Journal of Threatened Taxa | www.threatenedtaxa.org | 26 September 2024 | 16(9): 25920–25930

 

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) 

https://doi.org/10.11609/jott.9015.16.9.25920-25930

#9015 | Received 05 March 2024 | Final received 30 August 2024 | Finally accepted 06 September 2024

 

 

A study on the association between Tridax Daisy Tridax procumbens L. and butterflies at Shivaji University Campus, Maharashtra, India

 

Aarati Nivasrao Patil 1  & Sunil Madhukar Gaikwad 2

 

1,2 Department of Zoology, Shivaji University, Vidya Nagar, Kolhapur, Maharashtra 416004, India.

1 jeejai6022@gmail.com, 2 smg_zoo@unishivaji.ac.in (corresponding author)

 

 

Editor: A.J. Solomon Raju, Andhra University, Visakhapatnam, India.      Date of publication: 26 September 2024 (online & print)

 

Citation: Patil, A.N. & S.M. Gaikwad (2024). A study on the association between Tridax Daisy Tridax procumbens L. and butterflies at Shivaji University Campus, Maharashtra, India. Journal of Threatened Taxa 16(9): 25920–25930. https://doi.org/10.11609/jott.9015.16.9.25920-25930

  

Copyright: © Patil & Gaikwad 2024. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

 

Funding: Chhatrapati Shahu Maharaj National Research Fellowship (CSMNRF) 2022, Government of Maharashtra.

 

Competing interests: The authors declare no competing interests.

 

Author details: Aarati N. Patil (ANP) is working as a Ph D scholar at Department of Zoology, Shivaji University, Kolhapur. Her research interest is the natural history of butterflies.  Sunil M. Gaikwad (SMG) is a professor at the Department of Zoology, Shivaji University, Kolhapur. His research interest is the diversity and taxonomy of vertebrates and insects.

 

Author contributions: SMG involved in photography, design of the research and write-up of the manuscript. ANP is involved in photography, data compilation and manuscript preparation.

 

Acknowledgements: The authors are thankful to the Department of Zoology, Shivaji University Kolhapur for providing laboratory facilities and the Chhatrapati Shahu Maharaj National Research Fellowship (CSMNRF) 2022, Government of Maharashtra for financial assistance. We are also thankful to the principal chief conservator of forests (Wildlife), Maharashtra State for necessary permits.

 

 

Abstract: The objective of the present study was to study butterfly-Tridax procumbens interaction and test whether there is any correlation between lengths of corolla tube of the flowers and butterfly proboscis. Most butterflies visit flowers to obtain nectar. A common weed T. procumbens is an invasive species and a nectar plant for many butterflies. At Shivaji University campus, we documented a total of 42 species of butterflies belonging to three families (Lycaenidae, Nymphalidae, and Pieridae) of superfamily Papilionoidea visiting flowers of T. procumbens for nectar from December 2022 to November 2023. Among these, lycaenids were the most speciose with a total of 21 species, followed by the family Nymphalidae with 12 species, and the family Pieridae with nine species. Although the corolla length of T. procumbens flower is considered short, butterflies with both short (Lycaenidae and Pieridae) and long (Nymphalidae) proboscises were observed visiting these flowers for nectar. Seasonal studies carried out here showed that the highest number of butterfly species was recorded during monsoon season, mainly in June, than during other seasons. Among all species recorded, Eurema laeta was recorded at the highest temperature 35.8°C with 37% humidity. In the present communication photographs of all 42 butterfly species visiting T. procumbens flowers are provided.

 

Keywords: Butterfly, coat button, corolla tube, flower, humidity, interaction, monsoon, nectar, proboscis, temperature.

 

 

 

INTRODUCTION

 

Butterflies (Lepidoptera: Papilionoidea) are one of the most common diurnal groups of flower visitors for taking nectar as main source of their diet (Bawa 1990; Haribal 1992). Being the specialized feeders, they are equipped with a long, hollow, sucking tube called proboscis and is coiled when not in use (Haribal 1992). The feeding of butterflies is not a random phenomenon; it has been shown that they prefer nectar plants having specific chemical composition (Kunte 2000). Hence, it becomes important to study interaction between butterflies and specific species of flowering plants. Several researchers (Tiple et al. 2009; Nimbalkar et al. 2011; Chandra et al. 2013; Sultana et al. 2017; Varalakshmi & Raju 2013; Mukherjee & Hossain 2021; Mallick & Virdi 2024) have studied interaction between butterflies and Tridax procumbens.

Tridax procumbens is an annual herbaceous invasive herb that belongs to Asteraceae family used by butterflies for food because this species blooms throughout the year (Nimbalkar et al. 2011; Rathore et al. 2020; Mukherjee & Hossain 2021). This plant is a valuable nectar source for butterflies (Mallick & Virdi 2024). In the present study, 42 species of butterflies feeding on the nectar of T. procumbens flowers were recorded. The number of species are significantly higher than species recorded in previous studies (Tiple et al. 2009; Nimbalkar et al. 2011; Chandra et al. 2013; Sultana et al. 2017; Varalakshmi & Raju 2013; Mukherjee & Hossain 2021; Mallick & Virdi 2024). Additionally, abiotic factors (temperature and relative humidity) during the observation period were recorded. This study highlights the significance of T. procumbens as a major source of nectar for many butterfly species.

 

 

MATERIALS AND METHODS

 

Field visits were made throughout the day to record visits by butterflies at the study area (Shivaji University Campus, Kolhapur) during December 2022 to November  2023. The visiting butterflies were identified by consulting field guides published by different workers (Haribal 1992; Gunathilagraj 2015; Kunte 2000; Bhakare & Ogale 2015; Kasambe 2016), and the images on the Butterflies of India website (https://www.ifoundbutterflies.org). Temperature and relative humidity were recorded during the observation period by using digital hygrometer. Butterflies were photographed using Canon 550D and Nikon D500 DSLR cameras.

 

RESULTS AND DISCUSSION

 

A total of 42 species of butterflies (Table 1) belonging to three families (Lycaenidae, Nymphalidae, and Pieridae), eight subfamilies, and 10 tribes were observed feeding on the flowers of T. procumbens at the Shivaji University campus, Kolhapur. Of these, lycaenids dominated (21 species) (Images 1–21) followed by nymphalids (12 species) (Images 22–33), and pierids (9 species) (Images 34–42).

The current study showed that the number of species and the number of individuals of each species visiting the flowers of T. procumbens varied seasonally. Table 2 shows that the highest number of butterfly species visited during rainy season (32), followed by winter (14), and summer season (11). The month-wise records (Table 2, Figure 1) showed the maximum number of species in June (19 species) and July (16 species). An almost equal number of species were recorded in October (10 species), November (9 species), and May (8 species). Also, four, five, and three species were recorded in August, September, and December, respectively (Figure 1). Chilades pandava (Horsfield, 1829) was not recorded during winter season. Leptotes plinius (Fabricius, 1793) was recorded only in February. Most of the butterflies visited the flowers in the morning hours (15 species, 0900-–1200 h), followed by morning and afternoon hours (11 species, 0900–1600 h), afternoon hours (8 species, 1200–1600 h), and evening hours (4 species, 1600–1743 h). Chilades pandava, Talicada nyseus (Guerin-Meneville, 1843), Castalius rosimon (Fabricius, 1775), and Jamides celeno (Cramer, 1775) showed foraging activity throughout the day (Table 2). The temperature and relative humidity recorded during the observation period is presented in Table 2. Two species Catochrysops panormus (C. Felder, 1860) and Azanus uranus (Butler, 1886) were recorded at low temperature (250C) and high humidity (89%) while Eurema laeta (Boisduval, 1836) was recorded at high temperature (35.80C) and low humidity (37%).

Many studies on butterfly-plant interactions exist (Nimbalkar et al. 2011; Rathore et al. 2020; Khandal & Sharma 2020) including the interactions between butterflies and T. procumbens (Tiple et al. 2009; Nimbalkar et al. 2011; Chandra et al. 2013; Sultana et al. 2017; Sharma & Sharma 2018; Khandal & Sharma 2020; Mukherjee & Hossain 2021; Mallick & Virdi 2024). Among these, pollination and nectar feeding relationships are the focus of the current study. In this study, 42 butterfly species were recorded on the flowers of T. procumbens. Tiple et al. (2009) recorded 11 species of butterflies feeding on the nectar of T. procumbens in and around Nagpur. Nimbalkar et al. (2011) recorded a total of 34 species of butterflies feeding on the nectar of T. procumbens of which, nine were from Pieridae, four from Lycaenidae, 16 from Nymphalidae, three from Hesperiidae, and two from Papilionidae from Bhor Tahsil, Pune District, Maharashtra, India. Chandra et al. (2013) studied interactions of insects with herbaceous plants and reported 15 species of butterflies feeding on the nectar of T. procumbens from different localities of Visakhapatnam. Varalakshmi & Raju (2013) recorded a total of 27 species on T. procumbens out of which, five were from Papilionidae, four from Pieridae, 12 from Nymphalidae, five from Lycaenidae, and one from Hesperiidae. Sultana et al. (2017) reported two butterfly species from Pieridae, five from Lycaenidae, and two from Satyridae on T. procumbens from protected areas, botanical gardens, and butterfly germ plasm Centre in Bangladesh. Sharma & Sharma (2018) recorded only one Lycaenidae member Horaga albimacula viola from different localities of Jammu & Kashmir. Similarly, Khandal & Sharma (2020) recorded only one Hesperiidae species Coladenia indrani indra from Ranthambore Tiger Reserve, Rajasthan. Both species were not recorded in the present study because of differences in environmental conditions of the present study site (Maharashtra), Rajasthan, and Jammu & Kashmir. Mukherjee & Hossain (2021) recorded a total of seven butterfly species, all belonging to Lycaenids from Leprosy Mission Campus, West Bengal.  Mallick & Virdi (2024) recorded 34 species of butterflies visiting the flowers of T. procumbens, of which eight species belonged to Nymphalidae, six species to Lycaenidae, three species to Papilionidae and seven species to Hesperiidae. From all the studies mentioned above, Nimbalkar et al. (2011) and Mallick & Virdi (2024) reported the highest number of 34 small and large butterfly species belonging to different families on T. procumbens. In the present study, 42 butterfly species (21 lycaenids, 12 nymphalids, and 9 pierids) were recorded (Table 1).  

Sultana et al. (2017) and Mukherjee & Hossain (2021) noted that in T. procumbens, the corolla tube is 8 mm long. Meerabai (2013) documented that butterflies with short proboscis use flowers with 1–10 mm long corolla tubes and butterflies with long proboscis use flowers with 2–43 mm long corolla tube. Different authors (Nimabalkar et al. 2011; Mallick & Virdi 2024) reported that Papilionidae and Nymphalidae butterflies with long proboscis collect nectar from T. procumbens flowers. In the present study, Papilionidae butterflies were not recorded but Nymphalidae butterflies with long proboscis collected nectar from T. procumbens flowers.

 

 

CONCLUSION

 

The study showed that T. procumbens is an important source of nectar during its flowering season for 42 butterflies belonging to Pieridae, Nymphalidae, and Lycaenidae families. But, Lycaenidae represented more species which used this floral source for nectar.

 

               

Table 1. List of butterflies feeding on the nectar of Tridax procumbens.

Family

Subfamily

Tribe

 

Scientific name

Common name

 

 

 

 

 

 

 

 

 

 

 

 

L

Y

C

A

E

N

I

D

A

E

 

1. Aphanaeninae

1. Aphaenini

1.

Spindasis icitis (Hewiston, 1865)

Common Shot Silverline

2.

Spindasis vulcanus (Fabricius, 1775)

Common Silverline

 

 

2. Polyommatinae

 

 

2. Polyommatini

3.

Freyeria trochylus (Freyer, 1845)

Grass Jewel

4.

Freyeria putli (Kollar, 1844)

Oriental Grass Jewel

5.

Tarucus nara (Kollar, 1848)

Stripped Pierrot

6.

Zizina otis (Fabricius,1787)

Lesser Grass Blue

7.

Lampides boeticus (Linnaeus, 1767)

Pea Blue

8.

Catochrysops strabo (Fabricius, 1793)

Forget-me-not

9.

Chilades pandava (Horsfield, 1829)

Plains Cupid

10.

Leptotes plinius (Fabricius, 1793)

Zebra Blue

11.

Talicada nyseus (Guerin-Meneville, 1843)

Red Pierrot

12.

Azanus ubaldus (Stoll, 1782)

Bright Babul Blue

13.

Nacaduba berenice ormistoni (Herrich- Schaffer, 1869)

Rounded Six-Line Blue

14.

Chilades parrhasius (Fabricius, 1793)

Small Cupid

15.

Zizeeria karsandra (Moore, 1865)

Dark Grass Blue

16.

Castalius rosimon (Fabricius, 1775)

Common Pierrot

17.

Pseudozizeeria maha (Kollar, 1844)

Pale Grass Blue

18.

Catochrysops panormus (C. Felder, 1860)

Silver Forget-me-not

19.

Jamides celeno (Cramer, 1775)

Common Cerulean

20.

Chilades lajus (Stoll, 1780)

Lime Blue

21.

Azanus uranus Butler, 1886

Dull Babul Blue

 

 

 

 

N

Y

M

P

H

A

L

I

D

A

E

 

3. Nymphalinae

3. Junonini

22.

Junonia lemonias (Linnaeus, 1758)

Lemon Pansy

23.

Junonia almana (Linnaeus, 1758)

Peacock Pansy

24.

Hypolimnas misippus (Linnaeus, 1764)

Danaid Eggfly

4. Nymphalini

25.

Vanessa cardui (Linnaeus, 1758)

Painted Lady

4. Danainae

5. Danaini

26.

Danaus chrysippus (Linnaeus, 1758)

Plain Tiger

27.

Danaus genutia (Cramer, 1779)

Striped Tiger

28.

Tirumala limniace (Cramer, 1775)

Blue Tiger

29.

Euploea core (Cramer, 1780)

Common Crow

30.

Parantica aglea (Stoll, 1782)

Glassy Tiger

5. Heliconiinae

6. Vagarantini

31.

Phalanta phalantha phalantha (Drury, 1773)

Common Leopard

7. Acraeini

32.

Acarea terpsicore (Linnaeus, 1758)

Tawny Coster

6. Satyrinae

8. Satyrini

33.

Ypthima philomela (Marshall, 1883)

Baby Fivering

P

I

E

R

I

D

A

E

 

7. Coliadinae

 

34.

Catopsilia pyranthe (Linnaeus, 1758)

Mottled Emigrant

35.

Catopsilia pomona pomona (Fabricius, 1775)

Common Emigrant

36.

Eurema laeta (Boisduval, 1836)

Spotless Grass Yellow

37.

Eurema hecabe (Linnaeus, 1758)

Common Grass Yellow

38.

Eurema brigitta (Stoll, 1780)

Small Grass Yellow

39.

Eurema nilgiriensis (Yata, 1990)

Nilgiri Grass Yellow

8. Pierinae

9. Pierini

40.

Belenois aurota (Fabricius, 1793)

Pioneer White

41.

Cepora nerissa (Fabricius, 1775)

Common Gull

10. Leptosianini

42.

Leptosia nina (Fabricius, 1793)

Psyche

 

 

Table 2. Interaction between butterfly species and Tridax procumbens concerning season and abiotic factors.

 

Name

Availability of species and abiotic factors

Rainy season

Winter season

Summer season

Foraging time

Jun

Jul

Aug

Sep

Oct

Nov

Dec

Jan

Feb

Mar

Apr

May

1.

Spindasis icitis

Presence

+

+

-

-

-

-

-

-

-

-

-

-

1058–1256 h

Temperature (°C)

33.8

28.4

 

 

 

 

 

 

 

 

 

 

Humidity (%)

41

79

 

 

 

 

 

 

 

 

 

 

2.

Spindasis valcanus

Presence

-

-

-

-

 

+

-

-

-

-

-

-

-

1711 h

 

Temperature (°C)

 

 

 

 

28

 

 

 

 

 

 

 

Humidity (%)

 

 

 

 

72

 

 

 

 

 

 

 

3.

Freyeria trochylus

Presence

+

-

-

-

-

-

-

-

-

-

-

-

0950 h

Temperature (°C)

35.7

 

 

 

 

 

 

 

 

 

 

 

Humidity (%)

37

 

 

 

 

 

 

 

 

 

 

 

4.

Freyeria putli

Presence

-

+

-

-

-

-

-

-

-

-

-

-

1128 h

Temperature (°C)

 

26.7

 

 

 

 

 

 

 

 

 

 

Humidity (%)

 

84

 

 

 

 

 

 

 

 

 

 

5.

Taracus nara

Presence

+

+

-

-

-

-

-

-

-

-

-

-

1100–1400 h

Temperature (°C)

34.5

27.5

 

 

 

 

 

 

 

 

 

 

Humidity (%)

39

81

 

 

 

 

 

 

 

 

 

 

6.

Zizina otis

Presence

+

+

-

-

-

-

-

-

-

-

+

-

0900 –1400 h

Temperature (°C)

34.6

27.1

 

 

 

 

 

 

 

 

30.8

 

Humidity (%)

39

83

 

 

 

 

 

 

 

 

47

 

7.

Lampides boeticus

Presence

+

-

-

-

-

-

-

-

-

-

-

-

1145 h

Temperature (°C)

32.6

 

 

 

 

 

 

 

 

 

 

 

Humidity (%)

44

 

 

 

 

 

 

 

 

 

 

 

8.

Catochrysops strabo

Presence

-

+

-

-

-

-

-

-

-

-

-

-

1344 h

Temperature (°C)

 

28.5

 

 

 

 

 

 

 

 

 

 

Humidity (%)

 

79

 

 

 

 

 

 

 

 

 

 

9.

Chilades pandava

Presence

+

+

+

+

+

+

-

-

-

+

+

+

0900–

1630 h

Temperature (°C)

32.6

28.4

27.1

26.3

28.1

27.9

 

 

 

30.1

33.3

35.5

Humidity (%)

44

79

65

95

34

52

 

 

 

21

26

40

10.

Leptotes plinius

Presence

-

-

-

+

+

+

+

+

+

+

-

-

1140–1340 h

Temperature (°C)

 

 

 

27.9

27.6

28.5

28.5

28.6

29.1

32.2

 

 

Humidity (%)

 

 

 

90

82

50

56

43

42

20

 

 

11.

Talicada nyseus

Presence

-

-

-

+

+

+

+

+

-

-

-

-

1030–1721 h

Temperature (°C)

 

 

 

28.9

28.0

28.8

28.1

27.6

 

 

 

 

Humidity (%)

 

 

 

70

72

53

55

46

 

 

 

 

12.

Azanus ubaldus

Presence

-

+

-

-

-

-

-

-

-

-

-

-

1058 h

Temperature (°C)

 

28.4

 

 

 

 

 

 

 

 

 

 

Humidity (%)

 

79

 

 

 

 

 

 

 

 

 

 

13.

Nacaduba berenice ormistoni

Presence

-

+

-

-

-

-

-

-

-

-

-

-

1221 h

Temperature (°C)

 

28.4

 

 

 

 

 

 

 

 

 

 

Humidity (%)

 

79

 

 

 

 

 

 

 

 

 

 

14.

Chilades parrhasius

Presence

-

-

-

-

-

-

-

-

-

-

-

+

1040 h

Temperature (°C)

 

 

 

 

 

 

 

 

 

 

 

32.5

Humidity (%)

 

 

 

 

 

 

 

 

 

 

 

45

15.

Zizeeria karsandra

Presence

+

-

-

-

-

-

-

-

-

-

-

-

1005 h

Temperature (°C)

35.1

 

 

 

 

 

 

 

 

 

 

 

Humidity (%)

38

 

 

 

 

 

 

 

 

 

 

 

16.

Castalius rosimon

Presence

-

+

-

-

-

-

-

-

-

-

+

+

0900–1630 h

Temperature (°C)

 

28.3

 

 

 

 

 

 

 

 

33.1

35.4

Humidity (%)

 

78

 

 

 

 

 

 

 

 

26

35

17.

Pseudozizeeria maha

Presence

-

-

+

-

-

-

-

-

-

-

-

-

1615 h

Temperature (°C)

 

 

27.1

 

 

 

 

 

 

 

 

 

Humidity (%)

 

 

65

 

 

 

 

 

 

 

 

 

18.

Catochrysops panormus

Presence

-

+

+

-

-

-

-

-

-

-

-

-

1346 h

Temperature (°C)

 

25.0

27.7

 

 

 

 

 

 

 

 

 

Humidity (%)

 

89

68

 

 

 

 

 

 

 

 

 

19.

Jamides celeno

Presence

-

-

-

-

+

+

+

+

-

-

-

-

1000–1700 h

Temperature (°C)

 

 

 

 

28.3

28.5

27.8

27.6

 

 

 

 

Humidity (%)

 

 

 

 

81

57

55

46

 

 

 

 

20.

Chilades lajus

Presence

-

-

-

-

+

-

-

-

-

-

-

-

1152 h

Temperature (°C)

 

 

 

 

28.1

 

 

 

 

 

 

 

Humidity (%)

 

 

 

 

34

 

 

 

 

 

 

 

21.

Azanus uranus

Presence

-

+

-

-

-

-

-

-

-

-

-

-

1346 h

Temperature (°C)

 

25.0

 

 

 

 

 

 

 

 

 

 

Humidity (%)

 

89

 

 

 

 

 

 

 

 

 

 

22.

Junonia lemonias

Presence

+

+

-

-

-

-

-

-

-

-

+

+

0930 –1400 h

Temperature (°C)

32.6

28.7

 

 

 

 

 

 

 

 

30.8

32.5

Humidity (%)

44

78

 

 

 

 

 

 

 

 

47

45

23.

Junonia almana

Presence

-

-

-

+

-

-

-

-

-

-

-

-

1247 h

Temperature (°C)

 

 

 

27.9

 

 

 

 

 

 

 

 

Humidity (%)

 

 

 

90

 

 

 

 

 

 

 

 

24.

Hypolimnas misippus

Presence

-

+

-

-

-

-

-

-

-

-

-

-

1444 h

Temperature (°C)

 

29.2

 

 

 

 

 

 

 

 

 

 

Humidity (%)

 

76

 

 

 

 

 

 

 

 

 

 

25.

Vanessa cardui

Presence

+

-

-

-

-

-

-

-

-

-

-

-

1213 h

Temperature (°C)

32.6

 

 

 

 

 

 

 

 

 

 

 

Humidity (%)

44

 

 

 

 

 

 

 

 

 

 

 

26.

Danaus chrysippus

Presence

+

-

-

-

-

+

-

-

-

-

-

+

1045–1330 h

Temperature (°C)

33.5

 

 

 

 

28.8

 

 

 

 

 

33.8

Humidity (%)

42

 

 

 

 

53

 

 

 

 

 

40

27.

Danaus genutia

Presence

-

-

-

-

-

+

-

-

-

-

-

-

1032 h

Temperature (°C)

 

 

 

 

 

28.2

 

 

 

 

 

 

Humidity (%)

 

 

 

 

 

55

 

 

 

 

 

 

28.

Tirumala limniace

Presence

+

-

-

-

-

-

-

-

-

-

-

-

1216 h

Temperature (°C)

32.6

 

 

 

 

 

 

 

 

 

 

 

Humidity (%)

44

 

 

 

 

 

 

 

 

 

 

 

29.

Euploea core

Presence

-

-

-

-

+

-

-

-

-

-

-

-

1647 h

Temperature (°C)

 

 

 

 

27.6

 

 

 

 

 

 

 

Humidity (%)

 

 

 

 

82

 

 

 

 

 

 

 

30.

Parantica aglea

Presence

-

-

-

-

+

-

-

-

-

-

-

-

1743 h

Temperature (°C)

 

 

 

 

28.3

 

 

 

 

 

 

 

Humidity (%)

 

 

 

 

75

 

 

 

 

 

 

 

31.

Phalanta phalantha phalantha

Presence

+

-

-

-

-

-

-

-

-

-

-

-

1004 h

Temperature (°C)

35.1

 

 

 

 

 

 

 

 

 

 

 

Humidity (%)

38

 

 

 

 

 

 

 

 

 

 

 

32.

Acarea terpsicore

Presence

-

-

-

-

-

+

-

-

-

-

-

-

0934 h

Temperature (°C)

 

 

 

 

 

28.5

 

 

 

 

 

 

Humidity (%)

 

 

 

 

 

57

 

 

 

 

 

 

33.

Ypthima philomela

Presence

+

+

-

-

-

-

-

-

-

-

-

+

1020–

1350 h

Temperature (°C)

32.6

29.2

 

 

 

 

 

 

 

 

 

34.5

Humidity (%)

44

76

 

 

 

 

 

 

 

 

 

44

34.

Catopsilia pyranthe

Presence

+

-

-

-

+

-

-

-

-

-

-

-

1000–1217 h

Temperature (°C)

32.6

 

 

 

27.8

 

 

 

 

 

 

 

Humidity (%)

44

 

 

 

84

 

 

 

 

 

 

 

35.

Catopsilia pomona pomona

Presence

+

-

-

-

-

-

-

-

-

+

-

-

1103–1230 h

Temperature (°C)

35.1

 

 

 

 

 

 

 

 

32.2

 

 

Humidity (%)

38

 

 

 

 

 

 

 

 

20

 

 

36.

Eurema laeta

Presence

+

+

-

-

-

-

-

-

-

-

+

+

0836–1354 h

Temperature (°C)

35.8

27.56

 

 

 

 

 

 

 

 

29.2

35.6

Humidity (%)

37

81

 

 

 

 

 

 

 

 

50

43

37.

Eurema hecabe

Presence

-

+

+

+

+

+

-

-

-

-

-

-

1000–1547 h

Temperature (°C)

 

28.5

27.7

28.9

27.6

27.1

 

 

 

 

 

 

Humidity (%)

 

79

68

71

82

57

 

 

 

 

 

 

38.

Eurema brigitta

Presence

+

-

-

-

-

-

-

-

-

-

-

-

1055 h

Temperature (°C)

32.6

 

 

 

 

 

 

 

 

 

 

 

Humidity (%)

44

 

 

 

 

 

 

 

 

 

 

 

39.

Eurema nilgiriensis

Presence

-

-

-

-

-

+

-

-

-

-

-

-

1000 h

Temperature (°C)

 

 

 

 

 

28.2

 

 

 

 

 

 

Humidity (%)

 

 

 

 

 

60

 

 

 

 

 

 

40.

Belenois aurota

Presence

+

-

-

-

-

-

-

-

-

-

-

-

1158 h

Temperature (°C)

36.4

 

 

 

 

 

 

 

 

 

 

 

Humidity (%)

35

 

 

 

 

 

 

 

 

 

 

 

41.

Cepora nerissa

Presence

+

-

-

-

-

-

-

-

-

-

-

+

1034–

1108 h

Temperature (°C)

30.2

 

 

 

 

 

 

 

 

 

 

35.5

Humidity (%)

49

 

 

 

 

 

 

 

 

 

 

40

42.

Leptosia nina

Presence

-

-

-

-

-

-

-

+

-

-

-

-

1027 h

Temperature (°C)

 

 

 

 

 

 

 

27.6

 

 

 

 

Humidity (%)

 

 

 

 

 

 

 

46

 

 

 

 

+—Present | -—Absent

 

 

For figure & images - - click here for full PDF

 

 

REFERENCES

 

Bawa, K.S. (1990). Plant-pollinator interaction in tropical rain forests. Annual Review of Ecology and Systematics 21: 399–422. https://doi.org/10.1146/annurev.es.21.110190.002151

Bhakare, M. & H. Ogale (2018). A Guide to Butterflies on Western Ghats (India): Includes Butterflies of Kerala, Tamilnadu, Karnataka, Goa, Maharashtra, and Gujarat states. Milind Bhakar (privately published), 496 pp.

Chandra, P.H., V.K. Ramana, R.J. Krishna, S.D. Rani, P.S. Rao & A.J.S. Raju (2013). A study on interactions of insects with herbaceous plants in Visakhapatnam. Advances in Pollen Spore Research 31: 69–79.

Gunathilagraj, K. (2015). South Indian Butterflies. Krab media & Marketing, Bangalore, 357 pp.

Haribal, M. (1992). The Butterflies of Sikkim Himalaya and their Natural History. Sikkim Nature Conservation Foundation, Gangtok, 217 pp.

Kasambe, R. (2016). Butterflies of Western Ghats. An e-Book Self-published. https://www.researchgate.net/profile/Raju-Kasambe/publication/312056076_Butterflies_of_Western_Ghats_First_edition/links/59f06f18458515bfd07bf16c/Butterflies-of-Western-Ghats-First-edition.pdf. Downloaded on 1 July 2024. 327 pp.

Khandal, D. & S.K. Sharma (2020). First record of Dakhan Tricolour Pied Flat (Coladenia Indrani Indra) and Spotted Small Flat (Sarangesa Purendra Sathi) (Lepidoptera: Family Hesperiidae) from outskirts of the Ranthombore Tiger Reserve, Sawaimadhopur, Rajasthan, India. Indian Journal of Environmental Sciences 24(2): 89–92.

Kunte, K. (2000). India a Lifescape: Butterflies of Peninsular India. University Press, Hyderabad and Indian Academy of Sciences (Bangalore), 254 pp.

Mallick, M.A.I. & N. Virdi (2024). Feeding butterflies with Tridax procumbens (L.), a beneficial plant for maintaining butterfly populations maintaining butterfly populations. Nova Geodesia 4(3): 174.

Meerabai, G. (2013). Evolutionary relationship of butterflies and their nectar flowers. Indian Journal of Applied and Pure Biology 28(1): 55–60.

Mukherjee, S.S. & A. Hossain (2021). Morphological variables restrict flower choice of Lycaenid butterfly species: implication for pollination and conservation. Journal of Ecology and Environment 45: 32. https://doi.org/10.1186/s41610-021-00211-z

Nimbalkar, R.K., S.K. Chandekar & S.P. Khunte (2011). Butterfly diversity in relation to nectar food plants from Bhor Tehsil, Pune District, Maharashtra, India. Journal of Threatened Taxa 3(3): 1601–1609. https://doi.org/10.11609/JoTT.o2612.1601-9

Rathore, R.S., R. Yadav & H. Solanki (2020). Wetland ecosystem – Home to plant species diversity. Plant Archives 20(2): 5341–5352.

Sharma S. & N. Sharma (2018). New Lycaenid butterfly record from Jammu & Kashmir, India. Journal of Threatened Taxa 10(7): 11984–11987. https://doi.org/10.11609/jott.4046.10.7.11984-11987

Sultana, S., S. Rahman, S. Akand, M.F. Hoque, M.S. Miah & M.A. Bashar (2017). Butterfly proboscis and their functional relations with the nectar plants in some selected forests. Journal of biodiversity conservation and bioresource management 3(1): 93–102. https://doi.org/10.3329/jbcbm.v3i1.36764

Tiple, A.D., A.M. Khurad & R.L.H. Dennis (2009). Adult butterfly feeding – nectar flower association: constraints of taxonomic affiliation, butterfly, and nectar flower morphology. Journal of Natural History 43: 855–884. https://doi.org/10.1080/00222930802610568

Varalakshmi, P. & A.J.S. Raju (2013). Psychophilous and Melittophilous pollination syndrome in Tridax procumbens L. (Asteraceae). Taprobanica 5(2): 124–130.