

Building evidence for conservation globally

Journal of Threatened Taxa

40
zooreach
Zoo Outreach Organisation
Years

10.11609/jott.2025.17.7.27171-27322
www.threatenedtaxa.org

26 July 2025 (Online & Print)
17(7): 27171-27322
ISSN 0974-7907 (Online)
ISSN 0974-7893 (Print)

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India

Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA

Ms. Priyanka Iyer, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Board of Editors

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors

Mrs. Mira Bhojwani, Pune, India

Dr. Fred Pluthero, Toronto, Canada

Copy Editors

Ms. Usha Madgunki, Zooreach, Coimbatore, India

Ms. Trisa Bhattacharjee, Zooreach, Coimbatore, India

Ms. Paloma Noronha, Daman & Diu, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting

Mrs. Radhika, Zooreach, Coimbatore, India

Mrs. Geetha, Zooreach, Coimbatore India

Fundraising/Communications

Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2021–2023

Fungi

Dr. B. Shivaraju, Bengaluru, Karnataka, India

Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India

Dr. Vatsavaya S. Raju, Kakatiya University, Warangal, Andhra Pradesh, India

Dr. M. Krishnappa, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India

Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India

Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India

Dr. Kiran Ramchandra Ranadive, Annaheb Magar Mahavidyalaya, Maharashtra, India

Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India

Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India

Dr. Shonil Bhagwat, Open University and University of Oxford, UK

Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India

Dr. Ferdinand Boero, Università del Salento, Lecce, Italy

Dr. Dale R. Calder, Royal Ontario Museum, Toronto, Ontario, Canada

Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines

Dr. F.B. Vincent Florens, University of Mauritius, Mauritius

Dr. Merlin Franco, Curtin University, Malaysia

Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India

Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India

Dr. Pankaj Kumar, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA.

Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India

Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Vijayasankar Raman, University of Mississippi, USA

Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantapur, India

Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India

Dr. Aparna Watve, Pune, Maharashtra, India

Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China

Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia

Dr. M.K. Vasudeva Rao, Shiv Ranjan Housing Society, Pune, Maharashtra, India

Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Manda Datar, Agharkar Research Institute, Pune, Maharashtra, India

Dr. M.K. Janarthanam, Goa University, Goa, India

Dr. K. Karthigeyan, Botanical Survey of India, India

Dr. Errol Vela, University of Montpellier, Montpellier, France

Dr. P. Lakshminarasiham, Botanical Survey of India, Howrah, India

Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA

Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India

Dr. Analinda Manila-Fajard, University of the Philippines Los Banos, Laguna, Philippines

Dr. P.A. Siru, Central University of Kerala, Kasaragod, Kerala, India

Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India

Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India

Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA

Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India

Dr. A.G. Pandurangan, Thiruvananthapuram, Kerala, India

Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India

Dr. Kannan C.S. Warrier, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India

Dr. D.B. Bastawade, Maharashtra, India

Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India

Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India

Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa

Dr. Rory Dow, National Museum of natural History Naturalis, The Netherlands

Dr. Brian Fisher, California Academy of Sciences, USA

Dr. Richard Gallon, Ilandudno, North Wales, LL30 1UP

Dr. Hemant V. Ghate, Modern College, Pune, India

Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: A Southern Rockhopper Penguin *Eudyptes chrysocome* stands on Tussock Grass on Westpoint Island. Painted in poster colors, this artwork is a reproduction of a photograph by Phillip Colla. Thanks to the photographer for the original image. © Pooja Patil.

Additions to the Agaricales of Kolhapur District, Maharashtra, India

Anjali Rajendra Patil¹ & Sushant Ishwar Bornak²

^{1,2} Department of Botany, Rajaram College, Kolhapur, Maharashtra 416004, India.

¹ dhirajanj@gmail.com, ² sushant.bornak94@gmail.com (corresponding author)

Abstract: This paper is a part of the series dealing with taxonomy of members of Agaricales from Kolhapur District. In the present investigation 10 species belonging to order Agaricales—*Agrocybe pediades*, *Amanita manicata*, *Bolbitius coprophilus*, *Entoloma serrulatum*, *E. theekshnagandhum*, *Hymenopellis radicata*, *Macrocybe gigantea*, *Schizophyllum commune*, *Termitomyces heimii*, *T. microcarpus*—have been elaborated, of which *A. manicata*, *B. coprophilus*, *E. serrulatum*, *E. theekshnagandhum*, *M. gigantea* have been reported for the first time from Maharashtra State.

Keywords: Basidiomycota, edible mushrooms, fungal diversity, fungal ecology, macrofungi, new records, taxonomy, Western Ghats, wild mushroom.

Editor: A. Karthikeyan, ICFRE-Institute of Forest Genetics and Tree Breeding, Coimbatore, India.

Date of publication: 26 July 2025 (online & print)

Citation: Patil, A.R. & S.I. Bornak (2025). Additions to the Agaricales of Kolhapur District, Maharashtra, India. *Journal of Threatened Taxa* 17(7): 27207-27225. <https://doi.org/10.11609/jott.9010.17.7.27207-27225>

Copyright: © Patil & Bornak 2025. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: Chhatrapati Shahu Maharaj Research, Training and Human Development Institute (SARTHI) in the form of Junior Research Fellowship (CSMNRF-2021).

Competing interests: The authors declare no competing interests.

Author details: DR. SUSHANT BORNAK is a research scholar in Botany at Rajaram College, Kolhapur, with over 6-years of experience in mushroom taxonomy, fungal culture, and molecular identification. He has authored five international publications and is passionate about fungal biology, systematics, and academic teaching. Dr. Anjali Patil is a professor of Botany at Rajaram College, Kolhapur. A fungal taxonomist and plant pathologist, she specializes in fungal ecology, diversity, and distribution in the Western Ghats of Maharashtra. She has authored over 50 national and international research publications.

Author contributions: ARP—served as the principal investigator of the study and contributed significantly to the writing and formatting of the manuscript. SIB—was responsible for the collection, identification, and description of the mushroom species, and also assisted in the writing and formatting of the manuscript.

Acknowledgements: The author Sushant Ishwar Bornak acknowledges financial support from Chhatrapati Shahu Maharaj Research, Training and Human Development Institute (SARTHI) in the form of Junior Research Fellowship (CSMNRF-2021).

INTRODUCTION

Agaricales Underw. is the largest order in Agaricomycetes comprise of total eight suborders, 46 families, 482 genera, and more than 40,000 species. Previously, based on the phylogenetic studies Agaricales was divided into seven suborders, viz., *Agaricineae* Aime et al., *Pluteineae* Aime et al., *Tricholomataceae* Aime et al., *Marasmiineae* Aime et al., *Schizophyllineae* Aime et al., *Pleurotineae* Aime et al., and *Hygrophorineae* Aime et al. with one more addition of suborder *Clavariineae* Olariaga by Olariaga et al. in 2020 (Wang et al. 2023). Most species in the Agaricales form mushrooms with gilled hymenophore, pileus, and stipe which play various roles as decomposers, symbionts, and pathogens, helping to maintain the ecosystem. Most species belonging to this order consumed as foods and rich in nutrient supplements and medicines. Taxonomy of the order Agaricales has much debate on identifying species. Traditionally species belonging to the order identified based on their macroscopic and microscopic characteristics, however sometimes these characteristics are often not sufficient to identify Agaricales specimens to the species level. Nowadays, DNA sequence-based classification and identification are now being widely used to overcome the limitations of morphology-based identification (Yoo et al. 2022). Indian Agaricales were first reviewed by Sathe & Rahalkar (1978) and Manjula (1983) who provided a very exhaustive list of agaricoid and boletoid fungi from India and Nepal (Gogoi & Parkash 2015).

Maharashtra is the third largest state of India next to Rajasthan and Madhya Pradesh covering an area of 307,713 km². The state lies at 18.96° N, 72.82° E and altitude ranges 0–1,800 m. The state has ample forest area which occupies approximately one fifth of the state confined to the Western Ghats and eastern Vidarbha region with an annual rain fall of about 4,000 mm in the western region of Western Ghats and about 700–1,250 mm in Vidarbha region (Senthilarasu 2014).

Mycologists paid little attention to the diversity of mushrooms found in Maharashtra. The diversity of mushrooms from Maharashtra was mainly contributed by Blatter (1911), Parandekar (1964), Trivedi (1972), Sathe & Rahalkar (1975, 1976), Narendra & Rao (1976), Thite et al. (1976), Chavan & Barge (1977), Patil & Thite (1977, 1978), Sathe & Sasangan (1977, 1978), Patil (1978), Patil et al. (1979), Sathe & Kulkarni (1979), Sathe & Deshpande (1979, 1980a,b, 1982), Manjula (1983), Bhide et al. (1987), Kulkarni (1990, 1992), Hedawoo & Mohite (2008), Hedawoo (2010), and Senthilarasu

(2014).

A detailed checklist of gilled mushrooms from Maharashtra was provided by Senthilarasu (2014), in which 178 species in 68 genera belonging to 23 families and five orders, viz., Agaricales, Boletales, Cantharellales, Polyporales, and Russulales have been reported. Most of the species diversity was published between 1901 and 1992. Since then, there was no report on the taxonomy and diversity of gilled fungi occurring in Maharashtra (Senthilarasu 2014). Borkar et al. (2015) studied Mushroom diversity of Konkan region of Maharashtra and described 21 species belonging to the order Agaricales. Patil & Bornak (2022, 2023) studied diversity of Agaricales from Kolhapur District, Maharashtra and listed 14 species of which one species is new to India and three species are new to Maharashtra State. This paper is the continuation of Agaricales diversity from Kolhapur District.

MATERIAL AND METHODS

Study area

Kolhapur lies in the south-west between 15.716–17.166° N and 73.666–74.700° E. As a part of Western Ghats, Kolhapur district has ample biodiversity having tropical climate with high rainfall and warm summers. The monsoon rains are due to winds from the southwest as well as north-east with the maximum rainfall of (6,000 mm) in the west to minimum (600 mm) in the east. The district is rich in vegetation cover. The total forest cover in the district is 1,672 km², out of which 563 km² is reserve forest and 417 km² is protected forest. Total forest area is about 22% of the total geographic area of the district. There are three main types of forests: a) subtropical evergreen, b) moist deciduous and semievergreen, and c) dry deciduous forest (Patil & Bornak 2023).

Collection and identification

Frequent trips were made to various localities of Kolhapur district between 2020 and 2023. All the species were collected during the monsoon season. Healthy specimens at different stages of development were collected. Field photographs were taken with the help of Xiaomi Redmi Note 5 Pro and OnePlus 9RT mobile camera to note colour, size, shape, and habitat whereas, odour and other ecological characters were noted down in the field notebook. Microscopic observations of fresh fruiting bodies were done using 1.5% Phloxine B stain and Lawrence and Mayo N-300M research microscope. Dry and wet (70% ethanol) preservation techniques

have been used for collected specimens.

RESULTS

Agrocybe pediades

(Image 1a–h)

(Pers.: Fr.) Fayod in *Ann. Sci. Nat. Bot. Ser.* 79: 359, 1889.

Fruiting body small to medium; **Pileus** up to 1–3 cm in diam., convex, ex-umbonate; surface pale brownish to yellowish-brown, moist, smooth, hygrophanous; margin regular, not splitting at maturity, non-striate; flesh thin, 0.2 cm thick, pale; taste and odour mild. **Lamellae** broadly adnate to sub-decurrent, ventricose, sub-distant to distant, moderately broad, pale brown. **Spore print** dark brown. **Stipe** 3–6 × 0.3 cm, central, cylindrical, slightly bulbous at base, solid, pale brown to brown, with granular texture, shiny. **Basidiospores** 10.2–14.5 × 6.6–9.2 μm , ellipsoidal, with a truncate germ pore, thick-walled, smooth; **Basidia** 22–26.8 × 7.8–10.2 μm , clavate, 4-spored, hyaline, lamella edge sterile. **Cheilocystidia** 16.8–33.5 × 6.6–9 μm , polymorphic, cylindrical, lageniform, thin-walled, hyaline, some with granular apices. **Pleurocystidia** absent. Clamp connections present throughout.

Collections examined

India, Maharashtra, Kolhapur, Bhudargad, Bhendvade, Gadchinglaj–Gargoti Road, (16.309° N, 74.181° E), on soil mixed in rice husk, gregarious, in cluster, 14.vi.2020, Bornak, S.I. & Patil, A.R. (Y20V1C3); Gaganbawda, Kolhapur–Gaganbawda Road, (16°33'26"N-73°51'11"E), on littered soil, gregarious, 26.vi.2020, Bornak, S.I. (Y20C4V4); Karvir, Rajaram College Campus, (16.686° N, 74.256° E), on humid soil, in cluster, 12.vii.2020, Bornak, S.I. (Y20V10C3); Karvir, Rajarshi Chhatrapati Shahu Maharaj College of Agriculture, Kolhapur campus (16.687° N, 74.261° E), on soil, in pair, 07.vii.2022, Bornak, S.I. (Y22V3C9); Karvir, Rajaram College Campus, (16.687° N, 74.257° E), on soil, under *Gliricidia sepium* tree, in a cluster, 09.vii.2023. Bornak, S.I. (Y23V1C5).

Remarks

Agrocybe pediades, an edible mushroom recognized by its name 'Common field cap', is growing gregariously in grassy fields, on lawns, and pasture lands. *A. pediades* is recognized by the smooth pileus surface, which is brownish-yellow with some reddish shades, appendiculate pileal margin and powdery squamulose stipe with scattered remnants of evanescent annulus

(Kaur et al. 2014). It is common and distributed worldwide and seems to be a problematic species. Many authors designate several species to *A. pediades* based on morphological characters such as pileus colour, viscosity, amount of veil, shape of pileus, spore size, although morphological studies have demonstrated most species to be synonymous or varieties within *A. pediades* (Niveiro et al. 2020). *A. pediades* is highly prized due to its edibility. The known Indian distribution of this species is Kerala, some parts of northern India and Punjab (Kaur et al. 2014). From Maharashtra this species has been reported from Pune (Senthilarasu 2014).

Amanita manicata (Berk. & Broome) Pegler

(Image 2a–h)

Kew Bull., Addit. Ser. 12: 216 (1986).

Pileus 6–10 cm, fleshy, initially hemispherical, then convex to completely flat, whitish to creamy white, wrapped in a general grainy-greasy veil, the ochraceous orange colour that covers it entirely when young, but subsequently thins out in patches, leaving the underlying parts uncovered and clear. Margin smooth, not striated, strongly appended by triangular flap like remnants of the partial veil, then completely naked at maturity. **Lamellae** adnate to adnexed, low and only slightly ventricose, crowded, white to whitish pink, up to 10 mm broad with short lamellulae. **Stipe** 7–16 × 0.8–1.6 cm, cylindrical, solid, typically sinuous in the median part with rounded base, sub-clavate. Smooth above the ring, below entirely covered by ochre-orange coloured, large, fibrillose-hairy scales. Stipe is concolourous with the pileus surface. Flesh white, 1 cm thick, with strong unpleasant odour. **Basidiospores** 5.6–8.0 × 5.0–7.8 μm , globose to sub-globose, few broadly ellipsoidal, amyloid, smooth. **Basidia** 40–56 × 9–11 μm , tetrasporic cylindrical-clavate. **Cheilocystidia** and **pleurocystidia** absent.

Collection examined

India, Maharashtra, Kolhapur, Rajarshi Chhatrapati Shahu Maharaj College of Agriculture (16.684° N, 74.261° E), on ground, alone, scattered, 07.vii.2022, Bornak, S.I. (Y22V4C1)

Remarks

A. manicata can be easily recognized by its yellowish-brown to pale tawny brown pileus covering with floccoso-verrucose to felty squamules; margin appendiculates with large floccose fragments which hang down up to 2 cm; the cylindrical stipe covering with tawny brown floccoso-squamose which becomes more intense and

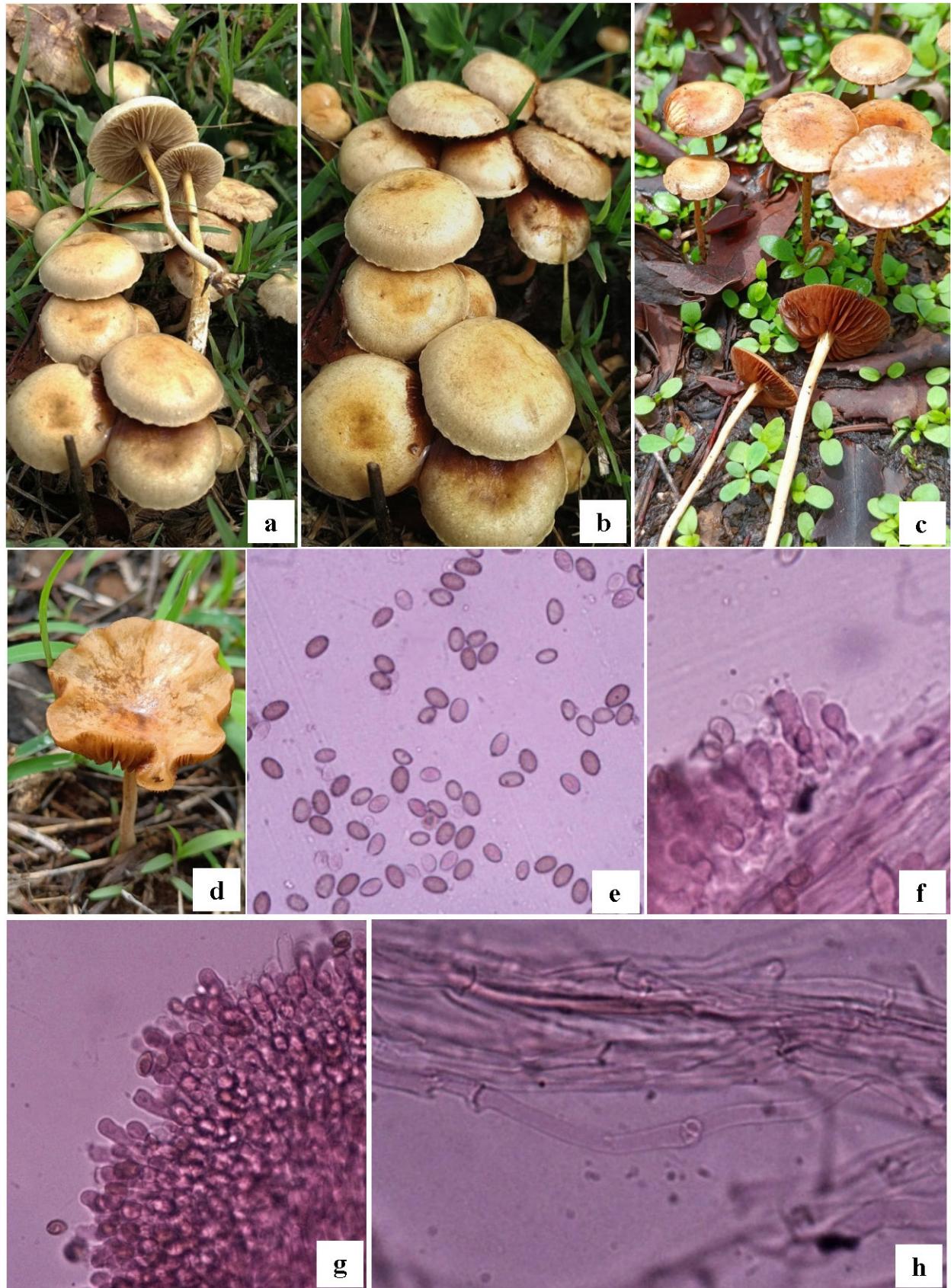


Image 1. *Agrocybe pediades* (Pers.: Fr.) Fayod.: a-d—Basidiomes in their natural habitat | e—Basidiospores 40x | f-g—Basidia with basidioles 40x | h—Pileipellis hyphae with clamp connections 40x. © Sushant Ishwar Bornak.

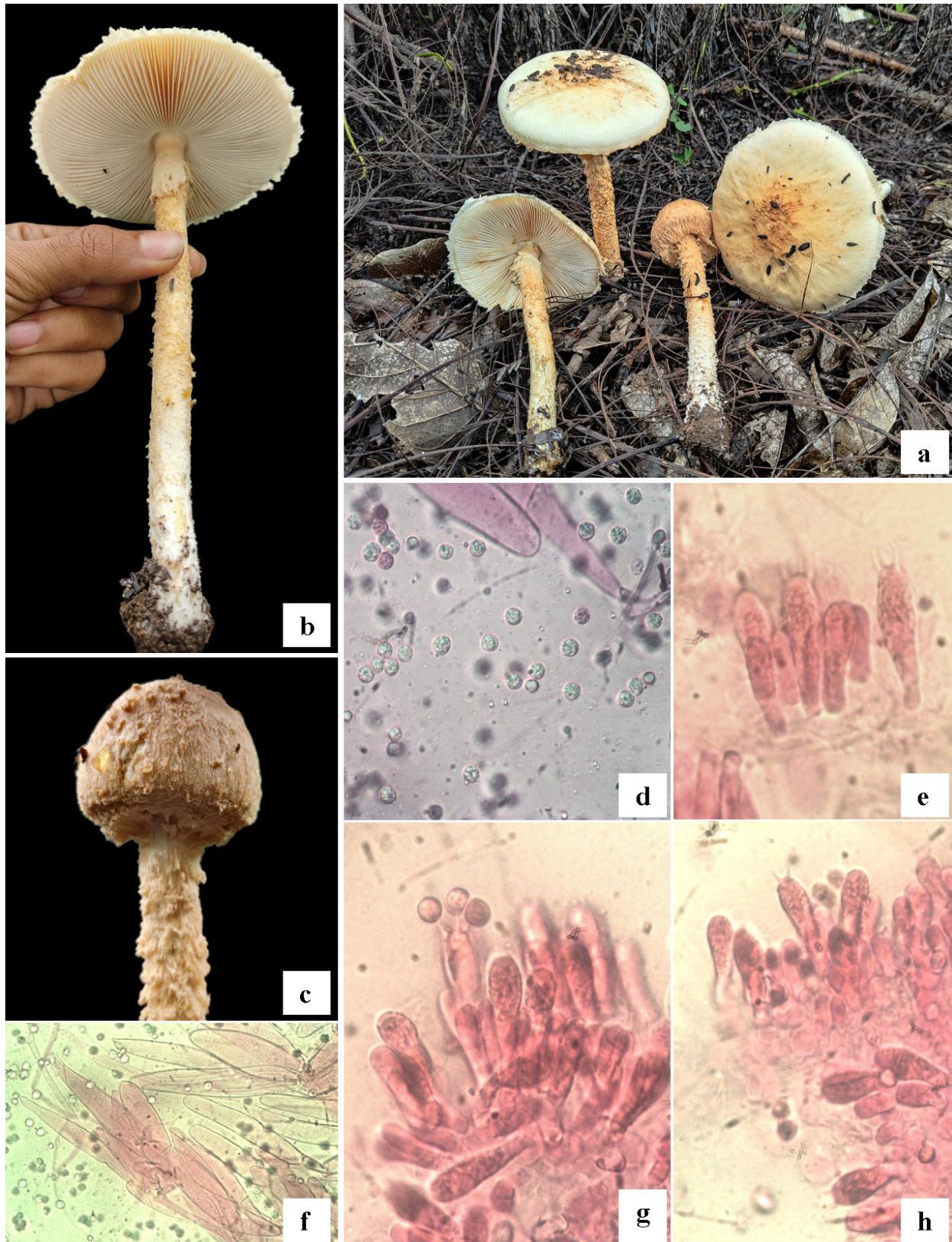


Image 2. *Amanita manicata* (Berk. & Broome) Pegler: a-c—Basidiomes in their natural habitat | d—Basidiospores 40x | e—Basidia 40x | f—Pileipellis 40x | g-h—Basidia with basidioles 40x. © Sushant Ishwar Bornak.

thicker as upwards; the cream to whitish or pinkish tint lamellae; the subglobose and amyloid basidiospores (Liu et al. 2022) This species has been described from Karnataka, India (Kantharaja & Krishnappa 2022). This is the first report from Maharashtra State.

***Bolbitius coprophilus* (Peck) Hongo**

(Image 3a–i)

Mem. Fac. Lib. Arts Educ., Shiga University, Nat. Sci. 9: 82, 1959.

Fruiting body small to medium, 3–20 cm in height. **Pileus** 2.5–6 cm in diam., campanulate when young, conical at maturity, becoming applanate; umbonate, umbo broad, reddish-brown to pale brown to brown; slightly pinkish when young, surface viscid, smooth, fragile, margin irregular, pellucid, striate, splitting at maturity; flesh thin; **Lamellae** free, unequal, crowded, narrow to moderately broad, white to pale yellow when young, grayish-brown to brown at maturity, fragile; gill edges curled with age. **Stipe** central, 3–18 × 0.4–0.6 cm broad, tubular, with slightly swollen base, hollow, surface pale yellow, unchanging, with pinkish excludes on surface when mature, pruinose–fibrillose, delicate, shiny, silky. **Basidiospores** 10.5–16 × 8–10 mm, ellipsoidal to ovoid, truncated by a broad germ pore, thick-walled, smooth, yellowish-brown. **Basidia** 18–30 × 9.5–14.8 mm, clavate to cylindrico-clavate, thin walled, 2–4 spored; **Lamella edges** sterile. **Cheilocystidia** 25–35.5 × 7.6–18.5 mm, cylindrical, clavate–vesiculose, thin-walled, hyaline. **Pleurocystidia** not observed. **Pileipellis** hymeniform, 18–45 × 8–12 mm, inflated, clavate, thin walled, hyaline; clamp connections absent.

Collection examined

India, Maharashtra, Kolhapur, Karvir, Parite, Kolhapur–Radhanagari road (16.542° N, 74.115° E), on rice husk, alone, solitary, scattered, 16.vii.2023, Bornak, S.I. (Y23V6C3).

Remarks

B. coprophilus is characterized by a broad pileus which is pale with a distinct pinkish tinge and a pileal shape that varies from convex or campanulate when young and flat at maturity; the gills are free and non-deliquescent and the basidiospores are ellipsoid to ovoid. This species prefers to grow on organic substrates that are rich in nutrients, such as dung or compost (Usman et al. 2022). *B. coprophilus* was originally described from North America by Hongo in 1959. After that several investigations were made from various regions of the world viz. dung heaps in New York; wheat

fields in England; horse and deer dung mixed with straw in Denmark, Italy; scattered on cow dung, compost, and rice straw in Singapore; compost and wheat straw in Argentina, Europe, and Poland; horse dung in France and Austria; straw, dung, and compost in Russia (Usman et al. 2022). *B. coprophilus* has been previously reported from India on elephant dung in Kerala (Thomas et al. 2001; Manimohan et al. 2007) and from Punjab by Amandeep et al. (2013). There is no report of this species from Maharashtra state. Thus, this is a first report from Maharashtra State.

***Entoloma serrulatum* (Fr.) Hesler**

(Image 4a–e)

Beih. Nova Hedwigia 21: 140 (1967).

Fruit body small to medium; **Pileus** 0.8–5 cm, dark bluish-purple, velvety when young becoming greyish-blue on maturity, silky, convex, centrally depressed when mature with incurved margin. **Lamellae** creamish-pink to pale blue, adnate, narrow and moderately crowded. **Stipe** 1.5–4.5 × 0.2–0.5 cm, bluish-grey, base cream, central, cylindrical, smooth, hollow. **Basidiospores** 7–11 × 5.8–7.5 µm, hyaline, angular, pentagonal. **Basidia** 26–34 × 9–11 µm, clavate, 4-spored. **Cheilocystidia** 35–60 × 8–11.5 µm; cylindric with clavate to subclavate apices. Lamellar edge sterile. **Clamp connections** absent.

Collections examined

India, Maharashtra, Kolhapur, Panhala, Pombare (16°43'05"N-73°54'09"E), on soil, under the trunk of *Acacia mearnsii* De Wild. tree, solitary or in pair, 16.vii.2020, Bornak, S.I. (Y20V15C4); Panhala, Padsali (16.589° N, 73.867° E), amongst decaying leaf litter, solitary, scattered, 24.vi.2021, Bornak, S.I. & Patil, Y.S. (Y21V3C4).

Remarks

Entoloma serrulatum can be recognized by the dark blue cap, squamous pileal surface in the center and bluish lamellae with a dark margin. Microscopically basidiospores measure 9–13 × 6–9 µm and the pileal surface is composed of a cutis with pileocystidios forming a transition between cutis and trichoderm, sometimes almost hymeniform. *E. serrulatum* has a wide geographic distribution, occurring in Europe, South America, North America, Asia, and Brazil (Karstedt 2010).

This species has been previously reported from Kerala (Farook et al. 2013) and southwestern India (Pavithra et al. 2016). Jagadish et al. (2019) showed that the species *E. serrulatum* along with 20 other species have ectomycorrhizal assemblage in the vicinity

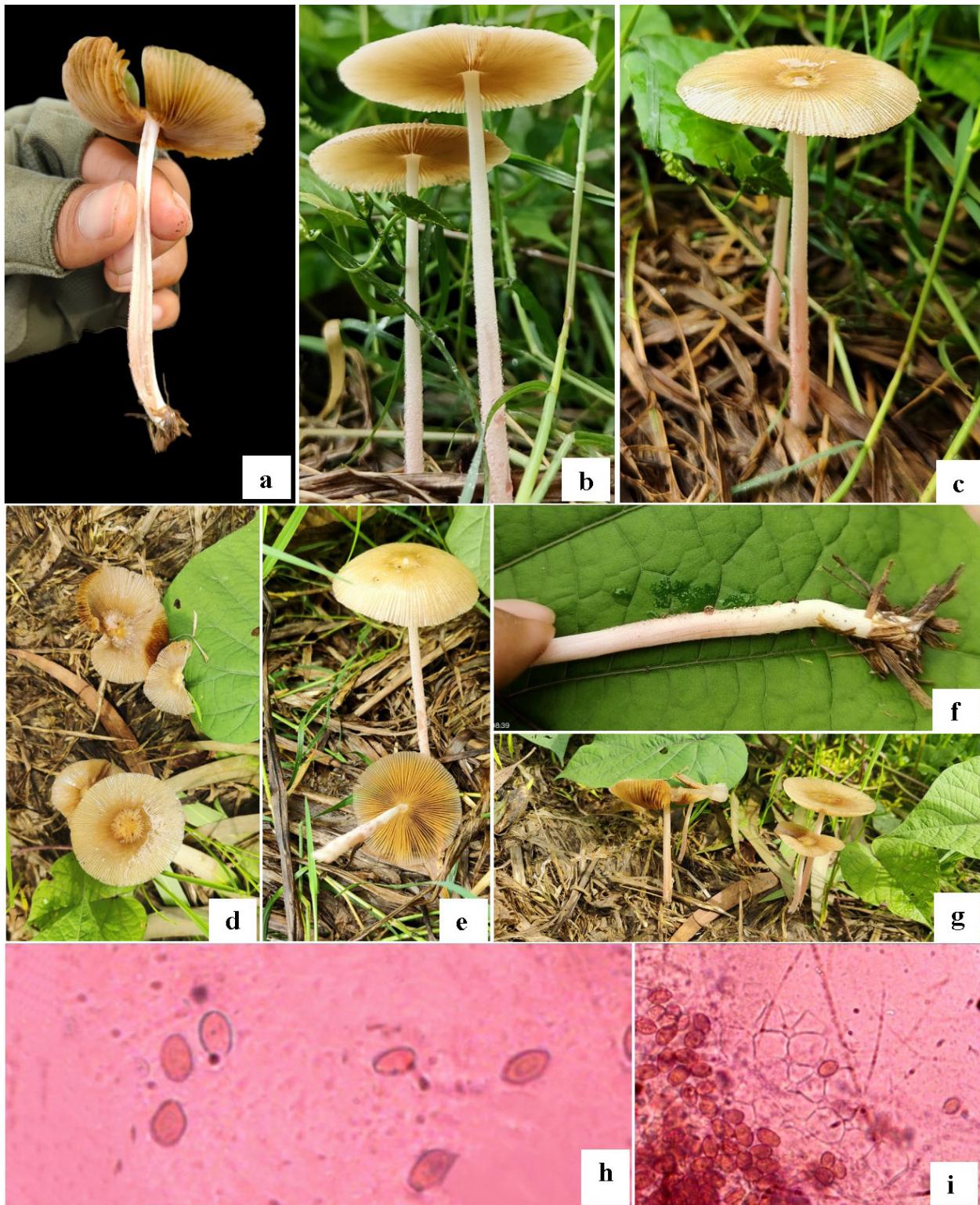


Image 3. *Bolbitius coprophilus* (Peck) Hongo.: a–g—Basidiomes in their natural habitat | h—Basidiospores 40x | i—Pileipellis 40x. © Sushant Ishwar Bornak.

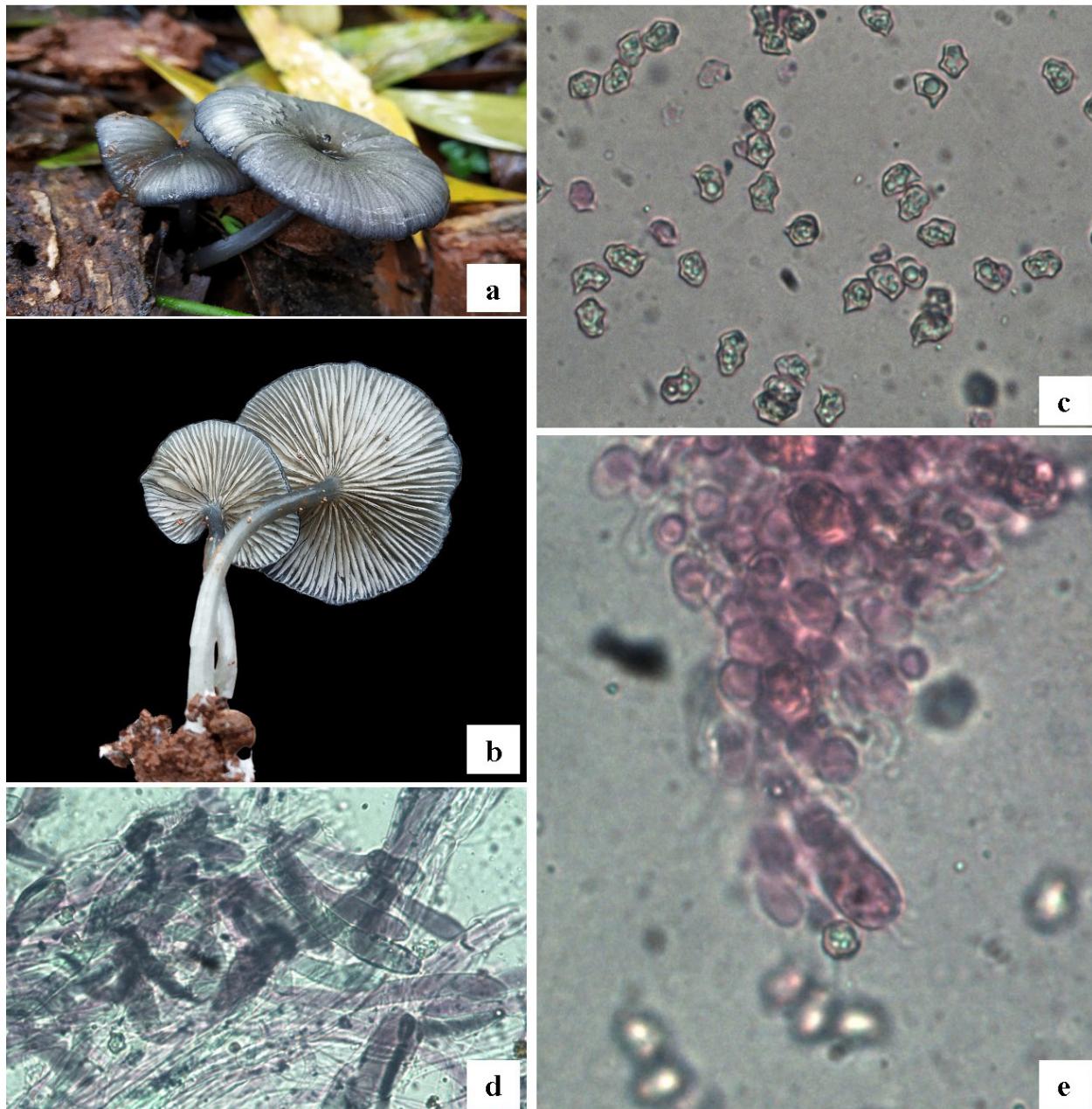


Image 4. *Entoloma serrulatum* (Fr.) Hesler: a–b—Basidiomes in their natural habitat | c—Basidiospores 40x | d—Pileipellis 40x | e—Basidia with basidioles 40x. © Sushant Ishwar Bornak.

of *Anacardium occidentale* from the Arabian Sea coast near Mangalore City, Karnataka State. This species is the first record from Maharashtra State.

***Entoloma theekshnagandhum* Manim., A.V. Joseph &**

Leelav.

(Image 5a–h)

Mycol. Res. 99(9): 1088 (1995).

Fruiting body small to medium. **Pileus** 2–4 cm in diameter, convex, centrally depressed cap; surface white

to yellowish white, pale greenish-white when young, glabrous, smooth, pellucid–striae; margin regular. **Lamellae** adnate to sub-decurrent, white to yellowish-white, with lamellulae. **Stipe** 3–7 × 0.2–0.5 cm; central or slightly eccentric, cylindric, sometimes compressed, hollow; yellowish-white, pruinose at apex, glabrous towards base. **Odour** very strong, unpleasant; taste unpleasant. **Basidiospores** 7–9 × 6.8–8.2 µm, quadrate or pentagonal. **Basidia** 23–39 × 8–13 µm, clavate with four sterigmata. **Cheilocystidia**

18–65 × 6.5–22 µm, copious, lageniform, clavate to obclavate, cylindrical, hyaline. **Pleurocystidia** not observed. **Caulocystidia** 32–70 × 10–18 µm, similar to cheilocystidia. Spore print pale pink to orange white.

Collections examined

India, Maharashtra, Kolhapur, Panhala, Pombare (16.689° N, 73.906° E), on soil, solitary, scattered, 16.vii.2020, Bornak, S.I. (Y20V15C3); Shahuwadi, Nandari (16.098° N, 73.835° E), on soil, single, 05.viii.2021, Bornak, S.I. & Patil, Y.S. (Y21V7C6).

Remarks

This species was first described by Manimohan and Leelavathy (1988) as *Alboleptonia graveolens*. Later, the name was changed to *Entoloma theekshnagandhum* (Manimohan et al. 1995). The species can be easily recognized by its robust, whitish, omphaloid basidiomes; the strong, unpleasant odour, quadrate spores, versiform cheilocystidia and the darkening nature of the basidiomes upon drying, development of a yellow colour when the fresh basidiomes are bruised (Manimohan et al. 1995). The species has been reported from several places of Kerala (Manimohan & Leelavathy 1988; Manimohan et al. 1995), Karnataka (Karun & Sridhar 2016) and Hollongapar Gibbon Wildlife Sanctuary, Assam (Gogoi & Parkash 2015). Diversity of genus *Entoloma* is not well studied in Maharashtra state. So far only *E. brassicolens*, *E. byssisedum*, *E. ochrospora*, *E. strictius*, *E. roseoflavum* have been reported from Maharashtra State (Senthilarasu 2014; Borkar et al. 2015). *E. theekshnagandhum* is the first report from Maharashtra State.

Hymenopellis radicata (Relhan) R.H.Petersen (Image 6 a–j)

Petersen & Hughes, *Nova Hedwigia*, Beih. 137: 202 (2010).

Fruiting body medium; **Pileus** 2.5–9 cm, initially convex, then flattened-convex to flat, with wide low and obtuse umbo; margin thin, regular, acute, smooth, a little wavy; smooth cuticle when young, sooner or later radially wrinkled, glabrous, opaque with dry weather, viscous when humid; pale brown, hazel, ochraceus, whitish at times, darker at the centre; **Lamellae** of spaced gills, adnate or rounded, ventricose, wide, interspersed with numerous lamellulae of various length; the colour is white, the thread is entire and just stains brown when ripe; **Stipe** 5–16(20) × 0.5–1.5 cm, slender, long cylindrical, with the enlarged base continuing in the soil under in the form of long root, rigid, fibrous, tough, full,

at times twisted; surface finely floccose, longitudinally fibrillar, white at the apex, darkens gradually towards the base, where it has a colouration more or less similar to that of the cap; **Basidiospores** 15–18 × 8–10 µm; widely ellipsoidal, elongated-ovoid, smooth, guttulous; **Basidia** 45–55 × 10–15 µm; cylindrical, clavate, tetrasporic, with clamp connections; **Cheilocystidia** 12–35 µm; clavate, ventricose, smooth; **Pleurocystidia** 22–35 µm; widely clavate, widely rounded, truncated at the apex; **Annulus** absent. **Spore print** white.

Collections examined

India, Maharashtra, Kolhapur, Bhudargad, Bediv (16.211° N, 74.163° E), on ground, alone, solitary, 14.vi.2020, Bornak S.I. (Y20V2C12); Shahuwadi, Ambeshwar Devrai, (16.974° N, 74.801° E), on soil, alone, solitary, 19.vi.2020, Bornak S.I. (Y20V4C26); Kalammawadi Road, Radhanagari, (16.404° N, 74.018° E), on soil, single, 16.vii.2023, Bornak, S.I. (Y23V4C4).

Remarks

The type species of *Hymenopellis* is *H. radicata* described in 1786 under the name *Agaricus radicatus*. *H. radicata* is an edible species and can be cultivated commercially which contains bioactive compound lectin which is antifungal, mucidin which is antioxidative, anti-inflammatory and shows lung-protective effects and some polysaccharides which are antifungal in nature (Niego et al. 2021). The species is cosmopolitan. In Maharashtra this species has been reported from Karnala, Thungareshwar, Lonavala, and Bhimashankar.

Macrocybe gigantea (Massee) Pegler & Lodgel.

(Image 7a–g)

Mycologia, 1998

Pileus 8–35 cm across, convex to flat, white, grayish-white, cream white, paler towards margin, glabrous and silky smooth, margin entire and incurved, expands when mature, often cracking. **Lamellae** notched, crowded, pale white to straw yellow, many tiers of lamellulae. **Stipe** 10–40 × 4–6 cm, central, solid, concolorous with pileus, fibrillose. **Basidiospores** 4.8–6.6 × 3.2–4.2 µm, ovate to ellipsoidal, hyaline, thin walled, smooth. **Basidia** 23–26.5 × 5.8–8.8 µm, four spored, clavate to sub-cylindrical, hyaline, oil droplets prominent, basal clamp connections present. **Cystidia** absent. **Lamellar** edges fertile. **Hymenophoral** trama regular, made up of thin-walled parallel hyphae. **Pileipellis** a cutis of narrow hyphae 4–8 µm in diameter, hyaline in 5% KOH, **clamp connections** present. Spore print white. **Odour** and taste

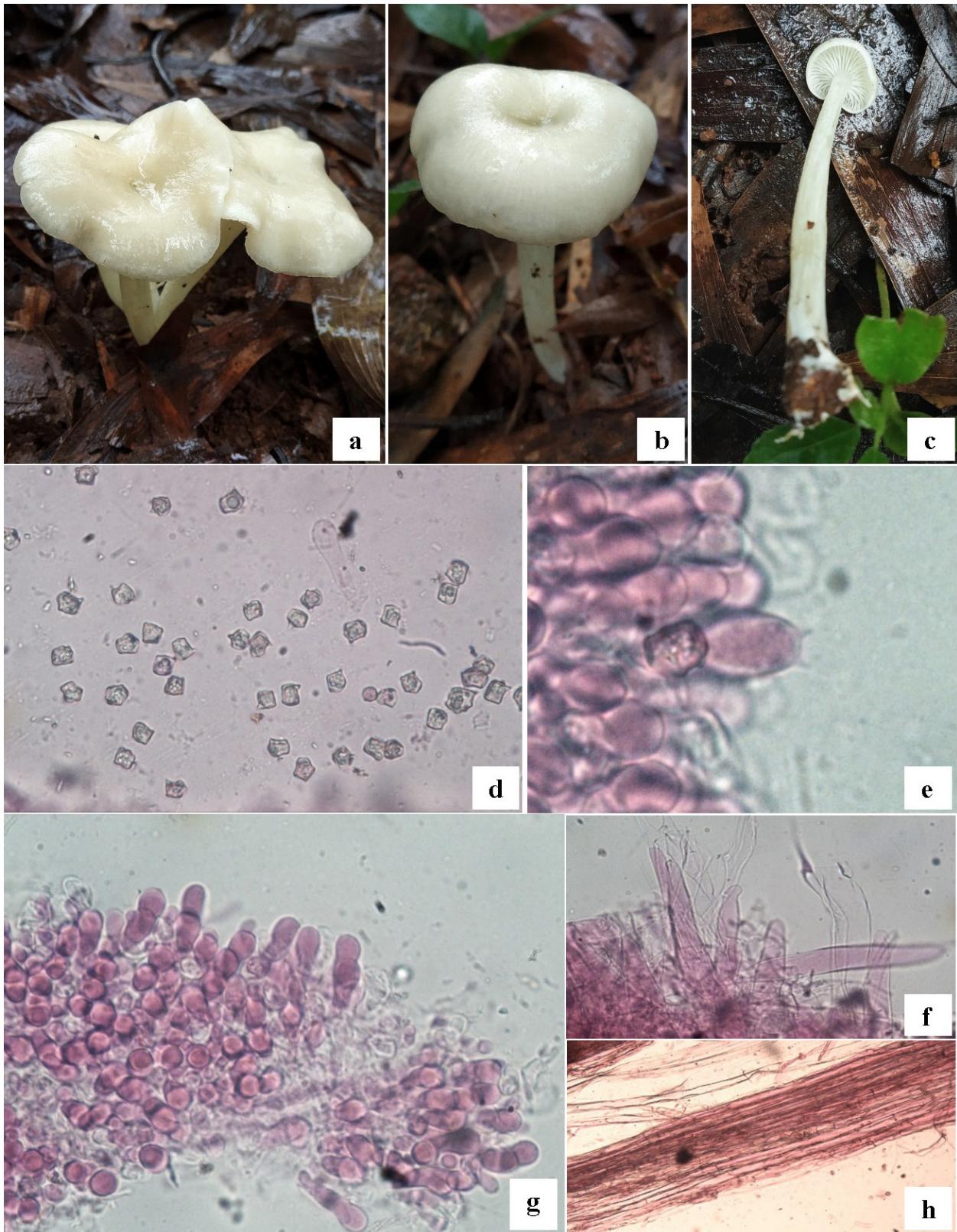


Image 5. *Entoloma theekshnagandhum* Manim., A.V.Joseph & Leelav.: a–c—Basidiomes in their natural habitat | d—Basidiospores 40x | e—Basidia 40x | f—Pileipellis 40x | g—Basidioles 40x | h—Stiptipellis 40x. © Sushant Ishwar Bornak.

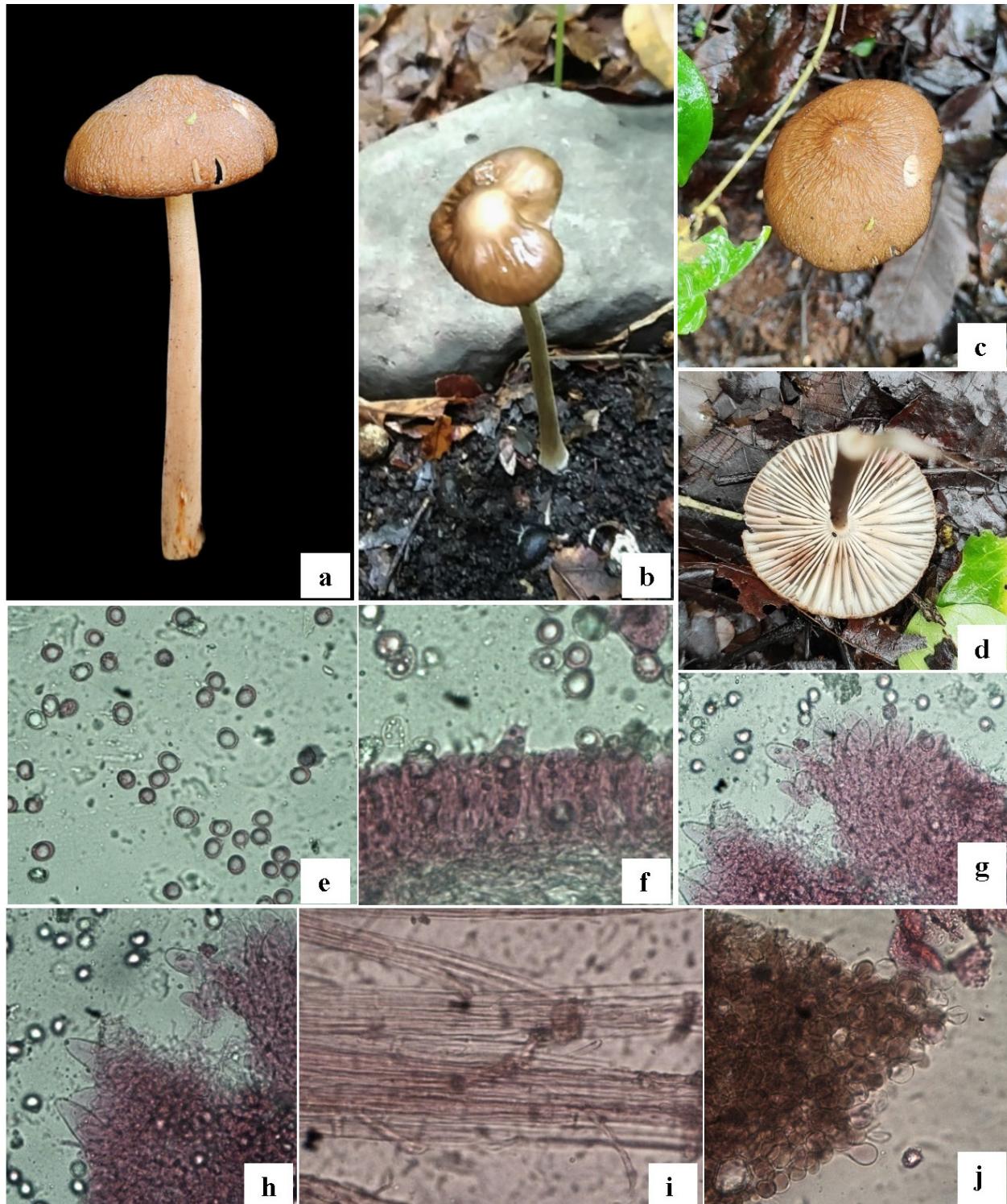


Image 6. *Hymenopellis radicata* (Relhan) R.H.Petersen: a-d—Basidiomes in their natural habitat | e—Basidiospores 40x | f—Basidia with basidioles 40x | g-h—Cheilocystidia 40x | i—Stipitopellis 40x | j—Pileopellis 40x. © Sushant Ishwar Bornak.

not recorded.

Collections examined

India, Maharashtra, Kolhapur, Karvir, Samrat Nagar,

(16.680° N – 74.243° E) on soil, in cluster, gregarious, 22.vi.2020, Bornak, S.I. & Patil, Y.S. (Y20V3C1); Shivaji University Campus (16.677° N, 74.254° E), on soil, solitary or scattered, 19.vii.2022, Bornak, S.I. & Patil, Y.S.

(Y22V6C1).

Remarks

Macrocybe gigantea was previously known as *Tricholoma giganteum* reported for the first time from West Bengal, India (Pegler et al. 1998). This species belongs to the family Tricholomataceae. *Macrocybe* species are characterized by white, cream to greyish, or ochraceous, and convex, umbonate to depressed pileus. The genus *Macrocybe* has been considered as *Tricholoma*. Later, it was segregated from *Tricholoma* and ranked as a genus using distinct morphological and molecular characteristics (Razaq et al. 2016). *Macrocybe* species are widely distributed in tropical regions from various parts of the world (Pegler et al. 1998). The genus shows similar characters with *Calocybe*, both having conspicuous large basidiomata. However, *Macrocybe* species differs from *Calocybe* in lacking siderophilous granulation in the basidia and molecular characteristics. *M. gigantea* is an edible species with many varieties recognized and is cultivated in the wild tropical and subtropical regions of the world. It has a sweet taste and is rich in nutritive components such as proteins, polysaccharides, fat, amino acids, and many mineral elements (Galappaththi et al. 2022). Due to these nutritional and therapeutic attributes, it could be advantageous to grow this fungus at industrial scale for maximum benefits. *M. gigantea* can meet the demand of food for growing population due to both nutritional and therapeutic peculiarities. However, in wild form, there is a chance of radioactive contamination, which can be overcome by the cultivation under controlled conditions. (Ghafoor et al. 2022). *M. gigantea* is distributed only in the Asian countries such as China, India, Nepal, and Pakistan and there is no other report of this species from the western Hemisphere. (Razaq et al. 2016). In India, this species has been previously reported from Kerala, Karnataka, and West Bengal. This is the first report from Maharashtra State.

Schizophyllum commune Fr.

(Image 8a–i)

Observ. mycol. (Havniae) 1: 103 (1815).

Fruiting body small. **Pileus** 1–4.5 cm diam., thin, fan-shaped, shell like, in group or sessile or rudimentary stem, soft when fresh, leathery when dry; margin involute, lobed, wavy; whitish-grayish with hairy or velvety surface, greyish-brown towards the margin. **Lamellae** decurrent, unequal, narrow, split along the edge, distant, whitish to cream then pale grey–brown. **Stipe** rudimentary or absent, lateral. Flesh very tough,

thin, pinkish. **Basidiospores** 4.3–6.2 × 1.8–2.2 µm, smooth, hyaline, subcylindrical. **Basidia** 16–22 × 3.8–6.2 µm, tightly clavate, 4-spored.

Collections examined

India, Maharashtra, Kolhapur, Bhudargad, Bhendvade, Gadninglaj–Gargoti Road, (16°24'13"N-74°22'11"E), on dead wood, in cluster, 14.vi.2020., Bornak, S.I. & Patil, A.R. (Y20V1C7); Shahuwadi, Amba, Ambeshwar Devrai, (16.341° N, 73.845° E), on dead wood, in group, 19.vi.2020, Bornak, S.I. (Y20V6C6); Panhala, Pombare (16.721° N, 73.889° E), on unknown living tree trunk, gregarious, scattered, 20.vi.2021, Bornak, S.I., Biranje, S.S. & Patil, Y.S. (Y21V4C9); Panhala, Padasali (16.703° N, 73.672° E), on dead wood, in cluster, 24.vi.2021, Bornak, S.I. (Y21V3C8); Bhudargad, Pal, Pal Devrai (16.371° N, 74.190° E), on unknown wood, gregarious, scattered, 22.viii.2022, Bornak, S.I., Patil, Y.S. & Biranje, S.S. (Y22V9C5); Karvir, Parite, Kolhapur–Radhanagari road, (16.539° N, 74.105° E), on wood, gregarious, scattered, 16.vii.2023, Bornak, S.I. (Y23V6C6); Karvir, Rajaram College Campus, (16.686° N, 74.259° E), on dead wood, in cluster, 24.vii.2023, Bornak, S.I. (Y23V5C1).

Remarks

Schizophyllum commune is saprobic on dead wood or occasionally parasitic on living wood; growing alone, gregarious, sometimes clustered; on decaying hardwood sticks and logs grows throughout year. This species is widely distributed in North America, South America, Europe, Asia, Africa, Ireland, and Great Britain, Bay area, India. *S. commune* is a wood decaying fungus that causes a white rot, by using enzymes to decay. The lignin and cellulose left behind on the decaying wood is white. There are also reports of this species being found in humans and other animals. This fungus is known to cause a human mycoses in a few cases involving immune incompetent people, brain abscess especially in children. This is also an edible species and is a very good source of protein, vitamins, lipids and minerals and widely consumed in many parts of world. In northeastern India it is a traditional food species (Verma & Verma 2017). This species has been reported from Mahabaleshwar and Mulashi, Maharashtra (Senthilarasu 2014). This is a first report from the study area.

Termitomyces heimii Natarajan

(Image 9 a–j)

Mycologia 71 (4): 853 (1979).

Pileus 5–11 cm diam., surface smooth, convex to planoconvex, when young prominently sub-umbonate,

Image 7. *Macrocybe gigantea* (Massee) Pegler & Lodge.: a—Fruiting body | b—Basidiomes in their natural habitat | c—Lamellae margin 10x | d—Basidia 40x | e—Basidia with basidioles 40x | f—Pileipellis 40x | g—Cheilocystidia 40x. © Sushant Ishwar Bornak.

margin incurved, white, striate with greyish to greyish-brown umbo, splits when mature. **Context** fleshy, white. **Lamellae** free, crowded, white, becoming pink, up to 6–8 mm broad, margin serrate, lamellulae present. **Stipe** 13–18 cm long and 1.5–2 cm wide, white, surface smooth, cylindrical, solid, with a thick annulus, pseudorhiza

present, 13–20 cm below the ground level. **Pileal** surface an epicutis hyphae 4–5 μm wide. **Hymenophoral** trama regular, thin-walled parallel hyphae, 10–12 μm wide. **Basidia** clavate, 16.5–20.8 \times 5.7–7.0 μm , with four sterigmata. **Pleurocystidia** broadly clavate, 44 \times 17 μm . **Cheilocystidia** not observed. **Basidiopores** 7.2–8.5 \times

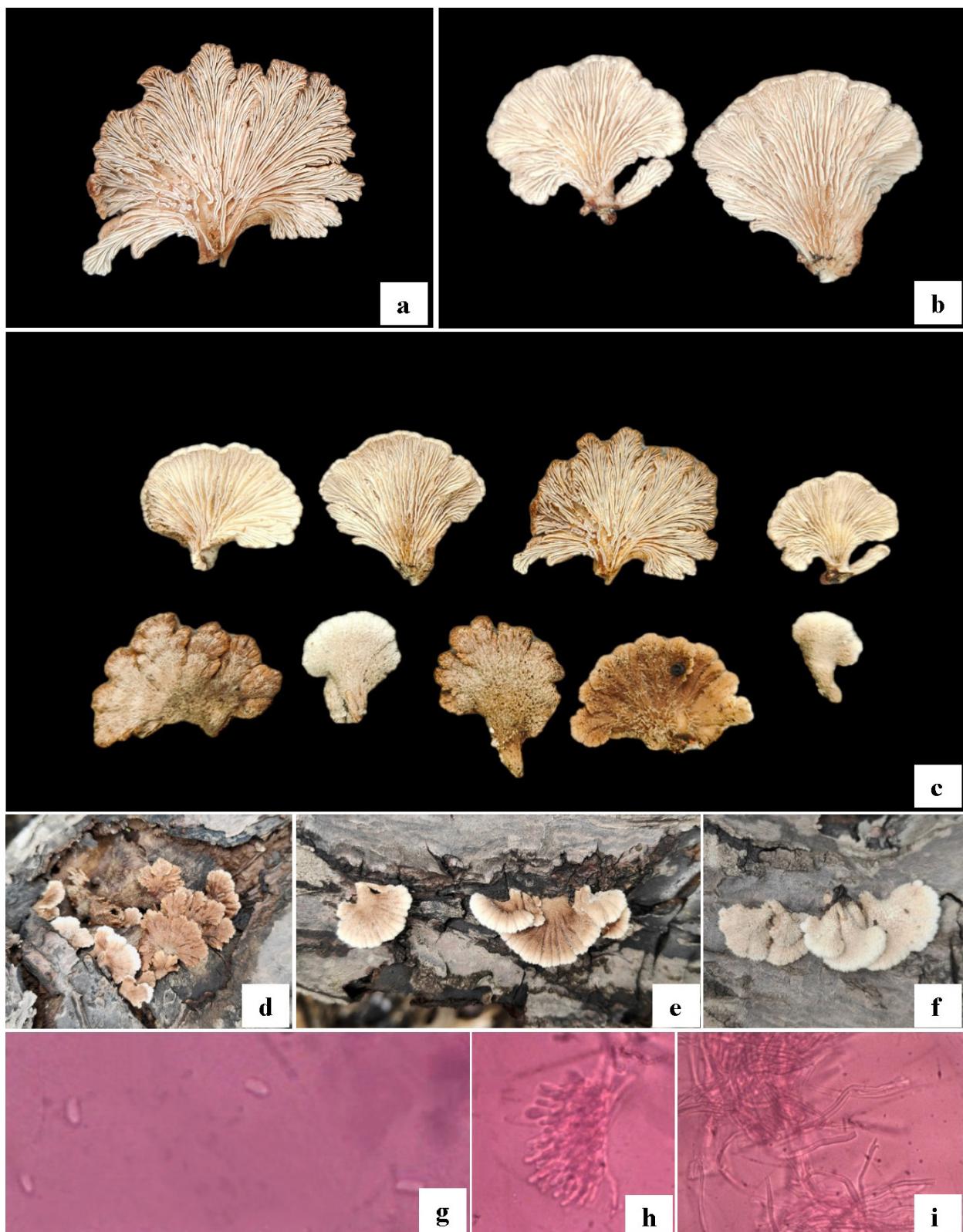


Image 8. *Schizophyllum commune* Fr.: a-f—Basidiomata and basidiomes in their natural habitat | g—Basidiospores 40x | h—Basidia with basidioles 40x | i—Pileipellis 40x. © Sushant Ishwar Bornak.

4.0–5.4 μm , ellipsoid, smooth, hyaline, nonamyloid. **Clamp connections** absent. **Spore deposit** pink.

Collection examined

India, Maharashtra, Kolhapur, Jyotiba (16.787° N, 74.176° E), on open ground, gregarious, scattered, 19.vii.2022, Bornak, S.I. & Subhedar, V. (Y20V10C1).

Remarks

The diagnostic feature of this species is the large, white, smooth, sub-umbonate pileus and smooth annulate stipe with a long pseudorrhiza. Other large annulate species of *Termitomyces* differ from this significantly. In *T. eurrhizus* (Berk.) Heim, the fruit bodies are larger, the pseudorrhiza black and the viscid pileus surface dark gray brown to fuliginous; the perforatorium is pointed. In *T. lanatus* Heim the pileus is covered by a thick grayish woolly veil and the annulus and stipe are covered with woolly scales. In *T. striatus* (Beeli) Heim the pileus is ochraceous to gray brown and distinctly striate (Natarajan 1979).

T. heimii has ethno-medicinal importance as it can be used in treatment for fever, cold, and fungal infections, used in blood tonics during wound healing and blood coagulation, syrup is used for jaundice and diarrhea and also shows antimicrobial, anticancer, and antioxidant properties. Water soluble solvents of *T. heimii* shows antimicrobial activity against *Escherichia coli*, *Klebsiella pneumoniae*, *Pseudomonas* sp., *Staphylococcus aureus*, and *Streptococcus pyogenes* (Paloi et al. 2023). The species has been reported from Maharashtra (Borkar et al. 2015).

Termitomyces microcarpus (Berk. & Broome) R.Heim (Image 10a–e)

Arch. Mus. Hist. Nat. Paris, ser. 6 18: 128 (1942).

Fruiting body small to medium. **Pileus** 1.5–3 cm, at first campanulate becoming expanded convex on maturity with shield-shaped acute umbo, margins splitting at maturity, pale to creamish-white, yellowish-white, smooth, silky, shiny, viscid or slimy when wet. **Lamellae** free to adnexed, narrow, less crowded, with lamellulae, cream turns into light brown on maturity. **Stipe** 3.2–8 \times 0.1–0.3 cm, creamish, central, cylindrical, thin, fibrillose, smooth, silky, hollow and tapering towards the base, devoid of annulus and without pseudorrhiza. **Basidiospores** 5.0–7.2 \times 3.4–4.5 μm , hyaline, ovoid to broadly ellipsoid, thin walled. **Basidia** 11.6–16.2 \times 4.3–6.6 μm , with four sterigmata.

Collection examined

India, Maharashtra, Kolhapur, Shahuwadi, Amba, (16.942° N, 73.791° E), on soil, in cluster, gregarious, 30.vi.2023, Bornak, S.I. & Vedpathak, M.A. (Y23V4C3).

Remarks

T. microcarpus is closely related to *T. medius* in shape of pileus as well as umbo, but *T. microcarpus* differs for being devoid of pseudorrhiza. In India along with *T. heimii*, *T. microcarpus* was used to alleviate fever, colds, and fungal infections (Nhi et al. 2022). This is an edible species and can be used to treat gonorrhea (Pavithra et al. 2017). Despite of all this species has ample medicinal usage, viz, lowers the total serum cholesterol, LDL-cholesterol and triglycerides in rats, used in wound healing, used in treatment of diarrhoea, muscular pain, delivery pain, stomachache, laziness, stiffness of joints, cough/cold, venereal diseases, used for fever treatment and bone strengthening (Kumari et al. 2022).

The species has many vernacular names, viz: Katola kum/Akki kum, Nuchikum, Pullaekum, Uei Chhatu, Choto karane, (Kerala and Karnataka); Bhat Pihari, (Nei kalan, Ari Kumizh, Arishi Kalan (Tamil Nadu); Bada bali chatu (Odisha); Jhari chewn, Mulchewn (Uttarakhand); Kanki Phutu, Chowk Phutu, Chapat phutu (Chattisgarh); Shiti or Shitol olamis (Goa); Inyak (Arunachal Pradesh); Balu khukhdi (Jharkhand); Mikhumu khapolok (Tripura); Bhatoli, Mohtran (Himachal Pradesh) (Kumari et al. 2022). The previous reports of *T. microcarpus* are from Karnataka, Kerala, Tamil Nadu and Pune in Maharashtra (Pavithra et al. 2017).

DISCUSSION

In the present investigation 10 species belonging to eight genera and eight families from order Agaricales have been enumerated. Among these, five species have been described for the first time from Maharashtra State. *Agrocybe pediades*, *Hymenopellis radicata*, *Macrocybe gigantea*, *Schizophyllum commune*, *Termitomyces heimii* and *T. microcarpus* are edible and *Entoloma serrulatum* is a poisonous species (Ediriweera et al. 2015; Razaq et al. 2016; Mishra et al. 2021; Niego et al. 2021).

The edible species such as *M. gigantea* and *S. commune*, which are used in traditional dishes in some parts of India, are commonly distributed in Kolhapur District. In addition to their edibility, species such as *A. pediades*, *H. radicata*, *T. heimii*, and *T. microcarpus* are also known for their medicinal properties. These fungi exhibit a wide range of bioactivities including antimicrobial,

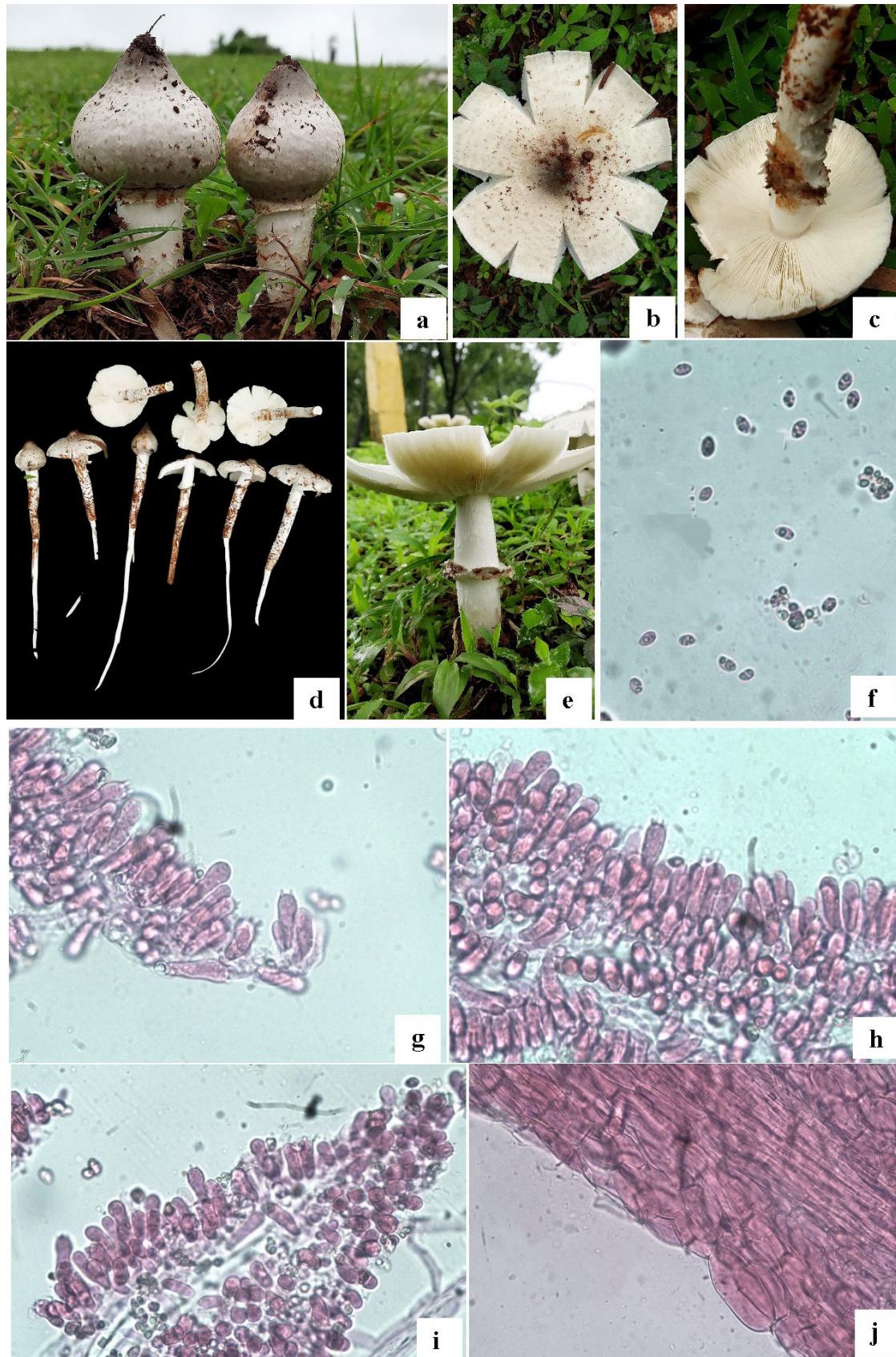


Image 9. *Termitomyces heimii* Natarajan: a–e—Basidiomata and basidiomes in their natural habitat | f—Basidiospores 40x | g–i—Basidia with basidioles 40x | j—Pileipellis 40x. © Sushant Ishwar Bornak.



Image 10. *Termitomyces microcarpus* (Berk. & Broome) R. Heim.: a–e—Basidiomes in their natural habitat. © Sushant Ishwar Bornak.

antiviral, antifungal, antioxidant, anti-inflammatory, anticancer, wound-healing, and lung-protective effects. Such therapeutic potential is attributed to the presence of various bioactive compounds, emphasizing the nutritional and pharmacological significance of wild mushrooms in rural communities.

In rural areas of Kolhapur District, *Termitomyces* and *Pleurotus* species are among the most commonly consumed wild edible mushrooms during the monsoon season. *Termitomyces* species are typically found in forested regions and near agricultural lands, often associated with termite mounds. These mushrooms are relatively easy to recognize due to their long, slender pseudorhiza extending into the soil, a distinguishing characteristic in most species, except *Termitomyces microcarpus*, which lacks a prominent pseudorhiza. Similarly, *Pleurotus* species are widely collected and consumed across various parts of the district. Members of this genus can be identified by their fan-shaped pileus, lateral or absent stipe, and often white to off-white basidiocarps. Despite the familiarity of these genera to local populations, accurate mushroom identification remains a challenging task. Distinguishing between edible and toxic species based solely on macroscopic features can be unreliable and may pose significant health risks. Therefore, while some genera may have recognizable traits, caution and expert verification are essential for safe wild mushroom consumption.

REFERENCES

Amandeep, K., N.S. Atri & K. Munruchi (2013). Diversity of species of the genus *Bolbitius* (Bolbitiaceae, Agaricales) collected on dung from Punjab, India. *Mycosphere* 4(6): 1053–1064. <https://doi.org/10.5943/mycosphere/4/6/3>

Bhide, V.P., A. Pande, A.V. Sathe, V.G. Rao & P.G. Patwardhan (1987). *Fungi of Maharashtra (Supplement-I)*. Maharashtra Association for the Cultivation of Science, Research Institute, Pune, 146 pp.

Blatter, E. (1911). A list of Indian fungi, chiefly of the Bombay Presidency, with the description of two new species. *Journal of Bombay Natural History Society* 21: 146–152.

Borkar, P., A. Doshi & S. Navathe (2015). Mushroom diversity of Konkan region of Maharashtra, India. *Journal of Threatened Taxa* 7(10): 7625–7640. <https://doi.org/10.11609/JOTT.o4283.7625-40>

Chavan, P.B. & S.N. Barge (1977). Some fleshy fungi from Maharashtra. *Botanique* 8: 124–128.

Ediriweera, S., R. Wijesundara, C. Nanayakkara & W. Ovdsj (2015). Comparative study of growth and yield of edible mushrooms, *Schizophyllum commune* Fr., *Auricularia polytricha* (Mont.) Sacc. and *Lentinus squarrosulus* Mont. on lignocellulosic substrates. *Mycosphere* 6(6): 760–765. <https://doi.org/10.5943/mycosphere/6/6/10>

Farook, V.A., S.S. Khan & P. Manimohan (2013). A checklist of Agarics (gilled mushrooms) of Kerala State, India. *Mycosphere* 4(1): 97–131. <https://doi.org/10.5943/mycosphere/4/1/6>

Galappaththi, M.C.A., Y. Lu, S.C. Karunaratna, N. Wijewardena, A. Karunaratna, M. Gamage & A.N. Ediriweera (2022). First successful cultivation and nutritional composition of *Macrocybe gigantea* in Sri Lanka. *MycoAsia* 2022/07. <https://doi.org/10.59265/mycoasia.2022-07>

Ghafoor, A., A.R. Niazi & N.u.-S. Afshan (2022). Domestication and element analysis of the giant edible *Macrocybe gigantea* from Pakistan. *Journal of Applied Botany and Food Quality* 95: 167–173. <https://doi.org/10.5073/JABFQ.2022.095.021>

Gogoi, G. & V. Parkash (2015). A checklist of gilled mushrooms (Basidiomycota: Agaricomycetes) with diversity analysis in Hollongapar Gibbon Wildlife Sanctuary, Assam, India. *Journal of Threatened Taxa* 7(15): 8272–8287. <https://doi.org/10.11609/jott.1770.7.15.8272-8287>

Hedawoo, G.B. & P.U. Mohite (2008). Some wild edible mushrooms from Melghat Tiger Reserve Forest and Amravati Region. *Bioscience Biotechnology Research Communications* 1(2): 163–167.

Hedawoo, G.B. (2010). Wild mushroom flora from Amravati Regoin, Maharashtra, India. *Journal of Mycology and Plant Pathology* 40(3): 441–444.

Jagadish, B.R., K.R. Sridhar & H.R. Dattaraj (2019). Macrofungal assemblage with two tree species in scrub jungles of south-west India. *Studies in Fungi* 4(1): 72–82. <https://doi.org/10.5943/sif/4/1/10>

Kantharaj, R. & M. Krishnappa (2022). Amanitaceous fungi of central Western Ghats: taxonomy, phylogeny, and six new reports to Indian mycobiota. *Journal of Threatened Taxa* 14(4): 20890–20902. <https://doi.org/10.11609/jott.7801.14.4.20890-20902>

Karstedt, F. (2010). *Entolomataceae emáreas de Mata Atlântica da regiãometropolitana de São Paulo, SP*. 186 f. Dissertação (MestradoemBiodiversidade Vegetal e MeioAmbiente). Instituto de Botânica, Secretaria de Estado de MeioAmbiente, São Paulo.

Karun, N.C. & K.R. Sridhar (2016). Spatial and temporal diversity of macrofungi in the western Ghat forests of India. *Applied Ecology and Environmental Research* 14(2): 1–21. https://doi.org/10.15666/aeer/1402_001021

Kaur, A., N.S. Atri & M. Kaur (2014). Diversity of coprophilous species of *Panaeolus* (Psathyrellaceae, Agaricales) from Punjab, India. *Biodiversitas* 15: 115–130.

Kaur, A., N.S. Atri & M. Kaur (2014). Taxonomic study on species of *Agrocybe* (Strophariaceae, Agaricales) collected on dung from Punjab, India. *KAVALKA* 43: 46–49.

Kulkarni, S.M. (1990). Contribution to lignicolous Basidiomycetes flora of S.W. India – II. *Geobios New Reports India* 9(1): 14–17.

Kulkarni, S.M. (1992). *Amanita konkanensis*: a new species of Agaricales. *Biovigyanam* 18(1): 56–58.

Liu, Y.S., J. Kumla, N. Suwannarach, P. Sysuphanthong & S. Lumyong (2022). Three species of *Amanita* section *Lepidella* (Amanitaceae, Agaricales) from northern Thailand. *Phytotaxa* 570(1): 016–028. <https://doi.org/10.11646/phytotaxa.570.1.2>

Manimohan, P. & K.M. Leelavathy (1988). Two new species of *Alboleplonia* (Agaricales, Entolomataceae) from southern India. *Transactions of the British Mycological Society* 91: 710–712.

Manimohan, P., A.V. Joseph & K.M. Leelavathy (1995). The genus *Entoloma* in Kerala State, India. *Mycological Research* 99: 1083–1097.

Manimohan, P., K.A. Thomas & V.S. Nisha (2007). Agarics on elephant dung in Kerala State, India. *Mycotaxon* 99(1): 147–158.

Kumari, B., V.P. Sharma, A. Barh & N.S. Atri (2022). The genus *Termitomyces*- An appraisal of some basic and applied aspects from India. *Current Research in Environmental & Applied Mycology* 12(1): 102–124. <https://doi.org/10.5943/cream/12/1/9>

Manjula, B. (1983). A revised list of the agaricoid and boletoid basidiomycetes from India and Nepal. In: *Proceedings of Indian Academy of Sciences (Plant Science)* 92(2): 81–213.

Mishra, A.K., S. Mishra, S. Rathore, V. Naik, S. Patil & S. Kumar (2021). Wild mushroom diversity of Rairangpur Forest Division, Odisha, India and its medicinal uses. *European Journal of Medicinal Plants* 32(9): 19–27. <https://doi.org/10.9734/EJMP/2021/v32i930415>

Narendra, D.V. & V.G. Rao (1976). Studies into coprophilous fungi of Maharashtra, India-V. *Nova Hedwigia* 27: 631–645.

Natarajan, K. (1979). South Indian Agaricales V: *Termitomyces heimii*. *Mycologia* 71(4): 853–855. <https://doi.org/10.2307/3759201>

Nhi, N.T.N., D.T Khang & T.N. Dung (2022). *Termitomyces* mushroom extracts and its biological activities. *Food Science Technology Campinas* 42: 1–7. <https://doi.org/10.1590/fst.125921>

Niego, A.G., O. Raspé, N. Thongklang, R. Charoensup, S. Lumyong, M. Stadler & K.D. Hyde (2021). Taxonomy, diversity and cultivation of the oudemansielloid / xeruloid taxa *Hymenopellis*, *Mucidula*, *Oudemansiella* and *Xerula* with respect to their bioactivities: a review. *J Fungi* 137(1): 51. <https://doi.org/10.3390/jof7010051>

Niveiro, N., M. Uhart & E. Albertó (2020). Revision of the genera *Agrocybe* and *Cyclocybe* (Strophariaceae, Agaricales, Basidiomycota) in Argentina. *Rodriguésia* 71: 1–26. <https://doi.org/10.1590/2175-7860202071038>

Olariaga, I., S. Huhtinen, T. Læssøe, J.H. Petersen & K. Hansen (2020). Phylogenetic origins and family classification of typhuloid fungi, with emphasis on *Ceratellopsis*, *Macrotyphula* and *Typhula* (Basidiomycota). *Stud Mycology* 96: 155–184. <https://doi.org/10.1016/j.simyco.2020.05.003>

Paloi, S., J. Kumla, B.P. Paloi, S. Srinuanpan, S. Hoijang, S.C. Karunaratna, K. Acharya, N. Suwannarach & S. Lumyong (2023). Termit mushrooms (*Termitomyces*), a potential source of nutrients and bioactive compounds exhibiting human health benefits: a review. *Journal of Fungi* 9(1): 112. <https://doi.org/10.3390/jof9010112>

Parandekar, S.A. (1964). A contribution to the fungi of Maharashtra. *Journal of University of Poona, Science & Technology Sections* 26: 57–65.

Patil, A.R. & S.I. Bornak (2022). First report of *Gymnopilus ochraceus* Högl. 1998 (Agaricomycetes: Agaricales: Hymenogastraceae) from India and determination of bioactive components. *Journal of Threatened Taxa* 14(10): 22021–22025. <https://doi.org/10.11609/jott.7881.14.10.22021-22025>

Patil, A.R. & S.I. Bornak (2023). Diversity of Agaricales from Kolhapur District, Maharashtra, India-I. *KAVAKA* 59(2): 92–103. <https://doi.org/10.36460/Kavaka/59/2/2023/92-103>

Patil, M.S. & A.N. Thite (1977). Fungal flora of Radhanagri, Kolhapur. *Journal of Shivaji University (Science)* 17: 149–162.

Patil, M.S. & A.N. Thite (1978). Fungal flora of Amboli (Ratnagiri). *Journal of Shivaji University (Science)* 18: 219–224.

Patil, M.S. (1978). Some fleshy fungi from Maharashtra - III. *Indian Phytopathology* 31: 32–35.

Patil, S.D., L.N. Nair & B.P. Kapandis (1979). Studies on fleshy fungi of Western India. *Journal of University of Poona, Science & Technology* 52: 349–354.

Pavithra, M., K.R. Sridhar & A.A. Greeshma (2017). Macrofungi in two botanical gardens in southwestern India. *Journal of Threatened Taxa* 9(3): 9962–9970. <https://doi.org/10.11609/jott.2747.9.3.9962-9970>

Pavithra, M., K.R. Sridhar, A.A. Greeshma & N.C. Karun (2016). Spatial and temporal heterogeneity of macrofungi in the protected forests of southern India. *International Journal of Agricultural Technology* 12(1): 105–124.

Pegler, D.N., D.J. Lodge & K.K Nakasone (1998). The pantropical genus *Macrocybe* gen. nov. *Mycologia* 90: 494–504.

Razaq, A., R. Nawaz & A.N. Khalid (2016). An Asian edible mushroom, *Macrocybe gigantea*: its distribution and ITS-rDNA based phylogeny. *Mycosphere* 7: 525–530. <https://doi.org/10.5943/mycosphere/7/4/11>

Sathe, A.V. & S.M. Kulkarni (1979). A new species of *Entoloma* from India. *Current Science* 48(23): 1042–1043.

Sathe, A.V. & K.C. Sasangan (1977). Agaricales from South West India - III. *Biovigyanam* 3(1): 119–121.

Sathe, A.V. & K.C. Sasangan (1978). A new species of *Lepista* from south west India. *Current Science* 47(19): 739–740.

Sathe, A.V. & S. Deshpande (1979). *Chlorolepiota* - a new genus of Agaricales (Mushrooms) from India. *Current Science* 48(15): 693–695.

Sathe, A.V. & S. Deshpande (1980a). A new species of *Pholiota* from India. *Current Science* 49(13): 517–518.

Sathe, A.V. & S. Deshpande (1980b). Agaricales (Mushrooms) of Maharashtra State. In: Agaricales (Mushrooms) of south west India. Maharashtra Association for the Cultivation of Science, Research Institute, Pune 9–42.

Sathe, A.V. & S. Deshpande (1982). Agaricales of Maharashtra. In: Advances in Mycology & Plant Pathology: Proceeding[s] of the National Symposium Held at Calcutta on 22nd, 23rd September, 1979, eds. S.B. Chattopadhyay & N. Samajpati, Oxford & IBH Publishing Company 81–88.

Sathe, A.V. & S.R. Rahalkar (1975). Agaricales from south west India - I. *Biovigyanam* 1(1): 75–78.

Sathe, A.V. & S.R. Rahalkar (1976). Proceedings of Symposium on Survey and Cultivation of edible mushrooms in India, Reg. Research Laboratory, Srinagar 77–80.

Senthilarasu, G. (2014). Diversity of agarics (gilled mushrooms) of Maharashtra, India. *Current Research in Environmental & Applied Mycology* 4(1): 58–78. <https://doi.org/10.5943/cream/4/1/5>

Thite, A.N., M.S. Patil & T.N. More (1976). Some fleshy fungi from Maharashtra. *Botanique* 7(2&3): 77–88.

Thomas, K.A., A. Hausknecht & P. Manimohan (2001). Bolbitiaceae of Kerala State, India: new species and new and noteworthy records. *Österreichische Zeitschrift für Pilzkunde* 10: 87–114.

Trivedi, T.K. (1972). Agaricales of Nagpur-I. *Botanique* 3(1): 53–59.

Usman, M., A.N. Awan, N. Yousaf, G. Murtaza, M. Hanif & A.N. Khalid (2022). First records of *Bolbitius coprophilus* (Agaricales, Bolbitiaceae) from Pakistan. *Check List* 18(3): 525–533. <https://doi.org/10.15560/18.3.525>

Verma, R.K. & P. Verma (2017). Diversity of macro-fungi in central India–VI: *Schizophyllum commune*. *Van Sangyan* (4)7:15–23

Wang, G.S., Q. Cai, Y.J. Hao,
T. Bau, Z.H. Chen, M.X. Li, N. David, N. Kraisitudomsook & Z.L. Yang (2023). Phylogenetic and taxonomic updates of Agaricales, with an emphasis on Tricholomopsis. *Mycology* 15(2): 1–30. <https://doi.org/10.1080/21501203.2023.2263031>

Yoo, S., Y. Cho, J.S. Kim, M. Kim & Y.W. Lim (2022). Fourteen Unrecorded Species of Agaricales Underw. (Agaricomycetes, Basidiomycota) from the Republic of Korea. *Mycobiology* 50(4): 219–230. <https://doi.org/10.1080/12298093.2022.2097364>

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Mr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh KV, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raja Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

Articles

Two new species of bush frogs (Anura: Rhacophoridae: Raorchestes) from Meghalaya, northeastern India

– Holiness Warjri, Jayaditya Purkayastha, Hmar Tlawnme Lalremsanga & Madhurima Das, Pp. 27171–27194

Cataloguing biodiversity of freshwater communities in two lakes of Gadchiroli area of central India using environmental DNA analysis

– Maheshkumar Seelamwar, Pankaj Chavan & Mandar S. Paingankar, Pp. 27195–27206

Additions to the Agaricales of Kolhapur District, Maharashtra, India

– Anjali Rajendra Patil & Sushant Ishwar Bornak, Pp. 27207–27225

Communications

First camera-trap records of Dhole *Cuon alpinus* (Pallas, 1811) (Mammalia: Canidae) and Spotted Linsang *Prionodon pardicolor* (Hodgson, 1841) (Mammalia: Carnivora: Prionodontidae) in Makalu Barun National Park, Nepal

– Hari Basnet, Nawang Sing Gurung, Shyam Kumar Shah, Dukpa Thikepa Bhote, Khagendra Sangam, Naomi Bates & Daniel Carl Taylor, Pp. 27226–27232

Redescription of a leaf-footed bug *Homoeocerus glossatus* Ahmad & Perveen (Heteroptera: Coreidae) from Dhule, Maharashtra, India

– Digvijay R. Jadhav, Archana A. Sharbidre & Hemant V. Ghate, Pp. 27233–27241

Diet composition of three syntopic, ecologically divergent frogs (Euphlyctis, Minervarya, Polypedates) from paddy fields of Kohima, Nagaland, India

– Thejavitso Chase & Santa Kalita, Pp. 27242–27248

Review

A checklist of avifauna of Telengana, India

– Chelmala Srinivasulu & Sriram Reddy, Pp. 27249–27282

Short Communications

First photographic evidence of Marbled Cat *Pardofelis marmorata* (Martin, 1836) (Mammalia: Carnivora: Felidae) in Kakoi Reserve Forest, Assam, India

– Hiranmoy Chetia, Abhijit Konwar & Anshuman Gogoi, Pp. 27283–27287

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

July 2025 | Vol. 17 | No. 7 | Pages: 27171–27322

Date of Publication: 26 July 2025 (Online & Print)

DOI: [10.11609/jott.2025.17.7.27171-27322](https://doi.org/10.11609/jott.2025.17.7.27171-27322)

A new species of millipede of the genus *Xiphidiogonus* Carl, 1932 (Paradoxosomatidae: Polydrepantini) from Satara District, Maharashtra State, India

– S.B. Mane, M.D. Aswathy, P.P. Badade & V.Y. Deshpande, Pp. 27288–27294

Mucuna interrupta Gagnep. (Magnoliopsida: Fabaceae): a new plant record for Nagaland, India

– Vieneite-o Koza, Gyati Yam & Joynath Pegu, Pp. 27295–27299

Notes

Sighting of Royle's Pika *Ochotona roylei* Ogilby, 1839 (Mammalia: Lagomorpha: Ochotonidae) in Kishtwar District, Jammu & Kashmir, India

– Umar Mushtaq & Kaleem Ahmed, Pp. 27300–27302

First record of an Amber Snail *Succinea daucina* Pfeiffer, 1855 (Gastropoda: Succineidae) from Bihar, India

– Dipty Kumari, Dilip Kumar Paul, Sheikh Sajan & Tamal Mondal, Pp. 27303–27307

First record of the ladybird beetle *Novius pumilus* (Weise, 1892) (Coleoptera: Coccinellidae: Noviini) from West Bengal, India, with notes on its ecology

– Tamoghno Majumder & Kusal Roy, Pp. 27308–27311

Boesenbergia tiliifolia (Baker) Kuntze (Zingiberaceae) - a new record for Maharashtra, India

– Vijay A. Paithane, Anil S. Bhuktar & Sanjay J. Sawant, Pp. 27312–27315

Acrospelion alpestre (Avenae: Poaceae) in India: a new generic record from northwestern Himalaya

– Kuntal Saha, Manoj Chandran, Ranjana Negi & Saurabh Guleri, Pp. 27316–27320

Response

Lesser Noddy *Anous tenuirostris* breeding in the Adam's Bridge Islands, India – a rectification

– Moditha Hiranya Kodikara Arachchi, Pp. 27321–27322

Publisher & Host

Threatened Taxa