

Building evidence for conservation globally

Journal of Threatened TAXA

10.11609/jott.2025.17.3.26571-26762

www.threatenedtaxa.org

26 March 2025 (Online & Print)

17(3): 26571-26762

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Open Access

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Board of Editors

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Copy Editors****Ms. Usha Madgunki**, Zooreach, Coimbatore, India**Ms. Trisa Bhattacharjee**, Zooreach. Coimbatore, India**Ms. Paloma Noronha**, Daman & Diu, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, Zooreach, Coimbatore, India**Mrs. Geetha**, Zooreach, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2021–2023****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annaheb Magar Mahavidyalaya, Maharashtra, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Banos, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: A bag worm with its beautiful heap of junk. Acrylics on 300 GSM paper by Dupati Poojitha based on a picture by Sanjay Molur.

Association analysis of *Castanopsis tungurut* and the neighboring vegetation community in Cibodas Biosphere Reserve, Indonesia

Dian Ridwan Nurdiana¹ & Inocencio E. Buot, Jr.²

¹ Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Cibinong, West Java 16911, Indonesia.

^{1,2} Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines, Los Baños, Laguna 4031 Philippines.

¹ dian.ridwan.nurdiana@gmail.com (corresponding author), ²iebuot@up.edu.ph

Abstract: *Castanopsis tungurut* (Blume) A.DC. (Fagaceae) is an endangered species, specifically found in the tropical forests of Java and Sumatra. There is currently a lack of specific information regarding its interactions with other species across different life stages and natural habitats, particularly in relation to altitude gradients. This study is aimed at investigating the relationship between *Castanopsis tungurut* and the adjacent vegetation during different stages of its life cycle. The study also analyses the impact of this association on vegetation dynamics and propose effective strategies for *C. tungurut* conservation strategy. The study established 41 plots across four distinct sites within the Cibodas Biosphere Reserve located in Gede Pangrango National Park. Identification of trees, poles, saplings, and wildlings was carried out using the nested sampling method. A comprehensive list of 153 tree, 104 pole, 135 sapling, and 111 wildling species was documented and paired with *C. tungurut* for association test, and a positive association was observed with the tree species *Casearia coriacea* and the wildling species *Symplocos costata* (Jaccard indices for these pairings were 0.34 and 0.33, respectively). In addition, a negative association was found for trees of *C. tungurut* with *Castanopsis javanica* and *Macropanax dispermus*; Jaccard indices for pairings were 0.17 and 0.18, respectively. It was noted that *C. tungurut* exhibited lower competitive ability and selectivity in less favorable habitats, and its facilitative effect on the surrounding vegetation was limited. The prevalence of negative association with neighbouring vegetation within the natural forest of Cibodas Biosphere Reserve indicates that *C. tungurut* is isolated and facing threats such as environmental stress and competition. This condition contributes to the forest's overall diversity and promotes the sustainability of the reserve by enhancing ecosystem stability.

Keywords: Altitude gradients, endangered species, Fagaceae, Gede Pangrango National Park, life stages, nested sampling method, natural habitats, plant community, tropical forests.

Editor: A.J. Solomon Raju, Andhra University, Visakhapatnam, India.

Date of publication: 26 March 2025 (online & print)

Citation: Nurdiana, D.R. & I.E. Buot, Jr. (2025). Association analysis of *Castanopsis tungurut* and the neighboring vegetation community in Cibodas Biosphere Reserve, Indonesia. *Journal of Threatened Taxa* 17(3): 26587–26598. <https://doi.org/10.11609/jott.9143.17.3.26587-26598>

Copyright: © Nurdiana & Buot Jr. 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: The study was supported by SEAMEO SEARCA.

Competing interests: The authors declare no competing interests.

Author details: DR DIAN RIDWAN NURDIANA is junior researcher of ecology and conservation at Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN). His research interest cover conservation of plant threatened species, and ecology of tropical forest. DR INOCENCIO E BUOT JR is professor of botany, ecology and systematics at the University of the Philippines Los Baños. His research areas cover vegetation analysis, biodiversity assessments and addressing taxonomic confusions of morphologically similar species

Author contributions: DRN—proposed the objectives, methods and conducted fieldwork. He analysed data sets, wrote the paper and oversee the final drafting and publication. IEBJr—commented on the proposed objectives and methods. He actively participated in the analysis of data sets and contributed to the discussion of results, ensuring that the paper is acceptable for publication

Acknowledgements: We wish to thanks the SEARCA for the research grant and Institute of Biological Sciences, CAS, University of the Philippines Los Baños for the permit. We are very grateful to Mr. Nudin, Mr. Ujang Rustandi, Mr. Rustandi, Mr. Emus, and Mr. Cahyadi staff member Cibodas Botanic Garden, National Research and Innovation Agency (BRIN) for field work assistance. We also acknowledge with gratitude the support from Gunung Gede Pangrango National Park staff member Mr. Ae, Mr. Dayat and Mr. Komar for their support. This study was carried out under Gunung Gede Pangrango National Park permit reference no SI37/BBTNGGP/Tek.2/06/2022.

INTRODUCTION

Castanopsis tungurru tends to grow independently and shows selectivity in its habitat preferences. A previous study on the association of *Castanopsis* species in remnant forests found a positive association between *C. tungurru* and *C. javanica* in the sapling stage, while wildlings and mature trees were absent (Nurdiana & Buot 2021). The association and interactions among plants are primarily driven by environmental conditions (Anthony & Germino 2023; Senthilnathan & D'Andrea 2023). In extreme conditions, plant interactions are facilitated, while in milder conditions, competition arises (Díaz-Borrego et al. 2024).

Understanding the interspecific relationships between dominant species can provide insights into the structure, function, development, maintenance, and succession of natural forests. Interspecific associations reveal habitat preferences and the mutual attraction or repulsion of co-occurring species in specific environments (Song Jin et al. 2015). Limited research has been conducted on the interspecific relationships between native species in the Cibodas Biosphere Reserve forest, and there is no clear evidence of how these associations influence dynamic processes in forests. Baokun et al. (2019) indicated that a higher diameter class of a given species pair leads to a lower positive-to-negative association ratio, suggesting that these relationships occur during the successional stage of a forest rather than in its mature state.

The ecological role of the native species *C. tungurru* in the Cibodas Biosphere Reserve forest remains poorly understood and subject to debate. Therefore, gaining a better understanding of its function can contribute to the knowledge of the forest vegetation's condition and the impact of interspecific relationships involving *C. tungurru* on the forest's structure. This study aims to examine the interspecific relationships of *C. tungurru*, specifically its interactions with neighboring plants and its contributions to the dynamics of the forest community. Specifically, the study investigates the following: 1) interspecific association between *C. tungurru* and neighbouring vegetation at tree, pole, sapling, and wildling stages; 2) type of association between *C. tungurru* with neighbouring vegetation in various life stages; 3) preferred forest type for *C. tungurru*; 4) importance of association of *C. tungurru* in species conservation strategies. These outcomes are expected to advance the understanding of vegetation dynamics and support the design of sustainable management strategies for *C. tungurru* in Cibodas Biosphere Reserve.

MATERIALS AND METHODS

A total of 41 plots, covering an area of 16,400 m² or 1.64 ha, were assessed in this study, which was conducted within the core zone in four locations: Cibodas, Bodogol, Cisarua, and Selabintana (Image 1).

Species sampling

A nested plot technique involving different plot sizes for different vegetation categories was employed for the study. The main plots had dimensions of 20 × 20 m and were used to measure trees. Within each main plot, smaller plots of 10 × 10 m were established for poles, 5 × 5 m for saplings, and 2 × 2 m for wildlings. These plots were set up along an altitude gradient ranging 750–1,800 m, and their coordinates were recorded using a GPS Garmin e-trex 10. The number of plots established varied based on the location, elevation, and topography of the area. Specifically, there were 10 plots for Bodogol, 14 plots for Cibodas, eight plots for Cisarua (Image 2), and nine plots for Selabintana forest. In each plot, the name and number of species present across different vegetation categories, including wildlings, saplings, poles, and trees were recorded. Trees were defined as woody plants taller than 2 m with a stem diameter of at least 5 cm. Poles were categorized as stands with a diameter greater than 2.5 cm but less than 5 cm (Newton 1988; Fathia et al. 2019). Saplings were stands with a diameter at breast height (DBH) less than 2.5 cm and a height of at least 130 cm, while wildlings referred to individuals with a height below 130 cm (Vargas-Rodriguez et al. 2005).

Interspecific association measurement

To examine the association between species, the presence and absence of each species were recorded, following the approach used by Song Jin et al. (2015). The association coefficient (AC) was then calculated using a 2 × 2 contingency table to quantify the interspecific association for each pair of species. Statistical tests, including chi-square (χ^2) and Jaccard's association index, were performed on the data (Pielou 1972; Dogra et al. 2009). This association analysis was conducted for all recorded species across all locations.

Data analysis

The vegetation at the research site was analyzed using the Shannon-Wiener Diversity index and evenness indices. In the analysis, a 2 × 2 contingency table, chi-square test, and Jaccard index were utilized to determine the condition of the natural forest where the *Castanopsis* species occurred.

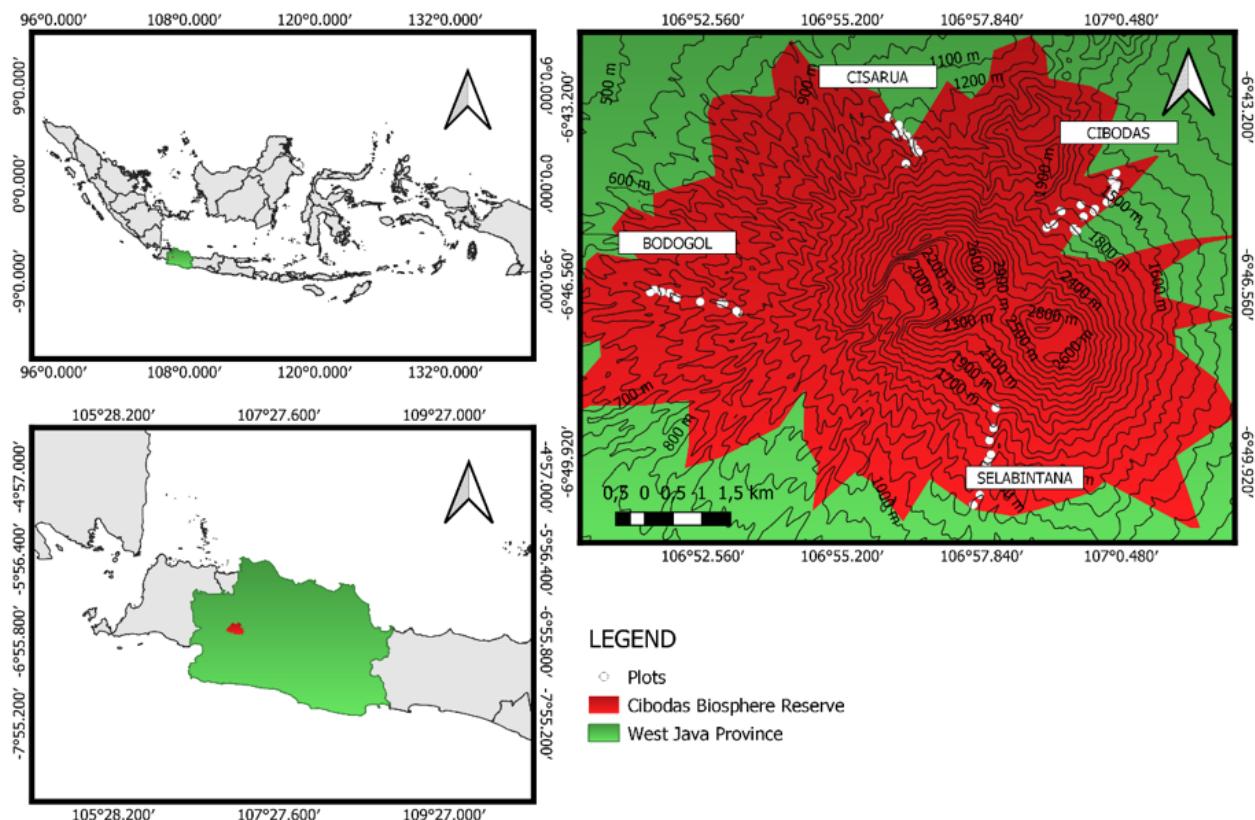


Image 1. Map of established plot in Cibodas Biosphere Reserve (<https://earth.google.com/web>, <https://www.gedepangrango.org>). The maps were generated by QGIS version 3.16.

Association coefficient using 2 x 2 contingency table

		Species Y		$a+b$	$c+d$
		Present	Absent		
Species X	Present	a	b		
	Absent	c	d	$a+c$	$b+d$

To test the null hypothesis of independence of the 2 x 2 table, the chi-square test statistic was used.

The formula for chi-square (χ^2) test

$$\chi^2 = \frac{[a - E(a)]^2}{E(a)} + \frac{[b - E(b)]^2}{E(b)} + \frac{[c - E(c)]^2}{E(c)} + \frac{[d - E(d)]^2}{E(d)}$$

$$E(a) = \frac{(a+b)(a+c)}{n} \quad E(b) = \frac{(a+b)(b+d)}{n}$$

$$E(c) = \frac{(a+c)(c+d)}{n} \quad E(d) = \frac{(b+d)(c+d)}{n}$$

$a > E(a)$ refers to positive association type, $a < E(a)$ to negative association type, χ^2 test $> x$ table to associated and χ^2 test $< x$ table not associated, and x table 3.84.

Jaccard index computation

$$S_j = \frac{a}{a + b + c}$$

a refers to the number of species in both sites; b refers to the number of species in the second site; c refers to the number of species in the first site. The data obtained were then analysed using chi-square analysis.

RESULTS

The diversity and occurrence of *C. tungurru*

The nested sampling method was employed for vegetation analysis, in order to collect data on density, diversity index, evenness index, and occurrence of *C. tungurru* across different life phases in 41 sampling plots (Table 1).

Data presented in Table 1 showed that *C. tungurru* occurs at 750–1,500 m elevation at all four locations selected in the study. But, the occurrence of this tree species varies in its life stages at each location. Its wildlings are present only at Bodogol and Selabintana locations while its mature individuals occur in all four locations indicating that each location has a dynamic

Table 1. Diversity of vegetation and the occurrence data of *Castanopsis tungurru* in all life stages at Cibodas Biosphere Reserve. BDL = Bodogol, CBS—Cibodas, SBL—Selabintana and CSR—Cisarua, 1—present, 0—absent.

		Tree	Pole	Sapling	Wilding
Number of species		153	104	135	111
Diversity index		4.3	4.2	4.3	3.9
Evenness index		0.48	0.65	0.5	0.5
Locations					
Sampling plot	Altitude (m)				
BDL10	750	1	0	0	0
BDL3	823	1	0	0	0
BDL2	857	1	1	0	0
BDL1	931	1	0	0	0
BDL9	950	1	0	1	0
BDL8	1000	1	0	0	1
BDL7	1039	1	0	0	0
BDL6	1050	1	0	0	0
BDL5	1080	0	0	0	1
BDL4	1104	1	0	0	1
CSR8	1157	1	0	0	0
SBL9	1163	0	1	1	0
SBL8	1205	0	1	0	0
CSR7	1219	1	0	0	0
CSR6	1264	1	0	0	0
SBL7	1300	0	0	1	1
CSR1	1306	1	0	1	0
CBS14	1346	1	0	0	0
CSR2	1350	0	0	1	0
CBS13	1373	1	0	0	0
SBL1	1387	1	0	0	0
CBS12	1403	1	0	1	0
CSR3	1413	1	1	0	0
SBL2	1459	1	0	0	1
CSR4	1461	1	0	0	0
CBS11	1465	1	0	0	0
CBS10	1479	0	1	0	0
CSR5	1500	1	0	1	0
SBL6	1500	0	0	0	0
CBS9	1550	0	0	0	0
CBS8	1600	0	0	0	0
SBL5	1600	0	0	0	0
CBS7	1700	0	0	0	0
SBL4	1717	0	0	0	0
CBS5	1720	0	0	0	0
CBS6	1739	0	0	0	0
CBS3	1793	0	0	0	0
CBS1	1806	0	0	0	0
CBS2	1807	0	0	0	0
SBL3	1829	0	0	0	0
SBL4	1830	0	0	0	0

role in the regeneration of this tree species.

Interspecific association

The chi-square analysis compared *C. tungurru* with 153 tree species, resulting in the identification of the top ten species pairs based on the highest chi-square values (Table 2). The findings revealed that out of all the pairs examined, only three pairs involving different tree life stages showed associations: *C. tungurru* × *C. javanica*, *C. tungurru* × *Macropanax dispermus*, and *C. tungurru* × *Casearia coriacea*. The remaining pairs did not show any significant associations. Among these three associations, only the pair of *C. tungurru* × *C. coriacea* displayed a positive association.

The chi-square analysis in the pole stage yielded data on 104 pole species pairs (Table 2). Surprisingly, the results indicated that *C. tungurru* showed no associations with any species, even those belonging to the same genus. This lack of association may be attributed to intense competition for limited resources such as water, light, and nutrients within the habitat, as well as the slope factor. To cope with these challenging conditions, plants undergo morphological and physiological adjustments in response to location conditions. These adaptations enable plants to optimize their competitiveness in both above-ground and below-ground components (Xue et al. 2012).

Additionally, upon analyzing the sapling stage, the chi-square analysis of 135 sapling species pairs yielded similar results to the pole stage. Once again, *C. tungurru* did not show any associations with other species. The prevalence of these non-associations suggests that *C. tungurru* is a robust competitor and a key species capable of inhibiting the growth of other species due to resource limitations, similar to the effect observed in *Dactylis* at successional forest of William L. Hutcheson Memorial Forest Centre, USA as described by Myster & Pickett (1992). The behavior of *Dactylis* is very similar to that of *C. tungurru*.

During the assessment of the wildling stage, a total of 111 wildling species pairs were examined. Interestingly, only *Symplocos costata* exhibited positive associations with *C. tungurru*. This suggests that facilitation only occurred in specific pairs, while intense competition was observed among most tree wildlings. Furthermore, the asymmetric competition resulting from canopy shading by adult trees could also have influenced the observed associations (Paine 2008).

Co-occurrence of dominant vegetation with *C. tungurru*

Table 4 presents the preferences of *C. tungurru* for

Table 2. Results of association test on tree, pole, sapling and wilding life stage between *Castanopsis tungurut* and 10 dominant co-occurrence species.

Co-occurring plant species	Associated/not associated (based on chi-square test)	Types of association (positive/negative)	Degree of association (Jaccard index)
Tree stage			
<i>Castanopsis javanica</i> (Blume) A.DC.	Associated (8.8)*	Negative	0.17
<i>Macropanax dispermus</i> (Blume) Kuntze	Associated (5.3)*	Negative	0.18
<i>Casearia coriacea</i> Thwaites	Associated (5.2)*	Positive	0.35
<i>Ostodes paniculata</i> Blume	Not Associated	-	0.26
<i>Villebrunea scabra</i> (Blume) Wedd.	Not Associated	-	0.44
<i>Ficus fistulosa</i> Reinw. Ex Blume	Not Associated	-	0.26
<i>Syzygium pycnanthum</i> Merr. & L.M.Perry	Not Associated	-	0.23
<i>Schima wallichii</i> (DC.) Korth.	Not Associated	-	0.32
<i>Altingia excelsa</i> Noronha	Not Associated	-	0.22
<i>Ficus ribes</i> Reinw. Ex Blume	Not Associated	-	0.27
Pole stage			
<i>Villebrunea scabra</i> (Blume) Wedd.	Not Associated	-	0.20
<i>Bridelia insulana</i> Hance	Not Associated	-	0.20
<i>Alangium rotundifolium</i> (Hassk.) Bloemb.	Not Associated	-	0.20
<i>Brugmansia suaveolens</i> (Humb. & Bonpl. Ex Willd.) Sweet	Not Associated	-	0.20
<i>Dysoxylum alliaceum</i> (G.Forst.) Seem.	Not Associated	-	0.20
<i>Euonymus indicus</i> B.Heyne ex Wall.	Not Associated	-	0.20
<i>Laportea Stimulans</i> (L.f.) Miq.	Not Associated	-	0.20
<i>Schefflera</i> J.R.Forst. & G.Forst.	Not Associated	-	0.20
<i>Trevesia sundaica</i> Miq.	Not Associated	-	0.20
<i>Cestrum aurantiacum</i> Lind.	Not Associated	-	0.17
Sapling stage			
<i>Cinchona pubescens</i> Vahl	Not Associated	-	0.25
<i>Didymocheton alliaceus</i> (G.Forst.) Mabb.	Not Associated	-	0.25
<i>Polyalthia subcordata</i> (Blume) Blume	Not Associated	-	0.23
<i>Lasianthus rigidus</i> Miq.	Not Associated	-	0.14
<i>Dinochloa scandens</i> (Blume ex Nees) Kuntze	Not Associated	-	0.14
<i>Bridelia</i> sp.	Not Associated	-	0.14
<i>Ficus heterophylla</i> L.f.	Not Associated	-	0.14
<i>Angiopteris evecta</i> (G.Forst.) Hoffm.	Not Associated	-	0.14
<i>Austroeupatorium inulifolium</i> (Kunth) R.M.King & H.Rob.	Not Associated	-	0.14
<i>Bridelia insulana</i> Hance	Not Associated	-	0.14
Wilding stage			
<i>Symplocos costata</i> (Blume) Choisy ex Zoll.	Associated (4.8)	Positive	0.33
<i>Smilax javensis</i> A.DC.	Not Associated	-	0.29
<i>Calamus reinwardtii</i> Mart.	Not Associated	-	0.29
<i>Piper baccatum</i> Blume.	Not Associated	-	0.25
<i>Magnolia liliifera</i> (L.) Baill.	Not Associated	-	0.25
<i>Lasianthus laevigatus</i> Blume	Not Associated	-	0.22
<i>Ficus repens</i> Rottler	Not Associated	-	0.20
<i>Gonostegia hirta</i> (Blume) Miq.	Not Associated	-	0.20
<i>Raphidophora</i> Hassk.	Not Associated	-	0.20
<i>Clerodendrum eriosiphon</i> Schauer	Not Associated	-	0.20

* χ^2 test >x table is associated; χ^2 test <x table is not associated; x table.3.84 (df = 1; α = 0.05). Type of association is positive if a >E (a) and negative if a < E (a). Value of the Jaccard index (strength of association) is equal to 0 at "no association" and to 1 at "complete/maximum association".

© Authors

Image 2. The study site at Cisarua.

specific forest associations highlighting its tendency towards forests dominated by the Lauraceae family, where it exhibits high density and size. These findings further support the results obtained from the interspecific association test mentioned earlier.

DISCUSSION

Association of *C. tungurru* with neighbouring vegetation

Based on Table 1, the presence of *C. tungurru* tree phases in each location is generally observed up to 1,500 m. This shows that altitude is one of the limiting factors for the distribution of *C. tungurru* in the Cibodas Biosphere Reserve. This is common in Javamountain forests, where the restricted diversity of adaptive species may be due to the stress that higher elevations put on environmental factors including temperature, humidity, wind, and nutrient availability as reported by Simbolon (2001) that tree species diversity decreased by 62% from 1,000 m to 1,800 m. Similar condition is depicted on pole, sapling and wilding stages. *C. tungurru* is absent above 1,500 m and has variation in occurrence at each site. Different factors contribute to the rarity of pole, sapling and wilding in the sampling sites. This includes the restriction of altitude affect to the competition between individuals within same species and competition between different species in terms of light, groundwater, oxygen, nutrient, carbon dioxide, and space (Fathia et al. 2019), dispersal failure, high pollen limitation, and also predation on seed and wildlings (Janzen 1970; Wotton & Kelly 2011; Etten et al. 2015). Furthermore, forest gap and climate change also contribute to the rarity of the pole, sapling and wilding

Table 3. The total number of association species (associated & not associated) and type of association of *C. tungurru* in various life stages based on chi-square value.

Life stage	Associated pairs	Not associated pairs	Negative association type	Positive association type
Tree	3	150	64	89
Pole	0	104	78	26
Sapling	0	135	101	34
Wildlings	1	110	81	30

as described by (Beckage et al. 2008; Davis et al. 2019). The forest with gaps provides more chance for the tree regeneration than the dense understorey, while the climate change may show abrupt shifts in vegetation communities.

Association of *C. tungurru* with neighbouring vegetation

Plant-plant associations often exhibit repetition, with approximately 70% of the data from long-term observations in old-field and glasshouse settings showing similar associations within the same species (Myster & Pickett 1992). In the case of *C. tungurru*, this pattern remains consistent across different tree life stages. Negative associations were observed between *C. javanica* and *C. argentea* pairs.

Delving deeper into the analysis of above-ground vegetation associations between *C. tungurru* and other species, it was found that most pairs did not exhibit any associations. Out of a total of 154 tree pairs, 105 pole pairs, 135 sapling pairs, and 111 wildling pairs, only the tree and wildling stages revealed positive and negative associations. These findings agree with the hypotheses pertaining to niche differences, the Janzen-Connel effect and negative density dependence reported by Wright (2002). *C. tungurru* may possess niche distinctions or inhabit separate microhabitats, reducing direct competition with neighboring species and enabling coexistence without being overpowered by stronger competitors. Furthermore, the presence of a herbivore that primarily feeds on seeds may result in reduced recruitment near reproductive adults compared to competitors. Competition among conspecifics may also occur. The coexistence of other species under similar conditions can be attributed to evolutionary factors, such as speciation and adaptive traits.

Comparing with other *Castanopsis* species, various studies have indicated that *Castanopsis* species, including *C. kawakamii*, *C. eyrei*, and *C. chinensis*,

Table 4. *Castanopsis tungurru* vegetation associations at four locations within Cibodas Biosphere Reserve.

Locality	Vegetation association	Plots characteristics
Bodogol (Humid forest with slope and long ridge)	Lauraceae is dominant – 10 species (<i>Cinnamomum rhynchophyllum</i> , <i>Cryptocarya ferrea</i> , <i>C. laevigata</i> , <i>Endiandra rubescens</i> , <i>Lindera polyantha</i> , <i>Litsea</i> sp. <i>L. garciae</i> , <i>Neolitsea javanica</i> , <i>Persea excelsa</i> and <i>Phoebe excelsa</i>).	Uneven canopy, reaching to a height of 28 m, dominated by several species based on IVI, <i>Schima wallichii</i> , <i>Castanopsis tungurru</i> , <i>Syzygium rostratum</i> , <i>Lithocarpus pseudomoluccus</i> , <i>Maesopsis eminii</i> , <i>Casearia coriacea</i> and <i>Prunus arborea</i> .
Cibodas (Humid forest with less slope and some open area)	Lauraceae is dominant – 8 species (<i>Cryptocarya ferrea</i> , <i>Litsea resinosa</i> , <i>Neolitsea cassiifolia</i> , <i>N. javanica</i> , <i>N. triplinervia</i> , <i>Persea rimosa</i> , <i>Phoebe excelsa</i> and <i>P. grandis</i>).	Even canopy, reaching to a height of 20–30 m, dominated by several species based on IVI, <i>Schima wallichii</i> , <i>Macropanax concinnus</i> , <i>Dacrycarpus imbricatus</i> , <i>Castanopsis javanica</i> , <i>Villebrunea scabra</i> , <i>Macropanax dispermus</i> .
Cisarua (Near to <i>Cinchona</i> plantation; relatively humid forest with slope and small portion of opened forest)	Fagaceae is dominant – 6 species (<i>Castanopsis argentea</i> , <i>C. javanica</i> , <i>C. tungurru</i> , <i>C. acuminatissima</i> , <i>Lithocarpus indutus</i> , <i>L. pseudomoluccus</i>).	Uneven canopy, the upper canopy reaching to a height of 38 m, dominated by several species based on IVI, <i>Castanopsis tungurru</i> , <i>C. javanica</i> , <i>Villebrunea scabra</i> , <i>Cinchona pubescens</i> , <i>Schima wallichii</i> , <i>Casearia coriacea</i> .
Selabintana (Humid forest with steepy slope)	Rubiaceae is dominant – 5 species (<i>Cinchona pubescens</i> , <i>Coffea</i> sp., <i>Lasianthus stercorarius</i> , <i>Neonauclea lanceolata</i> , <i>Wenlandia</i> sp.).	Relatively even canopy, reaching to a height of 10–30 m. The dominant species based on IVI include <i>Schima wallichii</i> , <i>Macropanax dispermus</i> , <i>Villebrunea scabra</i> , <i>Neolitsea javanica</i> , <i>Acronychia pedunculata</i> , <i>Macropanax concinnus</i> .

exhibit diverse levels of inter-specific associations. *C. kawakamii* shows a weak association with dominant *Castanopsis* forests (Jinfu et al. 2001), while *C. eyrei* demonstrates a decrease in positive associations between species pairs with increasing diameter classes, leading to heightened inter-specific competition within the plot (Etten et al. 2015; Baokun et al. 2019). Also, the intensity of association in *C. chinensis* decreases as life stages progress (Li et al. 2008). Additionally, *C. argentea* showed a positive association with *Pinus merkusii* which is known as the producer of allelopathic substances (Hendrayana et al. 2022).

Moreover, it is worth noting that *C. tungurru* only exhibits positive associations with *Casearia coriacea* and *Symplocos costata* in the tree and wilding stages, while negative or no associations were observed with other species. These intriguing findings suggest that *C. tungurru* is a selective species and offers less facilitation to other species within the same habitat. It appears that competition outweighs facilitation when it comes to neighboring species.

It is probable that *C. tungurru* and *Casearia coriacea* have complementary biological characteristics and nutrition requirements. *C. coriacea* provides protection from insects, while *C. tungurru* provides nutrients and protection for *C. coriacea*. Therefore *C. tungurru* and *C. coriacea* can be successfully mixed with each other as they have complementary requirements. Similarly, *Symplocos costata* and *Castanopsis tungurru* have a positive association because there is complementary interaction between them. Wihermanto (2004) reported that *Symplocos costata* has scattered clumped distribution at 1,000–1,421 m elevation and is positively

associated with *Castanopsis javanica*. Further, this species lacks allelopathy substances that promote the development of *Rhizobium* and mycorrhiza in the roots of other plants. Therefore, in the wilding phase, *C. tungurru* is facilitated by *S. costata* and vice-versa, especially in terms of providing nutrients to each other.

TYPES OF ASSOCIATION

a. Positive association between *C. tungurru* and other species

The positive association observed between *C. tungurru* and *Casearia coriacea* likely indicates a facilitation mechanism or mutualism between these species. Several factors may contribute to positive associations between neighboring plants, including mutual protection from harsh environmental conditions. One organism creates a more favorable local environment for another through direct means such as shading and wind reduction, or indirect means such as removing competitors and deterring predators. Ecologically, positive associations play a crucial role in shaping community structure and dynamics by reducing physical and biotic stress in habitats and creating new habitats for dependent species (Callaway 1995; Hacker & Bertness 1996; Stachowicz 2001). Different authors (Wihermanto 2004; Li et al. 2008, 2010; Song Jin et al. 2015; Hendrayana et al. 2022) reported that *Castanopsis* has positive association with several species such as *Pinus merkusii*, *P. taiwanensis*, *Nauclea* sp., *Schima superba*, *Sauraia bracteosa*, *S. cauliflora*, *Symplocos costata*, *Altingia chinensis* and *Engelhardia roxburghiana*). It is noteworthy that *Castanopsis* species are mostly associated positively with dominant species

Image 3. Plant forms of *Castanopsis tungurru*: a—wildling | b—sapling | c—pole | d—tree. © Authors.

in particular forest because *Castanopsis* species occupy a specific ecological niche within their habitat and flourish in the understory or with other dominant plants as forests mature since they are frequently early- to mid-successional species (Yang et al. 2003; Wang et al. 2012).

Casearia coriacea is a species that can survive under changing environmental conditions and adapt to extreme conditions. It produces various bioactive compounds, including clerodane-type diterpenoids that serve as insect antifeedants (Ledoux et al. 2023). On the other hand, *C. tungurut* prefers to grow on slopes and exhibits buttress morphological characteristics, which can provide nutrients to surrounding plants and reduce the impact of wind exposure (Tang et al. 2010). These factors may explain the positive association between *C. tungurut* and *Casearia coriacea*. The facilitative relationships are also similar to other *Castanopsis* species, just like *Castanopsis chinensis* and *Schima superba* providing shelter to small trees (Li et al. 2008).

Positive association occurs between *C. tungurut* and *Symplocos costata* in the wilding phase but the associations between these species are different during the tree phase. Differences in associations during different life phases are common and influenced by dynamic conditions, including variations in life history and seasons (Osawa et al. 2014). *S. costata* exhibits random dispersion patterns, acts as a pioneer plant, and produces numerous seeds, making it easily found in the mountainous regions of West Java (Wihermanto 2004; Zuhri et al. 2020). In contrast, *C. tungurut* shows habitat selection and faces significant threats from seed predation. Similar condition with *Castanopsis chinensis* that are eaten either by rodent and people contribute to the poor regeneration. The positive association observed in the wilding phase may be attributed to similar habitat requirements for the germination phase of both plants, facilitating wilding establishment.

It is noteworthy that the dynamic association within the life stages is correlated with the environmental heterogeneity or patchiness, where positive association in early stages is different from mature stage as depicted of different association type of *C. tungurut* with *S. costata* in wilding and mature stages. The presence of positive associations between these two species can significantly impact vegetation structure and dynamics. The associations observed between them are dynamic and may change during a plant's life. From an ecosystem perspective, maintaining positive associations with other species can help preserve endangered species diversity such as *C. tungurut* by providing favorable conditions. In addition, the different numbers of positive and negative

association of *Castanopsis* will reflect the successional stage of the species. Yang et al. (2003) revealed that high number of insignificant association reflected a stable late successional stage of species community. More positive association with dominant species will reflect an unstable succession. The negative associations between later life stages and early life stages usually indicate the suppression of early stages by later stages. Helmanto et al. (2020) reported that negative association indicates a tendency for exclusion or different responses in the same environment.

The study shows that the small number of positive associations of *C. tungurut* is correlated with the facilitation relationship among the neighbouring vegetation and regeneration capacity of species. The mature tree cannot produce the wilding due to predation and hunting of seed, while the wilding cannot grow to the later stages due to suppression of dominant species in habitat. In the end, *C. tungurut* is aggregated and had been less facilitative to neighbouring vegetation during tree and pole phase.

b. Negative associations between *C. tungurut* and other species

Negative associations are commonly observed in perennial plants, including *C. tungurut*. The negative association of *C. tungurut* were observed only with *Castanopsis javanica* and *Macropanax dispermus* on the tree stage. There is no observed negative association between pole, sapling, and wilding. The negative association within the same genus was also described by Helmanto et al. (2020) where *Saurauia microphylla* was paired with *S. pendula* indicating that they have a tendency to exclude one another or respond differently to a similar environment. The negative association is not observed in the pole, sapling, and wilding stages. This dynamic condition suggests that *C. tungurut* is a species that tends to compete within its habitat with minimal interaction between surrounding plant species. Intraspecific associations within the genus *Castanopsis* reveal that the patterns exhibited by *C. tungurut* vary depending on the species' life phase. Similar observations have been found by Rejmánek & Leps (1996), Yang et al. (2003), and Cheng et al. (2014) in *Arctostaphylos patula* and *Cirsium vulgare* as well as *Quercus liaotungensis* and *Castanopsis chinensis*. The early stages association changed in the later stages due to competition for resources (light, nutrients, and water) and facilitation among the species. Competition for limited resources like water, nutrients, and light significantly impacts plant growth, community composition, and ecosystem

function. Plants compete for these resources, with those capturing more light, such as those growing above others, gaining an advantage. This competition shapes plant evolution, favoring traits that enhance survival in the early stages, even if detrimental later. Additionally, environmental factors like slope influence species interactions, with negative associations decreasing in drier environments, suggesting adaptations to specific microclimates and resource utilization.

The negative associations of *C. tungurut* with surrounding plants have significant impacts on the distribution and abundance of other species, especially those with high morphological plasticity and adaptability, which struggle to grow and develop. The present study found the prevalence of negative associations between *C. tungurut* and other species. In interspecific competition, the availability of nutrients and light plays a primary role. Plant competition shapes community structure, influences nutrient cycling, and even affects the evolution of plant species (Goldberg & Barton 1992; Fréville & Silvertown 2005). The negative association among *Fagus lucida*, *Quercus variabilis*, *Castanopsis lamontii*, and *Litsea cubeba* is brought about by the differences of environmental requirements due to long-term adaptation of micro-environment, resources spaces and niche separation (Song jin et al. 2015). *C. tungurut* tends to grow in isolation and restricts its associations with neighboring vegetation, hence, there were not many associated species. The association was driven mainly by environmental factors such as light availability, water, nutrient, and temperature. The association could be positive or negative depend on the resource utilization patters, level of competition, and habitat preferences (Maihaiti & Zhang 2014).

Forest Association Preference

C. tungurut is commonly found and thrives in forests dominated by the Lauraceae family. Yamada (1975) reported similar situation in Mount Pangrango montane forest. In this forest, Lauraceae, Fagaceae and Theaceae have been found to be dominant families. But, *C. tungurut* tends to have a negative association with the members of all these three families. This species is negatively associated with Theaceae member, *Schima wallichii* suggesting that *C. tungurut* does not facilitate the growth of other trees, which is most likely due to intense competition among them for resources. Soepadmo & van Steenis (1972) described that when Fagaceae litter decomposes, it releases compounds (allelopathic) that, combined with specific fungi, may hinder or limit the growth of other forest trees. This

phenomenon could contribute to *C. tungurut*'s less facilitative nature. Matsuoka et al. (2019) and Wang (2011) reported that the association of ectomycorrhizal (ECM) fungi is closely related to the dispersal and distribution pattern of *Castanopsis*. Latitude and longitude also play a significant role in influencing the diversity and community structure of ECM fungi. Moreover, these biogeographic shifts in the ECM community are strongly linked with *Castanopsis* as the host tree. Hendrayana et al. (2022) revealed the positive association of *C. argentea* with dominant species *Pinus merkusii* and *Nauclea* sp. in Mount Ciremai National Park while Li et al. (2008) revealed the dynamic association in different life stages of species pair, *Castanopsis eyrei* and *Schima superba*. Nurdiana & Buot (2021) found a positive association of *C. tungurut* and *C. javanica* in a remnant forest of the Cibodas Botanical Garden.

In general, *C. tungurut* is capable of growing alongside major dominant families in the montane forest. It prefers to grow independently. Its density decreases when the dominant vegetation does not belong to the dominant families of Fagaceae, and Lauraceae, as observed in the case of the Selabintana forest, where Rubiaceae is dominant. The lower density of *C. tungurut* can possibly be attributed to its limited morphological adaptability and reduced competition with neighboring species. Further, favorable conditions, as commonly found in Fagaceae according to Soepadmo & van Steenis (1972), are necessary for the growth of *C. tungurut*.

Importance of association of *C. tungurut* and its conservation strategy

C. tungurut plays a vital role as a keystone species in supporting the existence of other species within their habitats, thereby contributing to conservation efforts and promoting sustainability. This indicates that unfavorable interactions within the same species can create opportunities for the regeneration of different species, thus preserving biodiversity and preventing the dominance of monocultures. Different authors (Dolezal et al. 2020; Loreau & de Mazancourt 2013; Rozdilsky & Stone 2001) reported that intense interspecific competition, species asynchrony to environmental fluctuation, connectance, the strength of competition, speed of species in responding the perturbation and diverse plant communities are significant factors in shaping the ecosystem stability. The present study highlights how these effects differ depending on the age of the wildlings: younger wildlings are more affected by interactions with their conspecific neighbors,

whereas older wildings are influenced to a greater extent by neighboring trees of the same species. These findings can provide valuable insights for conservation initiatives aimed at sustaining biodiversity in forests and similar environments where similar processes occur. It is important to note that even though intraspecific interactions weaken as the wildings age, they still impact overall survival rates in later stages of development (Zhao et al. 2021). It is worth mentioning that the study was limited to observations of above-ground vegetation and did not investigate subterranean associations, such as the involvement of microorganisms in the growth of *C. tungurut*. To mitigate biases in observations and assess interactions in underground associations, it is recommended to conduct repeated observations using consistent patterns.

CONCLUSION

The association of *C. tungurut* with other species in the community is dynamic and influenced by competition, facilitation, and succession. Overall, *C. tungurut* is not associated with neighbouring species indicating that the co-occurrence of *C. tungurut* and the paired species is independent. It is a selective species that does not rely on the presence of other species for its growth. Instead, it tends to grow independently up to 1500 m in Lauraceae and Fagaceae forests, reducing its density in unfavorable habitats. Furthermore, *C. tungurut* prefers not to be associated with the dominant species in its habitat. This behavior provides important insights for reserve management, specifically in the development of sustainable management frameworks for the Cibodas Biosphere Reserve. Factors such as favorable location, including soil conditions, environmental parameters, and vegetation types, should be considered while crafting these management strategies. *C. tungurut* can be planted with *Casearia coriacea* and *Symplocos costata* since both exhibit complementary ecological characteristics and facilitation mechanisms.

REFERENCES

Anthony, C.R. & M.J. Germino (2023). Does post-fire recovery of native grasses across abiotic-stress and invasive-grass gradients match theoretical predictions, in sagebrush steppe? *Global Ecology and Conservation* 42: 1–15. <https://doi.org/10.1016/j.gecco.2023.e02410>

Baokun, X., X. Xu, Y. Li, X. Li, S. Chen, H. Ding, X. Jiang, L. Gou & Y. Fang (2019). Interspecific association analysis of *Castanopsis eyrei* community in evergreen broad-leaved forests in Huangshan, Anhui Province. *Journal of Nanjing Forestry University (Natural Sciences Edition)* 43(4): 77–84. <https://doi.org/10.3969/j.issn.1000-2006.201810038>

Beckage, B., B. Kloepfel, J.A. Yeakley, S.F. Taylor & D.C. Coleman (2008). Differential effects of understory and overstory gaps on tree regeneration1. *Journal of the Torrey Botanical Society* 135(1): 1–11.

Callaway, R.M. (1995). Positive interactions among plants. *The Botanical Review* 61(4): 306–349. <https://doi.org/10.1007/BF02912621>

Cheng, X., H. Han, F. Kang, Y. Song & K. Liu (2014). Point pattern analysis of different life stages of *Quercus liaotungensis* in Lingkong Mountain, Shanxi Province, China. *Journal of Plant Interactions* 9(1): 233–240. <https://doi.org/10.1080/17429145.2013.818167>

Davis, K.T., S.Z. Dobrowski, P.E. Higuera, Z.A. Holden, T.T. Veblen, M.T. Rother, S.A. Parks, A. Sala & M.P. Maneta (2019). Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. *Proceedings of the National Academy of Sciences of the United States of America* 116(13): 6193–6198.

Díaz-Borrego, R., M.Á. Pérez-Navarro, L. Jaime, N.J. Elvira & F. Lloret (2024). Climatic disequilibrium of recruit communities across a drought-induced die-off gradient in Mediterranean shrubland. *Oikos* 7: 1–11. <https://doi.org/10.1111/oik.10465>

Dogra, K.S., R.K. Kohli & S.K. Sood (2009). An assessment and impact of three invasive species in the Shivalik hills of Himachal Pradesh, India. *International Journal of Biodiversity and Conservation* 1(1): 4–10.

Dolezal, J., P. Fibich, J. Altman, J. Leps, S. Uemura, K. Takahashi & T. Hara (2020). Determinants of ecosystem stability in a diverse temperate forest. *Oikos* 129(11): 1692–1703. <https://doi.org/10.1111/oik.07379>

Etten, M.L.V., J.A. Tate, S.H. Anderson, D. Kelly, J.J. Ladley, M.F. Merrett, P.G. Peterson & A.W. Robertson (2015). The compounding effects of high pollen limitation, selfing rates and inbreeding depression leave a New Zealand tree with few viable offspring. *Annals of Botany* 116(5): 833–843.

Fathia, A.A., I. Hilwan & C. Kusmana (2019). Species Composition and Stand Structure in sub-montane forest of Mount Galunggung, Tasikmalaya, West Java. *IOP Conference Series: Earth and Environmental Science* 394(1): 1–10. <https://doi.org/10.1088/1755-1315/394/1/012012>

Fréville, H. & J. Silvertown (2005). Analysis of interspecific competition in perennial plants using Life Table Response Experiments. *Plant Ecology* 176: 69–78.

Goldberg, D.E. & A.M. Barton (1992). Patterns and Consequences of Interspecific Competition in Natural Communities: A Review of Field Experiments with Plants. *The American Naturalist* 139(4): 771–801.

Hacker, S. D. & M.D. Bertness (1996). Trophic consequences of a positive plant interaction. *American Naturalist* 148(3): 559–575. <https://doi.org/10.1086/285939>

Helmanto, H., I. Robiansyah, R.N. Zulkarnaen & N. Fikriyya (2020). Habitat preference and spatial distribution model of threatened species *Sauraia microphylla* in Mt. Slamet, Central Java, Indonesia. *Biodiversitas Journal of Biological Diversity* 21(7): 2946–2954. <https://doi.org/10.13057/biodiv/d210710>

Hendrayana, Y., D. Deni & A.M.I. Habibi (2022). Association of dominant tree species in lowland forest of Mount Ciremai National Park. *Jurnal Mangifera Edu* 7(1): 46–56. <https://doi.org/10.31943/mangiferaedu.v7i1.142>

Janzen, D.H. (1970). Herbivores and the number of tree species in tropical forests. *The American Naturalist* 104: 501–528.

Jinfu, L., H. Wei, F. Houba & L. Rongfu (2001). Study on the interspecific association of species in the vegetation layer in *Castanopsis kawakamii* forest. *Scientia Silvae Sinicae* 37(4): 117–123.

Ledoux, A., C. Hamann, O. Bonnet, K. Jullien, J. Quetin-Leclercq, A. Tchinda, J. Smadja, A. Gauvin-Bialecki, E. Maquoi & M. Frédéric (2023). Bioactive Clerodane Diterpenoids from the Leaves of *Casearia coriacea* Vent. *Molecules* 28(3): 1–10. <https://doi.org/10.3390/molecules28031197>

Li, L., S.G. Wei, Z.L. Huang, W.H. Ye, W & H.L. Cao (2008). Spatial patterns and interspecific associations of three canopy species at different life stages in a subtropical forest, China. *Journal of Integrative Plant Biology* 50(9): 1140–1150. <https://doi.org/10.1111/j.1744-7909.2008.00690.x>

Loreau, M. & C. de Mazancourt (2013). Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. *Ecology Letters* 16(supplement 1):106–115. <https://doi.org/10.1111/ele.12073>

Maihaiti, M. & W. Zhang (2014). A mini review on theories and measures of interspecific associations. *Selforganizology* 1(4): 206–210.

Matsuoka, S., T. Iwasaki, Y. Sugiyama, E. Kawaguchi, H. Doi & T. Osono (2019). Biogeographic patterns of ectomycorrhizal fungal communities associated with *Castanopsis sieboldii* across the Japanese archipelago. *Frontiers in Microbiology* 10(2656): 1–13. <https://doi.org/10.3389/fmicb.2019.02656>

Myster, R.W. & S.T.A. Pickett (1992). Dynamics of associations between plants in ten old fields during 31 years of succession. *Journal of Ecology* 80(2): 291–302.

Newton, P.N. (1988). The structure and phenology of a moist deciduous forest in the central Indian Highlands. *Vegetatio* 75(1–2): 3–16. <https://doi.org/10.1007/BF00044621>

Nurdiana, D.R. & I.E.J. Buot (2021). Vegetation community and species association of *Castanopsis* spp. at its habitat in the remnant forest of Cibodas Botanical Garden, Indonesia. *Biodiversitas* 22(6): 4799–4807.

Osawa, T., H. Mitsuhashi & A. Ushimaru (2014). Plant species' coexistence relationships may shift according to life history traits and seasons. *Plant Ecology* 215: 597–612.

Paine, C.E.T. (2008). Weak Competition Among Tropical Tree Seedlings: Implications for Species Coexistence. *Biotropica* 40(4): 432–440. <https://doi.org/10.1111/j.1744-7429.2007.00390.x>

Pielou, E. C. (1972). 2k contingency tables in ecology. *Journal of Theoretical Biology* 34(2): 337–352.

Rejmánek, M. & J. Lepš (1996). Negative associations can reveal interspecific competition and reversal of competitive hierarchies during succession. *Oikos* 76: 161–168.

Rozdilsky, I.D. & L. Stone (2001). Complexity can enhance stability in competitive systems. *Ecology Letters* 4(5): 397–400. <https://doi.org/10.1046/j.1461-0248.2001.00249.x>

Senthilnathan, A. & R. D'Andrea (2023). Niche theory for positive plant–soil feedbacks. *Ecology Society of America* 104(4): e3993. <https://doi.org/10.1002/ecy.3993>

Simbolon, H. (2001). The growth dynamics on tree species of Fagaceae family in a tropical montane rain forest of West Java, Indonesia. *Berita Biologi* 5(6): 659–666.

Soepadmo, E. & C.G.G.J. van Steenis (1972). Fagaceae, pp. 265–403. In: 'Flora Malesiana Vol. 7'. Series 1. (Ed. C.G.G.J. van Steenis). Wolters-Noordhoff Publications, Netherlands, 755 pp.

Song Jin, S., J. Fu Liu, Z. Sheng He, S. Qun Zheng, W. Hong & D. Wei Xu (2015). Ecological species groups and interspecific association of dominant tree species in Daiyun Mountain National Nature Reserve. *Journal of Mountain Science* 12(3): 637–646. <https://doi.org/10.1007/s11629-013-2935-7>

Stachowicz, J.J. (2001). Mutualism, facilitation, and the structure of ecological communities. *BioScience* 51(3): 235–246. [https://doi.org/10.1641/0006-3568\(2001\)051\[0235:MFATSO\]2.0.CO;2](https://doi.org/10.1641/0006-3568(2001)051[0235:MFATSO]2.0.CO;2)

Tang, Y., X. Yang, M. Cao, C.C. Baskin & J.M. Baskin (2010). Buttress trees elevate soil heterogeneity and regulate seedling diversity in a tropical rainforest. *Plant and Soil* 338 (1): 301–309. <https://doi.org/10.1007/s11104-010-0546-4>

Vargas-Rodríguez, Y.L., J. A. Vázquez-García & G.B. Williamson (2005). Environmental correlates of tree and seedling-sapling distributions in a Mexican tropical dry forest. *Plant Ecology* 180(1): 117–134. <https://doi.org/10.1007/s11258-005-3026-9>

Wang, Q., Gao, C., & Guo, L. D. (2011). Ectomycorrhizae associated with *Castanopsis fargesii* (Fagaceae) in a subtropical forest, China. *Mycological Progress* 10(3): 323–332. <https://doi.org/10.1007/s11557-010-0705-2>

Wang, Z., J. Lian, G. Huang, W. Ye, H. Cao, Z. Wang, Z. Wang, J. Lian, G. Huang, W. Ye, H. Cao & Z. Wang (2012). Genetic groups in the common plant species *Castanopsis chinensis* and their associations with topographic habitats. *Oikos* 121(12):2044–2051.

Wihermanto (2004). Dispersion pattern interspecific association and population status of threatened plants on submontane and montane zones of Mount Gede-Pangrango National Park. *Biodiversitas Journal of Biological Diversity* 5(1): 17–22. <https://doi.org/10.13057/biodiv/d050104>

Wotton, D.M. & D. Kelly (2011). Frugivore loss limits recruitment of large-seeded trees. *Proceedings of the Royal Society B: Biological Sciences* 278(1723): 3345–3354. <https://doi.org/10.1098/rspb.2011.0185>

Wright, S.J. (2002). Plant diversity in tropical forests: a review of mechanisms of species coexistence. *Oecologia* 130(1): 1–14. <https://doi.org/10.1007/s004420100809>

Xue, Li, Fu & Jingdan (2012). A review on factors affecting plant competition. *Journal of Central South University of Forestry & Technology* 32: 6–15.

Yamada, I. (1975). Forest ecological studies of the montane forest of Mt. Pangrango, West Java. *South East Asian Studies* 15(2): 226–254.

Yang, D.X., L. Wu & L. Yu-Cheng (2003). Interconnection among dominant plant populations of *Castanopsis* community in Jinggang Mountain Nature Reserve. *Chinese Journal of Plant Ecology* 27(4): 531–536.

Zhao, Z., Y. Liu, H. Jia, W. Sun, A. Ming, S. Pang, N. An, J.H. Zhang, C. Tang & S. Dong (2021). Influence of Slope Direction on the Soil Seed Bank and Seedling Regeneration of *Castanopsis hystrix* Seed Rain. *Forests* 12(500): 1–13. <https://doi.org/10.3390/f12040500>

Zuhri, M., D. Latifah, S.R. Ariati & S. Rahdiana (2020). Seed availability assessment and seed collection of wild plants in Selabintana forest, Mount Gede Pangrango National Park, West Java. *Buletin Kebun Raya* 23(1): 36–45.

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh KV, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raja Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

Articles

***Dasymaschalon leilamericanum* (Annonaceae), a new species with evidence of non-monophyly from Mount Lantoy Key Biodiversity Area, Philippines**

– Raamah Rosales, Edgardo Lillo, Archiebald Baltazar Malaki, Steve Michael Alcazar, Bernardo Redoblado, John Lou Diaz, Inocencio Buot Jr., Richard Parilla & Jessica Rey, Pp. 26571–26586

Association analysis of *Castanopsis tungurut* and the neighboring vegetation community in Cibodas Biosphere Reserve, Indonesia

– Dian Ridwan Nurdiana & Inocencio E. Buot, Jr., Pp. 26587–26598

Riparian flora of Haveri District, Karnataka, India

– Ningaraj S. Makanur & K. Kotresha, Pp. 26599–26615

Conservation strategies for *Vatica lanceifolia* (Roxb.) Blume: habitat distribution modelling and reintroduction in northeastern India

– Puranjoy Mipun, Amritee Bora, Piyush Kumar Mishra, Baby Doley & Rinku Moni Kalita, Pp. 26616–26626

Patterns and economic impact of livestock predation by large carnivores in protected areas of southern Kashmir, India

– Lubna Rashid & Bilal A. Bhat, Pp. 26627–26635

People perception on use patterns and conservation of Chinese Pangolin

in and around Yangouopkpi Lokchao Wildlife Sanctuary, Manipur, India

– Yengkham Roamer Zest, Awadhesh Kumar, Om Prakash Tripathi, Rakesh Basnett & Dipika Parbo, Pp. 26636–26647

Communications

Population status, threats, and conservation of *Trachycarpus takil*: an endemic and threatened plant species in western Himalaya, India

– Himani Tiwari, Dhani Arya & K. Chandra Sekar, Pp. 26648–26654

A checklist of fishes of Haiderpur wetland, western Uttar Pradesh, India

– Rahul Rana, Jeyaraj Antony Johnson & Syed Ainul Hussain, Pp. 26655–26668

An avifaunal checklist of the Zanskar Region, Ladakh Himalaya, India

– Abid Hussain, Zakir Hussain & Mumtaz Ali, Pp. 26669–26679

Breeding tern colonies on the sandbars of Adam's Bridge, India: new records and significance

– H. Byju, H. Maitreyi, N. Raveendran, D.A. Marshal & S. Ravichandran, Pp. 26680–26689

Assessment of nest and nesting activities of White-bellied Heron *Ardea insignis* Hume, 1878 (Aves: Ardeidae) in the broad-leaved forests of northeastern India

– Himadri Sekhar Mondal & Gopinathan Maheswaran, Pp. 26690–26696

Preliminary checklist of avifauna from All India Institute of Medical Sciences, Guwahati, Assam, India

– Nitul Ali, Vivek Chetry, Prem Kishan Singha & Maina Boro, Pp. 26697–26703

Implementation strategy and performance analysis of a novel ground vibration-based elephant deterrent system

– Sanjoy Deb, Ramkumar Ravindran & Saravana Kumar Radhakrishnan, Pp. 26704–26714

Short Communications

***Blackwellomyces pseudomilitaris* (Hywel-Jones & Sivichai) Spatafora & Luangsa-ard, 2017 (Sordariomycetes: Hypocreales: Cordycipitaceae): first report from Western Ghats of India**

– Anjali Rajendra Patil, Snehal Sudhir Biranje, Mahesh Yashwant Borde & Yogesh Sadashiv Patil, Pp. 26715–26720

Calvatia craniiformis (Schwein.) Fr. ex De Toni (Agaricomycetes: Lycoperdaceae): a new puffball mushroom record from eastern India
– Asit Mahato, Pritish Mitra, Sabyasachi Chatterjee & Subrata Raha, Pp. 26721–26726

Rediscovery of the gypsy moth *Lymantria kanara* Collenette, 1951 (Insecta: Lepidoptera: Erebidae) from Kerala, India, after 73 years and its taxonomic redescription
– P.K. Adarsh & Abhilash Peter, Pp. 26727–26730

Nest predation by *Vespa tropica* (Linnaeus, 1758): observational insights into polistine wasp defense and hornet feeding behavior
– Shantan Ojha & Vartika Negi, Pp. 26731–26736

The discovery of a male Malay Crestless Fireback *Lophura erythrophthalma* (Raffles, 1822) (Aves: Galliformes: Phasianidae) at Ulu Sat Forest Reserve, Machang, Kelantan, Peninsular Malaysia
– Ainun Hidayah Wahad, Wan Hafizin Idzni Wan Mohammad Hizam, Muhammad Hamirul Shah Ab Razak, Aainaa Amir, Kamarul Hambali, Hazizi Husain, Mohd Saupi Abdullah, Ehwan Ngadi, Mohamad Arif Iskandar Abdul Wahab & Asrulsani Jambari, Pp. 26737–26740

Notes

New distribution record of *Korthalsia rogersii* Becc, a threatened endemic climbing palm of Andaman archipelago

– Paremmal Sarath, Azhar Ali Ashraf, V.B. Sreekumar, Modhumita Ghosh Dasgupta & Suma Arun Dev, Pp. 26741–26743

Clarifying the nomenclature of Roxburgh's pivotal name *Holigarna racemosa* Roxb. (Anacardiaceae)

– Shruti Kasana, Pp. 26744–26746

First confirmed breeding of Brown Noddy *Anous stolidus* in southeastern India: a new record from Adam's Bridge

– H. Byju, H. Maitreyi, N. Raveendran & D.A. Marshal, Pp. 26747–26749

First record of Painted Stork *Mycteria leucocephala* in Indonesia

– Hasri Abdillah, Iwan Febrianto, Cipto Dwi Handono, Fajar Shiddiq, Febryansah Abdillah Harahap & Muhammad Iqbal, Pp. 26750–26752

New sighting and conservation implications of the endemic Sulu Boobook *Ninox reyi* Oustalet, 1880 at Bolobok Rock Shelter, a key archaeological site in the Sulu Archipelago, southern Philippines

– Fauriza J. Saddari, Yennyrriza T. Abduraup, Adzmer A. Juaini, Roger A. Irlis, Khalid D. Adam, Mary Joyce Z. Guinto-Sali & Richard N. Muallil, Pp. 26753–26756

The occurrence of Glossy Ibis *Plegadis falcinellus* Linnaeus, 1766 (Pelecaniformes: Threskiornithidae) in southern Sumatra, Indonesia

– Muhammad Iqbal, Arum Setiawan, Putri Balqis, Exaudi Beatrice Simanullang, Pormansyah, Selamat Robinsa, Winda Indriati & Indra Yustian, Pp. 26757–26760

Book Review

A whisper of silken wings

– Aparna Sureshchandra Kalawate & Pooja Kumar Misal, Pp. 26761–26762

Publisher & Host

Threatened Taxa