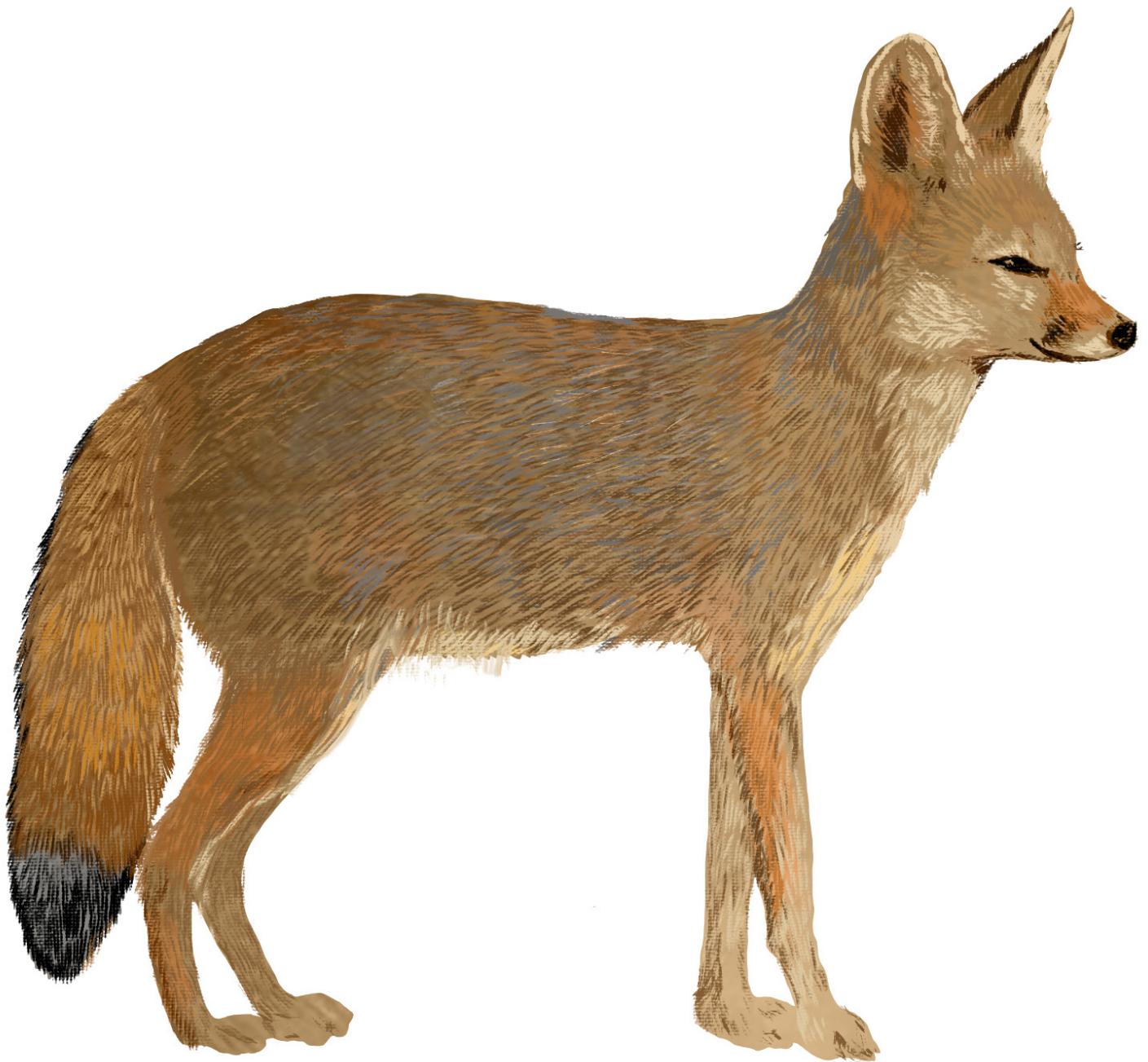


Building evidence for conservation globally

Journal of Threatened TAXA

Open Access

10.11609/jott.2024.16.9.25791-25950


www.threatenedtaxa.org

26 September 2024 (Online & Print)

16(9): 25791-25950

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay MolurWildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Deputy Chief Editor

Dr. Neelesh Dahanukar

Noida, Uttar Pradesh, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Editorial Board

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNASC, FNAPsyRamanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and
Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary
Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct
Professor, National Institute of Advanced Studies, Bangalore**Stephen D. Nash**Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences
Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA**Dr. Fred Pluthero**

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalia PO, Nilgiris, Tamil Nadu 643223, India

Dr. John FellowesHonorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of
Hong Kong, Pokfulam Road, Hong Kong**Prof. Dr. Mirco Solé**Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador
do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000)
Salobrinho, Ilhéus - Bahia - Brasil**Dr. Rajeev Raghavan**

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors

Mrs. Mira Bhojwani, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhura Stothra Bhashyam**, Hyderabad, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting

Mrs. Radhika, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India

Fundraising/Communications

Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2021–2023

Fungi

Dr. B. Shivaraju, Bengaluru, Karnataka, India

Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India

Dr. Vatsavaya S. Raju, Kakatiya University, Warangal, Andhra Pradesh, India

Dr. M. Krishnappa, Jnana Sahyadri, Kuvempu University, Shimoga, Karnataka, India

Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India

Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India

Dr. Kiran Ramchandra Ranadive, Annasaheb Magar Mahavidyalaya, Maharashtra, India

Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India

Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India

Dr. Shonil Bhagwat, Open University and University of Oxford, UK

Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India

Dr. Ferdinand Boero, Università del Salento, Lecce, Italy

Dr. Dale R. Calder, Royal Ontario Museum, Toronto, Ontario, Canada

Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines

Dr. F.B. Vincent Florens, University of Mauritius, Mauritius

Dr. Merlin Franco, Curtin University, Malaysia

Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India

Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India

Dr. Pankaj Kumar, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA

Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India

Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Vijayasanchari Raman, University of Mississippi, USA

Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantapur, India

Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India

Dr. Aparna Watve, Pune, Maharashtra, India

Dr. Qiang Liu, Kishuangbanna Tropical Botanical Garden, Yunnan, China

Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia

Dr. M.K. Vasudeva Rao, Shiv Ranjani Housing Society, Pune, Maharashtra, India

Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Mander Datar, Agharkar Research Institute, Pune, Maharashtra, India

Dr. M.K. Janarthanan, Goa University, Goa, India

Dr. K. Karthigeyan, Botanical Survey of India, India

Dr. Errol Vela, University of Montpellier, Montpellier, France

Dr. P. Lakshminarasimhan, Botanical Survey of India, Howrah, India

Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA

Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India

Dr. Analinda Manila-Fajard, University of the Philippines Los Baños, Laguna, Philippines

Dr. P.A. Sinu, Central University of Kerala, Kasaragod, Kerala, India

Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthani, India

Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India

Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA

Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India

Dr. A.G. Pandurangan, Thiruvananthapuram, Kerala, India

Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India

Dr. Kannan C.S. Warrier, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India

Dr. D.B. Bastawade, Maharashtra, India

Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India

Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India

Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa

Dr. Rory Dow, National Museum of Natural History Naturalis, The Netherlands

Dr. Brian Fisher, California Academy of Sciences, USA

Dr. Richard Gallon, Ilandudno, North Wales, LL30 1UP

Dr. Hemant V. Ghate, Modern College, Pune, India

Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh

Mr. Jatishwar Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.

Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK

Dr. George Mathew, Kerala Forest Research Institute, Peechi, India

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Bengal Fox *Vulpes bengalensis*—digital illustration. © Alagu Raj.

Feeding dynamics of sympatric large carnivores in an anthropogenic landscape of the Indian Terai

Vivek Ranjan¹ , Syed Ainul Hussain² , Ruchi Badola³ , Gaurav Vashistha⁴ & Parag Madhukar Dhakate⁵

^{1,2,3} Wildlife Institute of India, Chandrabani, PO Box #18, Dehradun, Uttarakhand 248002, India.

⁴ Sri Venkateswara College, Benito Juarez Road, Daula Kuan, University of Delhi, New Delhi 110021, India.

⁵ Van Bhawan, Uttarakhand Forest Department, Van Panchayat Office, Rajpur Road, Dehradun, Uttarakhand 248001, India.

¹ vivek.nil@gmail.com (corresponding author), ² ainul.hussain@gmail.com, ³ ruchi@wii.gov.in, ⁴ gaurav.vashistha91@gmail.com,

⁵ paragenetics@gmail.com

Abstract: An important challenge for large carnivore conservation is negative human-wildlife interaction. Livestock depredation by carnivores is one important aspect of this negative interaction. Hence, it is critical to understand the extent of livestock depredation by large carnivores through their diet profiles and feeding habits for managing and strategizing conservation measures. We investigated the food habits and dietary patterns of two large sympatric carnivores, the Tiger *Panthera tigris* and the Leopard *Panthera pardus* based on scat samples collected in wildlife corridors outside protected areas (PAs) in the Indo-Nepal transboundary and Corbett landscape in Uttarakhand, India. The frequency of occurrence of prey items in the scat samples was used to estimate the relative prey biomass and number of preys consumed by the Tigers and Leopards using a generalised biomass model. Scat analysis revealed the presence of mainly wild prey species, encompassing 12 species in tiger scat and 14 species in Leopard scat. The results show that Tigers and Leopards primarily depend on medium-sized prey, with relative prey biomass consumption of 53% and 60%, respectively. Tigers preyed most frequently on Wild Boar *Sus scrofa*, followed by Spotted Deer *Axis axis*, and Leopards preyed mostly on Spotted Deer, followed by Wild Boar. The relative biomass of livestock species in Tiger and Leopard diets is 14.2% and 15.7%, respectively. Dietary overlap between Tiger and Leopard was high, with the Leopard exhibiting a broader dietary niche breadth than the Tiger. Augmenting wild prey population through habitat improvement and protection outside PAs can significantly limit human-large carnivore conflict by decreasing livestock contribution in their diet. Studies on dietary habits need to expand to wildlife corridors and outside PAs in human-dominated landscapes to understand the ecological dynamics of human-wildlife negative interaction for future conservation strategies.

Keywords: Dietary profile, human-wildlife interaction, leopard, tiger, wildlife corridor.

Editor: Angie Appel, Wild Cat Network, Germany.

Date of publication: 26 September 2024 (online & print)

Citation: Ranjan, V., S.A. Hussain, R. Badola, G. Vashistha & P.M. Dhakate (2024). Feeding dynamics of sympatric large carnivores in an anthropogenic landscape of the Indian Terai. *Journal of Threatened Taxa* 16(9): 25791-25801. <https://doi.org/10.11609/jott.9286.16.9.25791-25801>

Copyright: © Ranjan et al. 2024. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: The fieldwork was done under the project entitled "Dispersal, Communication and Conservation Strategies for Tiger (*Panthera tigris tigris*) in Kumaon Himalayas of Uttarakhand, India", funded by National Mission on Himalayan Studies (Project Id: GBPNI/NMHS-2017-18/SGP-01).

Competing interests: The authors declare no competing interests.

Author details: See end of this article.

Author contributions: All authors contributed to the study conception and design. VR and GV did sample collection and fieldwork. Material preparation and data analysis were performed by VR. RB and SAH contributed to the intellectual review and supervision of the study. This study was supervised by RB, SAH and PMD. PMD acquired the necessary permissions and provided field support from the Uttarakhand Forest Department. The project under which this study was conducted was supervised by PMD. The first draft of the manuscript was written by VR and reviewed by GV. All authors reviewed the final draft and commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Acknowledgements: We thank the director and dean of the Wildlife Institute of India for research facilitation and support. We sincerely thank the Uttarakhand Forest Department for the necessary permissions, logistics, and field support. We extend our gratitude to the Haldwani Zoo and Safari staff for helping collect samples and necessary support during the fieldwork. We are thankful to the National Mission on Himalayan Studies for funding support for the project.

INTRODUCTION

Large carnivores are wide-ranging species inhabiting variable habitats and serving as flagship species for biodiversity conservation (Harihar et al. 2011). Although energy restrictions limit their population sizes in the wild, large predators significantly influence the organisation of communities through trophic cascades (Lamichhane et al. 2019). Predation is a phenomenon that connects trophic levels and is essential to many ecological and evolutionary processes (Fryxell et al. 2007). When sympatric species share a trophic level, niche differentiation and resource partitioning are evident (Schoener 1986). Differential use of food resources is an essential mode of resource partitioning in ecological communities (Karanth & Sunquist 2000) in addition to prey size (Gittleman 1985), activity patterns (Fedriani et al. 1999), space use patterns, and habitat use preference (Palomares et al. 1996; Shameer et al. 2021). Understanding the patterns of dietary niche overlap of sympatric carnivores is crucial for devising adequate conservation measures.

India harbours more than 75% of the world's wild Tiger population, with a population growth of 6.1% from 2006 to 2022 (Qureshi et al. 2023). The Tiger is distributed across India along with its co-predators Leopard and Dhole *Cuon alpinus* (Ramesh et al. 2012; Qureshi et al. 2023). These three large carnivores inhabit forests and coexist across various landscapes through spatio-temporal & dietary partitioning (Karanth & Sunquist 1995; Andheria et al. 2007; Ramesh et al. 2012; Selvan et al. 2013; Lamichhane et al. 2019; Mohan et al. 2021; Shameer et al. 2021). The distribution of the Dhole in the Indian Terai has declined extensively due to persecution in the past and is now restricted to a few protected areas (PAs) (Qureshi et al. 2023), including Nandhaur Wildlife Sanctuary, and adjoining wildlife corridors in the Terai of Uttarakhand (Ranjan & Dhakate 2021).

The dietary profile of animals can be studied easily with the most widely used non-invasive method of scat or faecal analysis (Ackerman et al. 1984; Karanth & Sunquist 1995; Klare et al. 2011). This method is very effective for large carnivores (Karanth & Sunquist 1995; Chakrabarti et al. 2016; Biswas et al. 2023). The dietary habits of the tiger and leopard have been studied extensively in India mainly in PAs (Andheria et al. 2007; Majumder 2011; Athreya et al. 2013; Basak et al. 2018; Biswas et al. 2023). Limited studies are available on the diet of the two species outside PAs in India, such as food habits and characteristics of livestock predation in

human-dominated landscapes (Puri et al. 2020; Mohan et al. 2021; Dahya et al. 2023).

In tropical forests, the relative densities of various size classes of prey can vary naturally and due to human activity, affecting or influencing the community structures of large carnivores (Karanth & Sunquist 1995). The abundance and availability of prey species are critical to the sympatry of large carnivores (Andheria et al. 2007). Prey abundance does not necessarily affect prey selection (Bagchi et al. 2003; Lovari et al. 2015). The high density of wild prey limits or reduces livestock depredation and negative human-wildlife interactions (Basak et al. 2018; Upadhyaya et al. 2018; Puri et al. 2020). Sometimes, the human-large carnivore conflict scenarios are exaggerated due to political and social attributes of a specific region (Dickman 2010; Dickman et al. 2013; Nyhus 2016). Thus, the diet profile of large carnivores will also reveal the nature of conflict situations.

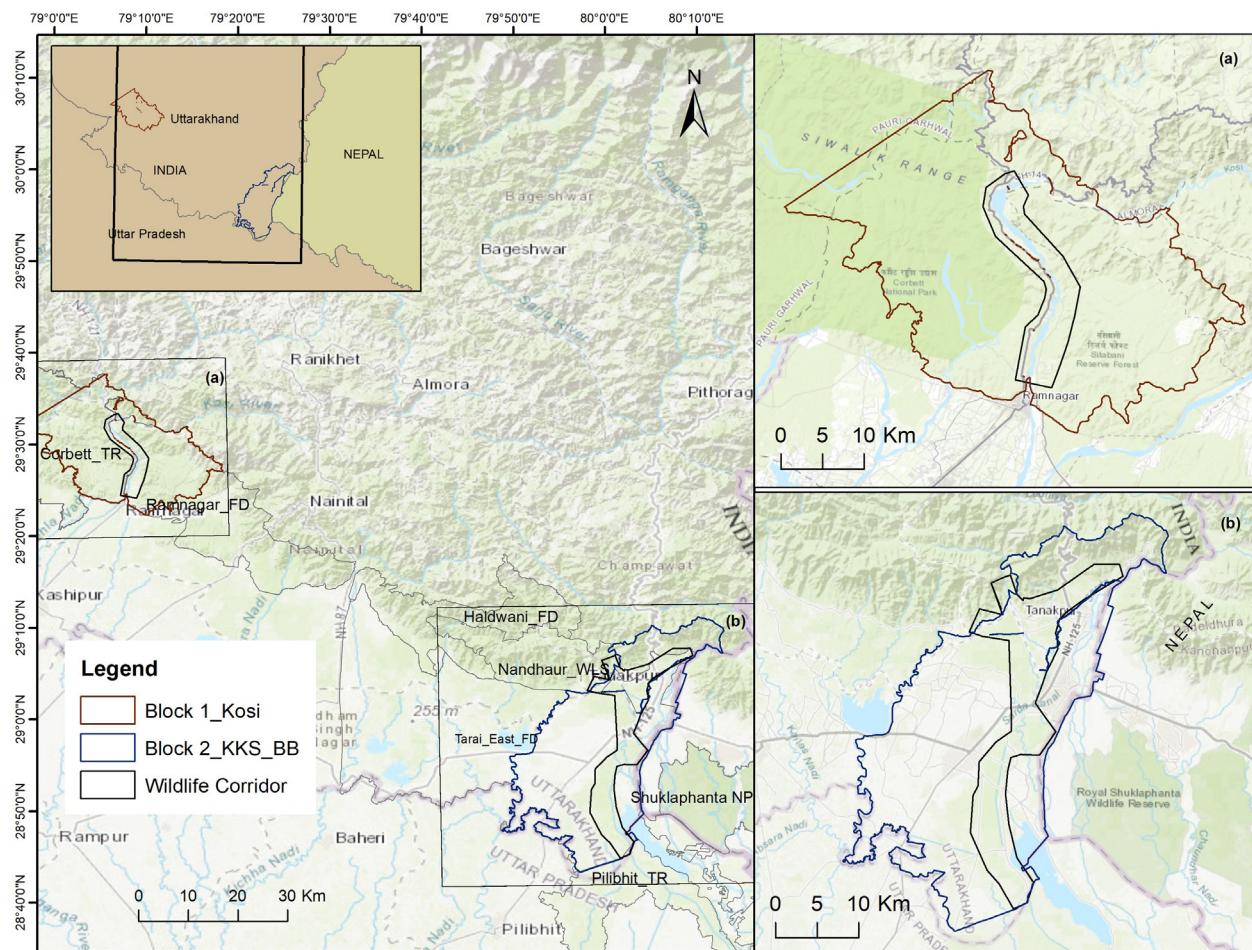
Our study focused on the feeding habits and dietary overlap of Tigers and Leopards in a multi-use landscape outside the PAs encompassing the critical wildlife corridors in the Terai-Bhabar region of northern India at the foothills of the Himalaya, a critical Tiger conservation landscape (Sanderson et al. 2006). We also explored the dependence of the large carnivores on livestock for food in areas outside PAs, where wild prey population is low and anthropogenic disturbances are high.

Study Area

Our study area is part of the Terai Arc Landscape, which lies in the Terai-Bhabar topography at the foothills of the Himalaya (Semwal 2005). The study area is located between Corbett Tiger Reserve (CTR) and the Indo-Nepal border in the eastern and southern parts of the state of Uttarakhand, bordering the Indian state of Uttar Pradesh. The study area is divided into two blocks (Image 1). Block 1 constitutes the Kosi corridor with adjoining areas of CTR, Ramnagar Forest Division (FD), and Almora FD of Uttarakhand. Block 2 encompasses the Kilpura-Khatima-Surai (KKS) and Boom-Brahmadev (BB) corridors with adjoining forest habitats of the Terai East FD, Haldwani FD, and Champawat FD of Uttarakhand. The Kosi corridor connects CTR with the Ramnagar FD and Pawalgarh Conservation Reserve along the Kosi River east of CTR in Uttarakhand (Johnsingh 2006; Anwar et al. 2014). The KKS corridor connects Nandhaur Wildlife Sanctuary (NWS) in Uttarakhand with Pilibhit Tiger Reserve (PTR) in Uttar Pradesh and the Indo-Nepal border in the Khatima forest range of the Terai East FD. The BB corridor connects NWS to the Kanchanpur

FD in Nepal, a transboundary landscape that expands to Shuklaphanta National Park in Nepal (Semwal 2005; Qureshi et al. 2014).

The study area lies in Tiger Habitat Block (THB) II and III (Johnsingh et al. 2004) and tiger conservation landscape (Sanderson et al. 2006; WWF & RESOLVE 2015). The large mammalian species in the region are Asiatic Elephant *Elephas maximus*, Tiger, Leopard, Sloth Bear *Melursus ursinus*, Sambar Deer *Rusa unicolor*, Spotted Deer *Axis axis*, Wild Boar *Sus scrofa*, and Northern Red Muntjac *Muntiacus vaginalis*. The study area falls in the 2B Himalaya – western Himalaya and 7A Gangetic Plain – upper Gangetic Plain biogeographic provinces of India (Rodgers et al. 2000).


Livestock grazing is common in the study area because it lies outside the PAs in a multi-use mosaic landscape where reserved forests are interspersed with human settlements and fragmented due to linear infrastructures (Johnsingh et al. 2004; Chanchani et al. 2010).

al. 2014). Two important pastoralist community in the study area are 'Bakarwal' and 'Van Gujjars'. The nomadic community of 'Bakarwal' migrates from the high-elevation Himalaya to lower elevations of the Terai-Bhabar during November to January with their large herds of sheep and goats camping for several days and months in the forest areas of the Himalayan foothills (Dangwal 2024). The 'Van Gujjars' is a pastoralist community residing in the study area's forests with large herds of Water Buffalos *Bubalus bubalis* and Cattle *Bos taurus* (Sharma et al. 2012; Dangwal 2024).

MATERIALS AND METHODS

Scat Sample Collection

Scat samples of Tigers and Leopards were collected opportunistically in the study area during camera trapping and vegetation surveys on wildlife trails and

Image 1. Study area map with the two study blocks comprising of wildlife corridors: a—Block 1 with Kosi corridor connecting Corbett Tiger Reserve to Ramnagar forest division | b—Block 2 with Kilpura-Khatima-Surai (KKS) and Boom-Brahmadev (BB) corridor in Indo-Nepal transboundary landscape.

forest roads. We collected scat in the summer season from March–June and in winter season from October–February. Scat collection was not possible during the monsoon season as forest areas were not accessible.

Tigers, Leopards, and other carnivores deposit scat on forest roads and wildlife trails as part of the communication mechanism (Smith et al. 1989; Karanth & Sunquist 1995; Andheria et al. 2007). The samples were collected from October 2019 to December 2021, stored in plastic zip lock bags, and predator species were identified based on ancillary signs and methods described in earlier studies based on visual and indirect signs (Karanth & Sunquist 1995; Andheria et al. 2007; Harihar et al. 2011; Lovari et al. 2015; Basak et al. 2018). Tiger scat has been observed to be less coiled with a more considerable distance between two successive constrictions (Johnsingh 1983; Mohan et al. 2021). The scat samples which were not identified for species based on ancillary signs were not analysed. After collection, the remaining scat samples were removed from the track to avoid repetitive sampling. We avoided collecting scat in village areas or metalled roads in forest habitats to avoid misidentification of species due to lack of indirect signs of species.

Sample processing and prey species identification

A substantial part of each sample was put in nylon stockings, a knot was tied and then soaked in water for 24 hours (Klare et al. 2011). After soaking, it was washed in running water in a sieve of <1 mm to remove debris and dirt (Ramesh et al. 2009; Upadhyaya et al. 2018). Then it was sun-dried for 72 hours (Andheria et al. 2007) before separating 20 random hairs per sample for identification of prey based on its general appearance, colour, relative length, width, cortex pigmentation, and medullary structures under a microscope (Mukherjee et al. 1994; Bahuguna et al. 2010; Dharaiya & Soni 2012).

Data analysis

We did not perform an analysis of vegetation, which we found in some scat samples of both species. We calculated the frequency of occurrence of each prey item in the scat samples, denoted as A, and expressed as a per cent of scat samples in which a particular prey item was found (Andheria et al. 2007). We calculated the corrected frequency of occurrence based on the number of prey items per scat; if two items were present in one scat, it was calculated as 1/2; if three items were present, then 1/3, and so on (Karanth & Sunquist 1995). However, when the body size of prey varies significantly, the frequency of occurrence can be misleading (Floyd et

al. 1978; Ackerman et al. 1984). The non-linear models developed for the leopard (Lumetsberger et al. 2017) and the Tiger (Fàbregas et al. 2017) show better accuracy than linear models in assessment of biomass and number of prey consumed. The linear model is biased for tropical large carnivores and significantly underestimates the consumption of medium-sized prey (Chakrabarti et al. 2016). We used the nonlinear asymptotic generalised model developed by Chakrabarti et al. (2016) for carnivores in India based on the following formula:

$$Y_c = 0.033 - 0.025 \exp^{-4.284(X/Z)}$$

Y_c is biomass consumed per collectable scat/predator weight, X is the live weight of prey, and Z is the average live weight of predator. Y_c is used as a correction factor for estimating the relative prey biomass consumed by multiplying Y_c by the observed frequency of occurrence (A). The generalised biomass model is better suited for our study, where we want to assess the contribution of livestock to the food habits of Tigers and Leopards since this model does not overestimate large prey (Chakrabarti et al. 2016; Upadhyaya et al. 2018).

Our calculations are based on values for the average body weight of prey (Table 1), Tiger (140 kg) and Leopard (65 kg) (Harihar et al. 2011; Ahmed & Khan 2022). The relative prey biomass (D) and relative numbers of prey consumed (E) were calculated as per the equation below (expressed in percentage) described by Andheria et al. (2007).

$$D = \frac{A * Y}{\sum(A * Y)} * 100$$

$$E = \frac{D/X}{\sum(D/X)} * 100$$

To assess the dietary overlap between the Tigers and Leopards, we used the Pianka index (Pianka 1973) based on the frequency of occurrence, which ranges from 0 for no overlap to 1 for complete overlap.

$$\text{Pianka index} = \frac{\sum P_{ij} * P_{ik}}{\sqrt{\sum(P_{ij}^2 * \sum P_{ik}^2)}}$$

P_{ij} is the percentage of prey items i of predator j;
 P_{ik} is the percentage of prey items i of predator k

D_c and E_c denote the relative prey biomass and relative number of preys consumed using the Y_c correction factor based on the generalised biomass model, respectively. The D_c and E_c of Tigers and Leopards were statistically compared using the Kruskal-Wallis test statistic to understand the difference in diet profiles of the two large sympatric carnivores. We used Kruskal-Wallis as it is a non-parametric test, which does not assume that underlying data has a normal distribution (Xia 2020). We categorised the prey size into three classes based on their body weight: (i) large (above 50

Table 1. Frequency of occurrence (A) of different prey items, percent occurrence of each prey species (Po), live weight of prey (X), the number of scats with each type of prey (No.), Relative biomass consumed (D_c) and Relative number of prey consumed (E_c).

Prey species	X (kg)	Tiger						Leopard					
		No.	A (%)	Po	Y _c	D _c (%)	E _c (%)	No.	A (%)	Po	Y _c	D _c (%)	E _c (%)
Sambar Deer	185	23	15.9	14.29	0.033	19.54	4.91	8	9.0	7.08	0.033	10.83	1.60
Nilgai	184	12	8.5	7.45	0.033	10.38	2.62	5	5.6	4.42	0.033	6.77	1.01
Spotted Deer	50	32	20.4	19.88	0.028	20.95	19.49	17	17.4	15.04	0.032	20.39	11.18
Northern Red Muntjac	25	18	11.4	11.18	0.021	9.03	16.79	17	15.2	15.04	0.028	15.61	17.12
Wild Boar	35	36	24.0	22.36	0.024	21.82	29.00	18	16.3	15.93	0.031	18.14	14.21
Indian Hog Deer	25	4	1.6	2.48	0.021	1.26	2.34	5	4.5	4.42	0.028	4.62	5.07
Porcupine	8	8	3.2	4.97	0.013	1.58	9.18	5	3.4	4.42	0.018	2.24	7.69
Langur	10	4	1.7	2.48	0.015	0.94	4.35	8	5.1	7.08	0.020	3.70	10.15
Indian Hare	4	2	0.7	1.24	0.011	0.29	3.38	7	3.9	6.19	0.014	1.98	13.57
Cattle	175	14	7.8	8.70	0.033	9.50	2.52	6	6.2	5.31	0.033	7.44	1.17
Water Buffalo	250	4	3.0	2.48	0.033	3.70	0.69	2	1.1	1.77	0.033	1.35	0.15
Domestic goat	10	4	1.9	2.48	0.015	1.01	4.72	8	7.9	7.08	0.020	5.76	15.80
Domestic sheep	25	0	0	0	0.021	0	0	1	1.1	0.88	0.028	1.16	1.27
Bird (Unknown)	0	0	0	0		0	0	6	3.4	5.31		0	0

kg; Sambar Deer, Nilgai *Boselaphus tragocamelus*, cattle *Bos taurus*, Water Buffalo *Bubalus bubalis*; (ii) medium (20–50 kg; Spotted Deer, Northern Red Muntjac, Wild Boar, Indian Hog Deer *Axis porcinus*, Domestic Sheep *Ovis aries*); and (iii) small (below 20 kg; domestic goat *Capra hircus*, porcupine, langur, Indian Hare *Lepus nigricollis*) to understand the food habits and diet profiles of the two sympatric large carnivores (Harihar et al. 2011). The diet niche breadth of Tigers and Leopards was estimated using the Levins index (Levins 1968), standardised to a scale of 0–1 (Hurlbert 1978) based on the frequency of occurrence of different prey species. The standardised scale considers the proportional abundance of each resource state (Hurlbert 1978). The statistical tests were performed in PAST 4.03 and other analysis related to scat were performed in Microsoft Excel application. The map was prepared in ArcGIS 10.7, and graphs were prepared in PAST 4.03 and Ms-Excel.

RESULTS

From October 2019 to December 2021, we collected and analysed 116 Tiger and 89 Leopard scat samples in our study area. Our sample size was adequate for dietary profile investigation of Tigers and Leopards as the graph reached asymptote position for the number of preys detected with increasing number of samples (Figure 1).

Scat samples of tigers contained 12 prey species, with

64.7% of all consisting of one prey species, 31.9% of two species and 3.4% of three species. Tigers preyed most frequently upon Wild Boar (24%), followed by Spotted Deer (20.4%) (Table 1), and cattle (7.8%) constituted the most frequent prey amongst all livestock species. Three livestock species were observed in tiger scat, i.e., cattle, Water Buffalo (3%), and domestic goat (1.9%). All 12 prey items were observed in scat collected during the winter season. Scat collected in the summer contained 10 species except goat and Water Buffalo, and a higher contribution of cattle remains (14%) than in the winter (8%).

Scat samples of leopards contained 14 prey species, with 73% of all samples consisting of one species and 27% of two species. Leopards preyed most frequently upon Spotted Deer (17.4%), followed by Wild Boar (16.3%). Four livestock species were observed in Leopard scat, namely domestic goat (7.9%), cattle (6.2%), Water Buffalo (1%), and domestic sheep (1%). Unidentified remains like feather and beaks of birds (3.4%) were also found in leopard scat samples (Table 1). All 14 prey items were observed in leopard scat collected during the winter season and 10 prey species in scat collected during the summer except langur, Cattle, Water Buffalo, and sheep. The contribution of Wild Boar remains was higher in summer (23%) than in winter (14%).

The Wild Boar had the highest prey biomass contribution to the Tiger's diet with 21.82%, while Spotted Deer had the highest prey biomass contribution

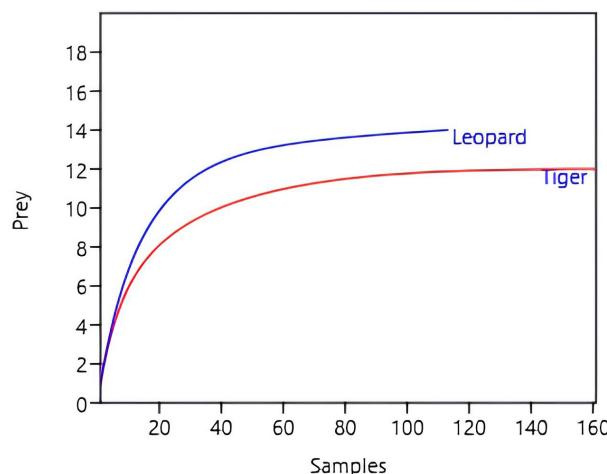


Figure 1. Graph showing number of prey items in scat samples of Tiger and Leopard analysed for the study.

to the Leopard's diet with 20.39%. The cattle relative biomass contribution is the maximum among livestock species for both Tigers and Leopards. Overall, for all prey items, the diet composition showed no significant difference between relative prey biomass consumption ($p = 0.53$, $\chi^2 = 0.378$) and relative number of prey consumed ($p = 0.85$, $\chi^2 = 0.032$) by Tiger and Leopard.

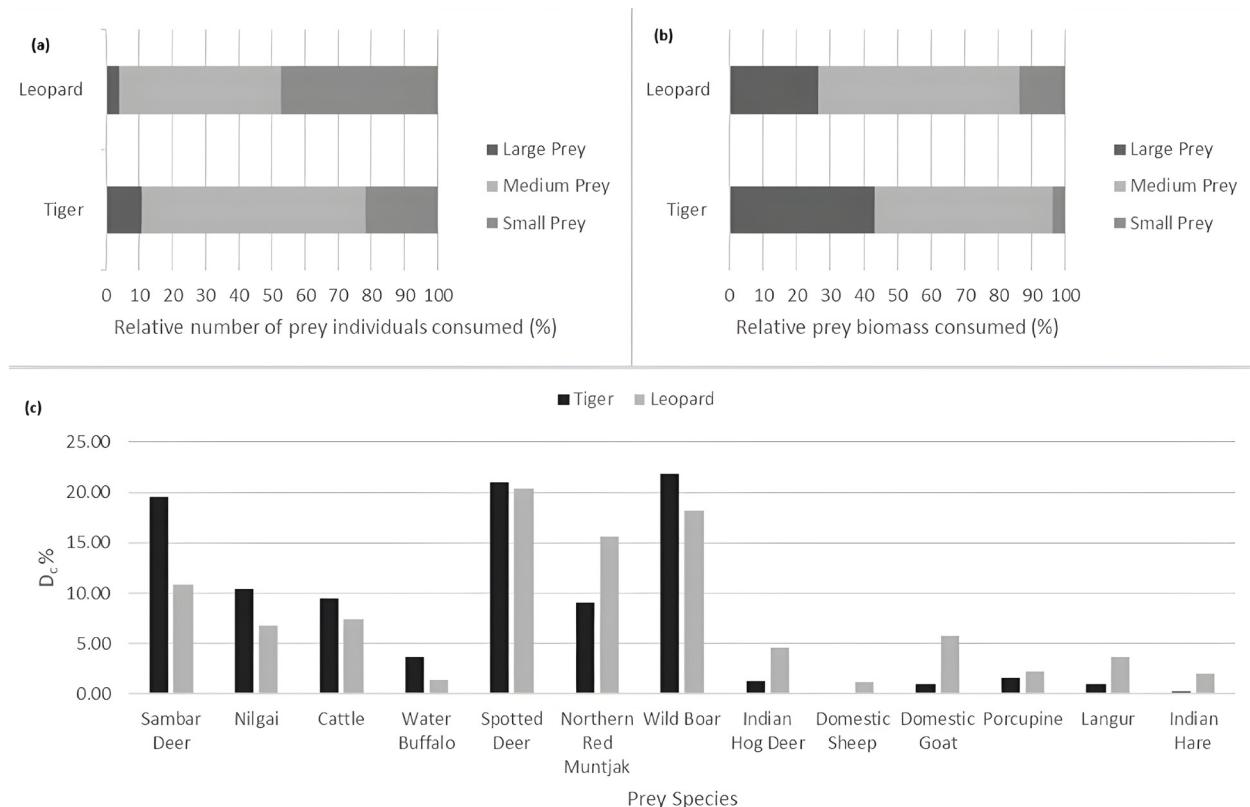
Tiger and Leopard diets consist predominantly of medium-sized prey (Figure 2). Large prey constitutes 43.1%, medium prey ~53%, and small prey ~3.8% of biomass consumption in the Tiger diet profile. The leopard relative prey biomass consumption is highest for medium-sized prey (~60%), followed by large (26.4%) and small (13.7%) prey. The contribution of smaller prey is considerably higher in the diet of Leopards than of Tigers. Tiger relative prey biomass consumption primarily depends on wild prey (~85.8%), and around 14.2% on livestock. Relative prey biomass consumption of Leopards has a slightly higher share of livestock (~15.7%) than of Tigers (~14.2%). The relative number of medium-sized prey (67.6%) consumed by Tigers is substantially higher than that of large (10.8%) and small (21.6%) prey (Figure 2). However, the relative number of medium (48.9%) and small (47.2%) sized prey consumed by Leopards is equivalent but considerably higher than large prey (~3.9%) (Figure 2).

The relative prey biomass contribution of Wild Boar, Spotted Deer, and Sambar Deer is significant in the Tiger's diet. At the same time, Leopard food habits show a significant dependence on Spotted Deer, Wild Boar, and Northern Red Muntjak for biomass consumption (Figure 2). The dietary overlap between Tiger and Leopard in the study area is approximately 93% (Pianka Index = 0.928).

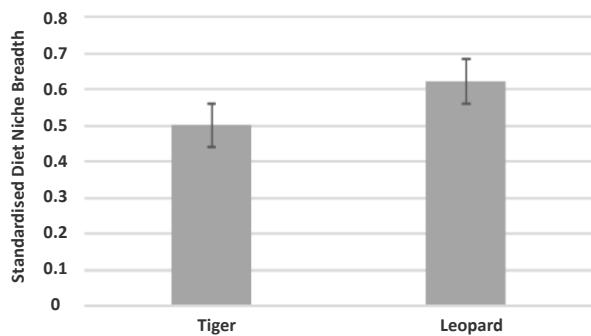
The dietary niche breadth of Tiger and Leopard using the Levins index is 6.51 & 9.11, respectively, and the standardised diet niche breadth is 0.5 & 0.62 for Tiger and Leopard, respectively (Figure 3).

DISCUSSION

In the present conservation paradigm of large carnivores, it is essential to understand the feeding habits and prey-predator dynamics outside protected areas (Kshettry et al. 2018; Puri et al. 2020; Mohan et al. 2021; Dahya et al. 2023). Our study fills this gap in our understanding of the dietary habits of sympatric large carnivore species outside PAs in wildlife corridors of the Terai landscape of India. It is of paramount importance to understand the dependence on livestock, resource sharing, and diversity of food resources of sympatric large carnivores to address human-wildlife conflict in the landscape (Chakrabarti et al. 2016; Fàbregas et al. 2017; Lumetsberger et al. 2017; Puri et al. 2020; Dahya et al. 2023). Our results highlight that Tigers and Leopards prey largely on wild species, but they also indicate a substantial contribution of livestock to their diets, likely due to the lower abundance of wild species in wildlife corridors.


The higher dietary contribution of wild prey highlights that both Tiger and Leopard prefer wild prey over livestock. The lower share of livestock species in Tiger and Leopard diet even when the grazing is high can be attributed to the presence of a herder accompanying livestock herds, and the collection of a few scat samples from the inner areas of forest habitats with minimal disturbances. The contribution of livestock species is substantially lower in comparison to wild prey, still higher than inside PAs in the Terai landscape (Harihar et al. 2011; Basak et al. 2018; Upadhyaya et al. 2018). Studies in the mosaic landscape of PAs and non-PAs in the Terai Arc landscape also show a significant difference in livestock contribution in the diet of Tigers inside PAs and outside PAs (Harihar et al. 2011; Lamichhane et al. 2019; Biswas et al. 2023). Livestock depredation entails the loss of human property, and hence has a more pronounced effect on the conservation of large carnivores and human-wildlife negative interactions (Dickman et al. 2013; Nyhus 2016).

The number of stray cattle in forest habitats has increased in recent years due to government policies (Vivek Ranjan, pers. obs.; Governor of Himachal Pradesh 2014), which have an aggravated negative effect on large carnivore prey availability and feeding habits (Baker et al.


2008; Harihar et al. 2011; Pimenta et al. 2017). Moreover, the depredation of these stray livestock is not reported or recorded by the Forest Department. The maximum share of cattle in the diet of Tiger and Leopard amongst the livestock species can be attributed to its higher population than other livestock species and easier to hunt than Water Buffalo which is similar in other studies (Harihar et al. 2011; Lamichhane et al. 2019; Puri et al. 2020; Biswas et al. 2023). The Water Buffalo has also been observed in two Leopard scat samples from study block 2, which may be attributed to the Water Buffalo calf depredation or buffalo carcass. Carcass dumping was not observed in the Kosi corridor area; however, infrequent carcass dumping was observed in study block 2 areas. The presence of cattle and large livestock species in the forest habitats significantly affects the distribution of wild prey, especially large wild prey like Sambar Deer, which are more sensitive to (Gaynor et al. 2018; Upadhyaya et al. 2018; Habib et al. 2021). This also explains the higher dependence on medium-sized prey in the current study area.

The high dietary overlap of 93% between Tigers and Leopards in the current study area is consistent with

findings in earlier studies from the Indian subcontinent (Wang & Macdonald 2009; Harihar et al. 2011; Mondal et al. 2012; Lamichhane et al. 2019). The high dietary overlap also indicates that these sympatric species do not base their coexistence on diet partitioning based on prey type, however, apparent partitioning may occur in prey selection based on body size, age class, and sex of the species (Ramesh et al. 2012; Lovari et al. 2015). The notions of optimal foraging theory preferring larger prey are invalid when the availability of prey is an important limiting factor other than ecological energetics, which supports hunting of prey with equivalent body size/weight and convenience of hunting, which optimises energy use (Gittleman 1985; Chakrabarti et al. 2016; Basak et al. 2018; Upadhyaya et al. 2018). The equivalence of relative number of medium and small prey consumed by leopards can be attributed to their agility and ability to climb trees easily for hunting smaller prey such as porcupines, Indian Hare, and langurs. The Tiger is a top predator, and its increasing population density affects the food habits of its co-predators inhabiting the same habitat by shifting their prey preference, selection of sex, age classes of prey, and hunting time (Andheria

Figure 2. Diet profile of tiger and leopard in the study area: a—Relative prey biomass consumed (D_c) by the two sympatric large carnivores using a generalised biomass model for three categories of prey based on body size | b—Relative number of prey consumed (E_c) by two large carnivore species using a generalised biomass model | c—Contribution of different prey species in the prey biomass consumed by two sympatric carnivores. (Large prey >50 kg, Medium prey 20–50 kg, Small prey <20 kg)

Figure 3. Standardised diet niche breadth of Tigers and Leopards in the study area with standard error using the Levins index.

et al. 2007; Harihar et al. 2011; Mondal et al. 2012; Shameer et al. 2021). It also explains the considerable difference in relative biomass and number of large prey consumption between Tiger (cumulative $D_c = 43.1\%$ and $E_c = 10.8\%$) and leopard (cumulative $D_c = 26.4\%$ and $E_c = 3.9\%$) in our study. This substantial difference in large prey relative consumption between Tiger and Leopard and the higher relative number of small prey in the Leopard diet indicates prey selection partitioning between the two sympatric species. The terrain of the habitat and prey behaviour also affect prey selection, causing spatiotemporal partitioning (Wang & Macdonald 2009).

The dietary specialisation of these two sympatric species is broad and suggests better adaptability to the existing environment and food availability. Both species exhibit a high dependence on medium body-size prey like Wild Boar and Spotted Deer, which could be attributed to their abundance in our study area. Similar trends and prey preferences have also been observed in other study areas of the Terai (Basak et al. 2018; Upadhyaya et al. 2018; Ahmed & Khan 2022). The broader dietary niche of Leopards observed in our study area indicates the generalist nature of prey selection and opportunistic feeding behaviour of Leopards (Puri et al. 2020; Mohan et al. 2021). Camera trap images obtained in the current study area have also shown evidence of poultry depredation by Leopards (Vivek Ranjan, unpub. data).

The absence of a wider variety of wild prey, high anthropogenic disturbance, and grazing pressure increase livestock depredation by large carnivores (Sankar et al. 2010; Basak et al. 2018). Our results show a higher livestock share in the Leopard diet with four livestock species compared to the Tiger diet with three species, which can be attributed to the varied habitat use patterns of these two sympatric predators. As the Tiger

population density increases in the core forest habitats, the Leopard responds by spatially and temporally partitioning its habitat use, adapting to fringe habitats on the forest boundary, thereby increasing the chances of more frequent livestock depredation (Harihar et al. 2011; Bisht et al. 2019; Naha et al. 2020; Puri et al. 2022). Corbett Tiger Reserve (CTR), part of our study area, has the highest tiger population density among all the PAs in India (Bisht et al. 2019; Qureshi et al. 2023) and acts as a source population for the metapopulation of this landscape (Chanchani et al. 2014). The Tigers dispersing from the core habitats of CTR face a high risk of human-wildlife interactions outside PAs, mainly in the form of livestock depredation and human casualty in a few incidents (Bargali & Ahmed 2018; Bisht et al. 2019), as evident from compensation records of the Uttarakhand Forest Department (Uttarakhand Forest Department, unpub. data).

The seasonal migration of 'Bakarwal' disturbs the wild prey populations inhabiting those habitats and increases the probability of depredation by carnivores (Bisht et al. 2019; Qureshi et al. 2023), which is highlighted by the fact that all the scat samples of both the species with sheep hairs and all tiger scats with goat hairs were collected during winter. The large herds of Water Buffalo and cattle of 'Van Gujjars' negatively affects the wild prey population and disturbs the availability of pastures and foraging activity of wild prey species (Harihar et al. 2011). The livestock depredation of these pastoralist communities is also observed in the compensation records of the Uttarakhand Forest Department from the study area (Uttarakhand Forest Department, unpub. data).

Our study is based on a small sample size, but it highlights the importance of wild prey availability to contain conflict between people and large carnivores. Augmenting the wild prey population outside the PAs in wildlife corridors is vital to limit and reduce livestock depredation and improve habitat quality to accommodate wild prey populations in forest habitats. The wild prey population can be augmented by providing protection from hunting or poaching outside PAs. Additionally, improving habitat and heterogeneity in wildlife corridor areas and reducing anthropogenic disturbances are likely to provide a conducive environment for prey to naturally increase its population. The dietary profile of large carnivores of the study area provides information about the contribution of different prey species as food, which is crucial for understanding prey-predator dynamics in the landscape outside PAs. It will help develop a scientific management and mitigation plan for human-wildlife

negative interaction and long-term conservation. More such studies with extensive sampling outside the PAs are needed to formulate long-term landscape conservation plans.

REFERENCES

Ackerman, B.B., F.G. Lindzey & T.P. Hemker (1984). Cougar food habits in southern Utah. *The Journal of Wildlife Management* 48(1): 147. <https://doi.org/10.2307/3808462>

Ahmed, K. & J.A. Khan (2022). Food habit of tiger (*Panthera tigris*) in tropical moist deciduous forest of Dudhwa National Park, Uttar Pradesh, India. *International Journal of Ecology and Environmental Sciences* 48(6): 715–720. <https://doi.org/10.55863/ijees.2022.6715>

Andheria, A.P., K.U. Karanth & N.S. Kumar (2007). Diet and prey profiles of three sympatric large carnivores in Bandipur Tiger Reserve, India. *Journal of Zoology* 273(2): 169–175. <https://doi.org/10.1111/j.1469-7998.2007.00310.x>

Anwar, M., D.M.R. Chowdhury, K.D. Kandpal & J. Vattakaven (2014). Monitoring of Tiger and Associated Species Kosi River Corridor, Uttarakhand, India. Technical report by WWF-India, New Delhi, India, 48 pp.

Athreya, V., M. Odden, J.D.C. Linnell, J. Krishnaswamy & U. Karanth (2013). Big cats in our backyards: Persistence of large carnivores in a human dominated landscape in India. *PLoS One* 8(3): 2–9. <https://doi.org/10.1371/journal.pone.0057872>

Bagchi, S., S.P. Goyal & K. Sankar (2003). Prey abundance and prey selection by tigers (*Panthera tigris*) in a semi-arid, dry deciduous forest in western India. *Journal of Zoology* 260(3): 175–181. <https://doi.org/10.1017/S0952836903003765>

Bahuguna, A., V. Sahajpal, S.P. Goyal, S.K. Mukherjee & V. Thakur (2010). *Species identification from guard Hair of Selected Indian Mammals: A reference Guide*. Wildlife Institute of India, Dehradun, 447 pp.

Baker, P.J., L. Boitani, S. Harris, G. Saunders & P.C.L. White (2008). Terrestrial carnivores and human food production: Impact and management. *Mammal Review* 38(2–3): 123–166. <https://doi.org/10.1111/j.1365-2907.2008.00122.x>

Bargali, H.S. & T. Ahmed (2018). Patterns of livestock depredation by tiger (*Panthera tigris*) and leopard (*Panthera pardus*) in and around Corbett Tiger Reserve, Uttarakhand, India. *PLoS One* 13(5): e0195612. <https://doi.org/10.1371/journal.pone.0195612>

Basak, K., D. Mandal, S. Babu, R. Kaul, N.V.K. Ashraf, A. Singh & K. Mondal (2018). Prey animals of tiger (*Panthera tigris tigris*) in Dudhwa Landscape, Terai Region, North India. *Proceedings of the Zoological Society* 71(1): 92–98. <https://doi.org/10.1007/s12595-016-0196-5>

Bisht, S., S. Banerjee, Q. Qureshi & Y. Jhala (2019). Demography of a high-density tiger population and its implications for tiger recovery. *Journal of Applied Ecology* 56(7): e0195612. <https://doi.org/10.1111/1365-2664.13410>

Biswas, S., S. Kumar, M. Bandhopadhyay, S.K. Patel, S. Lyngdoh, B. Pandav & S. Mondol (2023). What drives prey selection? Assessment of tiger (*Panthera tigris*) food habits across the Terai-Arc Landscape, India. *Journal of Mammalogy* 104(6): 1302–1316. <https://doi.org/10.1093/jmammal/gyad069>

Chakrabarti, S., Y. V. Jhala, S. Dutta, Q. Qureshi, R.F. Kadivar & V.J. Rana (2016). Adding constraints to predation through allometric relation of scats to consumption. *Journal of Animal Ecology* 85(3): 660–670. <https://doi.org/10.1111/1365-2656.12508>

Chanchani, P., K. Maurya, A. Bista, R. Warrier, S. Nair, M. Almeida, R. Ravi, R. Sharma, M. Dhakal, S.P. Yadav, M. Thapa, S.R. Jnawali, N.M.B. Pradhan, N. Subedi, G.J. Thapa, H. Yadav, Y.V. Jhala, Q. Qureshi, J. Vattakaven & J. Borah (2014). Tigers of the transboundary Terai Arc Landscape, National Tiger Conservation Authority, Government of India, and Department of National Park and Wildlife Conservation, Government of Nepal, 98 pp.

Dahya, M.N., R. Chaudhary, A. Kazi & A. Shah (2023). Food habits and characteristics of livestock depredation by leopard (*Panthera pardus fusca*) in human dominated landscape of south Gujarat, India. *Ethology Ecology & Evolution* 36(2): 1–13. <https://doi.org/10.1080/03949370.2023.2248597>

Dangwal, D.D. (2024). Mobility to sedentarization: Pastoralism from colonial to post-colonial period in Uttarakhand Himalaya (India), pp. 185–204. In: Degen, A.A. & L.P. Dana (eds.). *Lifestyle and Livelihood Changes Among Formerly Nomadic Peoples: Entrepreneurship, Diversity and Urbanisation*. Springer Nature Switzerland, Cham, xxiv + 337 pp.

Dharaiya, N. & V.C. Soni (2012). Identification of hairs of some mammalian prey of large cats in Gir Protected Area, India. *Journal of Threatened Taxa* 4(9): 2928–2932. <https://doi.org/10.11609/jott.03032.2928-32>

Dickman, A.J. (2010). Complexities of conflict: The importance of considering social factors for effectively resolving human-wildlife conflict. *Animal Conservation* 13(5): 458–466. <https://doi.org/10.1111/j.1469-1795.2010.00368.x>

Dickman, A., S. Marchini & M. Manfredo (2013). The human dimension in addressing conflict with large carnivores, pp. 110–126 in: Macdonald, D.W. & K.J. Willis (eds.). *Key Topics in Conservation Biology* 2. John Wiley & Sons, Ltd., Hoboken, 328 pp. <https://doi.org/10.1002/9781118520178.ch7>

Fàbregas, M.C., C. Garcés-Narro, H. Bertschinger & G. Koehler (2017). Carcass utilization by tigers: implications for calculating prey requirements. *Journal of Zoology* 301(2): 141–149. <https://doi.org/10.1111/jzo.12403>

Fedriani, J.M., F. Palomares & M. Delibes (1999). Niche relations among three sympatric Mediterranean carnivores. *Oecologia* 121(1): 138–148. <https://doi.org/10.1007/s004420050915>

Floyd, T.J., L.D. Mech & P.A. Jordan (1978). Relating wolf scat content to prey consumed. *The Journal of Wildlife Management* 42(3): 528–532. <https://doi.org/10.2307/3800814>

Fryxell, J.M., A. Mosser, A.R.E. Sinclair & C. Packer (2007). Group formation stabilizes predator–prey dynamics. *Nature* 449(7165): 1041–1043. <https://doi.org/10.1038/nature06177>

Gaynor, K.M., C.E. Hojnowski, N.H. Carter & J.S. Brashares (2018). The influence of human disturbance on wildlife nocturnality. *Science* 360(6394): 1232–1235. <https://doi.org/10.1126/science.aar7121>

Gittleman, J.L. (1985). Carnivore body size: Ecological and taxonomic correlates. *Oecologia* 67(4): 540–554. <https://doi.org/10.1007/BF00790026>

Governor of Himachal Pradesh (2014). Policy to tackle problem of stray cattle. Animal Husbandry Department, Government of Himachal Pradesh, Shimla, 8 pp.

Habib, B., P. Ghaskadbi, S. Khan, Z. Hussain & P. Nigam (2021). Not a cakewalk: Insights into movement of large carnivores in human-dominated landscapes in India. *Ecology and Evolution* 11(4): 1653–1666. <https://doi.org/10.1002/ece3.7156>

Harihar, A., B. Pandav & S.P. Goyal (2011). Responses of leopard *Panthera pardus* to the recovery of a tiger *Panthera tigris* population. *Journal of Applied Ecology* 48(3): 806–814. <https://doi.org/10.1111/j.1365-2664.2011.01981.x>

Hurlbert, S.H. (1978). The measurement of niche overlap and some relatives. *Ecology* 59(1): 67–77. <https://doi.org/10.2307/1936632>

Johnsingh, A.J.T. (1983). Large mammalian prey-predators in Bandipur. *Journal of the Bombay Natural History Society* 80(1): 1–57.

Johnsingh, A.J.T. (2006). Status and conservation of the tiger in Uttarakhand, northern India. *Ambio* 35(3): 135–137. [https://doi.org/10.1579/0044-7447\(2006\)35](https://doi.org/10.1579/0044-7447(2006)35)

Johnsingh, A.J.T., K. Ramesh, Q. Qureshi, A. David, S.P. Goyal, G.S. Rawat, K. Rajpandian & S. Prasad (2004). Conservation Status of Tiger and Associated Species in the Terai Arc Landscape, India, RR-04/001, Wildlife Institute of India, Dehradun, viii + 110 pp.

Karanth, K.U. & M. Sunquist (2000). Behavioural correlates of predation by Tiger (*Panthera tigris*) & Leopard (*Panthera pardus*).

The Zoological Society of London 4(8): 255–265. <https://doi.org/10.1111/j.1469-7998.2000.tb01076.x>

Karanth, K.U. & M.E. Sunquist (1995). Prey selection by tiger, leopard and Dhole in tropical forests. *The Journal of Animal Ecology* 64(4): 439. <https://doi.org/10.2307/5647>

Klare, U., J.F. Kamler & D.W. MacDonald (2011). A comparison and critique of different scat-analysis methods for determining carnivore diet. *Mammal Review* 41(4): 294–312. <https://doi.org/10.1111/j.1365-2907.2011.00183.x>

Kshetry, A., S. Vaidyanathan & V. Athreya (2018). Diet selection of leopards (*Panthera pardus*) in a human-use landscape in north-eastern India. *Tropical Conservation Science* 11: 1940082918764635. <https://doi.org/10.1177/1940082918764635>

Lamichhane, B.R., H. Leirs, G.A. Persoon, N. Subedi, M. Dhakal, B.N. Oli, S. Reynaert, V. Sluydts, C.P. Pokharel, L.P. Poudyal, S. Malla & H.H. de longh (2019). Factors associated with co-occurrence of large carnivores in a human-dominated landscape. *Biodiversity and Conservation* 28(6): 1473–1491. <https://doi.org/10.1007/s10531-019-01737-4>

Levins, R. (1968). *Evolution in Changing Environments: Some Theoretical Explorations.* (MPB-2), Princeton University Press, Princeton, 122 pp. <https://doi.org/10.2307/j.ctvx5wbbh>

Lovari, S., C.P. Pokharel, S.R. Jnawali, L. Fusani & F. Ferretti (2015). Coexistence of the Tiger and the Common Leopard in a prey-rich area: the role of prey partitioning. *Journal of Zoology* 295(2): 122–131. <https://doi.org/10.1111/jzo.12192>

Lumetsberger, T., A. Ghoddousi, A. Appel, I. Khorozyan, M. Walther & C. Kiffner (2017). Re-evaluating models for estimating prey consumption by leopards. *Journal of Zoology* 302(3): 201–210. <https://doi.org/10.1111/jzo.12449>

Majumder, A. (2011). Prey selection, food habits and population structure of sympatric carnivores: Tiger *Panthera tigris tigris* (L.), leopard *Panthera pardus* (L.) and Dhole *Cuon alpinus* (Pallas) in Pench Tiger Reserve, Madhya Pradesh (India). PhD Thesis. Wildlife Institute of India, Saurashtra University, Rajkot, XXV + 232 pp.

Mohan, G., J. Yogesh, G. Nittu, T.T. Shameer, S.J. Backer, S. Nandhini, B. Ramakrishnan, M. Jyothi & R. Sanil (2021). Factors influencing survival of tiger and leopard in the high-altitude ecosystem of the Nilgiris, India. *Zoology and Ecology* 31(2): 116–133. <https://doi.org/10.35513/21658005.2021.2.6>

Mondal, K., S. Gupta, S. Bhattacharjee, Q. Qureshi & K. Sankar (2012). Prey selection, food habits and dietary overlap between leopard *Panthera pardus* (Mammalia: Carnivora) and re-introduced tiger *Panthera tigris* (Mammalia: Carnivora) in a semi-arid forest of Sariska Tiger Reserve, western India. *Italian Journal of Zoology* 79(4): 607–616. <https://doi.org/10.1080/11250003.2012.687402>

Mukherjee, S., S.P. Goyal & R. Chellam (1994). Standardisation of scat analysis techniques for leopard (*Panthera pardus*) in Gir National Park, western India. *Mammalia* 58(1): 139–144. <https://doi.org/10.1515/mamm.1994.58.1.139>

Naha, D., S.K. Dash, A. Chettri, P. Chaudhary, G. Sonker, M. Heurich, G.S. Rawat & S. Sathyakumar (2020). Landscape predictors of human-leopard conflicts within multi-use areas of the Himalayan region. *Scientific Reports* 10(1): 1–12. <https://doi.org/10.1038/s41598-020-67980-w>

Nyhus, P.J. (2016). Human-wildlife conflict and coexistence. *Annual Review of Environment and Resources* 41(1): 143–171. <https://doi.org/10.1146/annurev-environ-110615-085634>

Palomares, F., P. Ferreras, J.M. Fedriani & M. Delibes (1996). Spatial relationships between Iberian Lynx and other carnivores in an area of south-western Spain. *The Journal of Applied Ecology* 33(1): 5–13. <https://doi.org/10.2307/2405010>

Pianka, E.R. (1973). The structure of lizard communities. *Annual Review of Ecology and Systematics* 4(1): 53–74. <https://doi.org/10.1146/annurev.es.04.110173.000413>

Pimenta, V., I. Barroso, L. Boitani & P. Beja (2017). Wolf predation on cattle in Portugal: Assessing the effects of husbandry systems. *Biological Conservation* 207: 17–26. <https://doi.org/10.1016/j.biocon.2017.01.008>

Puri, M., A. Srivaths, K.K. Karanth, I. Patel & N.S. Kumar (2020). The balancing act: Maintaining leopard-wild prey equilibrium could offer economic benefits to people in a shared forest landscape of central India. *Ecological Indicators* 110(March 2020): 105931. <https://doi.org/10.1016/j.ecolind.2019.105931>

Puri, M., A. Srivaths, K.K. Karanth, I. Patel & N.S. Kumar (2022). Links in a sink: Interplay between habitat structure, ecological constraints and interactions with humans can influence connectivity conservation for tigers in forest corridors. *Science of the Total Environment* 809 (February): 151106. <https://doi.org/10.1016/j.scitotenv.2021.151106>

Qureshi, Q., Y.V. Jhala, S.P. Yadav & A. Mallick (2023). Status of tigers, co-predators and prey in India, 2022. National Tiger Conservation Authority, New Delhi, and Wildlife Institute of India, Dehradun. Dehradun, 494 pp.

Qureshi, Q., S. Saini, P. Basu, R. Gopal, R. Raza & Y.V. Jhala (2014). Connecting tiger populations for long-term conservation. National Tiger Conservation Authority and Wildlife Institute of India, Vol. TR2014-02, Dehradun, 288 pp.

Ramesh, T., V. Snehalatha, K. Sankar & Q. Qureshi (2009). Food habits and prey selection of tiger and leopard in Mudumalai Tiger Reserve, Tamil Nadu, India. *Scientific Transactions in Environment and Technovation* 2(3): 170–181. <https://doi.org/10.20894/stet.116.002.003.010>

Ramesh, T., R. Kalle, K. Sankar & Q. Qureshi (2012). Dietary partitioning in sympatric large carnivores in a tropical forest of Western Ghats, India. *Mammal Study* 37(4): 313–321. <https://doi.org/10.3106/041.037.0405>

Ranjan, V. & P.M. Dhakate (2021). Lost and found: Recent records of Dhole (*Cuon alpinus*, Pallas 1811) from Nandhaur Wildlife Sanctuary and wildlife corridors of Uttarakhand, India. *Indian Forester* 147(10): 1024. <https://doi.org/10.36808/if/2021/v147i10/159357>

Rodgers, W.A., H.S. Panwar & V.B. Mathur (2000). Biogeographical Classifications of India. Wildlife Protected Area Network in India: A Review. Wildlife Institute of India, Dehradun, 44 pp.

Sanderson, E., J. Forrest, C. Loucks, J. Ginsberg, E. Dinerstein, J. Seidensticker, P. Leimgrubler, M. Songer, A. Heydlauff, T. O'Brien, G. Bryja, S. Klenzendorf & E. Wikramanayake (2006). *Setting Priorities for the Conservation and Recovery of Wild Tigers: 2005–2015. The Technical Assessment.* WCS, WWF, Smithsonian, and NFWF-STF, New York, Washington, D.C. xiii + 128 pp.

Sankar, K., Q. Qureshi, P. Nigam, P.K. Malik, P.R. Sinha, R.N. Mehrotra, R. Gopal, S. Bhattacharjee, K. Mondal & S. Gupta (2010). Monitoring of reintroduced tigers in Sariska Tiger reserve, Western India: Preliminary findings on home range, prey selection and food habits. *Tropical Conservation Science* 3(3): 301–318. <https://doi.org/10.1177/194008291000300305>

Schoener, T.W. (1986). Resource partitioning, pp. 91–126. In: Kikkawa, J. & D.J. Anderson (eds.). *Community Ecology: Pattern and Process.* Blackwell Scientific Publications, Melbourne, xi + 432 pp.

Selvan, K.M., G.G. Veeraswami, S. Lyngdoh, B. Habib & S.A. Hussain (2013). Prey selection and food habits of three sympatric large carnivores in a tropical lowland forest of the eastern Himalayan biodiversity hotspot. *Mammalian Biology* 78(4): 296–303. <https://doi.org/10.1016/j.mambio.2012.11.009>

Semwal, R.L. (2005). The Terai Arc Landscape in India: Securing Protected Areas in the Face of Global Change. WWF- India, New Delhi, vii + 47pp.

Shameer, T.T., N.A. Mungi, B. Ramesh, S.V. Kumar & P.S. Easa (2021). How can spatio-temporal overlap in mammals assist in maximizing biodiversity conservation? A case study of Periyar Tiger Reserve. *Biology* 76(4): 1255–1265. <https://doi.org/10.2478/S11756-020-00645-1/METRICS>

Sharma, J., S. Gairola, R.D. Gaur & R.M. Painuli (2012). Forest utilization patterns and socio-economic status of the Van Gujjar tribe in sub-Himalayan tracts of Uttarakhand, India. *Forestry Studies in China* 14(1): 36–46. <https://doi.org/10.1007/s11632-012-0102-9>

Smith, J.L.D., C. McDougal & D. Miquelle (1989). Scent marking in free-ranging tigers, *Panthera tigris*. *Animal Behaviour* 37: 1–10.

[https://doi.org/10.1016/0003-3472\(89\)90001-8](https://doi.org/10.1016/0003-3472(89)90001-8)

Upadhyaya, S.K., C.J.M. Musters, B.R. Lamichhane, G.R. de Snoo, P. Thapa, M. Dhakal, D. Karmacharya, P.M. Shrestha & H.H. de Jongh (2018). An insight into the diet and prey preference of tigers in Bardia National Park, Nepal. *Tropical Conservation Science* 11: 1940082918799476. <https://doi.org/10.1177/1940082918799476>

Wang, S.W. & D.W. Macdonald (2009). Feeding habits and niche partitioning in a predator guild composed of tigers, leopards and Dholes in a temperate ecosystem in central Bhutan. *Journal of Zoology* 277(4): 275–283. <https://doi.org/10.1111/j.1469-7998.2008.00537.x>

WWF & RESOLVE (2015). 'Tx2 Tiger Conservation Landscapes.' Global Forest Watch. www.globalforestwatch.org. Accessed on 14 September 2023.

Xia, Y. (2020). Correlation and association analyses in microbiome study integrating multiomics in health and disease. *Progress in Molecular Biology and Translational Science* 171: 309–491. <https://doi.org/10.1016/BS.PMBTS.2020.04.003>

Author details: VIVEK RANJAN is a senior associate (Ecology) and a PhD scholar at Wildlife Institute of India. He specializes in human-wildlife interaction and conflict management strategies and large carnivores. SYED AINUL HUSSAIN is the project manager (NMCG) and former Scientist-G at the Wildlife Institute of India. His specialization is in wetland ecology and habitat ecology. RUCHI BADOLA is dean, faculty of Wildlife Science and Scientist-G at the Wildlife Institute of India. Her specialization is in human dimensions in wildlife and conservation. GAURAV VASHISTHA is assistant professor (guest) at Sri Venkateswara College, University of Delhi and specializes in wetland ecology and crocodilian ecology. PARAG MADHUKAR DHAKATE is an Indian forest service officer of Uttarakhand cadre currently posted as chief conservator of forest, Van Panchayat and member secretary of Uttarakhand Pollution Control Board.

Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lionel Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kuri R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith W. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dubai, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:

The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

OPEN ACCESS

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under [Creative Commons Attribution 4.0 International License](#) unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

www.threatenedtaxa.org

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

September 2024 | Vol. 16 | No. 9 | Pages: 25791–25950

Date of Publication: 26 September 2024 (Online & Print)

DOI: 10.11609/jott.2024.16.9.25791-25950

Articles

Feeding dynamics of sympatric large carnivores in an anthropogenic landscape of the Indian Terai

– Vivek Ranjan, Syed Ainul Hussain, Ruchi Badola, Gaurav Vashistha & Parag Madhukar Dhakate, Pp. 25791–25801

Avifaunal diversity assessment and conservation significance of Therhangal Bird Sanctuary, Ramanathapuram, Tamil Nadu: insights about breeding waterbirds

– H. Byju, H. Maitreyi, N. Raveendran & Reshma Vijayan, Pp. 25802–25815

Habitat heterogeneity and taxonomic diversity of fish fauna in estuaries: a study from southern Sri Lanka

– Kirivithanage Sandun Nalaka Bandara, Pp. 25816–25830

Successful establishment of a coral nursery for active reef restoration in Kavaratti Island, Lakshadweep archipelago

– C.A. Riyas, K.K. Idreesbabu, Rajeev Raghavan & S. Sureshkumar, Pp. 25831–25842

Taxonomic review of genus *Gazalina* Walker (Thaumetopoeinae: Notodontidae: Lepidoptera) from India

– Amritpal Singh Kaleka, Gagan Preet Kour Bali & Navkiran Kaur, Pp. 25843–25855

Diversity and distribution pattern of ebony trees *Diospyros* L. (Ebenaceae) in the forests of central Western Ghats, India

– H.S. Shashwathi & Y.L. Krishnamurthy, Pp. 25856–25871

Tree community structure of selected green patches of Guwahati, Assam, India with special reference to spatio-temporal changes in vegetation

– Maitreyee Goswami, Jijnyasha Bayan, Uma Dutta, Arup Kumar Hazarika & Kuladip Sarma, Pp. 25872–25881

Communications

First record of leucistic Sloth Bear *Melursus ursinus* Shaw, 1791 (Mammalia: Carnivora: Ursidae) in Panna Tiger Reserve, India

– Sankarshan Chaudhuri, Supratim Dutta & K. Ramesh, Pp. 25882–25887

Occurrence and distribution of Indian Pangolin *Manis crassicaudata* (Mammalia: Pholidota: Manidae) in the protected area network of Jammu Shiwaliks, India

– Ajaz Ansari & Neeraj Sharma, Pp. 25888–25893

The first report of an assassin bug of the genus *Ademula* McAtee & Malloch (Reduviidae: Emesinae) from India and its rediscovery from Sri Lanka

– H. Sankararaman, Tharindu Ranasinghe, Anubhav Agarwal, Amila Sumanapala & Hemant V. Ghate, Pp. 25894–25903

Preference and plasticity in selection of host for oviposition in Black Marsh Dart *Onychargia atrocyana* Selys, 1865 (Odonata: Zygoptera: Platycnemididae)

– Pathik K. Jana, Priyanka Halder Mallick & Tanmay Bhattacharya, Pp. 25904–25912

New records of termite species (Blattodea: Rhinotermitidae, Termitidae) from southern India

– A.V. Anushya & P.R. Swaran, Pp. 25913–25919

A study on the association between *Tridax* Daisy *Tridax procumbens* L. and butterflies at Shivaji University Campus, Maharashtra, India

– Aarati Nivasrao Patil & Sunil Madhukar Gaikwad, Pp. 25920–25930

Short Communications

Rare Honey Badger *Mellivora capensis* (Schreber, 1776) sighted in Tarai East Forest Division, Haldwani, Uttarakhand, India

– Prashant Kumar, Bhaskar C. Joshi, Anand Singh Bisht & Himanshu Bagri, Pp. 25931–25934

Additional documentation of the Slender Skimmer *Orthetrum sabina* (Drury, 1770) preying on the Pied Paddy Skimmer *Neurothemis tullia* (Drury, 1773) in Nepal

– Mahamad Sayab Miya & Apeksha Chhetri, Pp. 25935–25938

Notes

First photographic record of the Red Giant Gliding Squirrel *Petaurista petaurista* Pallas, 1766 (Mammalia: Rodentia: Sciuridae) from Sattal, Uttarakhand, India

– Hiranmoy Chetia, Jayant Gupta & Murali Krishna Chatakonda, Pp. 25939–25941

Red Pierrot *Talicada nyseus nyseus* (Guérin-Meneville, 1843): an addition to the butterfly fauna of Arunachal Pradesh, India

– Roshan Upadhyaya, Renu Gogoi, Ruksha Limbu, Manab Jyoti Kalita & Rezina Ahmed, Pp. 25942–25944

Ranunculus cantoniensis DC. (Ranunculaceae): an addition to the flora of West Bengal, India

– Jayantanath Sarkar, Srijan Mukhopadhyay & Biswajit Roy, Pp. 25945–25948

Book Review

Flowers of labour – Commelinaceae of India: Book review

– Rajeev Kumar Singh, Pp. 25949–25950

Publisher & Host

Threatened Taxa