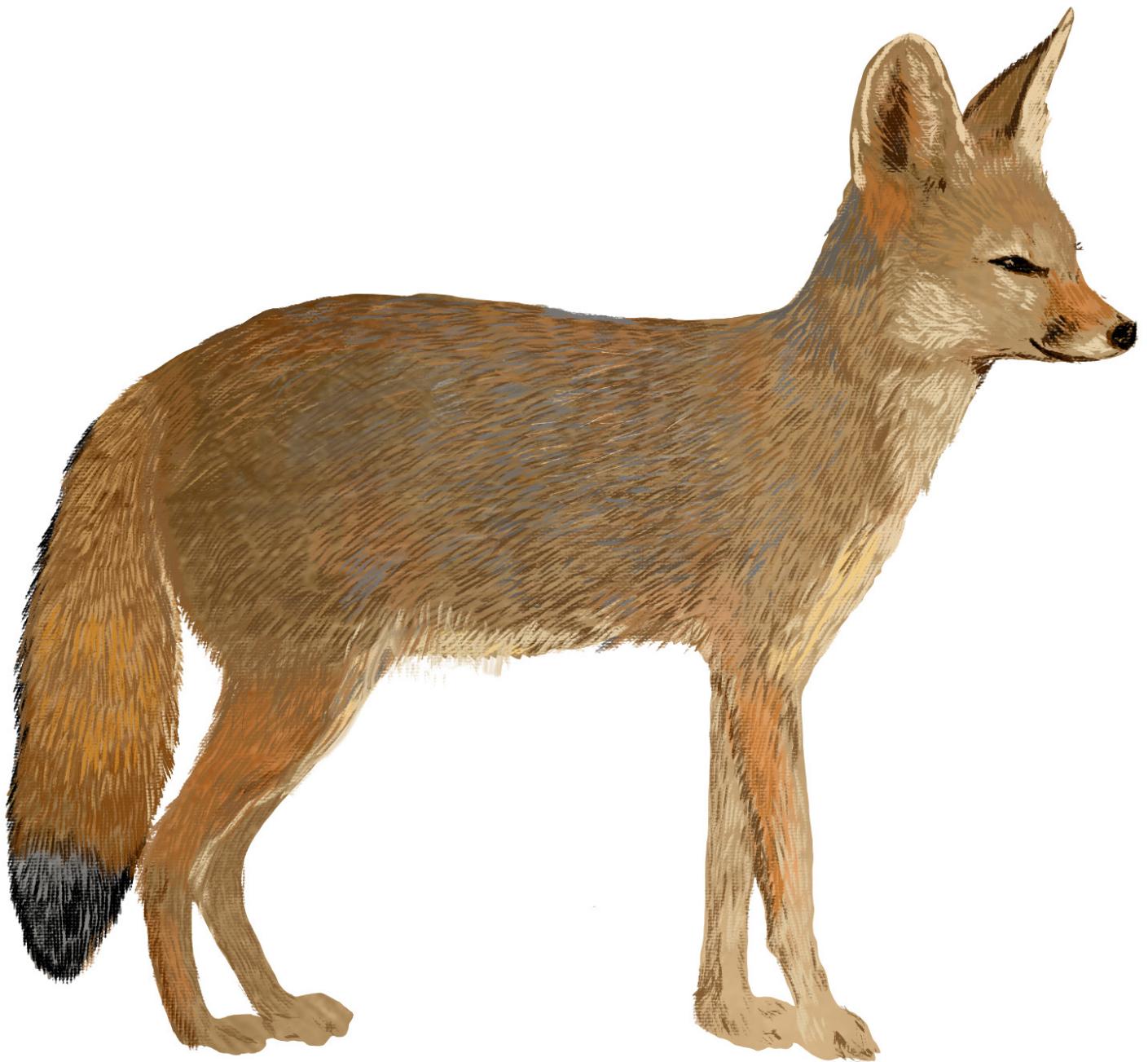


Building evidence for conservation globally

Journal of Threatened TAXA

Open Access

10.11609/jott.2024.16.9.25791-25950


www.threatenedtaxa.org

26 September 2024 (Online & Print)

16(9): 25791-25950

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay MolurWildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Deputy Chief Editor

Dr. Neelesh Dahanukar

Noida, Uttar Pradesh, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India
Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Editorial Board

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNASC, FNAPsyRamanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and
Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary
Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct
Professor, National Institute of Advanced Studies, Bangalore**Stephen D. Nash**Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences
Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA**Dr. Fred Pluthero**

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalia PO, Nilgiris, Tamil Nadu 643223, India

Dr. John FellowesHonorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of
Hong Kong, Pokfulam Road, Hong Kong**Prof. Dr. Mirco Solé**Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador
do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000)
Salobrinho, Ilhéus - Bahia - Brasil**Dr. Rajeev Raghavan**

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors

Mrs. Mira Bhojwani, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhura Stothra Bhashyam**, Hyderabad, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting

Mrs. Radhika, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India

Fundraising/Communications

Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2021–2023

Fungi

Dr. B. Shivaraju, Bengaluru, Karnataka, India
Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India
Dr. Vatsavaya S. Raju, Kakatiya University, Warangal, Andhra Pradesh, India
Dr. M. Krishnappa, Jnana Sahyadri, Kuvempu University, Shimoga, Karnataka, India
Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India
Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India
Dr. Kiran Ramchandra Ranadive, Annasaheb Magar Mahavidyalaya, Maharashtra, India

Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India
Dr. Shonil Bhagwat, Open University and University of Oxford, UK
Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India
Dr. Ferdinand Boero, Università del Salento, Lecce, Italy
Dr. Dale R. Calder, Royal Ontario Museum, Toronto, Ontario, Canada
Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines
Dr. F.B. Vincent Florens, University of Mauritius, Mauritius
Dr. Merlin Franco, Curtin University, Malaysia
Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India
Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India
Dr. Pankaj Kumar, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India
Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India
Dr. Vijayasanchari Raman, University of Mississippi, USA
Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantapur, India
Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India
Dr. Aparna Watve, Pune, Maharashtra, India
Dr. Qiang Liu, Kishuangbanna Tropical Botanical Garden, Yunnan, China
Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
Dr. M.K. Vasudeva Rao, Shiv Ranjani Housing Society, Pune, Maharashtra, India
Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India
Dr. Mander Datar, Agharkar Research Institute, Pune, Maharashtra, India
Dr. M.K. Janarthanan, Goa University, Goa, India
Dr. K. Karthigeyan, Botanical Survey of India, India
Dr. Errol Vela, University of Montpellier, Montpellier, France
Dr. P. Lakshminarasimhan, Botanical Survey of India, Howrah, India
Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA
Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India
Dr. Analinda Manila-Fajard, University of the Philippines Los Baños, Laguna, Philippines
Dr. P.A. Sinu, Central University of Kerala, Kasaragod, Kerala, India
Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India
Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India
Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA
Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India
Dr. A.G. Pandurangan, Thiruvananthapuram, Kerala, India
Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
Dr. Kannan C.S. Warrier, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India
Dr. D.B. Bastawade, Maharashtra, India
Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India
Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India
Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa
Dr. Rory Dow, National Museum of Natural History Naturalis, The Netherlands
Dr. Brian Fisher, California Academy of Sciences, USA
Dr. Richard Gallon, Ilandudno, North Wales, LL30 1UP
Dr. Hemant V. Ghate, Modern College, Pune, India
Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh
Mr. Jatishwar Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Bengal Fox *Vulpes bengalensis*—digital illustration. © Alagu Raj.

Successful establishment of a coral nursery for active reef restoration in Kavaratti Island, Lakshadweep archipelago

C.A. Riyas¹ , K.K. Idreesbabu² , Rajeev Raghavan³ & S. Sureshkumar⁴

¹ Research and Environmental Education Foundation, Agatti Island, UT of Lakshadweep 682553, India.

^{1,2} Department of Science and Technology, Kavaratti Island, UT of Lakshadweep 682553, India.

³ Department of Fisheries Resource Management, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, Kerala 682506, India.

⁴ Faculty of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, Kerala 682506, India.

¹ riyasqua@gmail.com, ² idreesbabu@gmail.com, ³ rajeevraq@hotmail.com, ⁴ suresh@kufos.ac.in (corresponding author)

Abstract: The achievements in successfully establishing coral nurseries using asexually reproduced transplants in Kavaratti Island, Lakshadweep archipelago are presented. During the present study, the survival and growth of 180 fragments of corals fixed on concrete blocks with iron frames laid over a 40 m² area near reefs inside the lagoon of Kavaratti atoll were assessed. Significant differences in growth were observed between acroporid and non-acroporid corals after two years of transplantation. *Acropora muricata* (31.1 ± 0.4 cm) and *Isopora palifera* (15.9 ± 3.4 cm) displayed the highest and lowest growth rates among acroporid corals and *Pocillopora damicornis* (481.9 ± 68.4 cm³) and *Hydnophora microconos* (33.4 ± 15.7 cm³) had the highest and lowest rates, among non-acroporid corals. A diverse fish assemblage comprising 21 species belonging to 10 families was observed at the transplantation site, with *Chromis viridis* and *Dascyllus aruanus* being the dominant species. The success achieved in this study makes it an ideal approach to be used elsewhere in the Lakshadweep archipelago and the wider Indian Ocean region to develop underwater tourism and promote science-based management and restoration of coral reefs.

Keywords: *Acropora*, Arabian Sea, artificial substrate, atoll, coral fragments, coral nursery, coral reef, Indian Ocean, lagoon, transplantation.

Editor: M. Nithyanandan, Kuwait Institute for Scientific Research (KISR), Salmiya, Kuwait.

Date of publication: 26 September 2024 (online & print)

Citation: Riyas, C.A., K.K. Idreesbabu, R. Raghavan & S. Sureshkumar (2024). Successful establishment of a coral nursery for active reef restoration in Kavaratti Island, Lakshadweep archipelago. *Journal of Threatened Taxa* 16(9): 25831–25842. <https://doi.org/10.11609/jott.9078.16.9.25831-25842>

Copyright: © Riyas et al. 2024. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: Department of Science and Technology, Lakshadweep Administration, Government of India, and a grant (Grant-In-Aid General-40). No additional funding specific to this work has been availed from other sources.

Competing interests: The authors declare no known competing financial interests or personal relationships that have appeared to influence the work reported in this paper.

Author details: C.A. RYAS is a marine researcher and conservationist, currently working as a Project Officer at the Department of Science and Technology, Lakshadweep. He is pursuing a PhD in Coral Reef Studies at the Kerala University of Fisheries and Ocean Studies (KUFOS) and is a certified SCUBA diver with over 400 dives. As a founding member of 'REEF', a non-governmental organisation dedicated to marine conservation, Riyas is committed to the preservation of Lakshadweep's ecosystems, with a particular focus on coral reef protection and restoration. His work is integral to advancing marine conservation in the region. K.K. IDREESBABU is a scientist at the Department of Science and Technology, Lakshadweep and holds over two decades of experience in the field. He is notably the first individual from Lakshadweep to earn a PhD in Coral Reef Studies. His research focuses on coral reef conservation, marine biodiversity, and shoreline management, and his efforts in coral reef restoration have received international recognition. Idreesbabu's contributions have been instrumental in promoting sustainable marine conservation practices in the region. RAJEEV RAGHAVAN is an assistant professor at the Kerala University of Fisheries and Ocean Studies, Kochi, India and the South Asia Chair of the IUCN's Freshwater Fish Specialist Group and the IUCN Freshwater Fish Red List Authority Coordinator for Asia and Oceania. His areas of interest include aquatic conservation, fish systematics, molecular ecology, extinction risk assessment and inland fisheries. S. SURESHKUMAR is a professor of Biological Oceanography and currently serves as the Dean at the Kerala University of Fisheries and Ocean Studies, Kochi. With more than 25 years of experience in teaching and research, his expertise spans marine biology, aquatic ecology, coastal processes, and the impacts of climate change. Sureshkumar is also actively involved in academic governance, serving on various academic bodies of Universities in India, and acting as an adjudicator for doctoral theses. His contributions have significantly advanced the understanding of marine and coastal ecosystems of Lakshadweep.

Author contributions: SS and KKI – conceptualisation, design of work and supervision. CAR – Field work, coordination, data collection and manuscript writing. RR, KKI and SS manuscript review, editing and comments.

Acknowledgements: The authors gratefully acknowledge the Department of Environment and Forest, Lakshadweep Administration, for necessary permissions during the study period. Ms Raziya Beegum M.K (Technical Officer), Mr C.N. Mueenudheen, Mr B. Mohammed Nowshad, Ms Mariyambi P.C and Ms Sabrina M for their support in the field; research dive team, Mr Syed Abdulkaloya, Mr Abdu Raheem, Mr Sharafudheen, Mr Ilthuthmish Nasarulla, Mr Saheerali, Mr Kaleel, and Mr Thabsheer of DST, without whom this work could not have been possible.

INTRODUCTION

Despite being of the most spectacular, productive, and biologically diverse marine ecosystems (Odum & Odum 1955; Connell 1978; Moberg & Folke 1999), coral reefs face unprecedented threats from various natural and anthropogenic stressors (Wilkinson 1998; Obura et al. 2022), including deteriorating water quality, destructive fishing methods, over-exploitation of reef fauna, emerging diseases, and climate change (Hoegh-Guldberg 1999; Bellwood et al. 2004; Halpern et al. 2019; Schartup et al. 2019; Issifu et al. 2021). Almost half of the world's coral reef ecosystems are now degraded (IPBES 2019), many reefs in southern Asia, and the Pacific region continue to decline steadily (Burke et al. 2011), and others like the western Indian Ocean region are predicted to have high risk of collapse within the next 50 years (Obura et al. 2022). Additionally, the catch-per-unit effort of coral reef-associated fishes has been declining by 60% since the 1950s, and the capacity of reefs to provide critical ecosystem service declined by 50% during the same period (Eddy et al. 2021). The prospects for coral reef ecosystems and their resources appear bleak in the coming future.

Around the world, damaged coral reef communities recover very slowly, particularly when there are changes in benthic morphology or chronic degradation in prevailing environmental conditions (Roth et al. 2018). The complete recovery of the reef to pre-existing ecological community structure and ecosystem services may extend to hundreds or even thousands of years without active intervention by resource managers (Hein et al. 2020). Despite its limitations and reservations (Omori 2019; Boström-Einarsson et al. 2020), coral reef restoration efforts are accelerating worldwide to offset the rate of reef health declines (Boström-Einarsson et al. 2020; Suggett & van Oppen 2022). The primary objective of coral restoration is to transplant fast-growing and healthy coral fragments, to rebuild dead reefs to their original state, or as nearly as possible to the original state, and thus increase the live coral coverage (Ramesh et al. 2020). Massive corals are also recommended for transplantation due to their lower susceptibility to damage and mortality, which can ultimately produce the habitat required for fish and other coral morphologies (Ammar et al. 2013). While fast-growing corals are ideal candidates for active reef restoration, they are highly susceptible to bleaching-related impacts and mortality. Therefore, any active restoration should focus on both branching and non-branching corals to achieve fruitful results (Ramesh et al. 2020).

The Lakshadweep archipelago, part of the Laccadive-Maldives-Chagos group of islands, comprise 12 atolls, three reefs, five submerged banks, and ten inhabited islands (Kaladharan & Anasukoya 2020). Lakshadweep reefs are the only atolls among the Indian reefs. The coral reefs of this archipelago have been threatened and destroyed by a range of stressors, including regular bleaching events, cyclonic disturbance, and anthropogenic interventions (Riyas et al. 2020). These threats necessitate the development and implementation of active coral restoration programs. In the Lakshadweep archipelago, transplantation of corals can help create habitats that provide alternative livelihoods for the fishing community and, in particular, serve as an ideal management strategy for aquarium fish collectors without damaging prime coral colonies in the reef. The present study aims to develop an effective transplantation method for establishing a coral nursery in the Kavaratti lagoon of the Lakshadweep archipelago, focusing on the use of fast-growing coral species to facilitate the rapid restoration of degraded reefs. Also, it aims to understand the composition and abundance of reef fish assemblages that colonize near the transplantation site based on the growth and survival of transplanted fragments.

MATERIALS AND METHODS

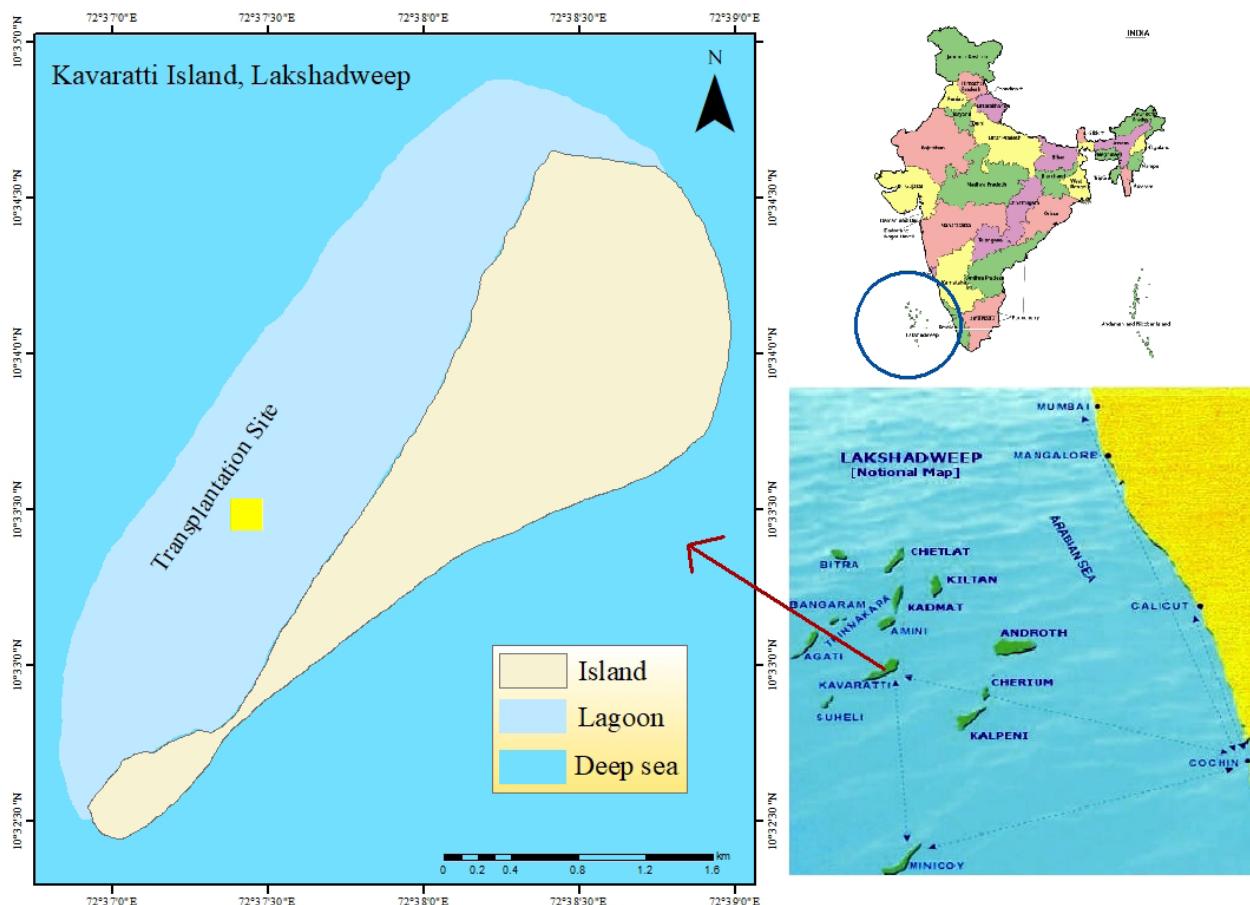
Study site

Kavaratti Island (10.558°N 72.623°E), part of the Lakshadweep archipelago, is located off the southwestern coast of India (Image 1). The area of Kavaratti lagoon is approximately 3.63 km^2 , and most parts of its seabed are covered by coral sand, dead corals, and rubbles, together with well-developed live coral communities near the inner reef slope adjacent to the restoration site. The total cover of the live coral community at Kavaratti Atoll was estimated to be 21.7% (Idreesbabu et al. 2017). The selected location for attempting the restoration experiments is a 2.5-m-deep area within the lagoon of the Kavaratti Atoll, consisting of a sandy bottom (Image 2). The coral fragments were collected from different donor sites or locations of the lagoon including the intertidal zone, inner reef lagoon, and reef crest of the atoll, to obtain different fragments grown in different conditions and locations in the lagoon. The donor sites were approximately 500 m to 2.5 km away from the transplantation site.

Selection of the donor and recipient sites

This restoration effort focused on using indigenous healthy corals found in the shallow lagoons of Kavaratti islands because of their natural resilience to the local environment. The long-term success and resilience of transplanted corals rely heavily on genetic diversity. Accordingly, using donor sites with high genetic diversity is preferable to enable transplanted corals to adjust to changing environmental conditions. Coral species were chosen from the donor site because of their rapid growth and abundance.

The recipient site chosen for the transplantation had environmental conditions with minimal signs of stressors, such as pollution, sedimentation, or overfishing to maximize the survival and growth of the transplanted corals. In the same way, a nearby site that has been damaged by coral fragmentation was also taken into consideration as a potential donor site.


Artificial substrate

Coral nursery units were made of angle bars and iron

mesh ($2 \times 2 \times 0.5$ m). Concrete blocks (25×20 cm) were used as the artificial substrate for coral fixing (Image 3a). To increase the durability of the coral nursery unit and prevent the early onset of rust and corrosion, food-grade epoxy paint was applied and allowed to dry for three days before deployment. A total of 10 iron frames (4 m^2) were arranged at the restoration site.

Coral transplantation

Coral fragments available around the lagoon were used for transplantation, as they were grown in the local environment. Branches of acroporid and non-acroporid corals that naturally grew on artificial substrates, such as concrete structures and buoys in the lagoon, were pruned to obtain coral fragments. Collected coral fragments were transferred underwater using plastic baskets by scuba diving. They were identified up to the species level using an underwater coral finder following Kelley (2009). Selected and sized nubbins were then fixed on rectangular cement blocks using plastic cable ties and these blocks were fixed into the deployed iron

Image 1. Map of the lagoon off Kavaratti Island, Lakshadweep archipelago, India, showing the location (marked in yellow) of the transplantation site.

Image 2. Site selected for coral transplantation in the Kavaratti lagoon, Lakshadweep archipelago (before restoration).

mesh frame. Twenty coral fragments each measuring 7–11 cm in length were fixed in each iron mesh frame. The number of coral fragments, species, and size used at the beginning are provided in Tables 1 and 2. The debris, algae, and sand particles deposited on the transplanted fragments were removed weekly for the first two months and fortnightly thereafter using a soft brush. Survival and growth rates were monitored monthly from January 2016 until January 2018.

Data collection and analysis

The growth rate of the massive corals was reported as colony height (h) in centimeters (cm) and approximate colony volume (V), calculated using a formula $V = r^2h$, of which 'r' was calculated from length (l) and width (w) as $(l^2w)/4$ (Yuchareon et al. 2013). The total growth rate of acroporid coral was measured to the nearest centimeter and compared between species. Seawater temperature was recorded using a Hobo data logger (HOBO Pendant UA-002-64) and the turbidity data was obtained from a data buoy deployed in Kavaratti, as part of a joint initiative by the Department of Science and Technology and the National Institute of Oceanography, Goa. The survival rate was calculated based on the percentage of corals that survived the initial fixing. Survival of coral transplants (expressed as the percentage of the live individuals which survived the initial fixed) was recorded

monthly. Belt transects (Brock 1954) measuring 10 x 5 m which were placed horizontally to the coral restoration site were used to quantify the density of associated fish species. Fish species were identified primarily using Kuiter (2014) and Allen & Steene (2007). Further, the fishes were identified to species-level taxonomy following Fricke et al. (2023).

RESULTS

Growth rates of transplanted corals monitored for two years revealed higher annual values for acroporid, than non-acroporid corals. Growth rate varied widely between species (Tables 1 & 2), with the highest growth rates observed in *Acropora muricata* (31.1 ± 0.4 cm, n = 25), *A. hyacinthus* (21.7 ± 1.5 cm, n = 14) and, *A. gemmifera* (17.5 ± 2.8 cm, n = 10) (Table 1, Figure 1), and lowest growth rates in *Pocillopora damicornis* (481.9 ± 68.4 cm³, n = 12), *P. grandis* (273.12 ± 36.1 cm³, n = 12), and *Echinopora lamellosa* (95.1 ± 21.3 cm³, n = 8) (Table 2, Figure 2). A comparison of the mean initial lengths of the acroporid fragments showed no significant variation ($F = 2.75$; $P > 0.01$) however the final growth showed a significant variation ($F = 162.91$; $P < 0.01$). This denotes variation in the growth of different species selected for the study even though the initial sizes are uniform. In

Table 1. Size (Mean \pm SD) of transplanted acroporid corals in Kavaratti lagoon, Lakshadweep archipelago, after two years (January 2016 until January 2018).

Coral species	Number of fragments (N)	Initial size (cm)	Size after two years (cm)	Growth rate (cm/2years)
<i>Acropora austera</i>	15	7.64 \pm 1.2	24.7 \pm 0.9	17.08 \pm 1.04
<i>Acropora digitifera</i>	15	7.3 \pm 0.9	23.9 \pm 0.8	16.6 \pm 1.3
<i>Acropora gemmifera</i>	10	7.7 \pm 2.9	25.2 \pm 2.8	17.5 \pm 2.8
<i>Acropora hyacinthus</i>	14	9 \pm 1.5	30.6 \pm 1.6	21.7 \pm 1.5
<i>Acropora muricata</i>	25	8.2 \pm 2.6	39.3 \pm 2.7	31.1 \pm 0.45
<i>Acropora tenuis</i>	11	6.53 \pm 0.7	22.6 \pm 0.5	16.22 \pm 0.6
<i>Isopora palifera</i>	10	9.4 \pm 2.5	25.3 \pm 3	15.9 \pm 3.4

Table 2. Volume (Mean \pm SD) of transplanted non-acroporid corals in Kavaratti Lagoon, Lakshadweep archipelago, after two years (January 2016 until January 2018).

Coral species	Number of fragments (N)	Initial volume (cm ³)	Volume after 2 years (cm ³)	Growth rate (cm ³ /2years)
<i>Echinopora lamellosa</i>	8	18.6 \pm 8.9	113.7 \pm 50.5	95.1 \pm 21.3
<i>Gardineroseris planulata</i>	8	8.8 \pm 1.2	42.5 \pm 29.3	33.7 \pm 11.5
<i>Hydnophora microconos</i>	8	29.5 \pm 8.6	62.9 \pm 27.7	33.4 \pm 15.7
<i>Lobophyllia hemprichii</i>	10	33.6 \pm 19.8	68.8 \pm 29.1	35.2 \pm 9.5
<i>Platygyra daedalea</i>	12	24.1 \pm 9.9	61.99 \pm 31.2	37.89 \pm 14.9
<i>Pocillopora damicornis</i>	12	20.04 \pm 11.5	502.008 \pm 115.9	481.9 \pm 68.4
<i>Pocillopora grandis</i>	12	29.2 \pm 13.8	302.321 \pm 53.36	273.12 \pm 36.1
<i>Porites lobata</i>	10	15.7 \pm 11.9	49.2 \pm 36.2	33.5 \pm 23.5

non-acroporids, the initial nubbins taken significantly varied in volume ($F = 6.06$; $P < 0.01$), and the final growth of the fragments also varied significantly ($F = 372.82$; $P < 0.01$).

During the study period, water temperature (Figure 3) varied between 25.9°C (in August 2018) and 31.6°C (in May 2016), and turbidity (Figure 4) between 0.6 NTU (in February 2018) and 6.3 NTU (in July 2018).

The underwater visual census showed the presence of a diverse fish assemblage at the transplantation site, with around 21 species belonging to 10 families. The major families of fish represented at the transplantation site included Acanthuridae, Balistidae, Chaetodontidae, Holocentridae, Labridae, Monacanthidae, Pomacentridae, Scorpidae, Serranidae, and Zanclidae (Table 3). The numbers of *Chromis viridis* and *Dascyllus aruanus* were higher than other species, suggesting that the transplantation site acts as a good spawning ground, as *Pocillopora* sp. and *Acropora* sp. were preferred as a breeding space. The health of the transplanted corals could also be ascertained from the occurrence of coral-feeding fishes of the genus *Chaetodon* and herbivorous fishes such as those belonging to the family Acanthuridae. The results indicated that fish diversity

varied based on the nature of the benthic substrate at the transplantation site, the species composition of the corals, as well as the dietary preferences of the fish.

DISCUSSION

Scientific transplantation, the most expensive and effective method for coral rehabilitation, has been extensively applied as a management option in many countries of the world (Rinkevich 2005; Ferse 2010; Garrison & Ward 2012), while research on coral restoration have been carried out in more than 56 countries (Boström-Einarsson et al. 2020). Most projects on coral restoration are conducted in the USA, Philippines, Indonesia and Thailand, with the majority of these involving coral fragmentation, or transplantation of coral fragments (Boström-Einarsson et al. 2020). These restoration programs have successfully accelerated the recovery of degraded coral reefs due to natural and anthropogenic disturbances. However, they are limited to particular environmental conditions such as substrate type, sexual recruits and sheltered zones (Edwards & Gomez 2007; Edwards 2010; Rinkevich 2014). Different

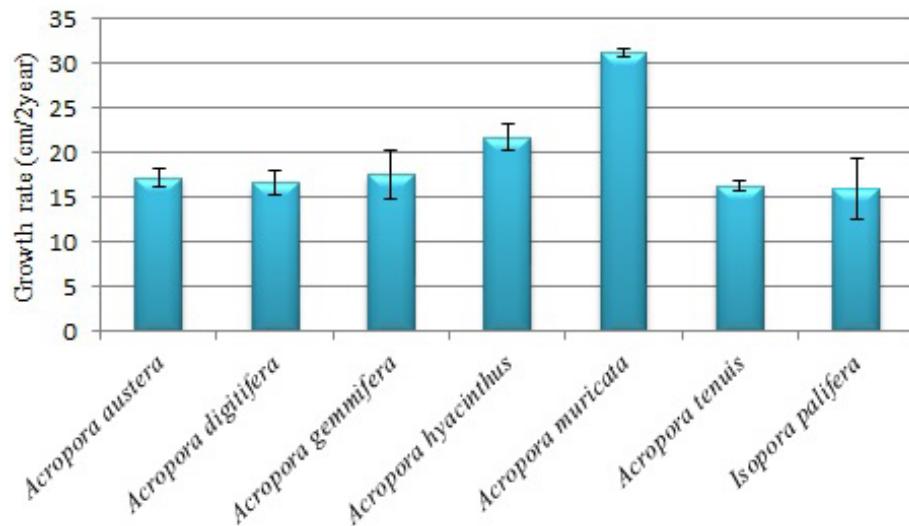


Figure 1. Growth rates observed in transplanted acroporid corals in the Kavaratti lagoon, Lakshadweep archipelago, after two years (January 2016 until January 2018).

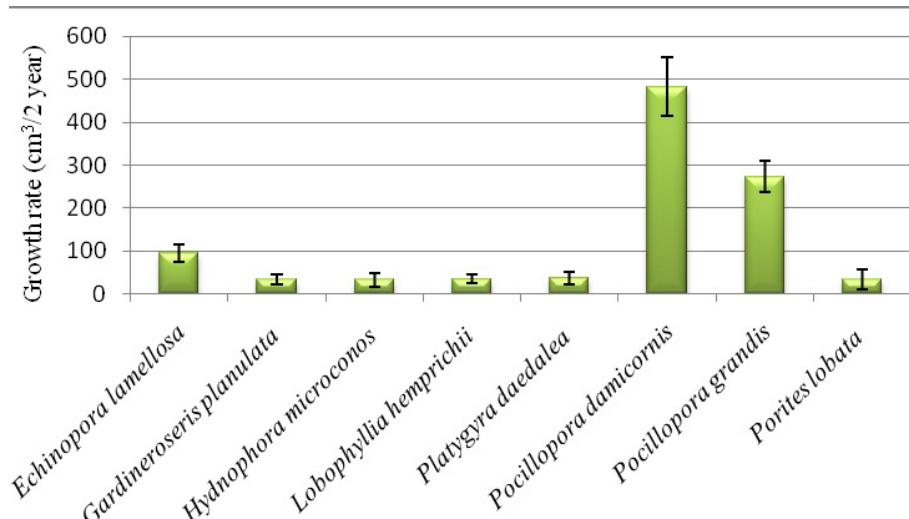
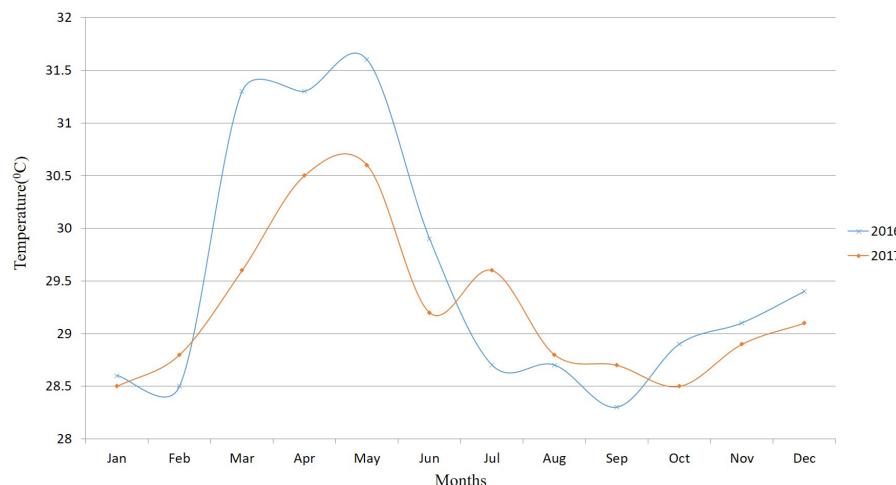
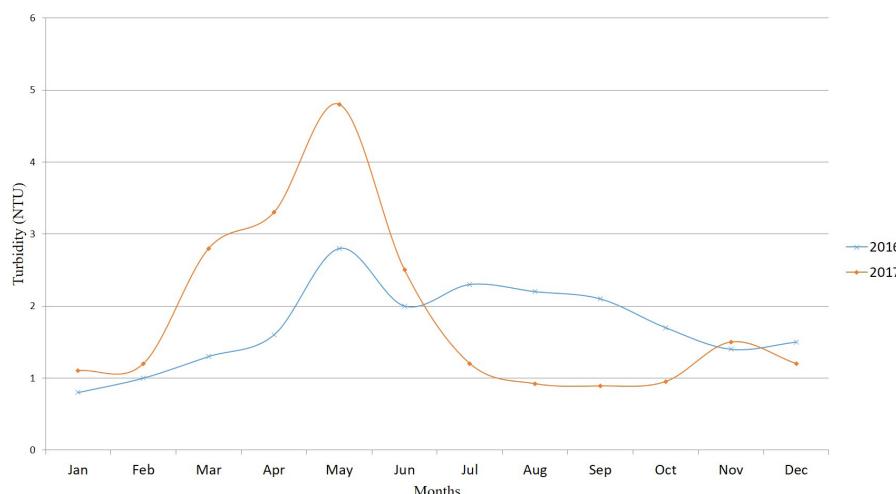



Figure 2. Growth rates observed in transplanted non-acroporid corals in the Kavaratti Lagoon, Lakshadweep archipelago, after two years (January 2016 until January 2018).


countries have developed many alternative techniques over the last few decades, which involve directly fixing coral colonies and fragments onto a reef substrate, which is the most commonly practiced technique (Boström-Einarsson et al. 2020). Although the coral fragment technique used for coral restoration is common worldwide, this study is unique in that it has used such a large number of coral nubbins with long-term monitoring for the first time through the Department of Science and Technology, Lakshadweep Administration.

All transplanted coral species in the present study showed reasonable growth rates, and an ability to self-attach to concrete blocks and augmented polyps

within the lagoon. Between the groups, acroporid corals displayed a faster growth rate than non-acroporid corals, suggesting that fast-growing acroporid corals are more favourable for providing quick coral reef ecosystem services. The structural morphology of *Acropora* facilitates the provision of food, shelter, and breeding sites for many organisms in the marine ecosystem, and plays a critical overall role in creating a healthy ecosystem in the sea, as well as in the formations of islands, and for coastal protection (Bruckner 2002). It is for these reasons that most global restoration projects focus on fast-growing, branching, acroporid corals (Boström-Einarsson et al. 2020).

Figure 3. Sea water temperature (°C) around the transplantation site in Kavaratti Lagoon, Lakshadweep archipelago, from January 2016 until December 2018

Figure 4. Turbidity around the transplantation site in Kavaratti Lagoon, Lakshadweep archipelago, from January 2016 until December 2018

Growth rates of coral in the present study are considered high compared to those observed in the Red Sea, and Pacific (Lizcano-Sandoval et al. 2018; Mahmoud et al. 2019). Varying growth rates have been reported for corals from many parts of the world, for example, coral Davis reef (0.67 cm/month; Oliver et al. 1983), Solitary Islands (0.80 mm/month; Harriott 1999), Thailand (0.28 cm/month; Putchim et al. 2008), Maldives (0.48 cm/month, Clark & Edwards 1995), and Gulf of Kachchh, India (0.33 cm/month; Kumar et al. 2016), Gulf of Mannar, India (0.79 cm/month; Ramesh et al. 2020). Idreesbabu et al. (2017) first studied the restoration of corals in the Lakshadweep archipelago and observed a mean growth of 14.85 cm/year for *Acropora muricata*, which was relatively lower than those observed in the present study (i.e., 15.55 cm/year). The comparatively

higher growth rate obtained during the present study could be due to the better management and conducive physicochemical parameters prevalent in the region (Davidson et al. 2019).

The global mean survival rate of restored corals is 66% (Boström-Einarsson et al. 2020), with survival depending on various factors. Survival rates across all nursery fragments in our study ranged from 64% to 99%. Acroporid corals showed higher survival rates (between 90% and 99%) compared to non-acroporid corals (between 64% and 89%) indicating an improved survival rate compared to the global average (Figure 5). Our results reveal a higher success rate of transplantation efforts and good health of transplanted corals even after two years. This high survival is likely due to the size of coral fragments and coral species capable of

Image 3. A—Iron mesh with transplanted coral fragments deployed in the lagoon bed at Kavaratti, Lakshadweep archipelago | B—Secretion and deposition of CaCO_3 by *Acropora muricata* on cement slabs | C—Fish aggregation in the transplantation site | D—Well-developed coral colonies in the transplantation site after two years.

resisting environmental factors used for transplantation. Fragment size is a critical parameter to consider in reef restoration, as it influences the survival and growth of a coral transplant in the new environment (Sam et al. 2021). The initial size of the coral fragments used in our study ranged from 7 cm to 11 cm. Perhaps, the high survival rate obtained in this study indicates that we have used the optimal size of coral fragments for transplantation, as observed previously (Shafir et al. 2010).

Our study also highlights that successful coral transplantation depends on the selected species, and other key environmental factors, such as temperature and turbidity at the study site. In the Lakshadweep archipelago, the sea surface temperature usually increases between the summer months of March and May (Shenoi et al. 1999). In our study, the water temperature showed an increasing trend from March to May, with a gradual decline from the last week of May, due to the onset of the monsoon showers (Figure

3). Turbidity rates at the study sites increased from April and extended till August, mostly due to high wave action, high precipitation and water runoff during the monsoon. The data obtained from the ongoing coral reef monitoring program of Department of Science and Technology, shows that salinity, pH and dissolved oxygen (DO) in Kavaratti Island ranged 31.44–37.81 psu, 7.90–8.40, 3.02–4.88 ppm with average values of 35.14 psu, 8.18, and 3.94 ppm, respectively, which may also have influenced the coral transplantation. Physical parameters such as temperature, salinity, water motion, sedimentation and turbidity also influence the survival of transplanted coral, and reef health (Yap et al. 1998; Ferrier-Pages et al. 1999; Mohamed & Mohamed 2005; Ramesh et al. 2019; Howlett et al. 2021)

The diverse fish population at the transplantation site indicates that the 'site' mimics conditions on a natural reef (Rilov & Benayahu 2000), and offers a habitat which not only constitutes a shelter, but also acts as a potential breeding ground for fishes and other marine

Figure 5. Percentage survival of various coral species in the transplantation site in Kavaratti lagoon, Lakshadweep archipelago, after two years.

Table 3. List of fish species observed at the coral transplantation site in Kavaratti Lagoon, Lakshadweep archipelago, and their numbers.

Family	Species	Number of fishes
Acanthuridae	<i>Acanthurus triostegus</i>	5
	<i>Ctenochaetus striatus</i>	20
Balistidae	<i>Rhinecanthus aculeatus</i>	2
Chaetodontidae	<i>Chaetodon trifascialis</i>	4
	<i>Chaetodon auriga</i>	2
	<i>Chaetodon trifasciatus</i>	10
	<i>Chaetodon falcata</i>	2
Holocentridae	<i>Sargocentron diadema</i>	3
	<i>Neoniphon sammara</i>	6
Labridae	<i>Thalassoma lunare</i>	2
	<i>Halichoeres scapularis</i>	5
	<i>Gomphosus varius</i>	2
Monacanthidae	<i>Labroides dimidiatus</i>	2
	<i>Oxymonacanthus longirostris</i>	3
Pomacentridae	<i>Chromis viridis</i>	415
	<i>Dascyllus aruanus</i>	30
	<i>Chrysiptera unimaculata</i>	5
	<i>Centropyge multispinis</i>	2
Scorpaenidae	<i>Pterois volitans</i>	4
Serranidae	<i>Epinephelus hexagonatus</i>	2
Zanclidae	<i>Zanclus cornutus</i>	2

organisms (Ulfah et al. 2020). Breeding habitats in the transplantation site were preferred for live baits such as *Chromis viridis* and *Dascyllus aruanus*, particularly among the branching coral of *Acropora* and *Pocillopora*. Populations of *Chromis viridis* and *Dascyllus aruanus* were higher than those of other fish species, indicating that the transplanted site serves as their favorable spawning ground (Goren 1992). As a fundamental objective, coral restoration targeted at reef recovery should consider re-establishing breeding populations of corals (Cruz & Harrison 2017).

Furthermore, an array of reef fishes consistently inhabits the transplantation site, which functions as a significant feeding area. This phenomenon can be attributed to the presence of diverse marine organisms including sponges, molluscs, and algae within the transplantation site. Consequently, numerous fish species reliant on these organisms for sustenance and other essential requirements are known to establish their habitats within this area. At the transplantation site, initial sightings included fish species from the family Labridae, such as *Thalassoma lunare* and *Halichoeres scapularis*. Labrids are invertebrate-eating fish species that are often found looking for food in concrete cracks or substrate surfaces. Similarly, herbivorous fish from the family Acanthuridae were observed throughout the transplantation site, exhibiting greater abundance

during the initial stages of transplantation. These fish primarily feed on algae present within the site and are frequently encountered close to transplantation sites. Acanthuridae contributes to a certain extent in mitigating algae proliferation, thus aiding in the facilitation of coral growth during the initial stages of transplantation. The abundance of herbivorous fish is a good indicator of a healthy reef (Abelson et al. 2016). Pomacentridae was another major family that had a high abundance in the transplantation site. Fishes of family Pomacentridae including *Chromis viridis* and *Dascyllus aruanus*, were predominantly observed following the establishment of branching corals such as *Acropora*. This trend can be attributed to the feeding behaviour of these fish, which utilize the water column for foraging, and seek refuge within coral reefs to evade attacks from carnivorous fish (Kuiter & Tonozuka 2001). The families Chaetodontidae, Balistidae, and Scorpaenidae were observed during the later stage of transplantation. The live coral cover condition at each age of transplantation shows the differences in the reef fish species community (Ulfah et al. 2020). This fish aggregation could also attract visitors and researchers to this location and highlight the importance of artificial reefs for marine restoration.

Coral transplantation tool can also be applied for underwater tourism while promoting a science-based coral reef management option for coral restoration (Edwards & Clark 1999). Transplantation of corals are also suggested to provide alternative livelihood (Young et al. 2012) for the fishing community (Bowden-Kerby 2003) as they depend on this site for the collection of live bait for tuna fishing and spearfishing during the southwest monsoon in this atoll. The transplantation site can, directly and indirectly, reduce the pressure on fragile natural coral growth through substitute aquaculture, community-based ecotourism, and increased environmental education, awareness and community stakeholder associations. The technique described in the article can easily be transferred to local communities, and imparting training to the fishers can be adopted using local expertise. Therefore, it is suggested that the development of coral transplantation sites can influence ecosystem services and indirectly benefit the livelihood of the fishing community. Therefore, the implementation of the coral restoration programme in all the islands of Lakshadweep is recommended for improved ecosystem services and enhanced livelihood opportunities.

CONCLUSION

The coral transplantation on artificial substrates in the shallow lagoon off the Lakshadweep archipelago has shown promising results in establishing a coral nursery, promoting coral growth and providing a habitat for marine life. The establishment of a coral nursery has led to increased fish aggregation, contributing to enhanced biodiversity and ecosystem resilience. These findings highlight the potential of this restoration technique as a valuable tool in reef conservation efforts for vulnerable ecosystems such as those found in the Lakshadweep archipelago. However, the use of artificial substrates instead of transplanting corals directly onto degraded reefs may present certain limitations, such as differences in the ecological interactions between the artificial and natural environments, potential changes in the structural complexity, and the long-term stability and durability of the artificial substrates. Additionally, the artificial substrates may not fully replicate the conditions necessary for the growth and survival of certain coral species. Continued monitoring and research are essential to assess the long-term effectiveness and sustainability of this approach.

REFERENCES

Abelson, A., U. Obolski, P. Regoniel & L. Hadany (2016). Restocking herbivorous fish populations as a social-ecological restoration tool in coral reefs. *Frontiers in Marine Science* 3: 138. <https://doi.org/10.3389/fmars.2016.00138>

Allen, G.R. & R. Steene (2007). *Indo-Pacific Coral Reef Field Guide*. Tropical Reef Research. Ecology Progress Series 15: 265–274

Ammar, M.S.A., F.A.H.M.Y. El-Gammal, M. Nassar, A. Belal, W. Farag, G. El-Mesiry & A. Shaaban (2013). Current trends in coral transplantation an approach to preserve biodiversity. *Biodiversitas Journal of Biological Diversity* 14(1): 43–53. <https://doi.org/10.13057/biodiv/d140107>

Bellwood, D.R., T.P. Hughes, C. Folke & M. Nystrom (2004). Confronting the coral reef crisis. *Nature* 429: 827–833. <https://doi.org/10.1038/nature02691>

Boström-Einarsson, L., R.C. Babcock, E. Bayraktarov, D. Ceccarelli, N. Cook, S.C. Ferse & I.M. McLeod (2020). Coral restoration– a systematic review of current methods, successes, failures and future directions. *PLoS ONE* 15(1): e0226631. <https://doi.org/10.1371/journal.pone.0226631>

Bowden-Kerby, A. (2003). Coral transplantation and restocking to accelerate the recovery of coral reef habitats and fisheries resources within no-take marine protected areas: hands-on approaches to support community-based coral reef management 1–15.

Brock, V.E. (1954). A preliminary report on a method of estimating reef fish populations. *Journal of Wildlife Management* 18: 297–308.

Bruckner, A.W. (2002). Proceedings of the Caribbean *Acropora* workshop: potential application of the United States Endangered Species Act as a Conservation Strategy. *National Oceanic and Atmospheric Administration Technical Memorandum National Marine Fisheries Service – Office of Protected Resources* - 24 Silver Spring, MD 184 pp.

Burke, L., K. Reydar, M. Spalding & A. Perry (2011). *Reefs at Risk Revisited*. World Resources Institute, Washington DC, 72 pp.

Clark, S. & A.J. Edwards (1995). Coral transplantation as an aid to reef rehabilitation: evaluation of a case study in the Maldives Islands. *Coral Reefs* 14: 201–213. <https://doi.org/10.1007/BF00334342>

Connell, J.H. (1978). Diversity in tropical rain forests and coral reefs. *Science* 199(4335): 1302–1310. <https://doi.org/10.1126/science.199.4335.1302>

Cruz dela, D.W & P.L. Harrison (2017). Enhanced larval supply and recruitment can replenish reef corals on degraded reefs. *Scientific Reports*. Springer 7: 1–13. <https://doi.org/10.1038/s41598-016-0028-x>

Davidson, J., A. Thompson, M. Logan & B. Schaffelke (2019). High spatio-temporal variability in Acroporidae settlement to inshore reefs of the Great Barrier Reef. *PLoS ONE* 14(1): e0209771. <https://doi.org/10.1371/journal.pone.0209771>

Eddy, T.D., V.W. Lam, G. Reygondeau, A.M. Cisneros-Montemayor, K. Greer, M.L.D. Palomares, J.F. Bruno, Y. Ota & W.W. Cheung (2021). Global decline in capacity of coral reefs to provide ecosystem services. *One Earth* 4(9): 1278–1285. <https://doi.org/10.1016/j.oneear.2021.08.016>

Edwards, A.J. & S. Clark (1999). Coral transplantation: a useful management tool or misguided meddling?. *Marine Pollution Bulletin* 37(8–12): 474–487. [https://doi.org/10.1016/S0025-326X\(99\)00145-9](https://doi.org/10.1016/S0025-326X(99)00145-9)

Edwards, A.J. & E.D. Gomez (2007). Reef restoration concepts and guidelines: making sensible management choices in the face of uncertainty, pp. 10–24. In: *Coral Reef Targeted Research and Capacity Building for Management Program*. St. Lucia, Queensland, Australia, 38 pp.

Edwards, A.J. (2010). *Reef Rehabilitation Manual*. The Coral Reef Targeted Research and capacity building for management program, Queensland, Australia, 166 pp.

Ferse, S.C. (2010). Poor performance of corals transplanted onto substrates of short durability. *Restoration Ecology* 18(4): 399–407. <https://doi.org/10.1111/j.1526-100X.2010.00682.x>

Ferrier-Pages, C., J.P. Gattuso & J. Jaubert (1999). Effect of small variations in salinity on the rates of photosynthesis and respiration of the zooxanthellate coral *Stylophora pistillata*. *Marine Ecology Progress Series* 181: 309–314. <https://doi.org/10.3354/meps181309>

Fricke, R., W.N. Eschmeyer & R. van der Laan (eds.) (2023). Eschmeyer's Catalogue of Fishes. 15.02.2023 <http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp>

Garrison, V.H. & G. Ward (2012). Transplantation of storm-generated coral fragments to enhance Caribbean coral reefs: a successful method but not a solution. *Revista de Biología Tropical* 60(S1): 59–70. <https://doi.org/10.15517/rbt.v60i0.19845>

Goren, R. (1992). Benthic communities on artificial substrata at Eilat (Red Sea). M.Sc. Thesis. Tel-Aviv University, Tel-Aviv (in Hebrew, English summary).

Halpern, B.S., M. Frazier, J. Afflerbach, J.S. Lowndes, F. Micheli & C. O'Hara (2019). Recent pace of change in human impact on the world's ocean. *Science Reporter* 9(1): 11609. <https://doi.org/10.1038/s41598-019-47201-9>

Harriott, V.J. (1999). Coral growth in subtropical eastern Australia. *Coral Reefs* 18: 281–291. <https://doi.org/10.1007/s003380050195>

Hein, M.Y., I.M. McLeod, E.C. Shaver, T. Vardi, S. Pioch, Boström-Einarsson, M. Ahmed & G. Grimsditch (2020). Coral Reef Restoration as a strategy to improve ecosystem services: a guide to coral restoration methods. Nairobi, Kenya: United Nations Environment Programme, 72 pp. <https://doi.org/10.3389/fmars.2021.618303>

Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world's coral reefs. *Marine and Freshwater Research* 50: 839–866. <https://doi.org/10.1071/MF99078>

Howlett, L., E.F. Camp, J. Edmondson, N. Henderson & D.J. Suggett (2021). Coral growth, survivorship and return-on-effort within nurseries at high-value sites on the Great Barrier Reef. *PLoS ONE* 16(1): e0244961. <https://doi.org/10.1371/journal.pone.0244961>

Idreesabu, K.K., C.A. Riyas, M.K.R. Beegum, B. Meena, M.P.I. Nasarulla & T.M. Sharafudheen (2017). Annual Report. Intensification and Developing Reef Restoration Technology. Department of Science & Technology, Administration of Union Territory of Lakshadweep, 66 pp.

IPBES, W. (2019). Intergovernmental science-policy platform on biodiversity and ecosystem services. Summary for Policy Makers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES Secretariat, Bonn, Germany.

Issifu, I., J.J. Alava, V.W. Lam & U.R. Sumaila (2021). Impact of ocean warming, overfishing and mercury on European fisheries: a risk assessment and policy solution framework. *Frontiers in Marine Science* 8: 770805. <https://doi.org/10.3389/fmars.2021.770805>

Kaladharan, P. & A. Anasukoya (2020). Plastic pollution in the islands of Laccadive archipelago and its possible impact on the atoll ecosystem. *Journal of the Marine Biological Association of India* 62(1): 119–122. <https://doi.org/10.6024/jmbai.2020.62.1.2159-0x>

Kelley, R. (2009). *Coral Finder: Indo-Pacific Underwater Identification Guide*. BYOGUIDES, Townsville, Australia, 30 pp.

Kuiter, R.H. (2014). *Fishes of the Maldives: Indian Ocean*, Cairns, Atoll Editions, Australia, 296 pp.

Kuiter, R.H. & T. Tonozuka (2001). *Pictorial Guide to Indonesian Reef Fishes*. Zootetics, Seaford, Australia.

Kumar, J.S.Y., C. Satyanarayana, K. Venkataraman & K. Chandra (2017). Studies on survival and growth rate of transplanted Acroporidae in Gulf of Kachchh Marine National Park, India. *Journal of Coastal Conservation* 21(1): 23–34. <https://doi.org/10.1007/s11852-016-0465-5>

Lizcano-Sandoval, L.D., E. Londono-Cruz & F.A. Zapata (2018). Growth and survival of *Pocillopora damicornis* (Scleractinia: Pocilloporidae) coral fragments and their potential for coral reef restoration in the tropical eastern Pacific. *Marine Biology Research* 14(8): 887–897. <https://doi.org/10.1080/17451000.2018.1528011>

Mahmoud, A.M., A.D. Mahmoud, N.M. Hussein, M. El-Metwally, M.M. Maaty, Omar, M.Y. Seraj & T. Mohammed (2019). Survivorship and growth rates for some transplanted coral reef building species and their potential for coral reef rehabilitation in the Red Sea. *Egyptian Journal of Aquatic Biology and Fisheries* 23(2): 183–193. <https://doi.org/10.21608/EJABF.2019.30291>

Moberg, F. & C. Folke (1999). Ecological goods and services of coral reef ecosystems. *Ecological Economics* 29(2): 215–233. [https://doi.org/10.1016/S0921-8009\(99\)00009-9](https://doi.org/10.1016/S0921-8009(99)00009-9)

Mohamed, T.A.A. & A.M. Mohamed (2005). Some ecological factors affecting coral reef assemblages off Hurghada, Red Sea, Egypt. *Egyptian Journal of Aquatic Research* 31: 133–145

Obura, D., M. Gudka, M. Samoilys, K. Osuka, J. Mbugua, D.A. Keith, S. Porter, R. Roche, R. van Hooidonk, S. Ahamada, A. Araman, J. Karisa, J. Komakoma, M. Madi, I. Ravinia, H. Razafindrainibe, S. Yahya & F. Zivane (2022). Vulnerability to collapse of coral reef ecosystems in the western Indian Ocean. *Nature Sustainability* 5(2): 104–113. <https://doi.org/10.1038/s41893-021-00817-0>

Odum, H.T. & E.P. Odum (1955). Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. *Ecological Monographs* 25(3): 291–320. <https://doi.org/10.2307/1943285>

Oliver, J.K., B.E. Chalker & W.C. Dunlap (1983). Bathymetric adaptations of reef building corals at Davies Reef, Great Barrier Reef, Australia. Long-term growth-responses of *Acropora formosa* (Dana, 1846). *Journal of Experimental Marine Biology and Ecology* 73: 11–35. [https://doi.org/10.1016/0022-0981\(83\)90003-5](https://doi.org/10.1016/0022-0981(83)90003-5)

Omori, M. (2019). Coral restoration research and technical developments: what we have learned so far. *Marine Biology Research* 15(7): 377–409. <https://doi.org/10.1080/17451000.2019.1662050>

Putchim, L., N. Thongtham, A. Hewett & H. Chansang (2008). Survival and growth of *Acropora* sp. in mid-water nursery and after transplantation at Phi Phi Islands, Andaman Sea, Thailand. Proceeding of the 11th International Coral Reef Symposium, Ft. Lauderdale, Florida, 7–11 July 2008 Session No. 24. 1258–1261.

Ramesh, C.H., S. Koushik, T. Shunmugaraj & M.V.R. Murthy (2019). Factors Affecting Coral Reefs in Mandapam Group of Islands in Gulf of Mannar, India. *Journal of Wildlife Research* 7(02): 16–22.

Ramesh, C.H., S. Koushik, T. Shunmugaraj & M.V.R. Murthy (2020). Seasonal studies on in situ coral transplantation in the Gulf of Mannar Marine Biosphere Reserve, southeast coast of Tamil Nadu, India. *Ecological Engineering* 152–105884. <https://doi.org/10.1016/j.ecoleng.2020.105884>

Rilov, G. & Y. Benayahu (2000). Fish assemblage on natural versus vertical artificial reefs: the rehabilitation perspective. *Marine Biology* 136(5): 931–942. <https://doi.org/10.1007/s002279900250>

Rinkevich, B. (2005). Conservation of coral reefs through active restoration measures: recent approaches and last decade progress. *Environmental Science & Technology* 39(12): 4333–4342. <https://doi.org/10.1021/es0482583>

Rinkevich, B. (2014). Rebuilding coral reefs: does active reef restoration lead to sustainable reefs? *Current Opinion in Environmental Sustainability* 7: 28–36. <https://doi.org/10.1016/j.cosust.2013.11.018>

Riyas, C.A., K.K. Idreesbabu, N. Marimuthu & S. Sureshkumar (2019). Impact of the Tropical Cyclone Ockhi on ecological and geomorphological structures of the small low-lying Islands in the central Indian Ocean. *Regional Studies in Marine Science* 33: 100963. <https://doi.org/10.1016/j.rsma.2019.100963>

Roth, F., F. Saalmann, T. Thomson, D.J. Coker, R. Villalobos, B.H. Jones, C. Wild & S. Carvalho (2018). Coral reef degradation affects the potential for reef recovery after disturbance. *Marine Environmental Research* (142): 48–58. <https://doi.org/10.1016/j.marenres.2018.09.022>

Sam, S.Q., C.S.L. Ng, Y.P. Kikuzawa, T.C. Toh, W.T. Sim & L.M. Chou (2021). Influence of fragment size on post transplantation growth and survival of domed scleractinian corals. *Marine Biology Research* 17(4): 327–340. <https://doi.org/10.1080/17451000.2021.1957934>

Schartup, A., C. Thackray, A. Qureshi, C. Dassuncao, K. Gillespie & A. Hanke (2019). Climate change and overfishing increase neurotoxicant in marine predators. *Nature* 572: 648–650. <https://doi.org/10.1038/s41586-019-1468-9>

Shafir, S., A. Edwards, B. Rinkevich, L. Bongiorni, G. Levy & L. Shaish (2010). Constructing and managing nurseries for asexual rearing of corals, pp. 49–71. In: Edwards, A. (Ed.). *Reef Rehabilitation manual*. Coral reef targeted research & capacity building for management program. St. Lucia, Australia.

Shenoi, S.S.C., D. Shankar & S.R. Shetye (1999). On the sea surface temperature high in the Lakshadweep Sea before the onset of the southwest monsoon. *Journal of Geophysical Research: Oceans* 104(C7): 15703–15712. <https://doi.org/10.1029/1998JC900080>

Suggett, D.J. & M.J. van Oppen (2022). Horizon scan of rapidly advancing coral restoration approaches for 21st century reef management. *Emerging Topics in Life Sciences* 6(1): 125–136. <https://doi.org/10.1042/ETLS20210240>

Ulfah, I., S. Yusuf, R.A. Rappe, A. Bahar, A. Haris, J. Tresnati & A. Tuwo (2020). Coral conditions and reef fish presence in the coral transplantation area on Kapoposang Island, Pangkep Regency, South Sulawesi. In: IOP Conference Series: *Earth and Environmental Science* 473(1): 012058. IOP Publishing. <https://doi.org/10.1088/1755-1315/473/1/012058>

Wilkinson, C.R. (1998). *Status of Coral Reefs of the World*. Australian Institute of Marine Sciences, Cape Ferguson, Queensland, western Australia, 184 pp.

Yap, H.T., R.M. Alvarez, H.M. Custodio III & R.M. Dizon (1998). Physiological and ecological aspects of coral transplantation. *Journal of Experimental Marine Biology and Ecology* 229(1): 69–84. [https://doi.org/10.1016/S0022-0981\(98\)00041-0](https://doi.org/10.1016/S0022-0981(98)00041-0)

Young, C.N., S.A. Schopmeyer & D. Lirman (2012). A Review of reef restoration and coral propagation using the threatened genus *Acropora* in the Caribbean and western Atlantic. *Bulletin of Marine Science* 88: 1075–1098. <https://doi.org/10.5343/bms.2011.1143>

Yuchareon, M., S. Thammachote, A. Jaroenpon, S. Lamka & N.Thongtham (2013). Coral transplantation in turbid waters at Rad Island, Phuket, Thailand. *Galaxea Journal of Coral Reef Studies* 15(Supplement): 343–350. <https://doi.org/10.3755/galaxea.15.343>

Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lionel Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kuri R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith W. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dubai, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:

The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Articles

Feeding dynamics of sympatric large carnivores in an anthropogenic landscape of the Indian Terai

– Vivek Ranjan, Syed Ainul Hussain, Ruchi Badola, Gaurav Vashistha & Parag Madhukar Dhakate, Pp. 25791–25801

Avifaunal diversity assessment and conservation significance of Therhangal Bird Sanctuary, Ramanathapuram, Tamil Nadu: insights about breeding waterbirds

– H. Byju, H. Maitreyi, N. Raveendran & Reshma Vijayan, Pp. 25802–25815

Habitat heterogeneity and taxonomic diversity of fish fauna in estuaries: a study from southern Sri Lanka

– Kirivithanage Sandun Nalaka Bandara, Pp. 25816–25830

Successful establishment of a coral nursery for active reef restoration in Kavaratti Island, Lakshadweep archipelago

– C.A. Riyas, K.K. Idreesbabu, Rajeev Raghavan & S. Sureshkumar, Pp. 25831–25842

Taxonomic review of genus *Gazalina* Walker (Thaumetopoeinae: Notodontidae: Lepidoptera) from India

– Amritpal Singh Kaleka, Gagan Preet Kour Bali & Navkiran Kaur, Pp. 25843–25855

Diversity and distribution pattern of ebony trees *Diospyros* L. (Ebenaceae) in the forests of central Western Ghats, India

– H.S. Shashwathi & Y.L. Krishnamurthy, Pp. 25856–25871

Tree community structure of selected green patches of Guwahati, Assam, India with special reference to spatio-temporal changes in vegetation

– Maitreyee Goswami, Jijnyasha Bayan, Uma Dutta, Arup Kumar Hazarika & Kuladip Sarma, Pp. 25872–25881

Communications

First record of leucistic Sloth Bear *Melursus ursinus* Shaw, 1791 (Mammalia: Carnivora: Ursidae) in Panna Tiger Reserve, India

– Sankarshan Chaudhuri, Supratim Dutta & K. Ramesh, Pp. 25882–25887

Occurrence and distribution of Indian Pangolin *Manis crassicaudata* (Mammalia: Pholidota: Manidae) in the protected area network of Jammu Shiwaliks, India

– Ajaz Ansari & Neeraj Sharma, Pp. 25888–25893

The first report of an assassin bug of the genus *Ademula* McAtee & Malloch (Reduviidae: Emesinae) from India and its rediscovery from Sri Lanka

– H. Sankararaman, Tharindu Ranasinghe, Anubhav Agarwal, Amila Sumanapala & Hemant V. Ghate, Pp. 25894–25903

Preference and plasticity in selection of host for oviposition in Black Marsh Dart *Onychargia atrocyana* Selys, 1865 (Odonata: Zygoptera: Platycnemididae)

– Pathik K. Jana, Priyanka Halder Mallick & Tanmay Bhattacharya, Pp. 25904–25912

New records of termite species (Blattodea: Rhinotermitidae, Termitidae) from southern India

– A.V. Anushya & P.R. Swaran, Pp. 25913–25919

A study on the association between *Tridax* Daisy *Tridax procumbens* L. and butterflies at Shivaji University Campus, Maharashtra, India

– Aarati Nivasrao Patil & Sunil Madhukar Gaikwad, Pp. 25920–25930

Short Communications

Rare Honey Badger *Mellivora capensis* (Schreber, 1776) sighted in Tarai East Forest Division, Haldwani, Uttarakhand, India

– Prashant Kumar, Bhaskar C. Joshi, Anand Singh Bisht & Himanshu Bagri, Pp. 25931–25934

Additional documentation of the Slender Skimmer *Orthetrum sabina* (Drury, 1770) preying on the Pied Paddy Skimmer *Neurothemis tullia* (Drury, 1773) in Nepal

– Mahamad Sayab Miya & Apeksha Chhetri, Pp. 25935–25938

Notes

First photographic record of the Red Giant Gliding Squirrel *Petaurista petaurista* Pallas, 1766 (Mammalia: Rodentia: Sciuridae) from Sattal, Uttarakhand, India

– Hiranmoy Chetia, Jayant Gupta & Murali Krishna Chatakonda, Pp. 25939–25941

Red Pierrot *Talicada nyseus nyseus* (Guérin-Meneville, 1843): an addition to the butterfly fauna of Arunachal Pradesh, India

– Roshan Upadhyaya, Renu Gogoi, Ruksha Limbu, Manab Jyoti Kalita & Rezina Ahmed, Pp. 25942–25944

Ranunculus cantoniensis DC. (Ranunculaceae): an addition to the flora of West Bengal, India

– Jayantanath Sarkar, Srijan Mukhopadhyay & Biswajit Roy, Pp. 25945–25948

Book Review

Flowers of labour – Commelinaceae of India: Book review

– Rajeev Kumar Singh, Pp. 25949–25950

Publisher & Host

Threatened Taxa