

Building evidence for conservation globally

Journal of Threatened TAXA

Open Access

10.11609/jott.2024.16.10.25951-26062

www.threatenedtaxa.org

26 October 2024 (Online & Print)

16 (10): 25951-26062

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatty, Coimbatore, Tamil Nadu 641006, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Ph: +91 9385339863 | www.threatenedtaxa.org

Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay MolurWildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Deputy Chief Editor

Dr. Neelesh Dahanukar

Noida, Uttar Pradesh, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Editorial Board

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNASC, FNAPsyRamanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and
Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary
Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct
Professor, National Institute of Advanced Studies, Bangalore**Stephen D. Nash**Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences
Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA**Dr. Fred Pluthero**

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalia PO, Nilgiris, Tamil Nadu 643223, India

Dr. John FellowesHonorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of
Hong Kong, Pokfulam Road, Hong Kong**Prof. Dr. Mirco Solé**Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador
do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000)
Salobrinho, Ilhéus - Bahia - Brasil**Dr. Rajeev Raghavan**

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors

Mrs. Mira Bhojwani, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhura Stothra Bhashyam**, Hyderabad, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting

Mrs. Radhika, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India

Fundraising/Communications

Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2021–2023

Fungi

Dr. B. Shivaraju, Bengaluru, Karnataka, India

Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India

Dr. Vatsavaya S. Raju, Kakatiya University, Warangal, Andhra Pradesh, India

Dr. M. Krishnappa, Jnana Sahyadri, Kuvenpura University, Shimoga, Karnataka, India

Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India

Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India

Dr. Kiran Ramchandra Ranadive, Annasaheb Magar Mahavidyalaya, Maharashtra, India

Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India

Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India

Dr. Shonil Bhagwat, Open University and University of Oxford, UK

Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India

Dr. Ferdinand Boero, Università del Salento, Lecce, Italy

Dr. Dale R. Calder, Royal Ontario Museum, Toronto, Ontario, Canada

Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines

Dr. F.B. Vincent Florens, University of Mauritius, Mauritius

Dr. Merlin Franco, Curtin University, Malaysia

Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India

Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India

Dr. Pankaj Kumar, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA

Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India

Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Vijayasankar Raman, University of Mississippi, USA

Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantapur, India

Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India

Dr. Aparna Watve, Pune, Maharashtra, India

Dr. Qiang Liu, Kishuangbanna Tropical Botanical Garden, Yunnan, China

Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia

Dr. M.K. Vasudeva Rao, Shiv Ranjani Housing Society, Pune, Maharashtra, India

Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Mander Datar, Agharkar Research Institute, Pune, Maharashtra, India

Dr. M.K. Janarthanan, Goa University, Goa, India

Dr. K. Karthigeyan, Botanical Survey of India, India

Dr. Errol Vela, University of Montpellier, Montpellier, France

Dr. P. Lakshminarasimhan, Botanical Survey of India, Howrah, India

Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA

Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India

Dr. Analinda Manila-Fajard, University of the Philippines Los Baños, Laguna, Philippines

Dr. P.A. Sinu, Central University of Kerala, Kasaragod, Kerala, India

Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthani, India

Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India

Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA

Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India

Dr. A.G. Pandurangan, Thiruvananthapuram, Kerala, India

Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India

Dr. Kannan C.S. Warrier, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India

Dr. D.B. Bastawade, Maharashtra, India

Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India

Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India

Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa

Dr. Rory Dow, National Museum of Natural History Naturalis, The Netherlands

Dr. Brian Fisher, California Academy of Sciences, USA

Dr. Richard Gallon, Ilandudno, North Wales, LL30 1UP

Dr. Hemant V. Ghate, Modern College, Pune, India

Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh

Mr. Jatishwar Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.

Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK

Dr. George Mathew, Kerala Forest Research Institute, Peechi, India

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: A digital art of water birds of Noyyal River and its wetlands in Coimbatore District by Megha A. Kashyap.

Evaluating the IUCN conservation status of *Tritaxis kurnoolensis* (R.R.V.Raju & Pull.) R.Y.Yu. & Welzen (Euphorbiaceae), an endemic tree species found in the Eastern Ghats region of Andhra Pradesh, India

Sarojinidevi Naidu¹ & Raja Kullayiswamy Kusom²

^{1,2} Plot No. 95/1, Dharmavana Centre of Excellence for Biodiversity and Climate Resilience, Phase II, IDA, Cherlapalli, Hyderabad, Telangana 500051, India

¹ sarojini@DharmavanaNatureArk.org, ² rajakswamy@DharmavanaNatureArk.org (corresponding author)

Abstract: *Tritaxis kurnoolensis*, a small tree of the Euphorbiaceae family, is endemic to a valley within the Sullavai Sandstone plateau in close proximity to the Paleru Reservoir (Owk dam). The species is a narrow endemic. No documented sightings of this species have been recorded beyond the type locality since its description in 1994 by Venkataraju & Pullaiah as *Dimorphocalyx kurnoolensis* from the Nandyal District of Andhra Pradesh. In this study, the authors applied the grid method for quantification and subjected the species to a meticulous analysis aligning with IUCN Red List Criteria. The distribution was found to be restricted due to habitat (valley) fragmentation, reservoir which is arresting seed dispersal, and destruction caused by tunnel construction civil works. The area of occupancy (AOO) at 16 km² and the extent of occurrence (EOO) at 0.474 km², were systematically computed using GeoCAT. The species is assessed here using the Red List methodology for evaluating extinction risk. Based on its AOO, EOO, and population size, it has been classified as Critically Endangered.

Keywords: Critically Endangered, endemic, grid method, Nandyal, Owk dam, quantification, small tree, sullavai sandstone, type locality, unisexual flowers.

Editor: Aparna Watve, Biome Conservation Foundation, Pune, India.

Date of publication: 26 October 2024 (online & print)

Citation: Naidu, S. & R.K. Kusom (2024). Evaluating the IUCN conservation status of *Tritaxis kurnoolensis* (R.R.V.Raju & Pull.) R.Y.Yu. & Welzen (Euphorbiaceae), an endemic tree species found in the Eastern Ghats region of Andhra Pradesh, India. *Journal of Threatened Taxa* 16(10): 26013-26021. <https://doi.org/10.11609/jott.8911.16.10.26013-26021>

Copyright: © Naidu & Kusom 2024. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: Dharmavana Nature Ark Association, Hyderabad.

Author details: DR. RAJA KULLAYISWAMY FIAT, a Scientist at Dharmavana Nature Ark, Hyderabad, completed his PhD in botany from Sri Krishnadevaraya University in 2014. He has worked as a research associate at IISc, Bangalore, and is currently involved in biodiversity conservation with a non-profit society in Hyderabad. Dr. Raja, an invited reviewer for international journals, has published 20 research papers, described nine new taxa, and authored a book on the Tummalapalli Uranium Mining Area, Andhra Pradesh. DR. SAROJINI DEVI is a research scientist at Dharmavana Nature Ark. She completed her PhD in 2015 from the Department of Botany, Sri Krishnadevaraya University, Anantapuram. After moving to Bangalore, she worked as a lecturer at MES Degree College, Malleswaram, and KLE Societies S. Nijalinnappa College, Rajajinagar, Bangalore. Dr. Sarojini has published 19 research articles, described ten new taxa, and is an invited reviewer for international journals.

Author contributions: SD—writing draft, data analysis, photo settings. RKS—field data collection, data analysis, draft preparation.

Competing interests: The authors declare no competing interests.

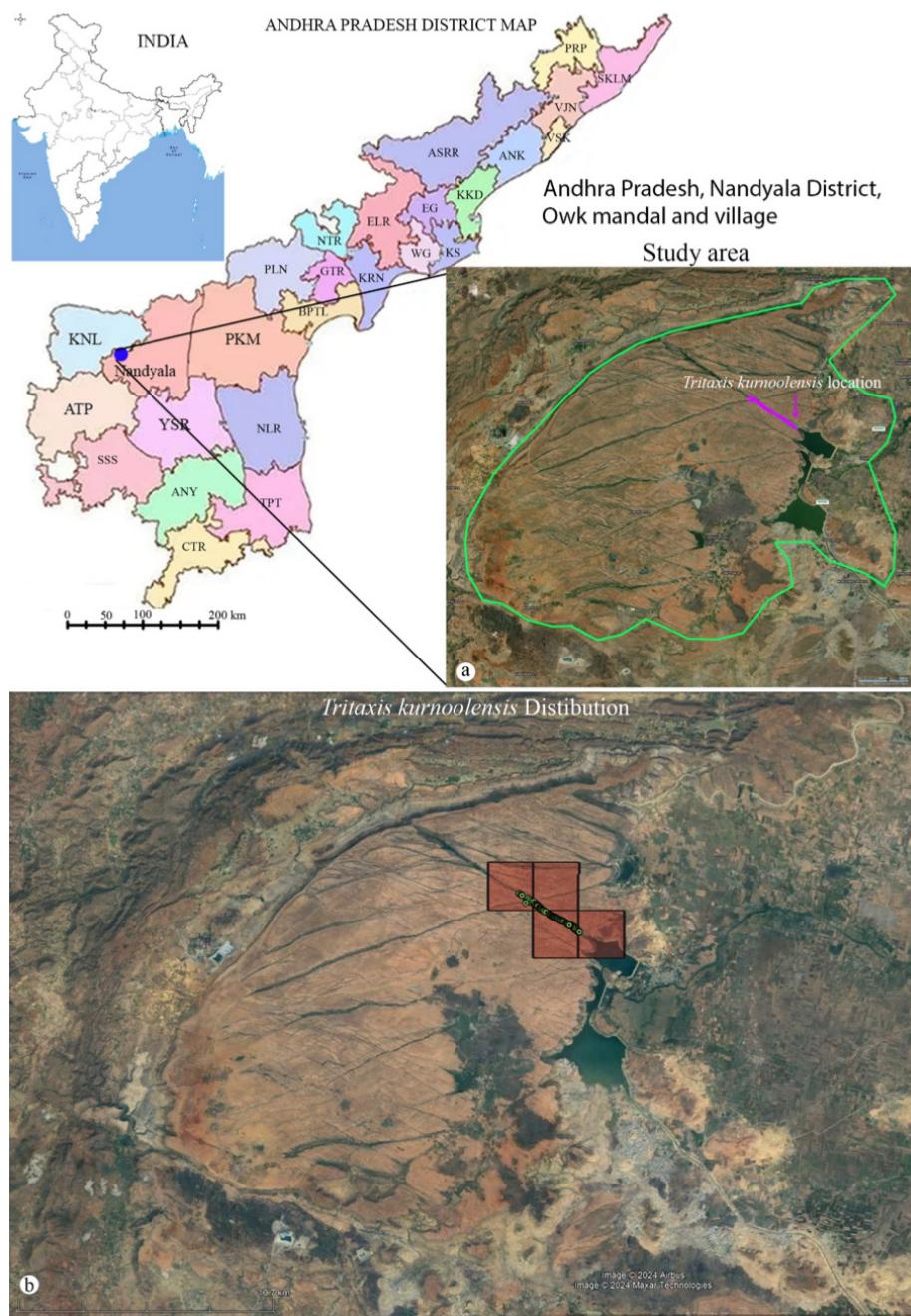
Acknowledgements: The authors express their gratitude to the Dharmavana Nature Ark (DNA), Hyderabad, for their encouragement, provision of lab facilities, and the invaluable support of the DNA jungle team. This dedicated team has visited the type locality multiple times, diligently collecting critical information on the species. Authors also thank Dr. Aparna Watve, Coordinator, RLA, IUCN SSC Western Ghats Plant Specialist Group for her critical comments and valuable suggestions to enhance the quality of the manuscript.

INTRODUCTION

Globally, there are 295,383 species and 13,164 genera of seed plants (Bramwell 2002; Govaerts 2003; Christenhusz & Byng 2016) among which 20% are threatened (Joppa et al. 2001). The majority of these are in the tropics and subtropics. Often, an overestimation of taxonomic or nomenclatural artefacts can be expected (Stefan 2004). As an example of this, Indian floristic studies have not been published with species distribution patterns and their endemism as a cumulative record for the entire geographical region except in old floras such as Flora British India (Hooker 1872–1897). The Botanical Survey of India (BSI) is trying to complete a set of volumes with detailed information on the species distribution and their endemism. However, over 75% of species are not covered.

There is ambiguity in the list of species which are endemic and Red Listed from India. According to Ravikanth et al. (2018), about 1,052 species are Red Listed of which 387 are plant species. Most of these 387 species are medicinal, among which 77 species are 'Critically Endangered' (CR). In the Western Ghats alone, more than 100 plant species of high economic importance are listed as threatened (Ravikanth et al. 2018).

There are many reasons for these species becoming threatened. India, like other countries, has had extensive developmental activities over the past few decades in forested areas. Railway lines, power grids, dams, and urban expansion have all taken their toll. The extensive exploitation of medicinal plants (collection of crude drugs), podu-cultivation, livestock grazing, dominant invasive species, and the disregard of government regulations have pushed endemic and threatened species to higher levels of risk. Immediate action is necessary to address these issues.


The IUCN Red List is centrally managed on a global level to address species conservation issues. Four entities are involved in the IUCN Red List Assessment process: (i) assessors, (ii) reviewers, (iii) Red List Authorities (RLAs), and (iv) the IUCN Red List Unit (RLU). Assessors gather data and apply the IUCN Red List Categories and Criteria to evaluate a species. Reviewers are independent experts who review the assessments before they are submitted for final checks. RLAs, which typically include IUCN Specialist Groups, Red List Partner institutions, or standalone Red List Authorities, are responsible for assessing species within their remit. The RLU acts as the gatekeeper for the Red List, ensuring that all published assessments meet the required standards (IUCN 2016).

The steps involved in the assessment are (i) data collection that is gathering data on species and identifying potential risks, (ii) initial assessment in which assessors apply the IUCN Red list categories and criteria, and (iii) peer review – an independent experts review to ensure the accuracy and consistency of the assessment. The assessment is submitted to the relevant RLA. Then, final checks are made by RLU to verify that all standards are met. Publication is the last stage where the assessment results are published on the IUCN Red List (IUCN 2016).

Baillon (1858) described the genus *Tritaxis* based on *T. gaudichaudii* Bail., which features three whorls of stamens in the type. Subsequently, two more species were published under the genus *Tritaxis*, but later they were transferred to other genera. For instance, *Tritaxis zeylanica* Müll.Arg. was moved as *Paracroton zeylanicus* (Müll.Arg.) N.P.Balakr. & Chakrab. and *T. macrophylla* Müll.Arg. became *Paracroton pendulus* ssp. *pendulus*, while establishing *Paracroton pendulus* ssp. *zeylanicus* (Thwaites) N.P.Balakr. & Chakrab.

The Dharmavana Nature Ark has undertaken the conservation of threatened woody species from the Deccan Peninsula and Eastern Ghats of India. The initiative began in 2004 by establishing a seedling nursery. This was followed by plantation of species to a 400-acre site where specific niches were designated for different groups of species.

During a visit to the type locality of *Tritaxis kurnoolensis* (R.R.V.Raju & Pull.) R.Y.Yu & Welzen (Yu et al. 2019) for seed collection, we were unable to find healthy seeds for nursery development. It was observed that individuals of the species were facing high stress and threat due to the dumping of stones and soil during the establishment of a reservoir (Image 2a vs b) and particularly so during the construction of inlet canals and the cutting of mature trees by the locals (Image 4a–f). Subsequent visits in 2023 aimed to understand the growth, survival, and recruitment as well as to obtain viable seeds. However, the attempts to establish seedlings were unsuccessful as the seeds were not viable (without kernel). Given the adverse conditions for species establishment through natural recruitment, special attention was given to conserving *Tritaxis kurnoolensis*, focusing on seed germination, air layering, and root cuttings collection. The focus now is on estimating the population size in the area and implementing conservation measures in a systematic, step-by-step manner.

Image 1. Location of the rocky plateau study area of *Tritaxis kurnoolensis*: a—Isolated location of *Tritaxis kurnoolensis* (Green line—study area 286km², pink—single location) | b—Quantitative assessment (grid size 2 × 2 km).

MATERIAL AND METHODS

To measure the size of the population and the count of mature individuals, the authors categorized the habitat into four grids, each measuring 2 × 2 km as IUCN recommended and default option in the GeoCat. The presence of *Tritaxis kurnoolensis* was documented in each grid using covering a 10 × 10 m area. Across the four grids, a total of 85 quadrats were deployed,

revealing a cumulative count of 164 mature individuals. The population within each specific quadrat was then determined. The locations of the taxon's occurrence were recorded using the global positioning system (GPS). For the IUCN Red List assessment, we employed GeoCAT (Geospatial Conservation Assessment Tool), an open-source tool used to calculate the taxon's extent of occurrence (EOO) and area of occupancy (AOO) based on GPS readings. These GPS readings, along with other

data such as catalogue ID, collector, country, event date, institution, locality, scientific name of the taxon, state, and elevation, were entered into a CSV file and uploaded to GeoCAT. A map was generated using GeoCAT (Bachman et al. 2011). This process is carried out in a transparent, repeatable, and rapid manner within a user-friendly interface, as described by Bachman et al. (2011). Based on the initial assessment in the study area, the EOO and AOO for this taxon were approximated in square kilometers (Figures 1 & 2).

RESULTS

Tritaxis kurnoolensis (R.R.V.Raju & Pull.) R.Y.Yu & Welzen (= *Dimorphocalyx kurnoolensis* R.R.V.Raju & Pull. Botanical Bulletin of Academia Sinica 35: 201 (1994))

Monoecious deciduous small trees, up to 4-m high, bark dark brown, scaly, blaze light yellowish-brown, branches terete, striate, pubescent. Leaves glabrous, 5–15 × 3–7 cm, elliptic-oblong or obovate, base attenuate, margin entire–sinuate, apex sub-acute obtuse; lateral veins up to nine pairs; petiole up to 3 cm, shallowly channeled above; stipules deltoid. Inflorescens terminal, lax raceme. Male and female inflorescences on different branches of same plant, dichrous flowers (Figure 3). Male flowers cymose clusters on terminal pubescent peduncle; peduncle up to 7 cm long; flowers subsessile, 4–5 mm cross, ovate bud, pedicels to 2 mm long, bracts lanceolate, 1–2 × 2–3 mm, densely pubescent, acute-acuminate; tepals in two whorls (5 + 5); outer green (sepals), cupular, 5-lobed, connate, adpressed-pilose, lobes subovate orbicular; inner (petals) white, polypetalous, each oblong, obtuse, often emarginated, bent out. Stamens biserrate, 5+11–17; outer five basally connate to the inner staminal column, filaments 1.8 mm; anthers 1.2 mm across, widely oblong; inner (11–17) stamens on 7 mm long staminal column with their individual 0.5 mm long connectives; anthers 0.8 mm across, monodelphous, orbicular, acute; disc glands 5, free, ovate-oblanceolate, hairy at top. Female flowers few, in short pedunculate racemes; flowers 5–8 mm across; pedicel 8 mm long, pubescent; tepals in two whorls (5+5); outer (sepals) green, cupular, shortly 5-lobed, connate at base, adpressed-pilose without; lobes suborbicular, 2 × 2.5 mm; inner (petals) white, polypetalous, oblong-obtuse, often emarginated; ovary 4 × 3 mm, adpressed-pilose, three locular; styles 3, connate at base, each 2-fid from above the middle, papillose; disc glands as in the male flower. Capsule 1–1.3 × 1.3–1.7 cm, sub-globose, depressed, adpressed-pilose, 3-lobed, deeply furrowed,

fruiting calyx (sepals) deeply 5-lobed, lobes 5.5 × 3.5 mm, adpressed-pilose without. Seed shiny, 8 × 7 mm, elliptic-oblong, brown mottled with grey, tips acute, hilum circular, testa smooth, ecarunculate (Image 1). Flowering is in December–March and fruiting in February–April.

Habitat and Distribution

Tritaxis kurnoolensis is endemic to a valley where there is sullavai sandstone (as surface stone). We chose the entire plateau of around 286 km² as a study area for the present taxon IUCN assessment. This species is associated with *Ziziphus oenopolia* (L.) Mill., *Grewia damine* Gaertn., *G. flavescens* Juss., *Ficus mollis* Vahl, *Pterospermum xylocarpum* (Gaertn.) Oken, *Ixora pavetta* Andrews (= *Ixora arborea* Roxb. ex Sm.), *Vitex leucoxylon* L.f., and *Tamarindus indica* L. *Tritaxis kurnoolensis* is distributed in only one valley even though there are four valleys in the study area.

This species has been in continuing decline because of reservoir and tunnel construction. Prior to construction, trees likely lined the natural, original water stream. Unfortunately, these water streams were converted into canals for irrigation purposes resulting in a significant loss of habitat and trees. This impact is

Table 1. Number of mature individuals of *Tritaxis kurnoolensis* counted in the study area.

Grid ID	No. of individuals from 5 quadrants in a grid	No. of individuals in whole grid (200 × 200 m)
1	20	23
2	6	6
3	27	46
4	20	21
5	8	8
6	18	29
7	13	22
8	4	4
9	10	11
10	8	8
11	10	15
12	8	8
13	1	1
14	2	2
15	5	5
16	3	3
17	1	1
Total	164	213

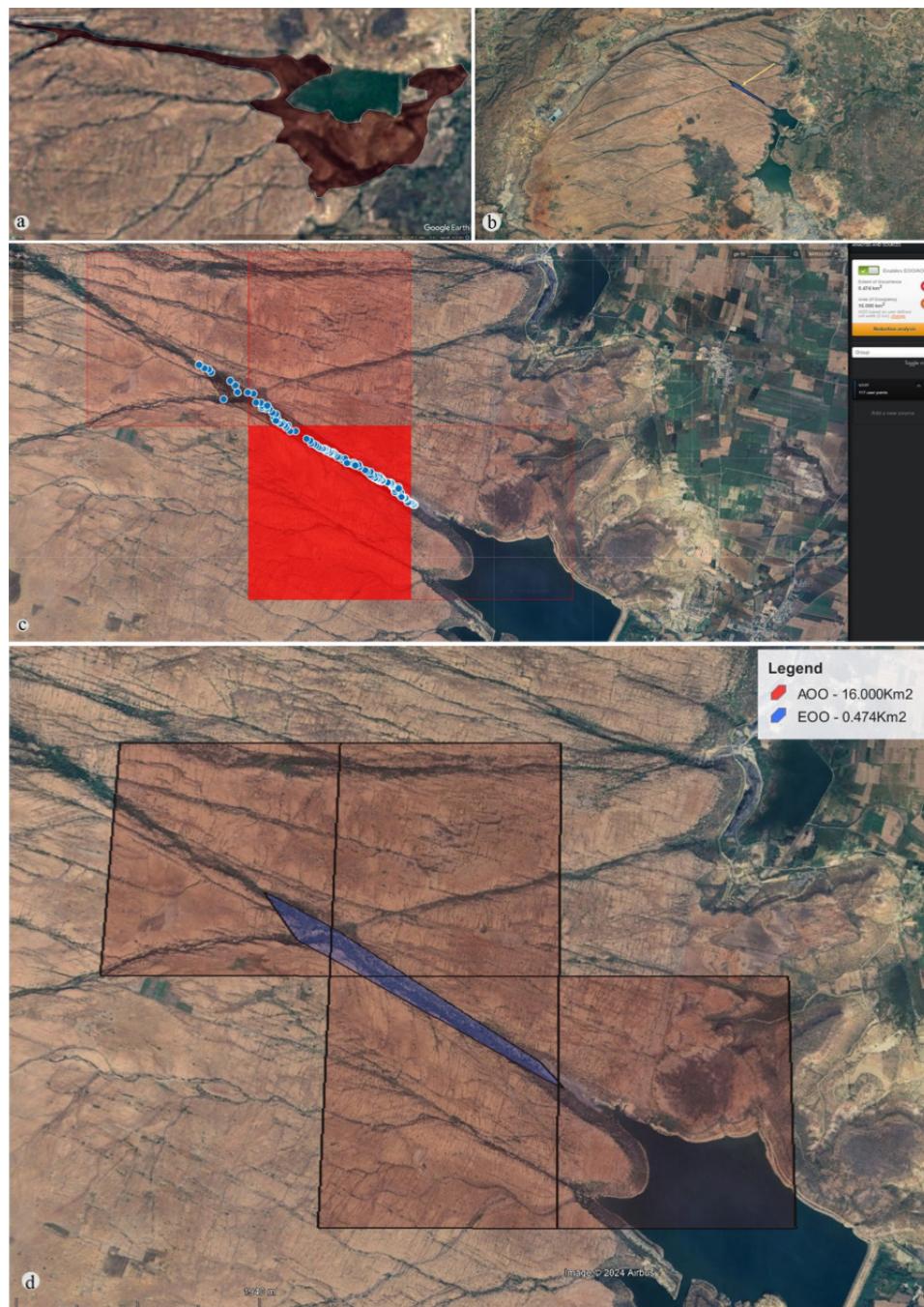


Figure 2. Faunal composition as reported from the rocky outcrops off the coast of Gopalpur (Odisha/ NW Bay of Bengal). SC—Soft Coral | HC—Hard Coral | Anti.—Antipatharian | Hyd.—Hydroids. Data obtained from Rao et al. (2001).

particularly apparent following dam construction since the natural dispersion of seeds and recruitment for the next generation were severely depressed (Image 2a–f).

Threats

The seeds of this species disperse through an explosive fruit mechanism at drying, contributing to a low probability of horizontal spreading. Seeds disperse over a

maximum radius of 5 m from the mother plant. Seeds are relocated by rainwater and some may decompose in the reservoir. Mature stems are harvested for firewood and serve as support sticks for banana plants. Additionally, waste stones are dumped into the area due to water inlet (tunnels which connect to the Gorukallu balancing reservoir about 60 km away) development activities (Image 4). Owl reservoir development commenced

in 2003, greatly enlarging what was initially two large ponds utilized for agricultural purposes.

IUCN Red List Assessment

Tritaxis kurnoolensis is restricted to a valley of the sandstone plateau of the Paleru reservoir (Owk dam) area, Nandyal District, Andhra Pradesh, India (Image 1a,b). Based on the distribution of the taxon and the decline in the number of individuals since 1994, its habitat area has decreased from 3.48 km² to 0.474 km². In addition to ongoing threats such as forest fires, reduced production of healthy seeds, and inadequate conditions for seed germination, there is now a significant additional threat from waste stone dumping on individuals confined to the valley. Considering these factors along with the AOO and EOO values, population size, and number of locations, we have evaluated its conservation status. Notable data parameter the EOO at 0.474 km² is calculated using a minimum convex polygon (MCP). The IUCN threat status is classified under 'Critically Endangered' (CR) following IUCN (2022), version 15.1 guidelines, B1ab(i,ii). This species meets B1- Extent of occurrence (EOO) is less than 100 km² (Image 2), B1a – number of locations is 1 (Image 1a), B2b (i) – decline in extent of occurrence (Image 2a vs b), (ii) – decline in area of occupancy since 1994 (Image 2a vs b) from 3.48 km² to 0.474 km². Taking these criteria, we concluded the species IUCN Red List threat status as 'Critically Endangered'. There is an immediate need to plan in situ and ex situ conservation of this species. Research to monitor trends in population decline and stop the threats are imperative.

Conservation Action

The Dharmavana Nature Ark team conducted several seasonal visits from January 2023 to gather healthy seeds. However, due to the lack of properly formed seeds, they initiated a regeneration strategy via vegetative propagation such as air layering. The objective is to successfully cultivate at least 10 individuals from various mother plants. Once these plants thrive in pots, they will be transplanted to appropriate microhabitats within the Dharmavana Nature Ark ecosystem that has been strategically designed to accommodate different plant groups based on their original habitats (Image 4).

DISCUSSION

The population of *Tritaxis kurnoolensis* is declining due to habitat fragmentation and destruction caused by tunnel construction and reservoir civil works. The

species has become a narrow endemic, largely confined to a small area. Its decline has been ongoing since 1994, following the conversion of two ponds into a dam. Previously, the species was found along the bunds of the two ponds and the canals that directed water to agricultural fields. However, with the expansion of the ponds and the renovation of the canals, much of its habitat has been lost. In addition to the dam's construction, two connecting tunnels from the Gorukallu Balancing Reservoir, about 60 km away, have also contributed to its decline. During the excavation of these tunnels, waste soil and stone were dumped on *Tritaxis kurnoolensis* individuals, leading to the trapping and drying out of many plants in recent years. We suspect that diminishing population sizes coupled with human-made threats and habitat fragmentation have driven species far below sustainable levels. Based on fruit setting and seed germination percentages, we also suspect that inbreeding, loss of pollinators, and climate change are contributing to the species' extinction (Image 2a,b; Image 4). No documented sightings of this species have been recorded since 1994 beyond the type locality from the Kurnool District (now the area comes under newly formed Nandyal District) of Andhra Pradesh. GeoCAT analysis reveals a small AOO (16 km²), EOO (0.474 km²) and number of individuals less than 250, categorizing the species as Critically Endangered. Urgent conservation action is recommended by Dharmavana Nature Ark and the authors to save this species, as the number of individual trees counted 213 (Table 1).

REFERENCES

Bachman, S., J. Moat, A.W. Hill, de J. Torre & B. Scott (2011). Supporting red list threat assessments with GeoCAT: geospatial conservation assessment tool. *ZooKeys* 150: 117–126. <https://doi.org/10.3897/zookeys.150.2109>

Baillon, E.H. (1858). *Étude générale du groupe des Euphorbiacées*. Victor Masson, Paris. p. 342–343. <https://doi.org/10.5962/bhl.title.50439> (<https://www.biodiversitylibrary.org/item/106467#page/352/mode/1up>)

Bramwell, D. (2002). How many plant species are there? *Plant Talk* 28: 32–34.

Christenhusz, M.J.M. & J.W. Byng (2016). The number of known plant species in the world and its annual increase. *Phytotaxa* 261(3): 201–217. <https://doi.org/10.11646/phytotaxa.261.3.1>

Govaerts, R. (2003). How many species of seed plants are there? - a response. *Taxon* 52: 583–584. <https://doi.org/10.2307/3647457>

Hooker, J.D. (1872–1897). *Flora of British India*, Vols 1–7. L. Reeve & Co., 5, Henrietta Street, Covent GardenLondon.

IUCN (2016). Rules of Procedure for IUCN Red List Assessments 2017–2020. Version 3.0. https://www.iucnredlist.org/redlist/content/attachment_files/Rules_of_Procedure_for_IUCN_Red_List_2017-2020.pdf. Accessed on 2 March 2022

IUCN Standards and Petitions Committee (2022). Guidelines for Using the IUCN Red List Categories and Criteria. Version 15.1. Prepared

Image 3. a—Habit of a healthy undamaged tree of *Tritaxis kurnoolensis* | b—Habit of a damaged tree with cluster of stems | c—Male flowers and healthy leaves | d—Female flowers | e—Fruiting branch | f—Mature fruits | g—Seeds. © RajaKswamy.

Image 4. Threats to *Tritaxis kurnoolensis*: a—Trees dying from fallen rocks | b, c—Cluster of stems covered by dumped stones | d—Root system of the tree damaged by soil erosion | e—a tree in the valley among the waste stones | f—Tree fall due to the weight of stones dumped on it | g—Air layering. © RajaKswamy.

Image 5. Male and female flowers on the same tree of *Tritaxis kurnoolensis*. © RajaKswamy.

by the Standards and Petitions Committee. <https://www.iucnredlist.org/documents/RedListGuidelines.pdf> Accessed on 14 December 2023.

Joppa L.N., D.L. Roberts & S.L. Pimm (2011). How many species of flowering plants are there? *Proceedings of the Royal Society B*. 278: 554–559. <https://doi.org/10.1098/rspb.2010.1004>

Ravikanth, G., M.R. Jagadish, R. Vasudeva, R.U. Shaanker & N.A. Aravind (2018). Recovery of critically endangered plant species in India: need for a comprehensive approach. *Current Science* 114(3): 504–511. <https://doi.org/10.18520/cs/v114/i03/504-511>

Stefan, U. (2004). How many plant species are there? And how many are threatened with extinction? Endemic species in global biodiversity and conservation assessments. *Taxon* 53(2): 481–484. <https://doi.org/10.2307/4135626>

Venkataraju, R.R. & T. Pullaiah (1994). *Dimorphocalyx kurnoolensis*, a new species of Euphorbiaceae from India. *Botanical Bulletin of Academia Sinica* 35(3): 201–204.

Yu, R.Y., J.W.S Ferry & P.C.V. Welzen (2019). Molecular phylogeny of *Trigonostemon* and its relatives (Euphorbiaceae). *Taxon* 68(5): 918–936. <https://doi.org/10.1002/tax.12135>

Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nitithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lionel Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kuri R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Soughall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Articles

Insights into human-wildlife interactions and community views on mangrove restoration in Kendrapada District, Odisha, India

– Mohd Qayyum, Vijai Dharmamony, Muralidharan Manoharakrishnan, Sadhwari Sindura, Janmejay Sethy & Murali Krishna Chatakonda, Pp. 25951–25961

A checklist of avian fauna of Suang Reserve Forest, Nagaon, Assam, India with notes on some species of interest

– Chiranjib Bora, Neeraj Bora, Chandan Bhuyan, Rajkumar Das & Raktim Jyoti Das, Pp. 25962–25978

Age structure of carp and catfish catch as a tool to assess ecological health of fished stocks from the Ganga River system with special reference to Mahseer *Tor tor* (Hamilton, 1822)

– Prakash Nautiyal, Amitabh Chandra Dwivedi & Asheesh Shivam Mishra, Pp. 25979–25989

Communications

Importance based on avian diversity of Pakhribitan Bird & Wildlife Sanctuary, Jalpaiguri District, West Bengal, India

– Arjan Basu Roy, Tarak Samanta, C.S. Samrat, Anjan Guha, Debarpan Datta, Abhik Rong & Lina Chatterjee, Pp. 25990–26000

A drastic decline in avian diversity in and around the Bordoibam-Bilmukh Bird Sanctuary, Lakhimpur, Assam, India

– Lakhijyoti Saikia, Siddhartha Suman Bora & Khirod Sankar Das, Pp. 26001–26006

Bits and fragments: documenting an unreported coral genus *Heterocyathus* Milne Edwards & Haime, 1848 from northwestern Bay of Bengal (Odisha coast) and a call for further assessment

– Durga Prasad Behera & Rocktim Ramen Das, Pp. 26007–26012

Evaluating the IUCN conservation status of *Tritaxis kurnoolensis* (R.R.V.Raju & Pull.) R.Y.Yu. & Welzen (Euphorbiaceae), an endemic tree species found in the Eastern Ghats region of Andhra Pradesh, India

– Sarojinidevi Naidu & Raja Kullayiswamy Kusom, Pp. 26013–26021

Notes on the extended distribution of *Ceropegia gardneri* Thwaites and other rare species of *Ceropegia* from southern Western Ghats, India

– E.J. Josekutty, P. Biju & Jomy Augustine, Pp. 26022–26026

Short Communications

First sighting record of a Ruddy Mongoose *Urva smithii* Gray, 1837 feeding on a pipistrelle bat in Nagarhole Tiger Reserve, India

– Chikkanaragund Harshakumar, Rajesh Puttaswamaiah & K.S. Chetan Nag, Pp. 26027–26029

Taxonomic significance of seeds and seedling morphology in the threatened Indian endemic palm genus *Bentinckia* (Arecaceae)

– Mayur Yashwant Kamble, J.H. Franklin Benjamin & Vivek C. Poulose, Pp. 26030–26034

Impatiens devendrae Pusalkar (Balsaminaceae): an addition to the flora of Jammu & Kashmir, India

– Naresh Kumar, Diksha Kumari, Dhani Arya & T.S. Rana, Pp. 26035–26039

Notes

New photographic and distribution records of the Beautiful Nuthatch *Sitta formosa* (Blyth, 1843) and Lesser Adjutant *Leptoptilos javanicus* (Horsfield, 1821) from the Tsirang District landscape in Bhutan

– Birkha Bahadur Mongar, Bishal Mongar, Chhimi Dorji, Phuntsho Tobgay, Tshering Wangchuk & Jigme Tenzin, Pp. 26040–26043

First photographic record of Brown Bullfinch *Pyrrhula nipalensis* (Aves: Passeriformes: Fringillidae) from Jammu & Kashmir, India

– Mohsin Javid, Khursheed Ahmad, Intesar Suhail & Orus Ilyas, Pp. 26044–26045

New record of the antlion *Palpares contrarius* Walker, 1853 (Insecta: Neuroptera: Myrmeleontidae) in Tamil Nadu, India

– Pearline Esther Anita & J. Logamanya Tilak, Pp. 26046–26048

Extended distribution of *Trillium govanianum* Wall. ex D.Don (Melanthiaceae), an endangered species from Arunachal Pradesh, India

– Bikash Kalita, Saurov Jyoti Roy, Khencha Aran, Kuladip Sarma, Amal Bawri, Dhrubajyoti Sahariah & Bhaben Tanti, Pp. 26049–26052

Typhonium inopinatum Prain (Araceae): a new plant record to the flora of Uttarakhand, India

– Sachin Rawat & Navendu Page, Pp. 26053–26057

Response & Reply

Response to “First record of *Pieris napi* L. (Lepidoptera: Pieridae) from Kashmir Valley, India”

– Taslima Sheikh, Pp. 26058–26059

Reply to Sheikh’s Response to First record of *Pieris napi* L.

– Firdousa Rasool & Altaf Hussain Mir, Pp. 26060–26062

Publisher & Host

Threatened Taxa