

Building evidence for conservation globally

Journal of Threatened TAXA

10.11609/jott.2025.17.3.26571-26762

www.threatenedtaxa.org

26 March 2025 (Online & Print)

17(3): 26571-26762

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Open Access

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Board of Editors

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Copy Editors****Ms. Usha Madgunki**, Zooreach, Coimbatore, India**Ms. Trisa Bhattacharjee**, Zooreach. Coimbatore, India**Ms. Paloma Noronha**, Daman & Diu, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, Zooreach, Coimbatore, India**Mrs. Geetha**, Zooreach, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2021–2023****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annaheb Magar Mahavidyalaya, Maharashtra, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Banos, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: A bag worm with its beautiful heap of junk. Acrylics on 300 GSM paper by Dupati Poojitha based on a picture by Sanjay Molur.

Implementation strategy and performance analysis of a novel ground vibration-based elephant deterrent system

Sanjoy Deb¹ , Ramkumar Ravindran² & Saravana Kumar Radhakrishnan³

^{1,2} Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu 638401, India.

³ School of Electronics Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu 600127, India.

¹ sanjoydeb@bitsathy.ac.in, ² ramkumarr@bitsathy.ac.in, ³ r.saravanakumar@vit.ac.in (corresponding author)

Abstract: The establishment of human habitations, expansion of cultivation lands, and constant degradation of forest areas have intensified human-elephant negative interactions over the years in the Anaikatti area located at Coimbatore and Periyanaickenpalayam forest range in southern India. A few nature parks have been established in this interaction-prone area and are also affected by frequent elephant presence. To safeguard one such park, Nilgiri Biosphere Nature Park, from elephant and other wildlife intrusions, 13 units of a ground vibration-based 'elephant deterrent system' have been installed along its periphery. The system is a field-deployable version of our ground vibration-based 'elephant early warning system', designed to deter elephants using sound units upon detection. It analyzes the frequency of footstep vibrations to initially differentiate between elephant and non-elephant footsteps. The cumulative vibration data from sensors is then used to identify elephants more precisely. Furthermore, for certain system units, the system's algorithm has been adjusted via on-the-fly software updates to detect all animal footstep vibrations, activating deterrent sound effects tailored to the specific requirements of the current application. Insights from location surveys and discussions with local residents have contributed to the development of innovative implementation strategies and the careful selection of installation sites, which are detailed in this paper. The paper also outlines the system's installation layout, case-specific algorithms, and hardware architecture. Performance was monitored over an eight-month period, with the results analyzed alongside feedback from field observations. Notably, the system trial phase showed a reduction in elephant intrusions within the park. This report is the first detailed account of a trial field performance, making it a valuable reference for replicating similar solutions in other conflict locations.

Keywords: Human-elephant negative interaction, microcontroller, sensor string integration, signal conditioning unit, vibration sensor, warning system.

Editor: Heidi Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA.

Date of publication: 26 March 2025 (online & print)

Citation: Deb, S., R. Ravindran & S.K. Radhakrishnan (2025). Implementation strategy and performance analysis of a novel ground vibration-based elephant deterrent system. *Journal of Threatened Taxa* 17(3): 26704-26714. <https://doi.org/10.11609/jott.9251.17.3.26704-26714>

Copyright: © Deb et al. 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: We received funding from 'DST SERB Core Research Grant' CRG/2023/005596 on 16 January 2024.

Competing interests: The authors declare no competing interests.

Author details: DR. SANJOY DEB, from Kolkata, holds a BSc in Physics, an MSc in Electronics, and an MTech in nanoscience from Jadavpur University. He earned his PhD in 2012 and is now a professor at Bannari Amman Institute of Technology, Sathyamangalam, Tamilnadu, India. He has published more than 40 papers, and his current research focuses on mitigating human-animal conflict. DR. R. RAMKUMAR, from Tamil Nadu, earned his B.E. and M.E. from Anna University and a PhD in Electrical Engineering in 2024. With 14 years of teaching and research experience, he specializes in embedded systems and wireless networks. He has published 14 journal articles and currently serves as an assistant professor at Bannari Amman Institute of Technology, Sathyamangalam, Tamilnadu, India. DR. R. SARAVANA KUMAR, from Tamil Nadu, earned his B.E., M.E., and PhD. from Madras and Anna University. With 17 years of experience, he has published 43 research articles, authored three books, and six book chapters. He is an associate professor at Vellore Institute of Technology, Chennai, Tamil Nadu, India, specializing in VLSI and embedded system design.

Author contributions: SD—played a pivotal role in the development of hardware design, algorithm formulation, programming, and verification of field systems. RR—was responsible for conducting the field survey, overseeing the installation, and managing data collection. SKR—contributed significantly to the field installation process and the drafting of the manuscript.

Acknowledgements: The authors sincerely appreciate the support provided by the management team and ground staff of the Nilgiri Biosphere Nature Park in facilitating this research throughout the study period. The authors also gratefully acknowledge the invaluable assistance of the forest officials and ground staff of Sathyamangalam Tiger Reserve and Coimbatore Forest Division, in the successful execution of this research. We acknowledge the financial support for technology development and system maintenance from DST SERB CRG (Ref No. CRG/2023/005596-G).

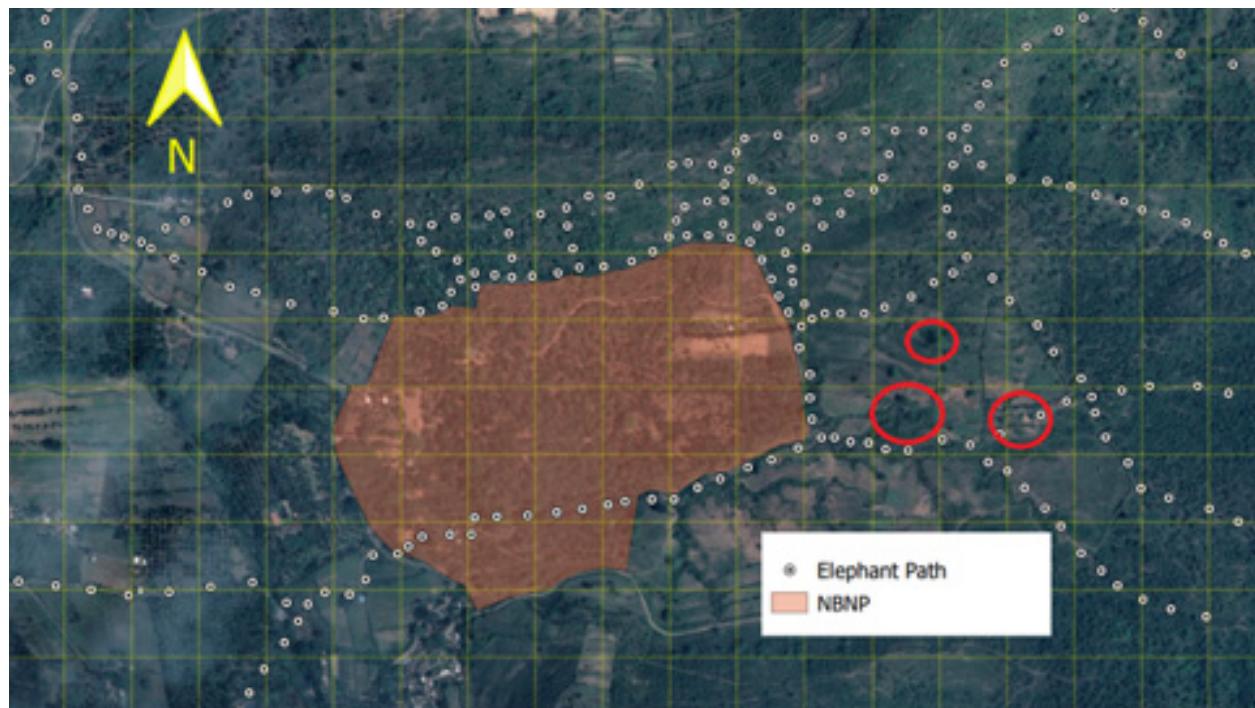
INTRODUCTION

Over the years, several technologies and systems have emerged for human-elephant negative interaction management, but they come with their advantages and limitations (Shaffer et al. 2019; Vogel et al. 2020; Tiller et al. 2021). If categorized broadly, the technologies come in two categories: first, the elephant early warning system, and second, the elephant deterrent system (Choudhury 2010; Rohini et al. 2016; Tripathy et al. 2021). Although there has been notable progress in the domain of early warning technologies, very few successful non-contact elephant deterrent systems have been reported so far. (Nayak & Swain 2020; Feuerbacher et al. 2021). The high intelligence and adaptive learning capability of the elephant have restricted technologists from designing a long-lasting elephant deterrent system (Locke et al. 2016; MoEF 2020). The few reported short-term successful systems also had a lack of range, element of surprise, and have terrain-specific limitations (MoEF 2020).

Considering those technological ambiguities and urgent needs, our ground vibration-based 'elephant early warning system' (EEWS) was reconfigured into an elephant deterrent system, with a re-engineered system design, operational algorithm, control circuit, and addition of a high-volume hooter/siren. The EEWS was designed over the years with national and international funding (Ramkumar & Deb 2021). The EEWS was tested through simulated experiments, as well as with field implementation at Sathyamangalam Tiger Reserve in 2020 (Ramkumar & Deb 2021). With the feedback data from field-installed EEWS units, the technology was refined. With all those added attributes, the EEWS was re-configured into a ground vibration-based 'elephant deterrent system' (EDS). Under this work, a total of 13 units were installed to cover the 3.5 km periphery of the Nilgiri Biosphere Nature Park (NBNP).

Location Survey

Anaikatti is a small township near Coimbatore, located in the Western Ghats at the Tamil Nadu-Kerala border in southern India. Human activities such as agriculture, urbanization, and tourism are disrupting the traditional migratory routes of elephants. Additionally, the depletion of forest resources has forced elephants to explore new migration paths, making Anaikatti a key interaction hotspot (Karthick et al. 2016; A Times of India Report 2019; Deivanayaki et al. 2019). The intensity of the conflict is so severe that the area frequently makes news headlines and has been the subject of several research


articles (Ramkumar et al. 2013; Natarajan et al. 2024). Being situated in this area, the Nilgiri Biosphere Nature Park (NBNP) has elephants visiting the site over the years. The NBNP is a nature-based organization designed to introduce and educate young minds about the unique flora and fauna of the Western Ghats, boasting a large collection of these species. The availability of food and water, especially during summer, has made the park an attractive entry point for the elephants.

To assess the elephant visitation scenario at NBNP, a detailed field survey was carried out on foot to accurately map the elephant movement paths. Additionally, key terrain factors such as soil conditions, ground slope, sunlight availability, and other parameters relevant to system installation were also surveyed. On the northern side of the NBNP, a hillside is covered in forest. To the east of the park, there is open land extending for about 1.5 km. This area features small patches of forest, scattered agricultural fields, and a few houses, as illustrated in Figure 1. Meanwhile, the southern and western sides of the park are covered by cultivation land and human habitation. There is a narrow footpath covering the three sides of the park, except for the western side, which is covered by a motorable road. According to local reports, the narrow path is utilized by cattle grazers, wood collectors, and farmers during the day, while at night, it becomes a route for deer, pigs, leopards, and other wildlife, including elephants. We interviewed a group of 50 individuals in and around the park, local forest officials, including park workers, to understand the status of interactions, map the movement paths of elephants & other wildlife, and analyze the intentions behind these intrusions, their frequency, distribution across seasons, and times of day. The survey was conducted during the first two weeks of August 2022, and the results are presented in Table 1.

The information from the general survey, presented in Table 1, indicates that over the past three years, a sub-adult male resident elephant and a mature migrating bull have frequented the site. The survey also reveals that the bull enters the area from November to April each year. During the day, elephants settle on the eastern side of the hill forest and visit the park and nearby villages after sunset. Despite the entire park perimeter being secured by an electric fence, it has proven insufficient to prevent elephant intrusions over the years.

Implementation Strategy

All potential entry and exit paths of the elephants have been marked on the map by analyzing ground conditions, gathering residents' feedback, and reviewing

Figure 1. The satellite map of NBNP and the surrounding area, along with demarcated elephant paths and a few houses on the eastern side (marked with a red circle).

the survey report, as illustrated in Figure 1. It has been identified that most elephant paths from the northern and eastern sides of the park terminate at the boundary, which is secured by an electric fence. According to feedback from local residents and park workers during the field survey, once the elephants reach the fence, they walk along it in search of a weak point to breach the fence. Alternatively, they may continue their journey to reach the river and agricultural areas on the southern or western side. The survey also revealed that a narrow monsoon river runs through the southern section of the park, and during the dry months, this path is frequently used by elephants to access those destinations.

A comprehensive analysis of terrain conditions, vegetation, local infrastructure, animal species, the nature and direction of the visit, and other localized factors is crucial for designing and implementing an effective system to minimize visits. For instance, while we specialize in laser fence-based animal early warning systems, the steep slopes, dense vegetation, and the elephant movement paths along the park's electrical fence make such a solution impractical (Ramkumar & Deb 2022). Based on our survey and feedback from other project stakeholders, we have concluded that to effectively manage the human-elephant interactions in this area, it is essential to prevent elephant movement along the paths surrounding the park's perimeter.

Therefore, we decided to install footstep vibration-based EDS units at the junctions where elephant paths intersect with the park's boundary. This solution is anticipated to be highly effective, as illustrated in Figure 2.

System Details

The EDS is a modified variant of EEWs with few added features, as described in the following sections with Figure 3.

System Hardware Architecture

The EDS is a two-sensor strings-based design, where one sensor string takes reference input from the other string to reject any common vibration. With two separate sensor strings, only one string captures footstep vibrations during a visit, while vibrations from rain, landslides, and vehicle movement are detected simultaneously by both strings. This allows the system to effectively distinguish and eliminate noise vibrations, responding only to footstep vibrations. The sensor string is designed with piezoelectric sensors in successive series and parallel combinations to optimize sensor string output in terms of both current and voltage. Two sensor strings are connected with the 'signal conditioning unit' (SCU), as shown in Figure 3. The signal conditioning unit is the combination of two identical 'pre-amplifier and filter sections' connected with each sensor data line

Figure 2. Elephant paths and placement of Elephant deterrent system units (U-1–U-13) along the park periphery.

Table 1. The conflict status survey. It involved a selected group of 50 individuals from NBNP Park and surrounding areas, including local villagers, park security, staff, and local forest officials. The sample was composed of 70% adult males, 20% children aged 7–13, and 10% females.

Questions	People Response
How many times has he/she seen an elephant in the past two years?	40% have not seen an elephant, 20% have seen one 1–2 times, 10% have seen it more than twice, and 30% have not seen it but felt its close presence.
What size was the elephant observed (adult, semi-adult, juvenile)?	70% reported seeing adults, 20% observed semi-adults, and 10% were unable to distinguish due to darkness.
During which season did he/she see the elephant?	80% of sightings occurred in summer, 5% in the monsoon, 10% in winter, and 5% could not recall the season.
At what time of day did he/she observe the elephant?	60% saw elephants during late evening, 30% in early morning, and 10% at midnight.
What was the likely path or track of the elephant's movement?	<ol style="list-style-type: none"> Did it bypass the park area and move toward the riverside? 40% of the time. Did it go to the crop fields on the southern and western sides of the park? 25% of the time. Did it intrude into the park area? 10% of the time. <p>The remaining 25% were unsure.</p>
What might be the cause of the elephant's intrusion?	<ol style="list-style-type: none"> Did it go to the river for water? 30% of respondents answered yes. Did it raid crops in the agricultural land? 40% of respondents answered yes. Did it go to the park area for food and water? 10% of respondents answered yes. <p>The remaining 20% were unsure.</p>

separately. The signal conditioning circuit of EDS is a design with few instantly configurable pot resistors, and thus its vibration sensitivity can be adjusted in real-time as per the terrain conditions and the target vibration. In a nutshell, the EDS can be configured into a highly sensitive mode to capture footstep vibration even from a house cat or extremely less sensitive, where it will sense the footstep vibration of large animals only. The authors have already analyzed the signal parameters for different animals footsteps and reported in (Ramkumar & Sanjoy 2021).

The control unit functions based on a microcontroller circuit. In this work, we utilized an Arduino-based microcontroller unit for decision-making, which is an open-source hardware and software component. The vibration patterns of various animals and humans are stored in the microcontroller. When the control unit receives processed signals from the SCU, it runs an identification algorithm and compares the input with pre-saved reference signal patterns. Upon detecting a match, the control unit activates the hooter to repel intruding animals. The basic identification algorithm has already been analyzed and documented by (Ramkumar & Sanjoy 2021), and the modified version used in the preset application is presented in detail in the following sections. The EDS operates on a 12-volt power supply and includes a stand-alone unit featuring solar panels (12V, 20W), charge controllers (12V, 6A), and batteries (12V, 2.5Ah). A daylight sensor is integrated into the system, allowing it to activate at dusk and automatically turn off at twilight.

System Implementation Design

In the current EDS design, each sensor string consists of four sensors, with each sensor spaced 1 m apart. The sensor string is buried at a depth of 20 cm and follows a zigzag pattern, providing a cumulative physical coverage area of 3 m^2 (calculated as $2 \times 1.5 \text{ m}^2$), as shown in Figure 4. However, once buried, each sensor has a vibration detection radius of approximately 2 m, making the effective sensing coverage area 2–3 times larger than the physical coverage area. When the sensor string is placed underground, it creates a detection field similar to an underground sensor carpet. The sensor string can be placed at a long distance from the hooter pole, providing a long detection range. The system is versatile and can be placed in various terrain conditions, except for waterlogged areas.

Placing the sensor string too deep can reduce its sensitivity but also help minimize background noise vibrations, so the depth must be optimized based on

the terrain conditions and target species. The separation between two sensor strings (denoted as 'x' in Figure 4) must also be adjusted according to specific unit requirements. For this project, the maximum separation 'x' is 20 m for EDS Unit—10, while for EDS Unit—2, the separation between the two strings is 5 m.

In the current application, five types of 12-volt hooters are used across different system units in a random pattern, each producing a distinct sound to ensure sound diversity. The positioning of the hooter poles, the number of hooters, and their orientation are tailored to the specific requirements of each case.

System Algorithm

The system monitors three key parameters: 'signal frequency', 'signal amplitude', and the cumulative 'volume of vibration'. The EDS operates on a 10-second 'detection loop', controlled by a microcontroller (which aligns with the verified time an elephant typically takes to cross the sensor string). The flowchart shown in Figure 5 outlines the basic process for detecting and identifying elephants and other animals in the EDS. Previous simulated studies have indicated that elephant footsteps generate low-frequency vibrations, in contrast to animals with hooves, which produce higher-frequency vibrations above 100 Hz (Ramkumar & Deb 2021). This distinction is especially noticeable on rocky ground. After the signal is pre-amplified and filtered, the system algorithm checks the frequency input. If the frequency is identified as less than 100 Hz, it proceeds along the "elephant line".

Following frequency determination, the signal values are accumulated over a 10-second period, referred to as the "detection loop", and the resulting value is recorded as the 'cumulative vibration' (V_c). During each loop, the system checks for vibration peaks above a pre-set threshold. All amplitude values exceeding this threshold are accumulated within the loop to calculate the V_c . If the V_c is greater than or equal to the 'voltage elephant threshold' (V_{te}), the sound deterrent unit is activated to repel the elephant. This V_{te} has been determined from a previous simulated experiment with an elephant but also needs slight adjustment to counter the background noise of the implementing site. While humans and other soft-toed animals also generate low-frequency vibrations, previous observations show that their cumulative vibration values are significantly lower than the V_{te} , allowing them to be excluded when targeting elephants specifically.

This unique approach has been shown to achieve over 80% accuracy in detecting elephants through footstep vibrations, as confirmed by previous simulated

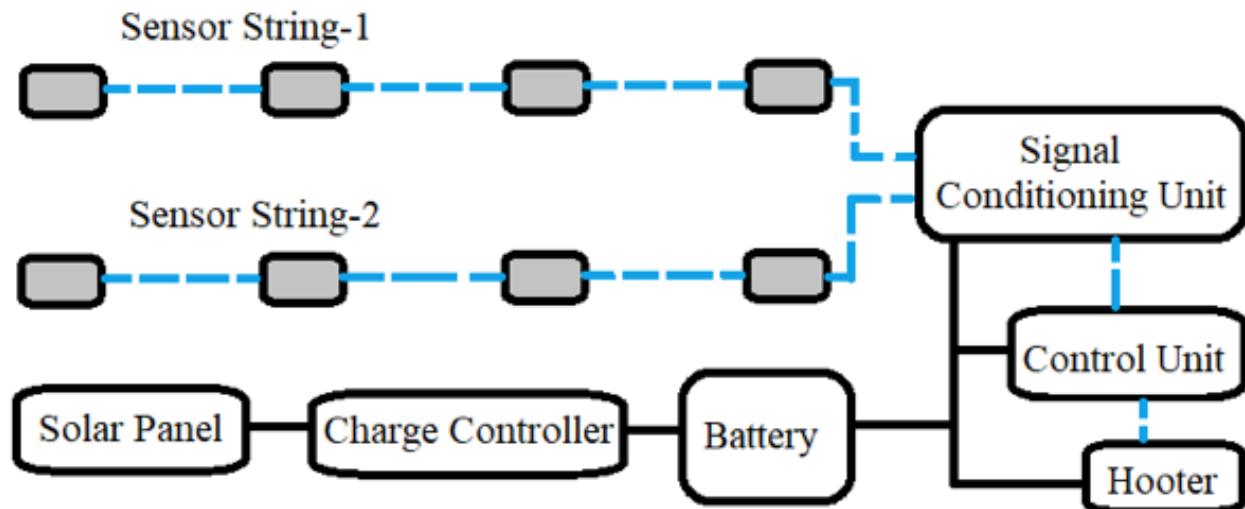


Figure 3. The internal hardware block design for Elephant deterrent system (dashed line are data lines and solid lines are power lines).

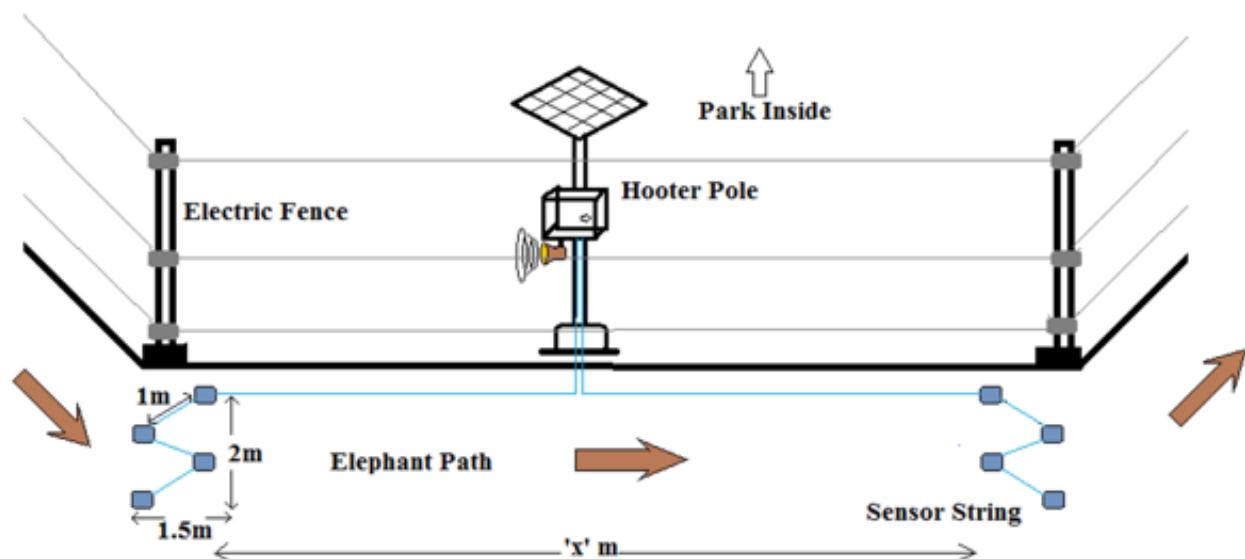


Figure 4. System field implementation architecture with hooter pole, sensor strings, elephant path, and existing electric fence.

experiments (Ramkumar & Deb 2021). The remaining 20% discrepancy in accuracy arises from system limitations in detecting elephants under certain conditions, such as muddy soil or loose sand, where sensor sensitivity is significantly reduced. In these situations, the system may incorrectly identify elephants and other animals. Additionally, high-volume vibrations from overlapping frequencies generated by a group of other animals crossing the sensor field could cause the system to misinterpret the detection as an elephant, leading to potential confusion.

To further distinguish elephant detections from those of other animals, the EDS employs distinct sound patterns.

For example, when an elephant is detected, the hooter will sound continuously for five minutes to maximize the deterrent effect. This distinct sound pattern serves as an alert to park security personnel, prompting them to verify the potential elephant intrusion. In contrast, detections of other animals will trigger a one-minute sound with a five-second on-off pattern, ensuring different responses based on the type of detection. Considering our practical experience, the system algorithm is designed to trigger a maximum of 20 times per day, ensuring that contentious sound generation is avoided throughout the night, even in the event of a system malfunction.

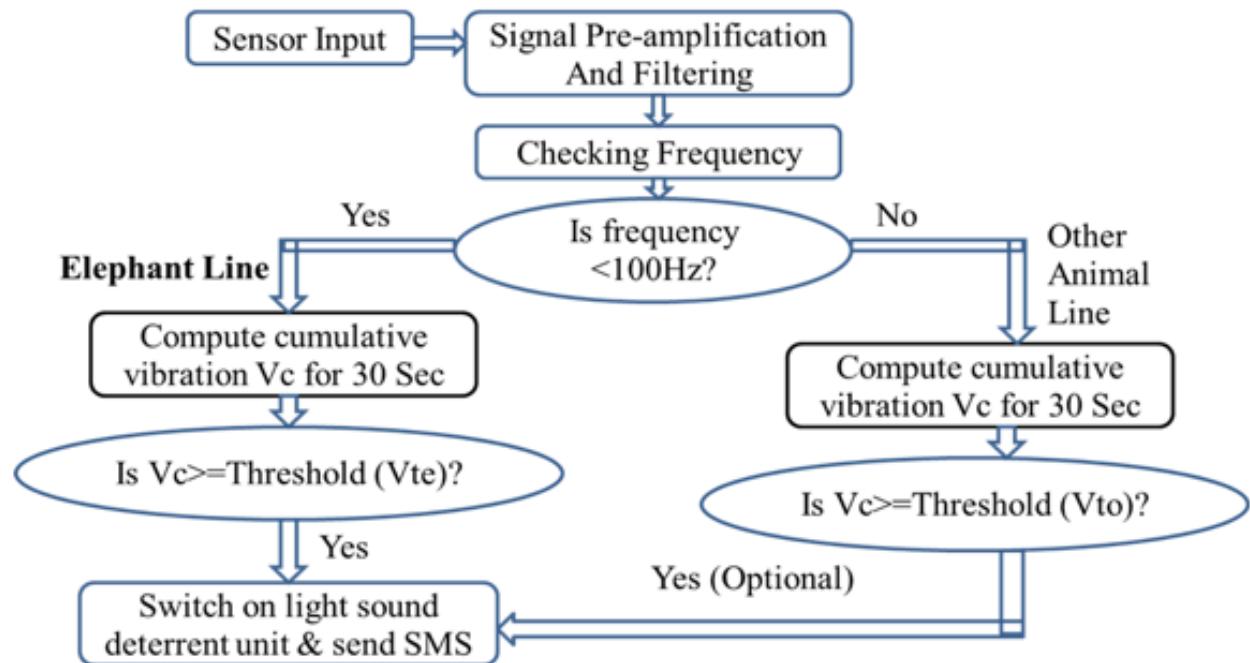


Figure 5. Elephant deterrent system algorithm flowchart.

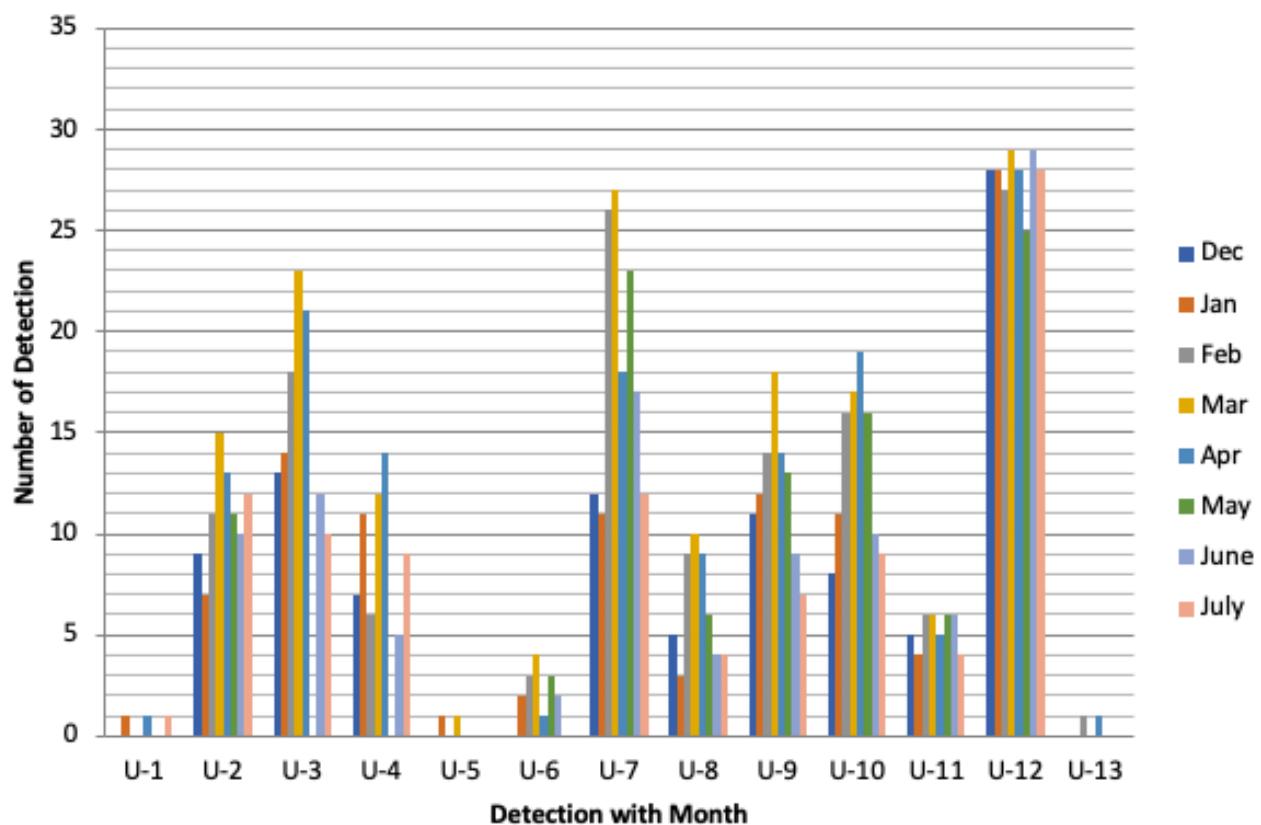


Figure 6. Elephant deterrent system unit-wise detection in months December 2022–July 2023.

System Performance Analysis

In October and November 2022, 13 EDS units were installed around the park perimeter. In addition to elephants, wild pigs, and spotted deer frequently visit the park, preying upon or uprooting plants including flower & vegetable gardens. Visitations are not limited to animals, as wood poachers have occasionally entered the park and poached valuable trees. To address these safety concerns, all units except Unit-1, Unit-5, and Unit-13 were configured in "all-animal detection" mode to reduce animal and human activity along the park's perimeter pathways at night.

As outlined in the algorithm flowchart, the EDS operates in two modes: 'elephant line', which detects and responds exclusively to elephant footsteps, and 'other animal line', which detects and responds to vibrations caused by various animals, including elephants. This enables the EDS to function either as an 'animal deterrent system' or an 'elephant deterrent system'. For trial purposes, Units 1, 5, and 13 were configured in elephant deterrent mode to evaluate their effectiveness, while the remaining units were set to animal deterrent mode to meet practical needs.

To create distinct sound effects, five types of horns and hooters were used with varying on-off patterns, ensuring unique sound signatures for each unit. Park security personnel monitored the system for eight months, recording unit-specific detections based on these unique sound patterns. During this period, the system was most frequently triggered by pigs, spotted deer, leopards, and humans, with elephants triggering the system only rarely.

The unit-wise EDS detection report for the eight-month period of December 2022–July 2023 is shown in Figure 6. According to our field observation report, based on input from local stakeholders, most detections were caused by wild animals and human activities, with only two instances involving elephants. Animal activity was found to vary seasonally; during peak summer, the scarcity of natural water and food sources attracted more animals to the park, where pump water holes are available at several locations. Consequently, most EDS units reported higher animal intrusions during late winter and peak summer.

A discrepancy was noted between the number of animal detections (total count of sound alarm) by the system and the actual number of animal intrusions into the park. This mismatch occurs because many animals bypass the park, using paths that lead to nearby villages instead. Notably, detections by Units 11 and 12 remained consistent throughout all months, later identified as

being primarily due to human footsteps. To understand this pattern, time-wise detection data for all units was analyzed and is presented in Figure 7.

The survey revealed that most human outdoor activities around the park completely cease after 2000 h and resume after 0500 h. Except for three units, all other EDS units are configured to detect all animal modes. Thus, it can be inferred that detections occurring before 2000 h and after 0500 h are predominantly due to human activities. Most of the detections from units 11 and 12, located along human movement paths, occurred during these times, confirming them as human activity. Field investigations further revealed that several houses on the eastern side of the NBNP (marked with red circles in Figure 1) have residents who frequently use pathways near these units during those hours.

In contrast, other units primarily captured animal movements, which peaked before 2100 h, gradually decreased by 2300 h, increased again around 0300 h, and settled after 0500 h. This pattern may be due to animals moving towards nearby cultivation areas, villages, and rivers in search of food and water, especially as human activity is high in the evening and early morning. This aligns with the well-known pattern of animals raiding crops during late evening and early morning hours. Some units, like Unit 7, which are far from regular human pathways, recorded consistent animal activity during early evening, late night, and intermittently throughout the night.

The specially configured units (1, 5, and 13) did not detect any elephants during their runtime but did register a few false elephant alarms. The exact cause of these false alarms remains unclear, although no major technical malfunctions were identified. Elephant footsteps were detected on two occasions—at Unit 3 in January and Unit 8 in March. However, since these units were not configured in elephant detection mode, they produced sounds associated with other animals.

While no systematic statistical data exists on the exact number of elephant intrusions in the park over the years, discussions with staff and other relevant individuals indicate approximately nine visitations occurred in the three years prior to system installation. In contrast, following the system's installation, only one intrusion was recorded. This incident occurred during the peak north-east monsoon when many units were struggling with low battery issues, and the system failed to trigger an alarm.

According to park staff, elephants typically follow their habitual paths at night, testing the fence for weak points to enter. It is believed that the loud sounds triggered by

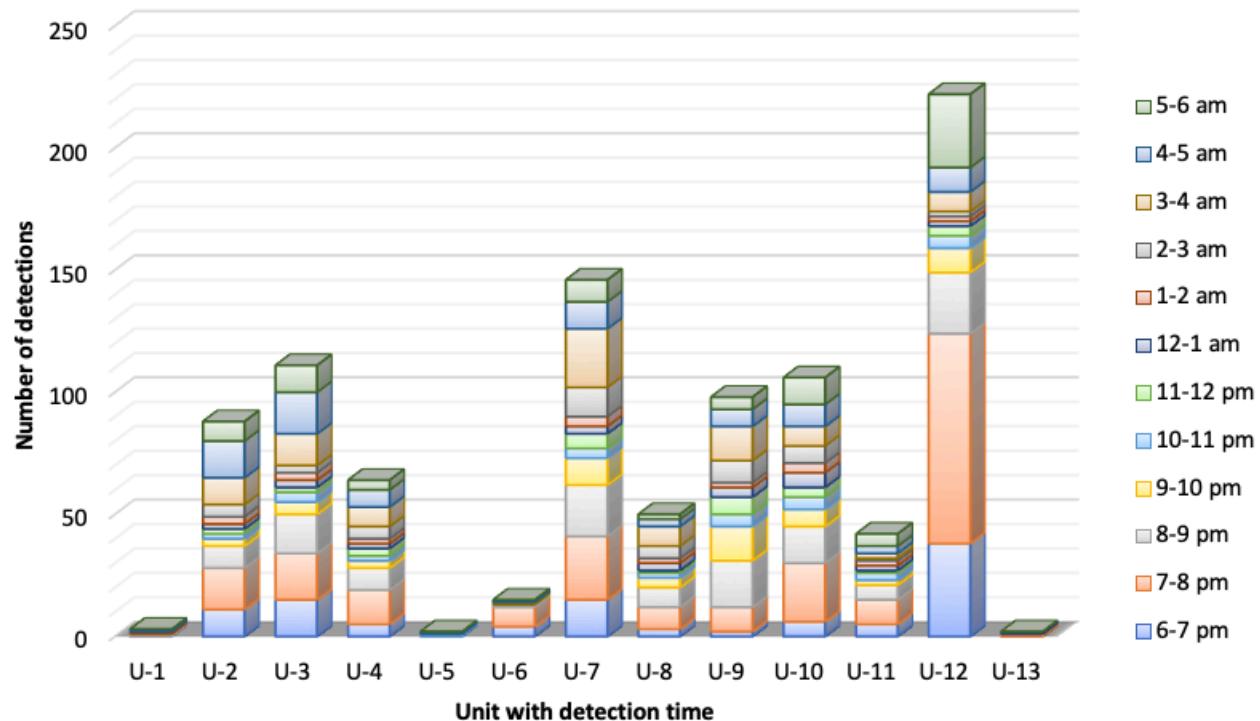


Figure 7. Elephant deterrent system unit-wise detection with different time phases during the night.

their footsteps, or the frequent sounds triggered by other animal movements, have discouraged them from using their regular paths along the park's periphery. Although the EDS has demonstrated a significant impact, its long-term effectiveness requires further validation, additional installations at other high-risk locations, and a detailed investigation into the underlying factors contributing to its success.

EDS Pictorial Representation

Figures 8–13 show some system-relevant pictures to help us better understand the EDS actual field architecture, infield performance, and other notable issues.

CONCLUSION

The ground vibration-based elephant deterrent system presented in this paper represents a pioneering approach and serves as the first trial report from India. This system is an advanced, field-implementable adaptation of the previously field-validated elephant early warning system technology. The paper provides a comprehensive description of the EDS hardware, field implementation strategy, and its innovative operational algorithm. This

study documents the deployment of 13 EDS units in NBNP nature park and evaluates their performance over eight months. Additionally, it includes a field survey and subsequent analysis of conflict scenarios at the project site, accompanied by an accurate map of elephant movement paths. Such surveys and precise mapping are crucial for designing a strategic insulation plan, and the details shared in this paper offer valuable insights for similar projects. While the EDS is intended primarily to detect elephant footstep vibrations with precision, it has been optimized using a modified algorithm to enhance sensitivity, enabling the detection, and deterrence of other animals. This capability has been implemented and thoroughly reported in the current project. The system's performance analysis, which considers detection data across different times and seasonal variations, demonstrating that the EDS units effectively mitigate animal activities in the operational areas. By addressing the fundamental limitations of earlier animal-deterrent systems, the innovative EDS design has proven successful. The insights detailed in this paper provide a foundation for replicating this solution at other human-wildlife conflict hotspots, contributing significantly to the field once published.

© Sanjoy Deb

Image 1. Interaction with locals during field survey.

© Sanjoy Deb

Image 2. Preparing poles for installation.

© Sanjoy Deb

Image 3. Installation of poles at selected locations.

© Sanjoy Deb

Image 4. Digging the ground and placing the sensors.

© Sanjoy Deb

Image 5. Field testing of system units.

© Sanjoy Deb

Image 6. A fully functioning Elephant deterrent system unit with hooter.

REFERENCES

A Times of India Report (2019). Booming real estate increases conflicts. <https://timesofindia.indiatimes.com/city/coimbatore/booming-real-estate-increases-conflicts/articleshow/67648848.cms>. Accessed 23 January 2019.

Choudhury, A. (2010). Human-elephant conflicts in northeast India. *Human Dimensions of Wildlife* 9(4): 261–270. <https://doi.org/10.1080/10871200490505693>

Deivanayaki, M., N. Ezhilarasi & B. Ramakrishnan (2019). Fatal Human and Elephant Conflicts, 2000–2017: Anamalai Tiger Reserve, Southern Western Ghats. *The Indian Forester* 145(10): 927–934. <https://www.indianforester.co.in/index.php/indianforester/article/view/149189>

Feuerbacher, A., C. Lippert, J. Kuenzang & K. Subedi (2021). Low-cost electric fencing for peaceful coexistence: An analysis of human-wildlife conflict mitigation strategies in smallholder agriculture. *Biological Conservation* 255: 108919. <https://doi.org/10.1016/j.biocon.2020.108919>

Karthick, S., B. Ramakrishnan & M. Illakia (2016). Human-elephant conflict issues with special reference to crop damage and people's perception in and around Coimbatore Forest Division, southern India. *The Indian Forester* 142(10): 1010–1018.

Locke, P. & J. Buckingham (eds.) (2016). *Conflict, Negotiation, and Coexistence: Rethinking Human–Elephant Relations in South Asia*. Online edn., Oxford Academic <https://doi.org/10.1093/acprof:oso/9780199467228.001.0001>

MoEF (2020). Best Practices of Human Elephant Conflict Management in India. Ministry of Environment & Forests, Government of India <https://moef.gov.in/wp-content/uploads/2020/08/Best-Practice-Man-Animal-Conflict.pdf>

Natarajan, M. (2024). Rapid assessment of human-elephant conflict: a crime science approach. *Crime Science* 13: 24. <https://doi.org/10.1186/s40163-024-00223-9>

Nayak, N. & P.K. Swain (2020). From fear to festivity: Multi-stakeholder perspectives on human-elephant conflict and coexistence in India. *Journal of Public Affairs* e-2496. <https://doi.org/10.1002/pa.2496>

Ramkumar, R. & S. Deb (2021). Real-Time System Design for Sensing, Recording and Analyzing Elephant Seismic Waves through Ground Vibration Algorithm. *Journal of Circuits, Systems and Computers* 31(03): 1–24. <https://doi.org/10.1142/S0218126622500487>

Ramkumar, R. & S. Deb (2022). Design, Implementation of a Generic Roadkill Prevention System (RPS) using Laser Beams to Reduce Human-Animal Conflict in Forest Boundaries. *Lasers In Engineering* 53(5–6): 285–298.

Rohini, C.K., T. Aravindan, K.S.A. Das & P.A. Vinayan (2016). Human-elephant conflict around North and South Forest Divisions of Nilambur, Kerala, India. *Gajah* 45: 20–27.

Shaffer, J.L., K.K. Khadka, J.V.D. Hoek & K.J. Naithani (2019). Human-elephant conflict: a review of current management strategies and future directions. *Frontiers in Ecology and Evolution* 6: 235. <https://doi.org/10.3389/fevo.2018.00235>

Tiller, L.N., T. Humle, R. Amin, N.J. Deere, B.O. Lago, N. Leader-Williams, F.K. Sinoni, N. Sitati, M. Walpole & R.J. Smit (2021). Changing seasonal, temporal and spatial crop-raiding trends over 15 years in a human-elephant conflict hotspot. *Biological Conservation* 254: 108941. <https://doi.org/10.1016/j.biocon.2020.108941>

Tripathy, B. R., X. Liu, M. Songer, L. Kumar, S. Kaliraj, N.D. Chatterjee, W.M. Wickramasinghe & K.K. Mahanta (2021). Descriptive spatial analysis of human-elephant conflict (HEC) distribution and mapping HEC hotspots in Keonjhar Forest Division, India. *Frontiers in Ecology and Evolution* 9: 640624. <https://doi.org/10.3389/fevo.2021.640624>

Vogel, S.M., S.A. Blumenthal, W.F. de Boer, M. Masake, I. Newton, A.C. Songhurst, G. McCulloch, A. Stronza, M.D. Henley & T. Coulson (2020). Timing of dietary switching by savannah elephants in relation to crop consumption. *Biological Conservation* 249: 108703. <https://doi.org/10.1016/j.biocon.2020.108703>

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh KV, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raja Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

Articles

***Dasymaschalon leilamericanum* (Annonaceae), a new species with evidence of non-monophyly from Mount Lantoy Key Biodiversity Area, Philippines**

– Raamah Rosales, Edgardo Lillo, Archiebald Baltazar Malaki, Steve Michael Alcazar, Bernardo Redoblado, John Lou Diaz, Inocencio Buot Jr., Richard Parilla & Jessica Rey, Pp. 26571–26586

Association analysis of *Castanopsis tungurut* and the neighboring vegetation community in Cibodas Biosphere Reserve, Indonesia

– Dian Ridwan Nurdiana & Inocencio E. Buot, Jr., Pp. 26587–26598

Riparian flora of Haveri District, Karnataka, India

– Ningaraj S. Makanur & K. Kotresha, Pp. 26599–26615

Conservation strategies for *Vatica lanceifolia* (Roxb.) Blume: habitat distribution modelling and reintroduction in northeastern India

– Puranjoy Mipun, Amritee Bora, Piyush Kumar Mishra, Baby Doley & Rinku Moni Kalita, Pp. 26616–26626

Patterns and economic impact of livestock predation by large carnivores in protected areas of southern Kashmir, India

– Lubna Rashid & Bilal A. Bhat, Pp. 26627–26635

People perception on use patterns and conservation of Chinese Pangolin

in and around Yangouopkpi Lokchao Wildlife Sanctuary, Manipur, India

– Yengkham Roamer Zest, Awadhesh Kumar, Om Prakash Tripathi, Rakesh Basnett & Dipika Parbo, Pp. 26636–26647

Communications

Population status, threats, and conservation of *Trachycarpus takil*: an endemic and threatened plant species in western Himalaya, India

– Himani Tiwari, Dhani Arya & K. Chandra Sekar, Pp. 26648–26654

A checklist of fishes of Haiderpur wetland, western Uttar Pradesh, India

– Rahul Rana, Jeyaraj Antony Johnson & Syed Ainul Hussain, Pp. 26655–26668

An avifaunal checklist of the Zanskar Region, Ladakh Himalaya, India

– Abid Hussain, Zakir Hussain & Mumtaz Ali, Pp. 26669–26679

Breeding tern colonies on the sandbars of Adam's Bridge, India: new records and significance

– H. Byju, H. Maitreyi, N. Raveendran, D.A. Marshal & S. Ravichandran, Pp. 26680–26689

Assessment of nest and nesting activities of White-bellied Heron *Ardea insignis* Hume, 1878 (Aves: Ardeidae) in the broad-leaved forests of northeastern India

– Himadri Sekhar Mondal & Gopinathan Maheswaran, Pp. 26690–26696

Preliminary checklist of avifauna from All India Institute of Medical Sciences, Guwahati, Assam, India

– Nitul Ali, Vivek Chetry, Prem Kishan Singha & Maina Boro, Pp. 26697–26703

Implementation strategy and performance analysis of a novel ground vibration-based elephant deterrent system

– Sanjoy Deb, Ramkumar Ravindran & Saravana Kumar Radhakrishnan, Pp. 26704–26714

Short Communications

***Blackwellomyces pseudomilitaris* (Hywel-Jones & Sivichai) Spatafora & Luangsa-ard, 2017 (Sordariomycetes: Hypocreales: Cordycipitaceae): first report from Western Ghats of India**

– Anjali Rajendra Patil, Snehal Sudhir Biranje, Mahesh Yashwant Borde & Yogesh Sadashiv Patil, Pp. 26715–26720

Calvatia craniiformis (Schwein.) Fr. ex De Toni (Agaricomycetes: Lycoperdaceae): a new puffball mushroom record from eastern India
– Asit Mahato, Pritish Mitra, Sabyasachi Chatterjee & Subrata Raha, Pp. 26721–26726

Rediscovery of the gypsy moth *Lymantria kanara* Collenette, 1951 (Insecta: Lepidoptera: Erebidae) from Kerala, India, after 73 years and its taxonomic redescription
– P.K. Adarsh & Abhilash Peter, Pp. 26727–26730

Nest predation by *Vespa tropica* (Linnaeus, 1758): observational insights into polistine wasp defense and hornet feeding behavior
– Shantan Ojha & Vartika Negi, Pp. 26731–26736

The discovery of a male Malay Crestless Fireback *Lophura erythrophthalma* (Raffles, 1822) (Aves: Galliformes: Phasianidae) at Ulu Sat Forest Reserve, Machang, Kelantan, Peninsular Malaysia
– Ainun Hidayah Wahad, Wan Hafizin Idzni Wan Mohammad Hizam, Muhammad Hamirul Shah Ab Razak, Aainaa Amir, Kamarul Hambali, Hazizi Husain, Mohd Saupi Abdullah, Ehwan Ngadi, Mohamad Arif Iskandar Abdul Wahab & Asrulsani Jambari, Pp. 26737–26740

Notes

New distribution record of *Korthalsia rogersii* Becc, a threatened endemic climbing palm of Andaman archipelago

– Paremmal Sarath, Azhar Ali Ashraf, V.B. Sreekumar, Modhumita Ghosh Dasgupta & Suma Arun Dev, Pp. 26741–26743

Clarifying the nomenclature of Roxburgh's pivotal name *Holigarna racemosa* Roxb. (Anacardiaceae)

– Shruti Kasana, Pp. 26744–26746

First confirmed breeding of Brown Noddy *Anous stolidus* in southeastern India: a new record from Adam's Bridge

– H. Byju, H. Maitreyi, N. Raveendran & D.A. Marshal, Pp. 26747–26749

First record of Painted Stork *Mycteria leucocephala* in Indonesia

– Hasri Abdillah, Iwan Febrianto, Cipto Dwi Handono, Fajar Shiddiq, Febryansah Abdillah Harahap & Muhammad Iqbal, Pp. 26750–26752

New sighting and conservation implications of the endemic Sulu Boobook *Ninox reyi* Oustalet, 1880 at Bolobok Rock Shelter, a key archaeological site in the Sulu Archipelago, southern Philippines

– Fauriza J. Saddari, Yennyrriza T. Abduraup, Adzmer A. Juaini, Roger A. Irlis, Khalid D. Adam, Mary Joyce Z. Guinto-Sali & Richard N. Muallil, Pp. 26753–26756

The occurrence of Glossy Ibis *Plegadis falcinellus* Linnaeus, 1766 (Pelecaniformes: Threskiornithidae) in southern Sumatra, Indonesia

– Muhammad Iqbal, Arum Setiawan, Putri Balqis, Exaudi Beatrice Simanullang, Pormansyah, Selamat Robinsa, Winda Indriati & Indra Yustian, Pp. 26757–26760

Book Review

A whisper of silken wings

– Aparna Sureshchandra Kalawate & Pooja Kumar Misal, Pp. 26761–26762

Publisher & Host

Threatened Taxa