

Building evidence for conservation globally

Journal of Threatened Taxa

10.11609/jott.2025.17.2.26443-26570

www.threatenedtaxa.org

26 February 2025 (Online & Print)

17(2): 26443-26570

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

zoOreach @ 40

Open Access

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Board of Editors

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors

Mrs. Mira Bhojwani, Pune, India**Dr. Fred Pluthero**, Toronto, Canada

Copy Editors

Ms. Usha Madgunki, Zooreach, Coimbatore, India**Ms. Trisa Bhattacharjee**, Zooreach. Coimbatore, India**Ms. Paloma Noronha**, Daman & Diu, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting

Mrs. Radhika, Zooreach, Coimbatore, India**Mrs. Geetha**, Zooreach, Coimbatore India

Fundraising/Communications

Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2021–2023

Fungi

Dr. B. Shivaraju, Bengaluru, Karnataka, India

Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India

Dr. Vatsavaya S. Raju, Kakatiya University, Warangal, Andhra Pradesh, India

Dr. M. Krishnappa, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India

Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India

Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India

Dr. Kiran Ramchandra Ranadive, Anna Sahab Magar Mahavidyalaya, Maharashtra, India

Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India

Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India

Dr. Shonil Bhagwat, Open University and University of Oxford, UK

Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India

Dr. Ferdinand Boero, Università del Salento, Lecce, Italy

Dr. Dale R. Calder, Royal Ontario Museum, Toronto, Ontario, Canada

Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines

Dr. F.B. Vincent Florens, University of Mauritius, Mauritius

Dr. Merlin Franco, Curtin University, Malaysia

Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India

Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India

Dr. Pankaj Kumar, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA.

Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India

Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Vijayasankar Raman, University of Mississippi, USA

Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantapur, India

Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India

Dr. Aparna Watve, Pune, Maharashtra, India

Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China

Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia

Dr. M.K. Vasudeva Rao, Shiv Ranjan Housing Society, Pune, Maharashtra, India

Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Manda Datar, Agharkar Research Institute, Pune, Maharashtra, India

Dr. M.K. Janarthanam, Goa University, Goa, India

Dr. K. Karthigeyan, Botanical Survey of India, India

Dr. Errol Vela, University of Montpellier, Montpellier, France

Dr. P. Lakshminarasiham, Botanical Survey of India, Howrah, India

Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA

Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India

Dr. Analinda Manila-Fajard, University of the Philippines Los Banos, Laguna, Philippines

Dr. P.A. Siru, Central University of Kerala, Kasaragod, Kerala, India

Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India

Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India

Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA

Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India

Dr. A.G. Pandurangan, Thiruvananthapuram, Kerala, India

Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India

Dr. Kannan C.S. Warrier, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India

Dr. D.B. Bastawade, Maharashtra, India

Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India

Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India

Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa

Dr. Rory Dow, National Museum of natural History Naturalis, The Netherlands

Dr. Brian Fisher, California Academy of Sciences, USA

Dr. Richard Gallon, Llandudno, North Wales, LL30 1UP

Dr. Hemant V. Ghate, Modern College, Pune, India

Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Tamil Lacewing *Cethosia nietneri* with colour pencils and watercolours for the background; detailing with fine liners by Elakshi Mahika Molur.

Diet and nutrient balance of wild Asian Elephants *Elephas maximus* in Nepal

Raj Kumar Koirala¹ & Sean C.P. Coogan²

¹ Department of Park Recreation and Wildlife Management, Institute of Forestry, Tribhuvan University, Pokhara, Nepal.

² Department of Natural Resource Science, Thompson Rivers University, Kamloops, BC V2C 0C8, Canada.

¹ raj.koirala@pc.tu.edu.np (corresponding author), ² sean.c.p.coogan@gmail.com

Abstract: We estimated the nutritional content of major wild ($n = 22$) and agricultural crop plants ($n = 3$) consumed by Asian Elephants *Elephas maximus* in Nepal during the wet and dry seasons, respectively. We then used nutritional geometry to explore the macronutrient balance of these plant species, as well as the overall diet of elephants in both the dry and wet seasons. Furthermore, we compared the diet of the Nepal elephants with the previously published diet of Indian population of elephants. We found that despite intraspecific and seasonal variation, the overall diet of elephants was relatively stable in protein (P) intake relative to non-protein macronutrients (fat + carbohydrate; non-protein (NP)), and neutral detergent fibre (NDF) between the wet (16% crude protein (CP): 26.7 % NP: 57.3% NDF; and, 10.4% CP: 13.7% NP: 75.7% NDF) in dry season, which suggests protein intake prioritization in support of previous work on captive elephants. Furthermore, the diet of Indian population of elephants (wet season: 16.0%P: 22.5%NP: 61.4%NDF and dry season: 11.1%P: 18.0 %NP: 70.7 %NDF) showed a similar pattern to the Nepal elephants, suggesting active regulation of macronutrient and NDF intake across populations despite differences in food consumed as part of their diets. Importantly, NDF intake in addition to non-protein macronutrients is likely necessary for elephants to stabilize their protein intake balance; thus, it is important to consider a multidimensional nutritional perspective in elephant conservation planning. The study has concluded that in a well-managed seasonal habitat, elephants can regulate their preferred macronutrient and NDF intake from available natural food plants without resorting to agricultural crop depredation.

Keywords: Crop, depredation, Elephantidae, macronutrient balance, Mammalia, NDF, nutritional geometry, right angled mixture triangle.

Editor: Heidi Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA.

Date of publication: 26 February 2025 (online & print)

Citation: Koirala, R.K. & S.C.P. Coogan (2025). Diet and nutrient balance of wild Asian Elephants *Elephas maximus* in Nepal. *Journal of Threatened Taxa* 17(2): 26487-26493. <https://doi.org/10.11609/jott.9220.17.2.26487-26493>

Copyright: © Koirala & Coogan 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: None.

Competing interests: The authors declare no competing interests.

Author details: RAJ KUMAR KOIRALA, PhD, is a professor at the Institute of Forestry, Pokhara Campus, Tribhuvan University, Nepal. He specializes in teaching courses on conservation biology, wildlife and protected area management, forest zoology, ornithology, and mammalogy. DR SEAN COOGAN is a postdoctoral researcher, Department of Natural Resource Science, Thomson Rivers University, British Columbia, Canada. He specializes in wildlife, nutritional, and fire ecology.

Author contributions: RKK—conceptualized the project, Written the ms, data analysis. SC—analysed, reviewed.

Acknowledgements: We gratefully acknowledge the Rufford Foundation for their generous support of our previous research on elephants, which served as a significant source of inspiration for the completion and publication of this work. Their encouragement and commitment to conservation research have been invaluable in advancing our understanding and efforts in this field.

INTRODUCTION

The diet and nutritional demands of wildlife are crucial aspects to consider when formulating conservation and management strategies. Foraging, however, is a complex process, involving the interplay of physiological and behavioural factors with an animal's multidimensional nutritional environment (Rabenheimer et al. 2009; Simpson & Rabenheimer 2012). The Asian Elephant *Elephas maximus* is a species of conservation concern often involved in food-related human-elephant interactions (Desai 1991) through crop depredation (Santiapillai & Jackson 1990; Nyhus & Sumianto 2000). Recently, studies of captive Asian Elephants suggest that they regulate their intake of multiple nutrients, with protein (P) intake more tightly regulated relative to non-protein macronutrients (fat + carbohydrate; NP) and fibre (NDF; (Koirala 2018)). This type of nutrient regulation, however, has not been explored in wild elephant populations.

In this paper, we estimated the proximate nutritional content of plants consumed by migratory and resident elephants during the wet and dry seasons in the far eastern region and central region of Chitwan National Park (CNP) and Parsa National Park (PNP) of Nepal. The consumed plants were identified through feeding sign survey and micro-histological analysis of dung, and also based on a previous study (Koirala et al. 2016). We used nutritional geometry (i.e., right-angled mixture triangle (RMT); Rabenheimer 2011) to explore the proportions of macronutrients and fibre in the seasonal food plants and diets of elephants, including both natural and agriculture crop plants, to evaluate evidence for nutrient intake regulation similar to previous studies. Furthermore, we used published literature on the diet of wild elephants in India (Das et al. 2014) to evaluate if they showed similar dietary patterns to the Nepal elephants, which might suggest active regulation of macronutrient and NDF intake across populations despite consuming different diets.

MATERIALS AND METHODS

The CNP (952.632 km²) and PNP (637.37 km²) are two of Nepal's protected areas, and are situated in the south-central region of the country (Koirala et al. 2016). On the other hand, Nepal gets migratory elephants from northern Bengal of India (Koirala et al. 2015) in the forests of the eastern district of Jhapa. We collected food plant species of elephants' diets

for nutritional analysis based on our previous study on food preference, which identified 57 plant species (12 grasses, five shrubs, two climbers, one herb, and 37 tree species) consumed by elephants (Koirala et al. 2016). However, only the most preferred species (n = 22) and three agriculture crop plants were collected for proximate nutrient analysis (Table 1). Plant and crop samples were collected during the late rainy ("wet") season (August/September 2013) and summer "dry" season (March/April 2014) from elephant habitat, where habitat was determined by the presence of elephant foraging signs and direct observation. The wet season collection period coincided with the beginning of crop raiding time in late monsoon season with a peak in pre-winter, while April/May was the beginning of crop raiding in the dry season. After collection, samples were air-dried and kept in paper bags for transport to the laboratory. The proximate nutritional estimates were analysed in the laboratory of Nepal Agricultural Research Centre and Nepal Environmental and Scientific Services, Kathmandu, Nepal, following standard methods (AOAC 2012) for crude protein (Kjeldahl; CP), ether extract for lipid (Soxhlet extraction; EE), fiber (digestion method; NDF), and ash. Non-structural carbohydrate (NSC) was calculated by difference. To correct for indigestible waxes and lipids in plants consumed, we subtracted 1% from EE to estimate crude fat (CF) following Rothman et al. (2012). Proportional data were transformed using a "logit" transformation to approximate normality before running the stat test.

We used the Right angled mixture triangle (RMT) to investigate the proportion of macronutrients and NDF in the food plants and seasonal diet of elephants. Following Koirala et al. (2016), we plotted NP and NDF on the x- and y-axis of the RMT, respectively, while CP was represented on the implicit axis (z) which varies inversely with distance from the origin (Rabenheimer 2011). Macronutrients and NDF were expressed as a percentage of the sum of each (i.e., non-structural carbohydrate + neutral detergent fibre + lipid + protein) on a dry matter basis. NDF was included in the analysis, because elephants derive energy from fibre through hindgut fermentation (Anguita et al. 2006). We estimated the seasonal mixture space provided by the plant foods by forming minimum convex polygons around food points for each season.

We determined the overall macronutrient balance of seasonal diets by weighing the nutritional estimates for each plant species by the relative utilisation percentage determined as described by Koirala et al. (2016), which is the product of the frequency of occurrence and rank

score of each plant in the micro-histological analysis (Holechek & Gross 1982) and feeding-sign survey respectively (Koirala et al. 2016). We also used RMT analysis to compare the balance of CP, NP, and NDF (Koirala 2018) in the diet of elephants in our study area with existing data on the available diets of wild elephants in India (Das et al. 2014).

Independent sample t-test was performed to see the seasonal difference in the nutrient dry matter/ balance in the plants. Pearson correlation was performed to see the relationship between utilisation and availability of protein and NDF in the diet. All tests were done using Excel and IBM SPSS statistical package version 22.

RESULTS

The nutrient contents of the leaves of plants consumed by elephants didn't vary with species and season (Table 1). The highest estimates for CP (*Lagerstroemia parviflora*; 25.97%), NSC (*Litsea monopetala*; 31.85%), and NDF (*Saccharum bengalensis*; 88.62%) were found in the wet season. The average percent dry matter CP content of food plants was 12% in the wet season and 11 % in the dry season ($t_{37} = 0.372$, $p = 0.712$). The average NDF content was 55.9% (wet season) and 66% (dry season) ($t_{37} = -1.556$, $p = 0.128$), and average EE content was 1.7 % and 1.2% ($t_{37} = 1.427$, $p = 0.162$) in wet and dry seasons, respectively.

The proportion of P: NP: NDF in plants was variable between seasons (Figure 1). For example, the protein balance of most frequently consumed plants *Spatholobus parviflorus* and *Mallotus philippensis* was higher during the wet season. In both seasons, however, most of the dominant plant species consumed were similar, for example, *Spatholobus parviflorus*, *Mallotus philippensis* (Koirala et al. 2016). In the case of agricultural crops, in the wet season paddy was 12.34 % P: 18.31% NP: 69.35% NDF, and in the dry season 9.55% P: 15.42% NP: 75.03% NDF (Figure 1).

The estimated seasonal diets of elephants was (Figure 2): 16 % CP: 26.7 % NP: 57.3% NDF in wet season; and, 10.4% CP: 13.7% NP: 75.7 NDF in dry season.

DISCUSSION

The utilisation pattern of food plants showed that browse forms the major diet of elephants in the dry season in both PWR and CNP. While the wet season diet was slightly dominated by grass in PWR and browse in

CNP (Koirala et al. 2016). The nutritional content (Table 1) of plant species was stable between seasons.

The combined dry season diet was greater in NDF than the wet season diet. The combined wet season diet was greater in protein and non-protein than the dry season diet. However, both summer and winter diets were somewhat similar in nutrient balance. NDF balance was the highest difference of 12% (± 2.09 SE) while non-protein showed a difference of 11.6% (± 2.04 SE) and protein at the least difference of 6% (± 1.05 SE).

During the wet season, the protein content of food plants like *Acacia catechu*, *Litsea monopetala*, and *Lagerstroemia parviflora* was high to compensate for the deficiency of protein from *Saccharum bengalensis*, *Saccharum spontaneum*, and *Phragmites karka*, suggesting that these foods were complementary to each other (Figure 1A).

Similarly, in dry season, the protein balance of diet of highly utilised browse and agricultural crops like paddy and wheat were similar. Although there was less protein in *Spatholobus parviflorus*, a highly preferred plant in the dry season, so elephants may be using plants species like *Phragmites karka*, *Acacia catechu*, *Litsea monopetala*, and *Ficus semicordata* to slightly increase protein content to balance the deficit of protein from *Spatholobus parviflorus*, *Cymbopogon* sp., *Saccharum spontaneum*, and *Saccharum bengalensis* (Figure 1B).

Moreover, there was no significant relationship between utilisation and availability of protein ($r=-0.146$, $p=0.418$ and NDF ($r = -0.188$, $r = 0.293$) in the weighed diet. The preference of plants is different irrespective of their presence and frequencies in the diet. The utilisation of these plants varies with season and localities (Koirala et al. 2016). Subsequently, the combined macronutrient balance of dry and wet season food plants was almost similar. The balance of different macronutrients showed no significant seasonal difference ($t_{30} = 1.030$, $p = 0.311$) protein; ($t_{30} = 0.760$, $p = 0.453$) and non-protein ($t_{30} = -2.039$, $p = 0.050$) NDF. This gives an indication that although elephants utilised many types of food plants with different nutritional content, the animals compose their diet to achieve a preferred macronutrient intake target (Rabenheimer 2011; Coogan 2014).

At the time of this study in both of these study periods, crops act as a complementary food source to replace low protein grasses. The lower protein in grasses like *Cymbopogon* sp., *Saccharum spontaneum*, *S. bengalensis*, and *Digitaria* spp. in the dry season and higher accessibility and protein content in crops may lead to crop raiding. This is consistent with the assertion that the nutritional composition of crops could

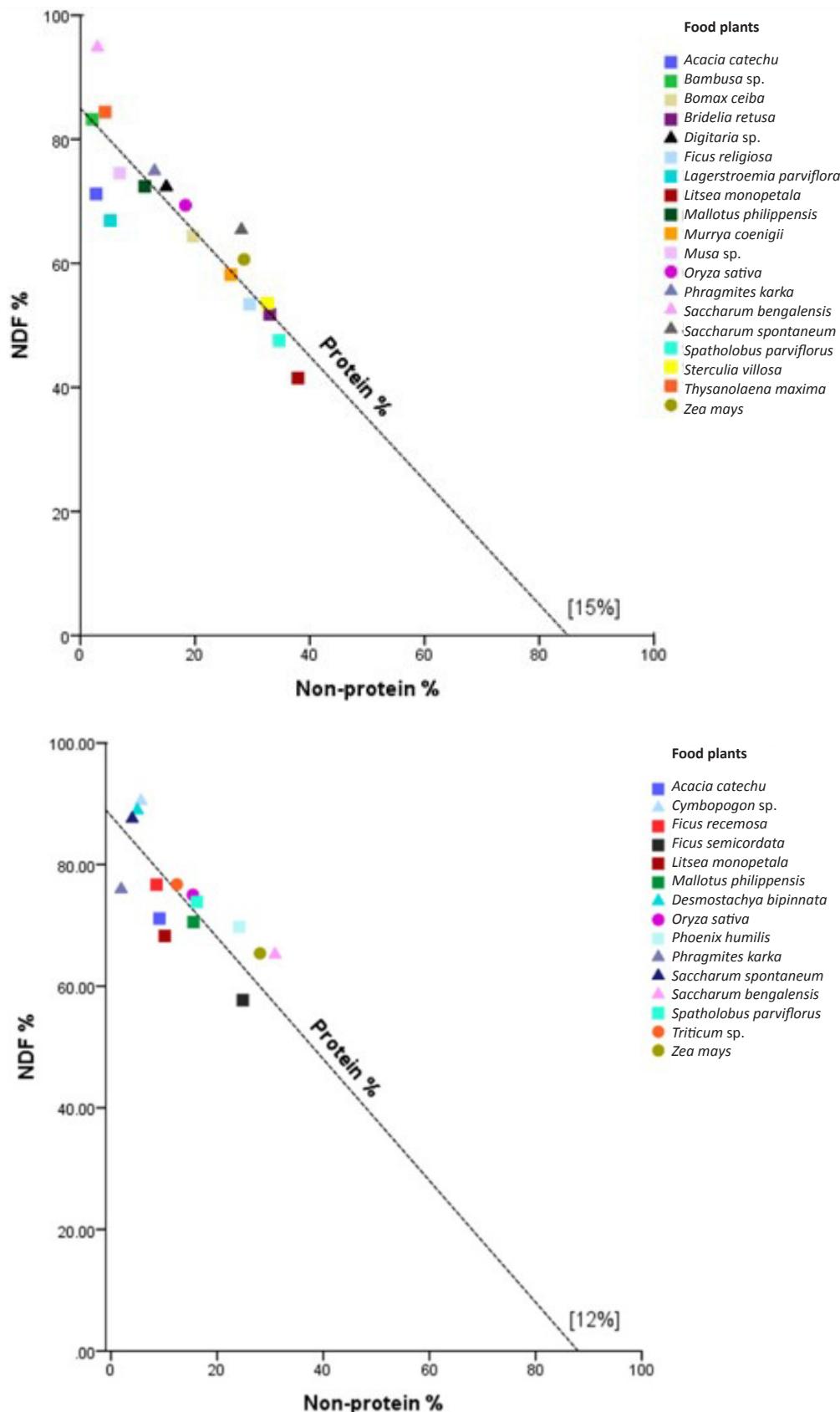


Figure 1. RMT showing the balance of crude protein, non-protein macronutrients (NSC+ crude fat), and NDF in plants consumed by elephants in both the seasons: A—wet season | B—dry season. Browse species are shown as squares, grasses as triangles, and agriculture crops as circles.

Table 1. Nutritional composition (percent dry matter) of major plants consumed by Asian elephants, including crude protein (CP), ether extract (EE), ash, neutral detergent fibre (NDF), acid detergent lignin (ADL), and non-structural carbohydrates (NSC).

Plant species	CP	(EE)	Ash	NDF	ADF	ADL	NSC
Wet season							
<i>Lagerstroemia parviflora</i>	25.97	1.20	5.82	62.32	52.14	24.32	4.69
<i>Ficus religiosa</i>	13.99	1.40	16.90	43.86	35.79	12.98	23.85
<i>Thysanolaena maxima</i>	10.20	0.87	8.67	76.35	57.30	12.90	3.91
<i>Musa</i> sp.	15.89	6.25	12.62	63.65	59.89	11.58	1.59
<i>Saccharum bengalensis</i>	2.07	0.80	5.73	88.62	62.22	32.58	2.77
<i>Saccharum spontaneum</i>	5.76	0.80	11.00	57.67	49.15	39.30	24.76
<i>Sterculia villosa</i>	12.80	1.00	6.40	49.60	46.50	19.50	31.20
<i>Bomax ceiba</i>	14.04	0.86	11.10	56.57	41.36	19.09	18.29
<i>Acacia catechu</i>	24.15	1.30	6.35	65.94	43.65	12.40	2.26
<i>Digitaria ciliaris</i>	10.80	0.86	14.04	61.55	43.13	9.07	12.75
<i>Paspalum scrobiculatum L</i>	5.00	3.00	7.18	7.77	2.50	2.05	4.71
<i>Murrya coenigii</i>	13.70	0.90	6.60	54.32	41.22	14.25	24.48
<i>Bridelia retusa</i>	13.75	1.20	8.36	46.95	41.04	16.74	29.74
<i>Mallotus philippensis</i>	14.35	2.30	11.25	63.54	53.98	25.62	8.56
<i>Spatholobus parviflorus</i>	14.69	2.85	11.70	41.99	35.02	11.18	28.77
<i>Phragmites karka</i>	6.60	0.60	10.36	80.99	64.97	40.88	1.45
<i>Saccharum spontaneum</i>	6.10	0.65	6.32	82.45	66.02	13.20	4.48
<i>Bambusa</i> sp.	12.50	2.00	13.80	70.91	51.85	17.52	0.79
<i>Litsea monopetala</i>	17.44	3.22	10.22	37.27	28.22	13.12	31.85
<i>Saccharum bengalensis</i>	3.56	1.87	7.31	60.84	1.31	6.62	27.42
<i>Desmostachya bipinnata</i>	12.17	1.78	9.59	55.95	43.86	17.75	14.42
Paddy	11.25	0.60	8.20	63.25	52.35	24.30	16.70
Maize	9.69	0.90	10.00	54.00	42.00	34.00	25.41
Dry season							
<i>Spatholobus parviflorus</i> (bark)	6.50	0.34	15.03	54.73	48.19	21.43	23.40
<i>Saccharum spontaneum</i>	7.56	1.25	9.92	77.97	54.13	11.95	3.30
<i>Saccharum bengalensis</i>	7.94	1.0	8.88	77.46	50.47	7.1	4.72
<i>Acacia catechu</i>	18.50	1.40	5.30	66.65	59.89	11.58	8.15
<i>Cymbopogon</i> sp.	3.55	0.50	8.36	82.45	81.48	12.92	5.14
<i>Spatholobus parviflorus</i>	8.70	0.34	12.03	64.73	47.11	21.46	14.20
<i>Mallotus philippensis</i>	12.35	3.78	10.40	62.50	51.78	22.72	10.97
<i>Ficus semicordata</i>	15.56	0.73	10.99	51.35	47.16	19.90	21.37
<i>Ficus racemosa</i>	12.61	1.20	13.53	65.54	49.97	29.08	7.12
<i>Phoenix humilis</i>	6.00	1.50	0.96	64.23	53.12	19.20	27.31
<i>Phragmites karka</i>	20.56	1.31	6.98	70.68	34.79	7.48	0.47
<i>Litsea monopetala</i>	20	2.56	6.56	63.10	49.34	27.85	8.82
Paddy	8.53	0.7	10	67	*	*	13.77
Maize	5.76	0.80	11.00	57.67	49.15	39.30	24.76
Wheat	9.75	0.6	9.5	69	*	*	11.15
Unidentified	10.66	1.26	9.39	65.73	51.89	17.81	12.95

* Indicates analysis was not done.

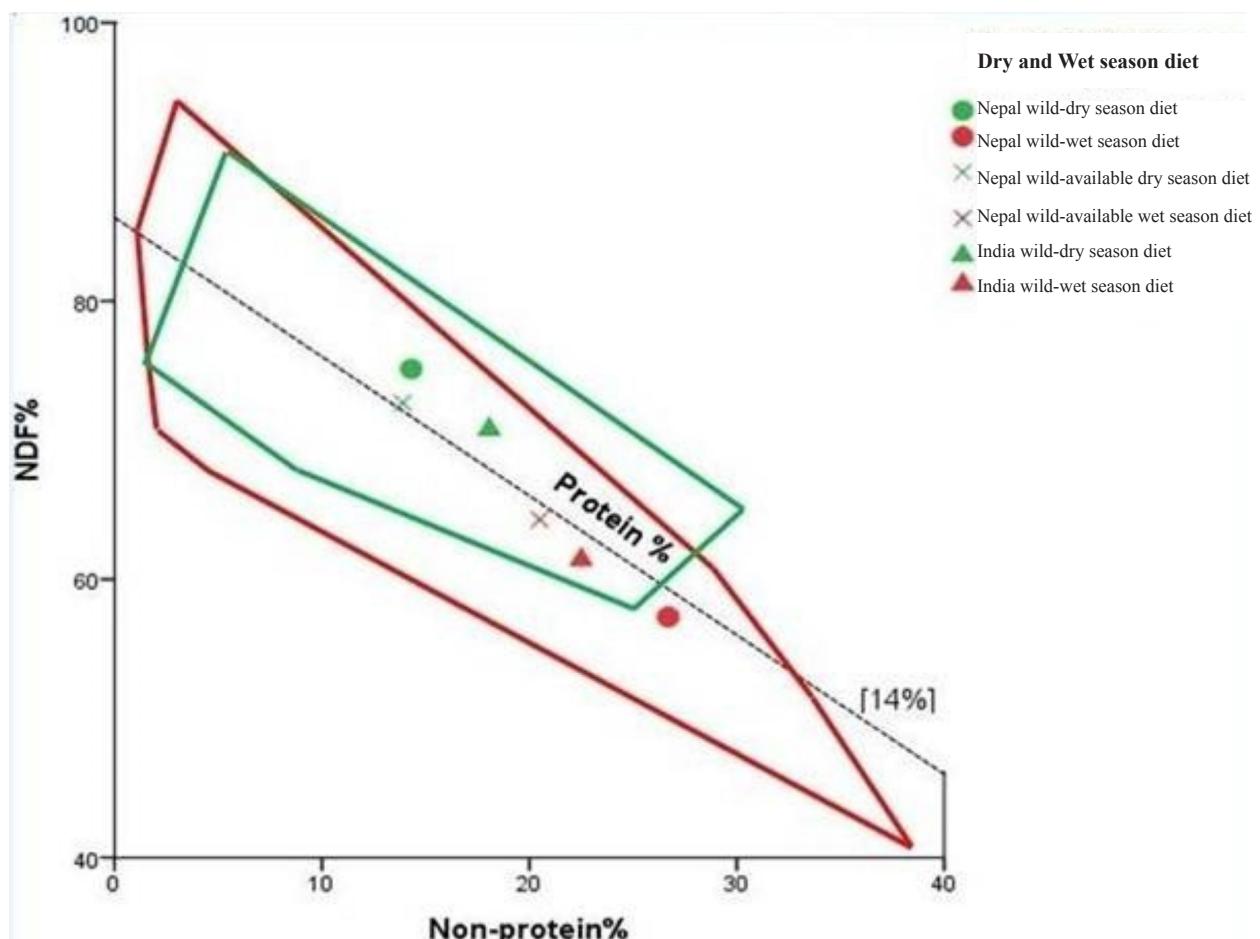


Figure 2. An enlarged view estimated diet composition of combined food in Right-angled mixture triangles (RMT; Raubenheimer 2011). Solid green circle (Dry season), and solid red circle, (wet season) diet weighed by utilisation percentage (Koirala et al. 2016). The crops and the leaves of all plants combined weighed by the seasonal availability in the environment (solid cross symbols), wet season (Red symbol), and dry season (Green symbol). The red and green solid triangles represent the wet and dry season diet of Asian Elephants (India population) respectively. Crude protein is represented on the implicit axis which varies inversely with distance from the origin. For reference, the dashed grey line indicates 14% protein content. The estimated seasonal nutrient space provided by food plants is shown by green polygon dry season and red polygon wet season around the food points.

be related to the crop raiding behaviour of elephants (Sukumar & Gadgil 1988; Sukumar 1989, 1991, 2006).

Our previous study has found that there was a negative relationship between utilisation and availability. As such there could be a reasonable selection of foods. The present study attempted to validate our hypothesis that the elephants are selectively feeding with a null hypothesis of feeding proportional to availability through the pattern of use seen in some of the highly preferred food plants like *Mallotus philippensis*, *Bambusa* sp., *Bombax ceiba*, *Spatholobus perviflorus*, and *Thysanolaena maxima*. The difference shown in the availability and utilisation in dry and wet season diet showed that there is selective mode of feeding. The availability of plant foods and their utilisation determines the preference. The preference based on availability

and usage may be primary information in relation to conservation of probable food plants in the habitat. However for the long term population sustainability of elephants, utilisation information based on nutritional content of plants is vital for the conservation and management of habitat for elephants. Further, the geometric analysis of food plants has revealed that besides the relationship between utilisation and macro nutrient content, the balance of nutrients of different diets plays a vital role in food selection. The ratio focused selection was located by this study as the diagonal clustering of expected dry and wet seasonal diet points, together with similar seasonal diet points of Indian wild elephants. The significant relationship of utilisation and macronutrient balance of highly preferred browse, grasses, and crops at least in these periods of the year

have revealed that crop raiding can be seen as part of protein makeup of elephants due to lower protein in grasses and some browse. In nutrient space, crops have been found to be occupying a place in between browse and grass. Thus, the elephants move away from their natural habitat to seek an alternative source of fodder with a high nutritive value such as crops.

REFERENCES

Anguita, M., N. Canibe, J.F. Pérez & B.B. Jensen (2006). Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: Use of cannulated pigs and in vitro fermentation. *Journal of Animal Science* 84(10): 2766–2778. <https://doi.org/10.2527/jas.2005-212>

AOAC (2012). Official Method of Analysis: Association of Analytical Chemists. 19th Edition, Washington DC, 121–130pp.

Coogan, S.C., D. Raubenheimer, G.B. Stenhouse & S.E. Nielsen (2014). Macronutrient optimization and seasonal diet mixing in a large omnivore, the grizzly bear: a geometric analysis. *PLOS one* 9(8): e105719. <https://doi.org/10.1371/journal.pone.0097968>

Das, B.J., B.N. Saikia, K.K. Baruah, A. Bora & M. Bora (2014). Nutritional evaluation of fodder, its preference and crop raiding by wild Asian Elephant (*Elephas maximus*) in Sonitpur District of Assam, India. *Veterinary World* 7(12): 1082–1089.

Desai, A.A. (1991). The home range of elephants and its implications for management of the Mudumalai Wildlife Sanctuary, Tamilnadu. *Journal of Bombay Natural History Society* 88: 145–156.

Holechek, J. L. & B. Gross (1982). Training needed for quantifying simulated diets from fragmented range plants. *Journal of Range Management* 35(5): 644–647. <https://doi.org/10.2307/3898655>

Koirala, R.K., W. Ji, A. Aryal, M. Pathak & D. Raubenheimer (2016). Feeding preferences of the Asian Elephant (*Elephas maximus*) in Nepal. *BMC Ecology* 16: 54. <https://doi.org/10.1186/s12898-016-0105-9>

Koirala, R.K. (2018). Nutritional Ecology of Asian Elephant (*Elephas maximus*) and Human Wildlife Interactions, PhD thesis, Massey University, Auckland New Zealand.

Koirala, R.K., W. Ji, A. Aryal, J. Rothman & D. Raubenheimer (2015). Dispersal and ranging patterns of the Asian Elephant (*Elephas maximus*) in relation to their interactions with humans in Nepal. *Ethology Ecology & Evolution* 28(2): 221–231. <https://doi.org/10.1080/03949370.2015.1066872>

Nyhus, P.J. & R. Tilson (2000). Crop-raiding elephants and conservation implications at Way Kambas National Park, Sumatra, Indonesia. *Oryx* 34(4): 262–274. <https://doi.org/10.1046/j.1365-3008.2000.00132.x>

Raubenheimer, D., S.J. Simpson & D. Mayntz (2009). Nutrition, ecology and nutritional ecology: toward an integrated framework. *Functional Ecology* 23(1): 4–16. <https://doi.org/10.1111/j.1365-2435.2009.01522.x>

Raubenheimer, D. (2011). Toward a quantitative nutritional ecology: the right-350 angled mixture triangle. *Ecological Monographs* 81: 407–427. <https://doi.org/10.1890/10-1707.1>

Raubenheimer, D., S.J. Simpson & A.H. Tait (2012). Match and mismatch: conservation physiology, nutritional ecology and the timescale of biological adaptation. *Philosophical Transactions of the Royal Society B* 367: 1628–1646. <https://doi.org/10.1098/rstb.2012.0007>

Rothman, J. M., C.A. Chapman & P.J. Van Soest (2012). Methods in primate nutritional ecology: a user's guide. *International Journal of Primatology* 33: 542–566. <https://doi.org/10.1007/s10764-011-9568-x>

Santiapillai, C. & P. Jackson (1990). The Asian Elephant: an action plan for its conservation. IUCN/SSC Action Plans for the Conservation of Biological Diversity, viii + 79 pp.

Simpson, S. J. & D. Raubenheimer (2012). The nature of nutrition: a unifying framework from animal adaptation to human obesity. Princeton University Press, 256 pp. <https://doi.org/10.1515/9781400842803>

Sukumar, R. & M. Gadgil (1988). Male-female differences in foraging on crops by Asian elephants. *Animal Behaviour* 36(4): 1233–1235. [https://doi.org/10.1016/S0003-3472\(88\)80084-8](https://doi.org/10.1016/S0003-3472(88)80084-8)

Sukumar, R. (1989). Ecology of the Asian Elephant in southern India. I. Movement and habitat utilization patterns. *Journal of Tropical Ecology* 5(01): 1–18. <https://doi.org/10.1017/s0266467400003175>

Sukumar, R. (1991). The management of large mammals in relation to male strategies and conflict with people. *Biological Conservation* 55(1): 93–102. [https://doi.org/10.1016/0006-3207\(91\)90007-v](https://doi.org/10.1016/0006-3207(91)90007-v)

Sukumar, R. (2006). A brief review of the status, distribution and biology of wild Asian elephants, (*Elephas maximus*). *International Zoo Yearbook* 40: 1–8. <https://doi.org/10.1111/j.1748-1090.2006.00001.x>

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh KV, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raja Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

Articles

Culture and provisioning: the case of Human-Long-tailed Macaque *Macaca fascicularis* (Raffles, 1821) interactions in Sumile, Butuan City, Philippines

– Fritche H. Lapore, Debbie S. Aseñas & Sherryl L. Paz, Pp. 26443–26458

Noteworthy comments on birds for mega-diverse Myanmar

– Swen C. Renner, Saw Moses, Lay Win, Thein Aung, Myint Kyaw, Saw Myat Ohnmar, Thiri Dae We Aung, Kay Thwe Myint, Sai Sein Lin Oo, Paul J.J. Bates & Marcela Suarez-Rubio, Pp. 26459–26467

Ultra-structure of antenna, eye, mouthparts and sensilla of *Cheiromenes sexmaculata* Fabricius, 1781 (Coccinellidae: Coleoptera)

– Prakash Ghagargunde & Mandar S. Paingankar, Pp. 26468–26478

Morphological characterization and ecological insights of *Pseudonapaeus cf. candelaris* (L. Pfeiffer, 1846) in the Pir Panjal Range of western Himalaya

– Hilal Ahmed, Imtiaz Ahmed & N.A. Aravind, Pp. 26479–26486

Communications

Diet and nutrient balance of wild Asian Elephants *Elephas maximus* in Nepal

– Raj Kumar Koirala & Sean C.P. Coogan, Pp. 26487–26493

Avian diversity in wetlands of southwestern Kerala of India during COVID

– Vijayakumari Sudhakaran Bindu & S. Sajitha, Pp. 26494–26503

Checklist on the ichthyofaunal resources and conservation status of Dikhu River, Nagaland, India

– Metevinu Kechu & Pranay Punj Pankaj, Pp. 26504–26514

A study on the diversity of butterflies in selected landscapes of the Indian Institute of Technology, Guwahati campus, Assam, India

– Uma Dutta, Sonali Dey & Deepshikha Moran, Pp. 26515–26529

Sphaeroma taborans sp. nov., a new species of wood-boring isopod (Crustacea: Isopoda: Sphaeromatidae) from Munroe Island, Ashtamudi Estuary, Kerala, India

– M.S. Arya, A. Biju & Dani Benchamin, P. 26530–26537

A report on Conidae (Gastropoda) from the Karnataka coast – distribution and shell morphometry

– B.S. Chandan, R. Shyama Prasad Rao & Mohammed S. Mustak, Pp. 26538–26546

New distribution record and DNA barcoding of the steno-endemic plant *Cordia diffusa* (Boraginaceae)

– M. Haritha, D. Leena Lavanya & H. Abinaya, Pp. 26547–26552

Short Communications

First record of the sea slug *Lobiger serradifalci* (Calcaria, 1840) (Gastropoda: Sacoglossa: Oxynoidae) from the Indian coast

– Dimpal Dodiya & Paresh Poriya, Pp. 26553–26557

Impatiens damrongii (Balsaminaceae), a new record for the flora of Vietnam

– Ha Van Dang, Leonid Vladimirovich Averyanov & Cuong Huu Nguyen, Pp. 26558–26561

Invasive record of Brazilian Petunia *Ruellia elegans* Poir. (Acanthaceae) from northeastern India

– Mamita Kalita, Pp. 26562–26565

Note

Cuphea carthagenensis (Jacq.) J.F.Macbr. (Lythraceae)

– a new non-native plant record for the Eastern Ghats of India

– Prabhat Kumar Das, Bishal Kumar Majhi, Shashi Sourav Hansda, Samarendra Narayan Mallick, Purnendu Panda & Pratap Chandra Panda, Pp. 26566–26570

Publisher & Host

Threatened Taxa