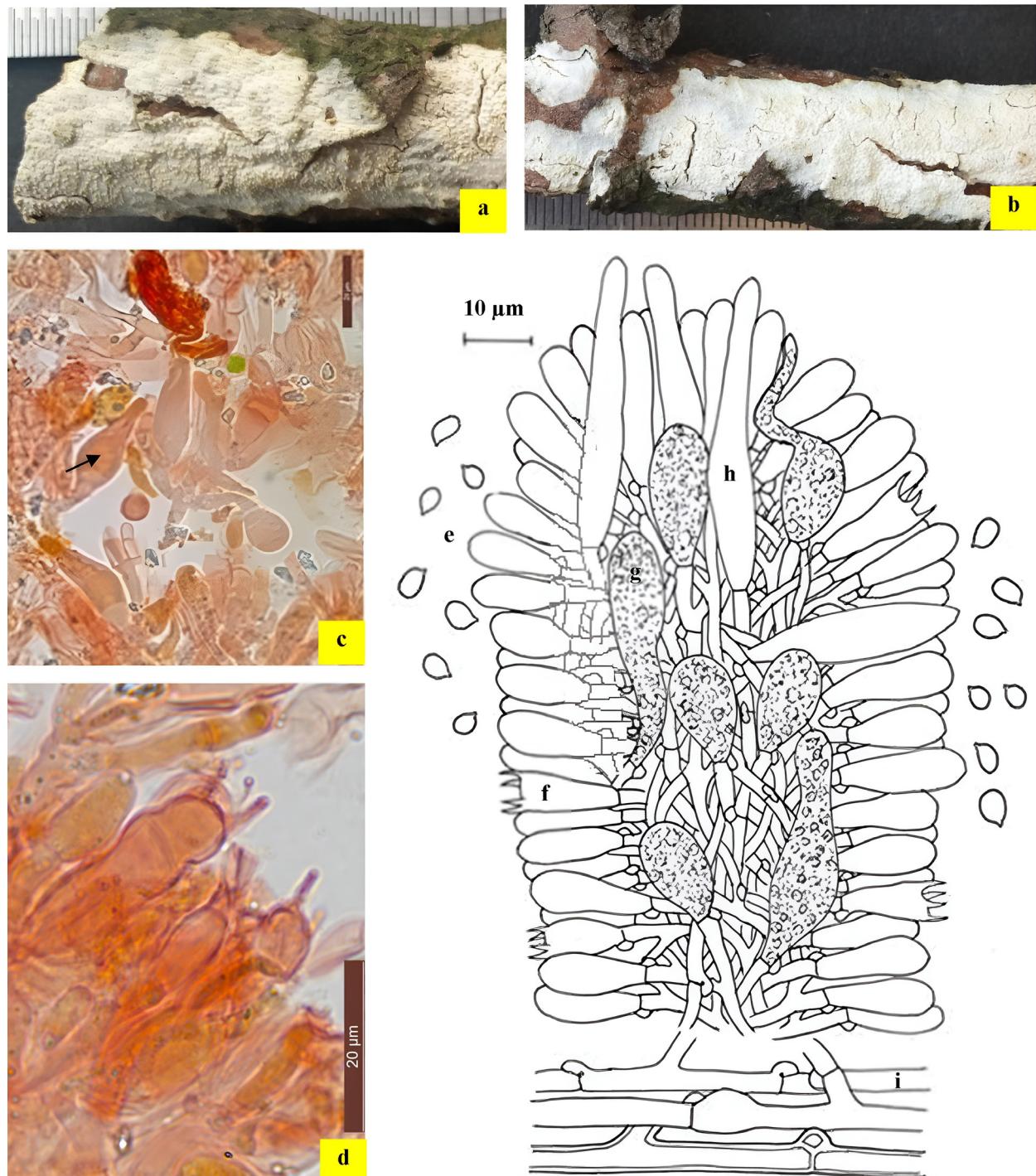
Sporophore resupinate, effused, adnate, soft, ceraceous, ≤ 280 μm thick in section; hymenial surface grandinoid to hydnoid both in fresh and dry state; yellowish-white to greyish-yellow when fresh, yellowish-white to light yellow on drying; margins fimbriate, paler concolorous when determinate.

Hyphal system monomitic. Generative hyphae subhyaline, septate, clamped, smooth; subcircular hyphae horizontal, ≤ 4.5 μm wide, less branched, thin- to thick-walled, sometimes with ampullate septa; subhymenial

hyphae vertical, ≤ 2.8 μm wide, richly branched, thin-walled. Ancillary elements of two kinds. Gloeocystidia shape variable, usually oblong to clavate to sometimes with a narrow, terminal protuberance, $16-36 \times 8-10$ μm , frequent in the hymenium, subhymenium, and trama of the aculei, with basal clamp, thin-walled, oily contents not stained in sulphovanillin. Cystidia subulate to subfusiform, $38-52 \times 6.3-7.5$ μm , thin-walled, basally clamped, without oily contents; projecting ≤ 10 μm out of the hymenium. Basidia clavate to subclavate, $12-15 \times 4.5-6$ μm , basally clamped, four sterigmate; sterigma ≤ 3 μm long. Basidiospores ellipsoid to broadly ellipsoid, distinctly apiculate, $3.6-5 \times 2.7-3.6$ μm , thin-walled, smooth, acyanophilous, inamyloid.

Collections examined: India, Himachal Pradesh: Chamba, Udaipur, Chihma, on sticks of *Pinus roxburghii*, Poonam 10100 (PUN), 6 September 2018.

Remarks: The genus *Physodontia* is described only on the basis of *P. lundellii* which is peculiar in having grandinoid to hydnoid hymenial surface, two types of cystidial elements and ellipsoid to broadly ellipsoid basidiospores. Earlier it has been reported from Sweden, Finland, and Norway (Mycobank 2024).


Rhizochaete violascens (Fr.) K.H. Larss., Nova Hedwigia 103(3-4): 562 (2016). (Image 4)

Himantia violascens Fr., Observations mycologicae 1: 211 (1815)

Sporophore resupinate, effused, loosely adnate, pellicular, ≤ 500 μm thick in section; hymenial surface smooth to cracked, turns reddish violet on putting 3% KOH solution; orange white to greyish orange when fresh, pale orange to greyish-orange to brownish-orange on drying; margins fibrillose due to presence of rhizomorphs, paler concolorous.

Hyphal system monomitic. Generative hyphae subhyaline, septate, clamped, thin-walled; subcircular hyphae horizontal, ≤ 5 μm wide, less branched, encrusted with crystalline encrustation, subcicum light brown but turns reddish-violet in 3% KOH solution; subhymenial hyphae vertical, ≤ 3 μm wide, richly branched, smooth in the subhymenial zone. Rhizomorphs usually unbranched, ≤ 22 μm wide. Individual hyphae ≤ 3.3 μm wide, septate, clamped. Basidia clavate, $20-24 \times 4.5-6.5$ μm , basally clamped, four sterigmate; sterigma ≤ 4.2 μm long. Basidiospores ellipsoid, distinctly apiculate, $5.5-7.5 \times 2.4-3.4$ μm , thin-walled, smooth, acyanophilous, inamyloid.

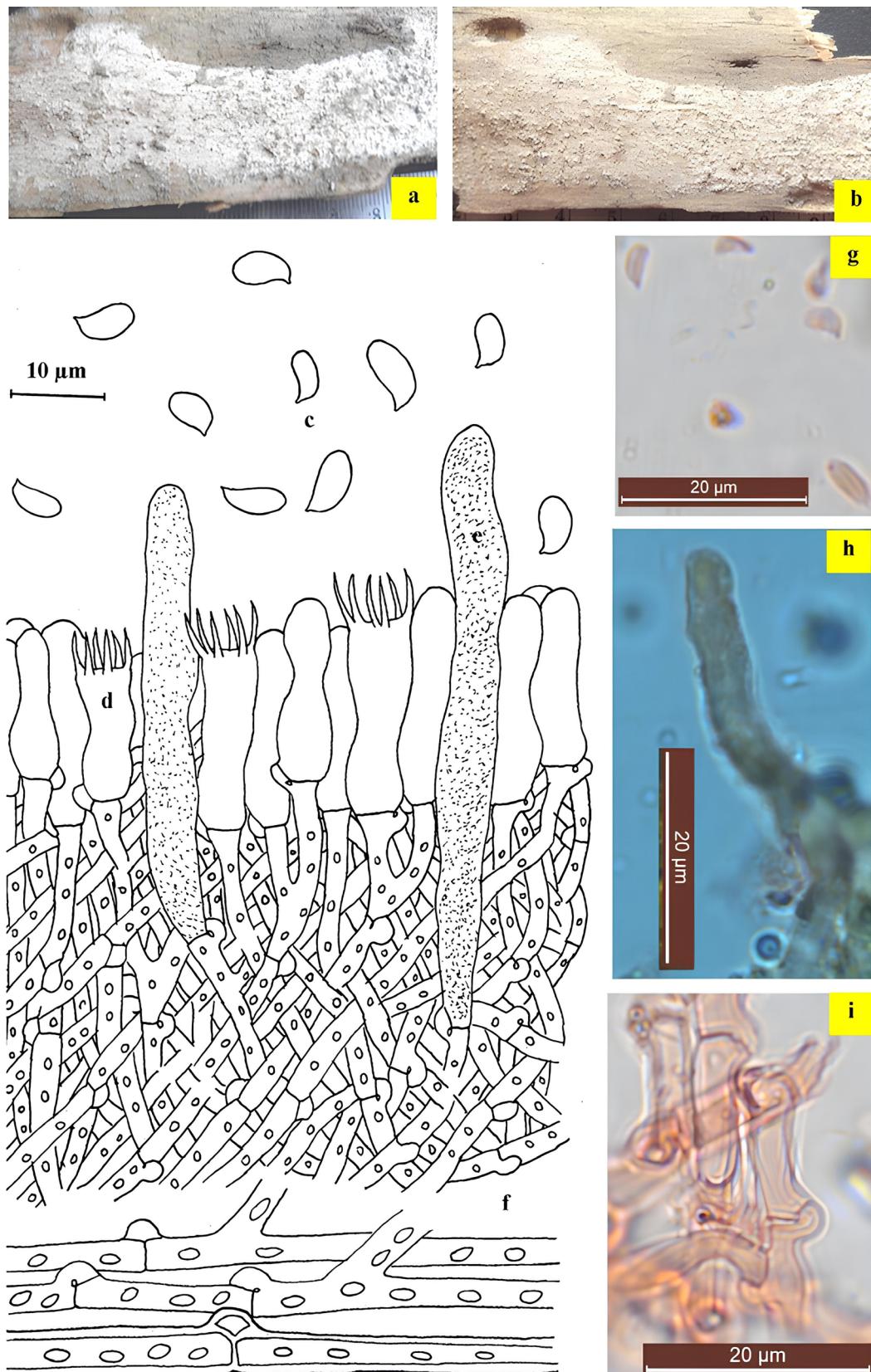
Collection examined: India, Himachal Pradesh, Chamba, Churah, Bhandal, on the stump of *Picea smithiana*, 10103 (PUN), 15 August 2014.

Image 3. *Physodontia lundellii*: a–b—Sporophore showing hymenial surface Fresh (a) and Dry (b) | c–d—Photomicrographs showing cystidia (c) and basidia (d) | e–i—Line diagrams depicting outline of basidiospores (e), basidium (f), gloeocystidium (g), cystidium (h), and generative hyphae (i). © Poonam.

Remarks: *Rhizochaete violascens* is characteristic in having smooth to cracked hymenial surface, unbranched rhizomorphs, and ellipsoid basidiospores. It differs from the rest of the species of the genus *Rhizochaete* in lacking cystidial elements. The previous reports of *R.*

violascens are from Belarus, Denmark, Estonia, Finland, France, Germany, Italy, Norway, Netherland, Russia, Spain, and Switzerland (Mycobank 2024).




Image 4. *Rhizochaete violascens*: a–b. Sporophore showing hymenial surface Fresh (a) and Dry (b) | c—Photomicrograph showing hyphal strands | d–g—Line diagrams depicting outline of basidiospores (d), basidium (e), hyphal strands (f), and generative hyphae (g). © Poonam.

Sistotrema coroniferum (Höhn. & Litsch.) D.P.Rogers & H.S.Jacks., Farlowia 1(2): 282 (1943). (Image 5)

Gloeocystidium coroniferum Höhn. & Litsch., Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Math.-naturw. Klasse Abt. I 116: 825

(1907).

Sporophore resupinate, effused, loosely adnate, pellicular, ≤ 200 µm thick in section; hymenial surface smooth to tuberculate both in fresh and dry state; greyish-white to yellowish-white when fresh, yellowish-

Image 5. *Sistotrema coroniferum*: a–b. Sporophore showing hymenial surface Fresh (a) and Dry (b) | c–f—Line diagrams showing the outline of basidiospores (c), basidium (d), cystidium (e), and generative hyphae (f) | g–i—Photomicrographs showing basidiospores (g), cystidium (h), and generative hyphae (i). © Poonam.

white to greyish-yellow on drying; margins pruinose, paler concolorous when determinate.

Hyphal system monomitic. Generative hyphae subhyaline, septate, clamped, smooth, with oily contents; subicular hyphae horizontal, $\leq 5 \mu\text{m}$ wide, less branched, thick-walled; subhymenial hyphae vertical, $\leq 4 \mu\text{m}$ wide, occasionally with ampullate septa, richly branched, thin-walled. Gloeocystidia subcylindrical, flexuose, $48-66 \times 5.5-6.6 \mu\text{m}$, with basal clamp, smooth, thin-walled, oily contents not stained in sulfovanillin; projecting $\leq 20 \mu\text{m}$ out of the hymenium. Basidia subburniform to urniform, $14-22 \times 5.5-6.1 \mu\text{m}$, basally clamped, six sterigmate; sterigma $\leq 4 \mu\text{m}$ long. Basidiospores suballantoid to allantoid, distinctly apiculate, $5.5-7.8 \times 2.2-3.4 \mu\text{m}$, thin-walled, smooth, acyanophilous, inamyloid.

Collections examined: India, Himachal Pradesh: Chamba; Hardaspura colony, on stump of *Populus ciliata*, Poonam 9203 (PUN), 4 November 2015; Hardaspura colony, on stump of *Populus ciliata*, Poonam 10107 (PUN), 4 November 2015.

Remarks: *Sistotrema coroniferum* is peculiar in having six sterigmate basidia, suballantoid to allantoid basidiospores along with subcylindrical flexuose gloeocystidia. *Sistotrema sernanderi* (Litsch.) Donk differs in having four sterigmate basidia and subcylindrical to suballantoid basidiospores. It has been earlier reported from Austria, Caucasus, Germany, Estonia, France, Slovakia, United Kingdom, Belgium, Sweden, Italy, Denmark, Norway, Switzerland, Finland, and Spain (Mycobank 2024).

Tubulicrinis cinctus G.Cunn., Bulletin of the New Zealand Department of Industrial Research 145: 332 (1963) (Image 6)

Sporophore resupinate, effused, adnate, $\leq 200 \mu\text{m}$ thick in section; hymenial surface smooth both in fresh and dry state; yellowish-grey to grey when fresh, pale yellow to greyish-yellow on drying; margins fibrillose, paler concolorous when determinate.

Hyphal system monomitic. Generative hyphae subhyaline, septate, clamped, smooth; subicular hyphae horizontal, $\leq 3.2 \mu\text{m}$ wide, thin- to thick-walled, less branched; subhymenial hyphae vertical, $\leq 2.4 \mu\text{m}$ wide, richly branched, thin-walled. Lyocystidia cylindrical, $61-89 \times 8-10 \mu\text{m}$, with rooting base, lumen narrow, capillary ending abruptly into a widened thin-walled apex, with basal clamp, encrusted with crystalline deposits at the apex that dissolve in 3% KOH solution, slightly amyloid. Basidia clavate, $12-22 \times 5.6-7.2 \mu\text{m}$, somewhat stalked, constricted, basally clamped, four sterigmate; sterigma $\leq 4 \mu\text{m}$ long. Basidiospores $4.8-6.4 \times 3.2-4.8 \mu\text{m}$,

subglobose, distinctly apiculate, thin-walled, smooth, acyanophilous, inamyloid.

Collections examined: India, Himachal Pradesh: Chamba, Churah, Bhandal, on stump of *Pinus wallichiana*, Poonam 10106 (PUN), 15 August 2014; Churah, Bhandal, on stump of *Pinus wallichiana*, Poonam 10752 (PUN), 15 August 2014.

Remarks: *Tubulicrinis cinctus*, a new report of corticioid fungi from India, is peculiar in having cylindrical, rooted, lyocystidia with crystalline encrustation at the apex and subglobose basidiospores. *Tubulicrinis globisporus* K.H. Larss. & Hjortstam is different in having comparatively larger and strongly amyloid cystidia (Hjortstam et al. 1988). The previous reports are from Russia, Caucasus, Sweden, Norway, and Turkey (Mycobank 2024).

CONCLUSIONS

During the course of present studies, six corticioid species have been added to the account of corticioid fungi from India. Of these, the genus *Physodontia* has been recorded for the first time from India. These six species have been described on the basis of morphological features. In the future attempt will be made to supplement the comprehensive morphological observations with DNA sequence based molecular phylogenetic analysis. The polyphasic approach would definitely authenticate the morphology based identification and may also form the basis for the proposal of some novel taxa.

REFERENCES

- Bernicchia, A. & S.P. Gorjón (2010). *Corticiaceae s.l. Fungi Europaei* 12. Edizioni Candusso. Alassio. Italia, 1008 pp.
- Boddy, L. (1991). Importance of wood decay fungi in forest ecosystems. In: Arora, D.K., B. Raj, K.G. Mukerji & G.R. Knudsen (eds.). *Handbook of Applied Mycology*, Vol. 1: *Soil and Plants*. Marcel Dekker, New York. *Coolia* 36(4): 507-539.
- Boidin, J. & G. Gilles (1991). Basidiomycètes Aphylophorales de l'île de la Réunion. XVI : Les genres *Hyphoderma*, *Hyphodermopsis*, *Chrysoderma* nov. gen. et *Crustoderma* - Aphylophorales Basidiomycetes from Reunion Island. XVI: The genus *Hyphoderma*, *Hyphodermopsis*, *Chrysoderma* nov. gen. and *Crustoderma*. *Cryptogamie Mycologie* 12(2): 97-132.
- Boidin, J., P. Lanquetin & G. Gilles (1991). Les Peniophoraceae de la zone intertropicale (Basidiomycetes, Aphylophorales). *Bulletin de la Société Mycologique de France* 107(3): 91-156.
- Cragg, S.M., G.T. Beckham, N.C. Bruce, T.D.H. Bugg, D.L. Distel, P. Dupree, A.G. Etxabe, B.S. Goodell, J. Jellison, J.E. McGeehan, S.J. McQueen-Mason, K. Schnorr, P.H. Walton, J.E.M. Watts & M. Zimmer (2015). Lignocellulose degradation mechanisms across the tree of life. *Current Opinion in Chemical Biology* 29: 108-119.
- Eriksson, J. & L. Ryvarden (1973). The Corticiaceae of North Europe Vol. 2. Fungiflora. Oslo 59-286.

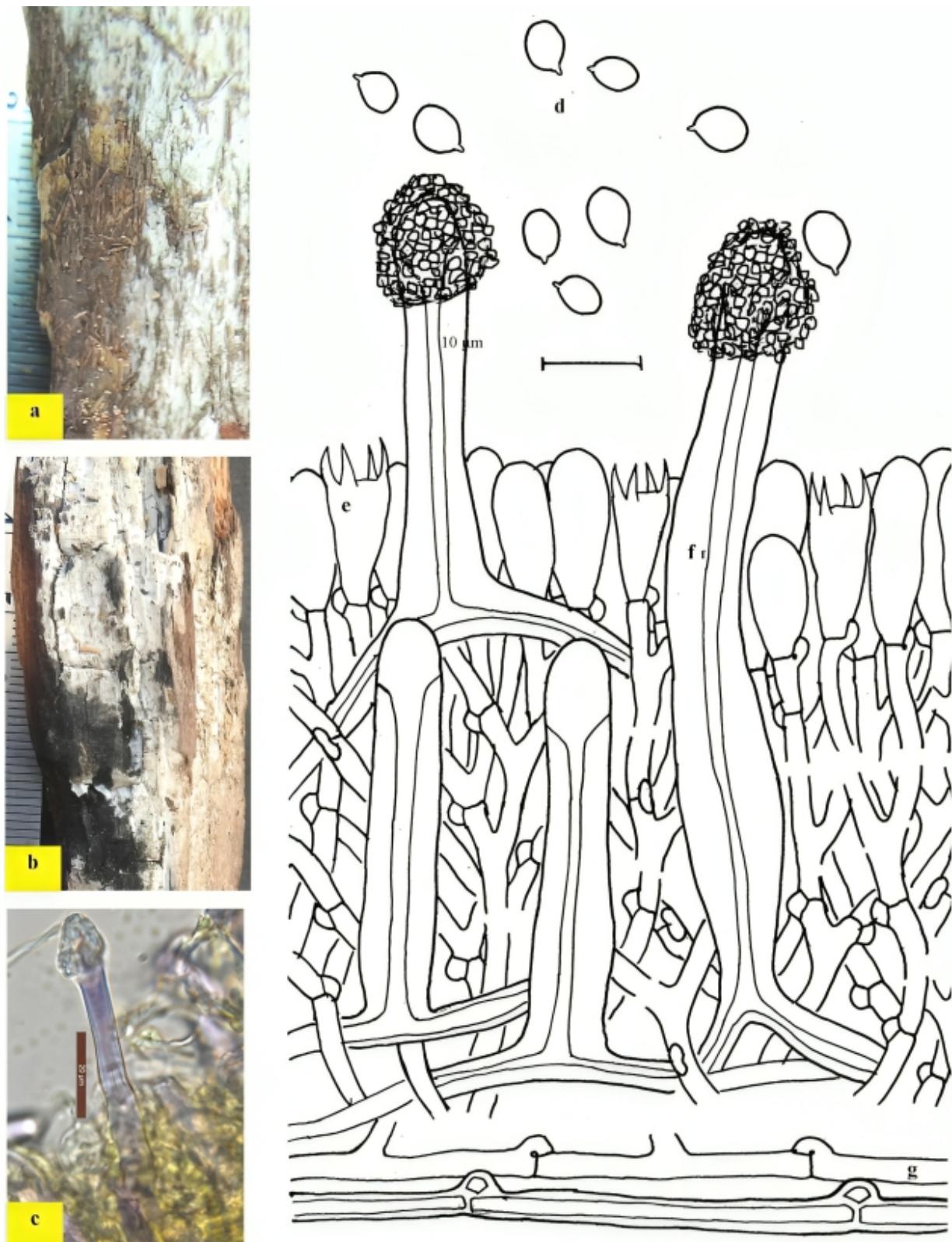


Image 6. *Tubulicrinis cinctus*: a–b—Sporophore showing hymenial surface Fresh (a) and Dry (b) | c—Photomicrograph showing lyocystidium | d–g—Line diagrams depicting outline of basidiospores (d), basidium (e), lyocystidium (f), and generative hyphae (g). © Poonam.

Eriksson, J., K. Hjortstam & L. Ryvarden (1981). The Corticiaceae of North Europe Vol. 6, pp. 1051–1276. Fungiflora, Oslo.

Eriksson, J., K. Hjortstam & L. Ryvarden (1984). The Corticiaceae of North Europe Vol. 7, pp. 1281–1449. Fungiflora, Oslo.

Fungifromindia.com (2024). <http://www.fungifromindia.com/fungiFromIndia/databases/IAD/>. Indian Aphylofungal Database. Accessed on 20 November 2024.

Hakimi, M.H., J.G. Vaidya, K. Ranadive, Jamaluddin & P.K. Jite (2013). *Resupinate Aphylophorales of India*. Scientific Publishers Jodhpur, Rajasthan, 280 pp.

Hjortstam, K., K.H. Larsson & L. Ryvarden (1988). The Corticiaceae of North Europe Vol. 8, pp. 1450–1631. Fungiflora, Oslo.

Kornerup, A. & J.H. Wanscher (1978). *Methuen's Handbook of Colours, 3rd Edition*. Methuen and Co. Ltd. London, 252 pp.

Manoharachary, C., N.S., Atri, T.P. Devi (2022). *Bilgrami's Fungi of India List and References (1988–2020)*. Today and Tomorrow's Printers and Publishers, New Delhi.

Mycobank (2024). Fungal databases. Nomenclature and species bank. <http://www.mycobank.org>. Accessed on 20 November 2024.

Tong, L., L. Cui, X. Song, X. Cui, Y. Wei, L. Tang, Y. Mu & Z. Xu (2022). Wood decay fungi: an analysis of worldwide research. *Journal of Soils and Sediments* 22: 1688–1702. <https://doi.org/10.1007/s11368-022-03225-9>

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dubai, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

OPEN ACCESS

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under [Creative Commons Attribution 4.0 International License](#) unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

www.threatenedtaxa.org

Articles

Negative interaction or coexistence? Livestock predation and conservation of wild carnivores in Kazinag National Park and adjacent region in the Kashmir Himalaya, India
– Uzma Dawood & Bilal A. Bhat, Pp. 26187–26197

Avifaunal diversity and conservation significance of coastal ecosystems on Rameswaram Island, Tamil Nadu, India
– H. Byju, H. Maitreyi, S. Ravichandran & N. Raveendran, Pp. 26198–26212

Conservation of sea turtles on the beach areas from Sonadia Island to Saint Martin's Island in the Bay of Bengal in Bangladesh
– M. Farid Ahsan, Shital Kumar Nath & Ashim Barua, Pp. 26213–26224

Noteworthy records of vascular plants from the West Bank, occupied Palestinian territories
– Banan Al-Sheikh, Mazin B. Qumsiyeh & Abdel-Salam Hubbieh, Pp. 26225–26233

Communications

Citizen science conservation: a case study using two threatened large aquatic American salamanders (Amphibia: Urodela), the Common Mudpuppy *Necturus maculosus* (Proteidae) and the Eastern Hellbender *Cryptobranchus alleganiensis* (Cryptobranchidae) observations on iNaturalist
– Shem Unger, Pp. 26234–26239

A preliminary study of odonate fauna in the high ranges of Munnar, southern Western Ghats, India
– T.S. Krishnanunni, Nazar Neha, R. Arya & P.O. Nameer, Pp. 26240–26250

A new species of *Arctodiaptomus* Kiefer, 1932 (Copepoda: Diaptomidae) from the Kumaun Himalaya of India
– Shaikhom Inaotombi & Debajit Sarma, Pp. 26251–26263

Morpho-anatomical characterization and conservation status of the Whisk Fern *Psilotum nudum* (L.) P.Beauv. (Polypodiopsida: Psilotaceae) from Cooch Behar District of West Bengal, India
– Aninda Mandal, Pp. 26264–26271

Six new reports of corticioid fungi from India
– Poonam, Avneet Pal Singh & Gurpaul Singh Dhingra, Pp. 26272–26282

On the *Maravalia echinulata* (Niessl ex Rabenh.) Ono (Pucciniales: Chaconiaceae) with reference to its host range and distribution
– Sayantan Jash & Asit Baran De, Pp. 26283–26290

Short Communications

A rare low elevation photographic record of Himalayan Serow *Capricornis sumatraensis* ssp. *thar* (Hodgson, 1831) from Nameri National Park, Assam, India
– B. Piraisoodan, Asish Immanuel Baglary, Saumitro Das & Debasish Buragohain, Pp. 26291–26295

Sightings of Red Goral *Nemorhaedus baileyi* in the community forest of the Upper Siang region, Arunachal Pradesh: an insight into its conservation challenges and implications within a tribal-managed landscape

– Takhe Bamin, Kishon Tekseng & Daniel Mize, Pp. 26296–26300

New record of *Sapria himalayana* Griff. (Rafflesiaceae) from Eaglenest Wildlife Sanctuary, Arunachal Pradesh, India

– Anisha Mandal, Aman Bishwakarma, Dibi Soma Monpa, Kabir Pradhan, Karma Wangdi Monpa & Rohit Rai, Pp. 26301–26305

***Pinnatella limbata* (Bryophyta: Neckeraceae): reassessment of conservation status based on recent findings**

– O.M. Sruthi, C.N. Manju, K.P. Rajesh & J. Enroth, Pp. 26306–26311

Additions of two genera of liverworts (Marchantiophyta) to the bryoflora of Nagaland, India

– Kazhuhrii Eshuo, Kholi Kaini & S.K. Chaturvedi, Pp. 26312–26316

***Phycolepidozia indica* (Marchantiophyta: Jungermanniales) an endemic leafless liverwort from Kerala part of Western Ghats, India**

– T. Krishnendhu, C.N. Manju, Ravi Athira & K.P. Rajesh, Pp. 26317–26321

Notes

First photographic documentation of avian egg predation by Common Palm Civet *Paradoxurus hermaphroditus* (Pallas, 1777) (Mammalia: Carnivora: Viverridae)

– Aritra Bhattacharya, B.N. Achyutha, Nandini Iyer, Somaiah Sundarapandian & Kuppusamy Sivakumar, Pp. 26322–26324

First record of Eurasian Crag Martin *Ptyonoprogne rupestris* (Scopoli, 1769) (Aves: Passeriformes: Hirundinidae) from Tamil Nadu, India

– S. Naveenkumar, Pp. 26325–26327

***Megachile vera* Nurse, 1901 (Insecta: Hymenoptera: Megachilidae): a new record of leaf cutter bee from Kerala, India**

– Anju Sara Prakash & C. Bijoy, Pp. 26328–26330

Publisher & Host

Threatened Taxa