

Open Access

43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS**Founder & Chief Editor****Dr. Sanjay Molur**Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India**Deputy Chief Editor****Dr. Neelesh Dahanukar**

Noida, Uttar Pradesh, India

Managing Editor**Mr. B. Ravichandran**, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India**Associate Editors****Dr. Mandar Paingankar**, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India**Dr. B.A. Daniel**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India**Editorial Board****Dr. Russel Mittermeier**

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinahalli PO, Nilgiris, Tamil Nadu 643223, India

Dr. Martin Fisher

Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhura Stothra Bhashyam**, Hyderabad, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2020–2022****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annasaheb Magar Mahavidyalaya, Maharashtra, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Mander Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Baños, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Rose-breasted Grosbeak *Pheucticus ludovicianus*, pen & ink with colour pencil. © Lucille Betti-Nash.

Diversity of mosses (Bryophyta) in Pangi valley (Himachal Pradesh, India): an unexplored domain of northwestern Himalaya

Anshul Dhyani¹ , Kumar Shantanu² , Rajender Kumar Sharma³ & Prem Lal Uniyal⁴

^{1,4} Department of Botany, University of Delhi, Delhi 110007, India.

^{2,3} Deshbandhu College, University of Delhi, Delhi 110019, India.

¹ anshuld42@gmail.com, ² kshantanu@db.du.ac.in, ³ rksharmabio@yahoo.co.in, ⁴ uniyalpl@rediffmail.com (corresponding author)

Abstract: Diversity of mosses of a unique and unexplored geographical location in Himalaya, the Pangi valley in Himachal Pradesh, India is investigated. A total of 49 moss species belonging to 21 families have been recorded, including *Hedwigia emodica*, the detail on the type specimen of which is uncertain and *Encalypta vulgaris*, a rare moss in the Himalaya. In addition, 13 moss species are new records for Himachal Pradesh. The dominant mosses of the surveyed area are *Philonotis* and *Grimmia*, where the latter is frequently found on basic, barren boulders in sunny positions. Among the recorded moss species, 35 are terrestrial, six aquatic, and eight epiphytes. The findings will be useful for forest policies and management of bryophytes conservation in areas which have extreme climatic conditions.

Keywords: Bryophytes, ecosystem, growth forms, hotspots, indicator, macroclimate, patch size, population, richness, taxa.

Editor: D.K. Singh, Botanical Survey of India, Lucknow, India.

Date of publication: 26 May 2024 (online & print)

Citation: Dhyani, A., K. Shantanu, R.K. Sharma & P.L. Uniyal (2024). Diversity of mosses (Bryophyta) in Pangi valley (Himachal Pradesh, India): an unexplored domain of northwestern Himalaya. *Journal of Threatened Taxa* 16(5): 25227–25234. <https://doi.org/10.11609/jott.8733.16.5.25227-25234>

Copyright: © Dhyani et al. 2024. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: This work was supported by the Institution of Eminence (IoE), University of Delhi (Ref. No./IoE/2023-24/12/FRP).

Competing interests: The authors declare no competing interests.

Author detail and Author contribution: AD is a PhD research scholar. He is currently working on biosystematics aspects of bryophytes. KS and RKS are associate professors and have expertise in bryophyte taxonomy and ecology, respectively. PLU is a senior professor. He has an expertise in biosystematics of bryophytes, pteridophytes, and gymnosperms. All the authors were involved in field trips and moss species collections. AD and PLU confirmed the identity of the specimens. AD photographed the slides sections, wrote the initial draft of the manuscript. KS and RKS were involved in data compilation. PLU edited the entire manuscript and finalized the draft.

Acknowledgements: The first author is grateful to Council of Scientific and Industrial Research (CSIR), New Delhi for providing the senior research fellowship. The first author is also thankful to Dr. Siddhartha Kaushal, guest faculty at Department of Botany, University of Delhi for his assistance in creating study area map. The corresponding author is thankful to the Institution of Eminence (IoE), University of Delhi for funding. The second and third authors are grateful to the Himalayan Study Circle, Deshbandhu college, University of Delhi for providing resources. Thanks are due to the Forest Department of Purhi for their support. All the authors are thankful to the reviewers and editors for their suggestions that helped in improving the manuscript.

INTRODUCTION

The Himalayan region constitutes one of the biodiversity hotspots of India, which comprises different kinds of forests and ecosystems in the northwestern Himalaya such as tropical, sub-tropical, temperate, sub-alpine, and alpine forests (Hajra & Rao 1990). The environmental factors such as topography, soil, climate, and geographical location influence the diversity of vegetation in forest ecosystem in the Himalaya (Arora 1995). The biodiversity and productivity in a forest are the two most important attributes, which are associated with the proper functioning of a forest ecosystem in the Himalaya (Haq et al. 2021). Any kind of ecological disturbances in the Himalaya can also affect the global climate by bringing changes in the precipitation and temperature (Khan et al. 2012) and hence affect the vegetation. Therefore, the Himalaya are an excellent zone to study about the biogeographical and ecological patterns of vegetation (Körner 2000) and of course to evaluate the diversity and community composition.

The bryophytes constitute a major part of Himalayan flora. The northwestern (NW) Himalaya comprises an enormous bryophyte diversity and composition. Various authors (Chopra & Kumar 1981; Tewari & Pant 1994; Nath et al. 2008; Alam 2013; Sahu & Asthana 2014) have done preliminary studies on the bryoflora of the NW Himalaya. However, there are still many unexplored domains in the Himalayan region which need to be investigated thoroughly so that the bryophyte species diversity and their role can be assessed. The Pangi valley in Chamba district of Himachal Pradesh (India) is one such unexplored part of the NW Himalaya. The area majorly consists of bare granite rocks and experiences harsh winters and cold summers.

The objective of the present study was to assess the moss species diversity in Pangi valley. The study will be helpful in modelling the species-habitat relationship, comparing the species diversity in the disturbed and non-disturbed sites to make better planning for conservation strategies.

MATERIALS AND METHODS

The mosses were collected from the Pangi valley, Himachal Pradesh (India), located at an average elevation of 2,287 m (32.8883°N, 76.4211°E and 32.9266°N, 76.4619°E; Image 1), in the month of June 2022. The area is dominated by conifers which remains dry during most of the year due to little precipitation

and a higher snowfall period. The samples were placed in separate bags and the GPS data, their substrate, along with growth forms were noted down. The samples were carefully observed under the microscope (Olympus CX21i) and separated from each other to have the pure samples of the species. The mosses were identified based on their growth forms and micromorphological characters along with the help of relevant literatures (Gangulee 1969–1980; Chopra 1975; Anderson 2007). The mosses are classified following Goffinet et al. (2008). Voucher specimens are deposited at the Herbarium DUH, University of Delhi (India).

RESULTS

In the present study, a total of 49 taxa of mosses under 21 families were recorded. Most of the mosses belong to families Pottiaceae, Bartramiaceae, Grimmiaceae, Amblystegiaceae, and Bryaceae. The genera such as *Grimmia* Hedw. and *Philonotis* Brid. were found to be the most dominant in the surveyed area with the maximum number of species. Species of *Grimmia* were found growing on basic and barren substrates in sunny positions in isolated patches. Some populations were encountered on basic sandstone near the river Chenab. The plants survived the winter well under snow and produced high numbers of sporophytes in spring. *Encalypta* Hedw. and *Hedwigia* P. Beauv., represented by few populations, are rare in the area. The record of *Hedwigia emodica* Hampe ex Müll. Hal. is the interesting one. Species of *Philonotis* were found to occur on soil or rock along the banks of streams, rivers in spring and waterfall areas, often in the open. Here, the authors also recorded extended distribution of 13 taxa for Himachal Pradesh (Table 1).

DISCUSSION

The bryodiversity of Himachal Pradesh has been studied or reviewed by various authors (Lal 2005; Singh & Singh 2008; Singh & Singh 2010; Dandotiya et al. 2011; Alam 2013; Pande et al. 2017; Kumar et al. 2022). These investigations provided several new records and interesting findings. However, in terms of moss richness and diversity, there are still many under-explored regions in Himachal Pradesh which require frequent and comprehensive field visits.

The climatic condition of the valley allows the development of mosses that are adapted to these

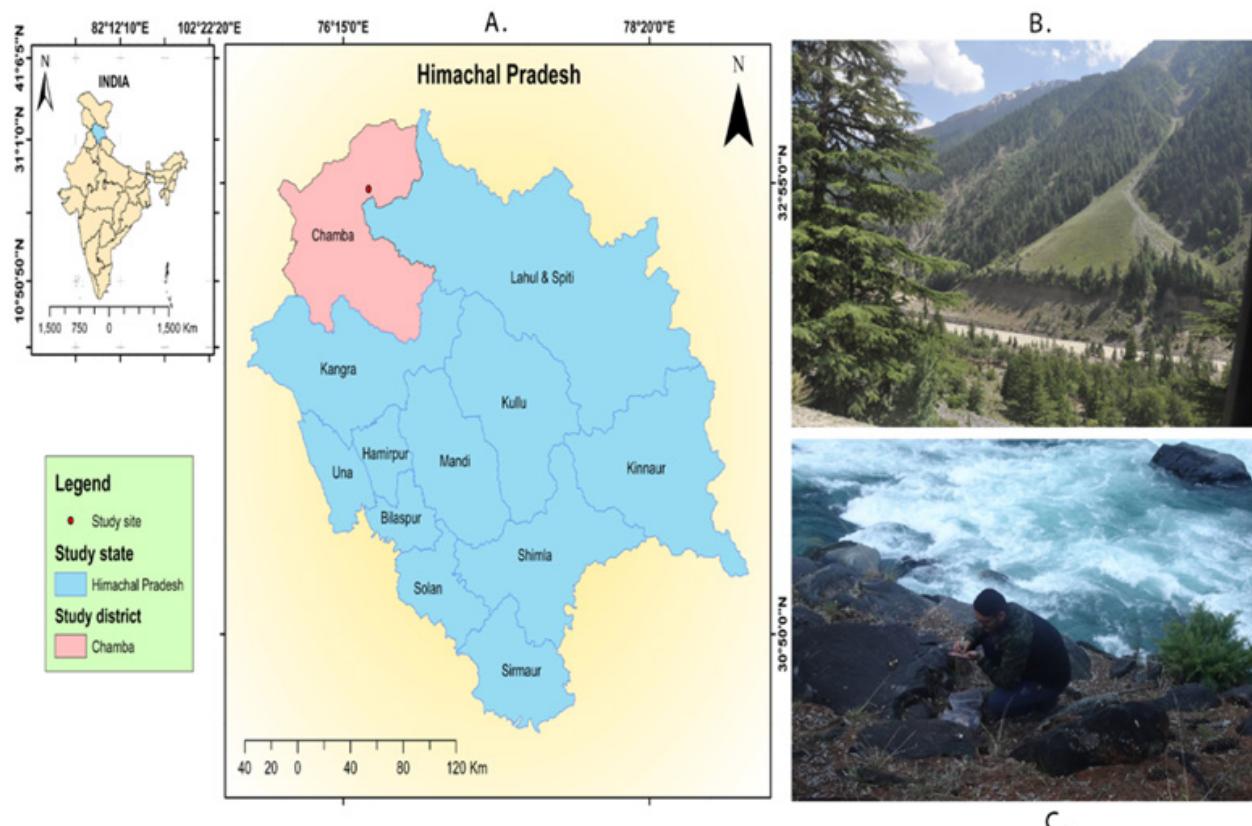


Image 1. A—Map showing the study area | B—Landscape view of the study site | C—Moss collection during study | © Anshul Dhyani & Kumar Shantanu.

climatic extremities. Several adaptive features such as the presence of long hyaline tip and compact growth in Grimmiaceae, presence of chlorophyllose cells in between the hyalocyst cells in Leucobryaceae, and the thick-coarsely papillated, small quadrate surface cells in Pottiaceae (Scott 1982) help these mosses to store water and prevent its loss, enabling these mosses to thrive in harsh and extreme climatic conditions (Image 2 & 3). Other features such as the lanceolate leaves to minimize water loss and optimize light absorption in Grimmiaceae also help in surviving the extreme conditions. In addition, the wax coating on the leaves of Polytrichaceae members prevent them from water loss as well as extreme sunlight and is considered an adaptation. In the family Pottiaceae, several species show leaf curling in response to change in humidity, which is also recognised as an adaptation factor to extreme conditions as well (Geissler 1982). The mat, cushion, turf, weft, and many such forms are also known as adaptation states to the climate. It is interesting to mention that, in *Ptychostomum pseudotriquetrum* (Hedw.) J.R.Spence & H.P.Ramsay ex Holyoak & N.Pedersen, there is production of UV-B absorbing anthocyanin pigments that check the

physiological activities of the moss under extreme cold or desiccation (Dunn & Robinson 2006; Glime 2017).

A total of six species of *Encalypta* are known to occur in the northwestern Himalayan region of India, with *E. vulgaris* the only species reported from Spiti valley and Kangra in Himachal Pradesh previously (Chopra 1975). We found only few small patches of *E. vulgaris* in the studied area and one patch with a length of ca. 15 cm. which showed relatively less abundance as compared to the other reported moss taxa. The genus *Encalypta* seems to require a specific habitat condition, i.e., restricted to limestones particularly found growing in the microsites such as on exposed dry rock crevices and on ledges wedged among stones. The genus is easily distinguished by its large plate-like red perigonia which was established in the large patches along with the other herbaceous plants. Moreover, it harbours many small aquatic animals.

Only three species of *Hedwigia* have been reported from the Himalaya, viz., *H. ciliata* (Hedw.) Boucher, *H. stellata* Hedenäs, and *H. emodica* (Dalton et al. 2013). The major distinguishing characters of *H. emodica* from other species of its relatives are the presence

Table 1. Table showing the list of reported bryophyte taxa along with new records, growth form, patch size and families (Classification follows Goffinet et al. 2008).

Taxon	Substratum	Moss patch size	Growth form	Family	Voucher number
1. <i>Anacolia menziesii</i> (Turner) Paris [†]	Rock	Small	Open tuft	Bartramiaceae	DUH15324
2. <i>Anoectangium stracheyanum</i> Mitt.	Rock	Small	Dense tuft	Pottiaceae	DUH15325
3. <i>Brachythecium kamounense</i> (Harv.) A.Jaeger	Soil, Rock	Small	Mat	Brachytheciaceae	DUH15415
4. <i>Bryoerythrophyllum recurvirostrum</i> (Hedw.) P.C.Chen	Rock	Medium	Tuft	Pottiaceae	DUH15326
5. <i>Bryum argenteum</i> Hedw.	Open soil	Small	Mat	Bryaceae	DUH15291
6. <i>B. kashmirensis</i> Broth.	Rock	Small	Thin mat, Julaceous	Bryaceae	DUH15327
7. <i>Chionoloma tenuirostre</i> (Hook. & Taylor) M.Alonso, M.J.Cano & J.A.Jiménez	Wet rocks	Small	Tuft	Pottiaceae	DUH15328
8. <i>Cratoneuron filicinum</i> (Hedw.) Spruce	Near waterfall	Small	Tuft	Amblystegiaceae	DUH15239
9. <i>Cynodontium polycarpon</i> (Hedw.) Schimp. [†]	Open rock	Small	Tuft	Dicranaceae	DUH15330
10. <i>Didymodon hastatus</i> (Mitt.) R.H.Zander	Calcium rock	Small	Tuft	Pottiaceae	DUH15331
11. <i>Encalypta vulgaris</i> Hedw.	Rock	Large	Cushion	Encalyptaceae	DUH15332
12. <i>Entodon luteonitens</i> Renaud & Cardot [†]	Forest floor	Small	Tuft	Entodontaceae	DUH15333
13. <i>Fissidens grandifrons</i> Brid.	Waterfall	Small	Mat/ Tuft	Fissidentaceae	DUH15335
14. <i>F. taxifolius</i> Hedw.	Dry Soil	Small	Tuft	Fissidentaceae	DUH15336
15. <i>Grimmia donniana</i> Sm.	Rock	Small	Cushion	Grimmiaceae	DUH15337
16. <i>G. elongata</i> Kaulf. [†]	Rock	Small	Cushion	Grimmiaceae	DUH15338
17. <i>G. funalis</i> (Schwägr.) Bruch & Schimp.	Calcium wet rock	Medium	Cushion	Grimmiaceae	DUH15306
18. <i>G. fuscolutea</i> Hook.	Rock	Medium	Cushion, mat	Grimmiaceae	DUH15339
19. <i>Haplocladium schimperi</i> Thér.	Tree base, Rock	Small	Mat	Leskeaceae	DUH15292
20. <i>Hedwigia emodica</i> Hampe ex Müll. Hal. [†]	Tree bark	Small	Tuft	Burseraceae	DUH15340
21. <i>Hygroamblystegium tenax</i> (Hedw.) Jenn.	Rock and Walls	Small	Tuft	Pottiaceae	DUH15341
22. <i>Hymentostylium recurvirostrum</i> (Hedw.) Dixon	Rock	Medium	Tuft/ Cushion	Pottiaceae	DUH15342
23. <i>Hypnum cupressiforme</i> (Hedw.)	Forest floor	Small	Mat	Hypnaceae	DUH15343
24. <i>Lescuraea incurvata</i> (Hedw.) E.Lawton	Dry Rocks	Small	Mat	Leskeaceae	DUH15344
25. <i>Leucodon secundus</i> (Harv.) Mitt.	Tree bark	Medium	Tuft	Leucodontaceae	DUH15424
26. <i>L. sinensis</i> Thér. [†]	Tree bark	Medium	Tuft/ Mat	Leucodontaceae	DUH15345
27. <i>Lewinskya speciosa</i> (Nees) F. Lara, Garilleti & Goffinet [†]	Tree branches	Small	Tuft	Orthotrichaceae	DUH15346
28. <i>Orthotrichum erubescens</i> Müll. Hal. [†]	Tree branches	Medium	Cushion	Orthotrichaceae	DUH15347
29. <i>Oxyrrhynchium hians</i> (Hedw.) Loeske	Waterfall	Medium	Tuft	Brachytheciaceae	DUH15348
30. <i>Palustriella decipiens</i> (De Not.) Ochyra [†]	Waterfall	Small	Tuft	Amblystegiaceae	DUH15349
31. <i>Philonotis bartramoides</i> (Griff.) D.G.Griffin & W.R.Buck	Calcium wet rock	Large	Tuft/ Cushion	Bartramiaceae	DUH15350
32. <i>P. leptocarpa</i> (Mitt.) [†]	Wet Soil Calcium rich	Medium	Tuft	Bartramiaceae	DUH15352
33. <i>P. mollis</i> (Dozy & Molk.) Mitt. [†]	Wet Soil Calcium rich	Medium	Tuft	Bartramiaceae	DUH15353
34. <i>P. roylei</i> (Hook.f.) Mitt.	Calcium wet rock	Medium	Tuft/ Cushion	Bartramiaceae	DUH15354
35. <i>P. turneriana</i> (Schwägr.) Mitt.	Wet Soil Calcium rich	Medium	Tuft	Bartramiaceae	DUH15355
36. <i>Plagiothecium cavifolium</i> (Brid.) Z.Iwats.	Tree base	Small	Mat	Plagiotheciaceae	DUH15314
37. <i>Pseudoleskeopsis zippelii</i> (Dozy & Molk.) Broth. [†]	Rock	Small	Mat	Leskeaceae	DUH15356
38. <i>Ptychomitrium tortula</i> (Harv.) A.Jaeger	Tree bark	Small	Tuft	Ptychomitriaceae	DUH15316

Taxon	Substratum	Moss patch size	Growth form	Family	Voucher number
39. <i>Ptychostomum pseudotriquetrum</i> (Hedw.) J.R.Spence & H.P.Ramsay ex Holyoak & N.Pedersen	Open Rock	Medium	Tuft	Bryaceae	DUH15357
40. <i>Reimersia inconspicua</i> (Griff.) P.C.Chen	Rock, Soil	Small	Tuft	Pottiaceae	DUH15358
41. <i>Rhynchosstegium planiusculum</i> (Mitt.) A.Jaeger	Forest floor	Small	Tuft	Brachytheciaceae	DUH15359
42. <i>R. riparioides</i> (Hedw.) Cardot	Waterfall	Small	Tuft	Brachytheciaceae	DUH15360
43. <i>Rosulabryum capillare</i> (Hedw.) J.R.Spence	Open soil	Small	Tuft	Bryaceae	DUH15361
44. <i>Sarmentypnum exannulatum</i> (Schimp.) Hedenäs	Near waterfall	Small	Mat/ Cushion	Calliergonaceae	DUH15362
45. <i>Syntrichia ruralis</i> (Hedw.) F.Weber & D.Mohr.	Open dry soil	Small	Tuft	Pottiaceae	DUH15365
46. <i>Sympysodontella tortifolia</i> Dixon [†]	Rock	Small	Tuft	Pterobryaceae	DUH15363
47. <i>Syrrhopodon armatus</i> (Schwägr.)	Soil	Medium	Tuft	Calyperaceae	DUH15317
48. <i>Thuidium assimile</i> (Mitt.) A.Jaeger	Forest floor	Medium	Tuft	Thuidiaceae	DUH15364
49. <i>Tortella tortuosa</i> (Schrad. ex Hedw.) Limpr.	Dry rocks	Small	Tuft	Pottiaceae	DUH15366

[†]—New records to Himachal Pradesh | Moss Patch Size: Small = 0–3 cm, Medium = 3–8 cm, Large = < 8 cm

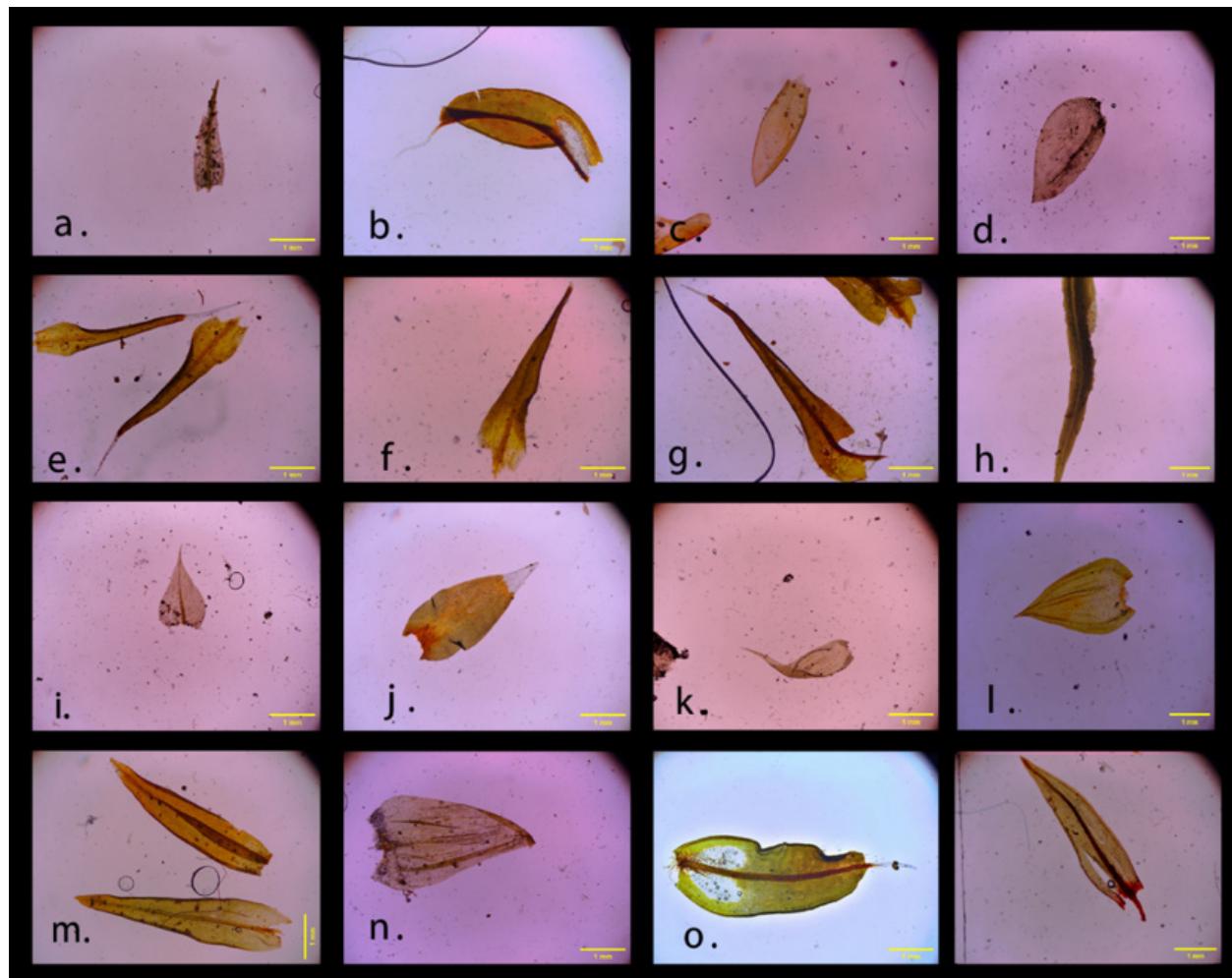
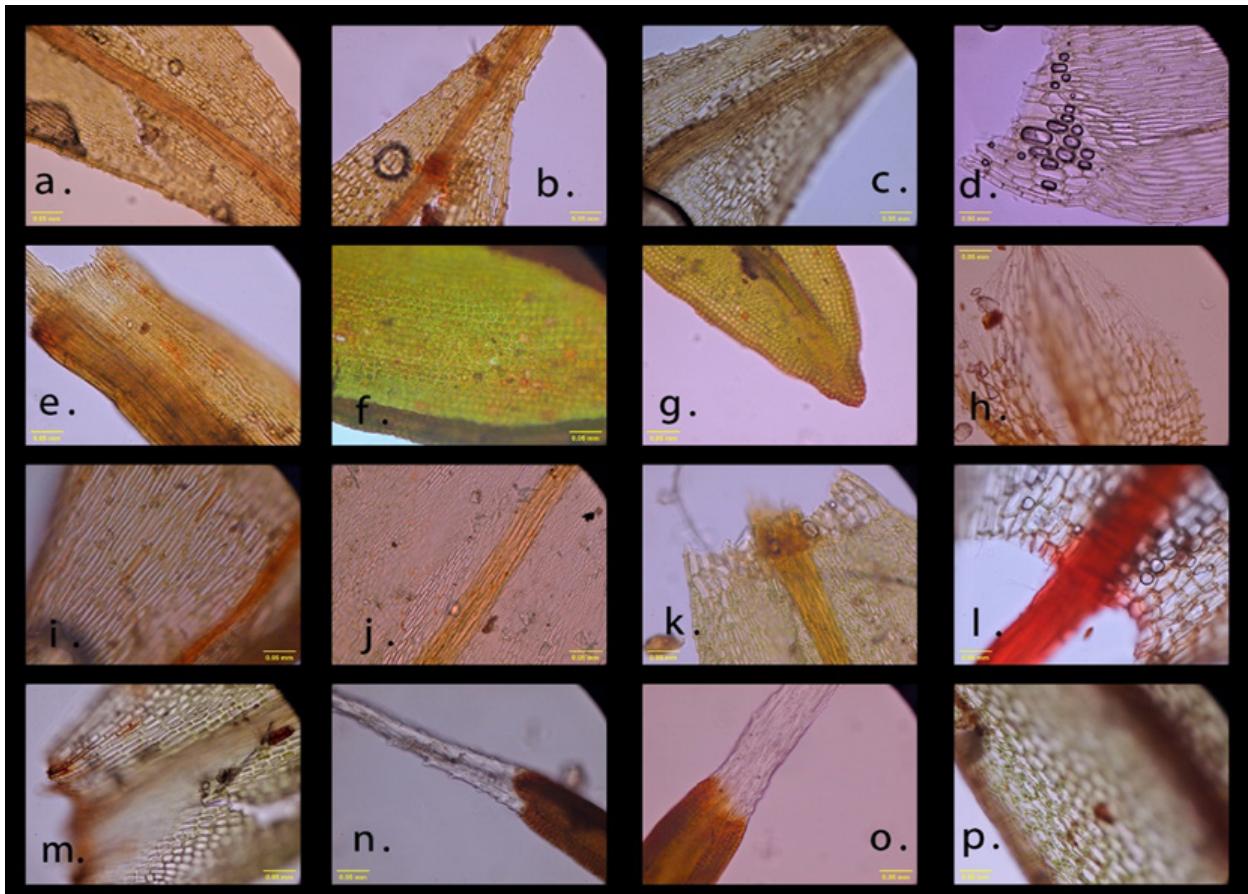



Image 2. Section photographs of some recorded mosses: a—*Sarmentypnum exannulatum* | b—*Encalypta vulgaris* | c—*Entodon luteonitens* | d—*Oxyrrhynchium hians* | e—*Grimmia fuscolutea* | f—*G. funalis* | g—*G. donniana*, h. *Fissidens taxifolius* | i—*Haplocladium schimperi* | j—*Hedwigia emodica* | k—*Hypnum cupressiforme* | l—*Leucodon sinensis* | m—*Orthotrichum griffithii* | n—*Rhynchosstegium planiusculum* | o—*Syntrichia ruralis* | p—*Ptychostomum pseudotriquetrum*. © Anshul Dhyani.

Image 3. Variations in leaf cell types in upper, middle, and basal leaf regions in different moss taxa: a—*Anacolia menziesii* | b—*Philonotis bartramoides* | c—*P. roylei* | d—Differentiated alar cells of *Brachythecium kamounense* | e—Basal leaf cells of *Grimmia fuscolutea* | f—Multipapillose quadrate cells in *Encalypta vulgaris* | g—Apical leaf cells of *Cynodontium polycarpon* | h—Apical rhombic cells of *Bryum argenteum* | i—Basal cells of *B. kashmirensis* | j—Middle leaf cells of *Palustriella decipiens* | k—Basal cells and differentiated alar cells of *Cratoneuron filicinum* | l—Basal cells of *Bryum capillare* | m—Basal cells of *Hymenostylium recurvirostrum* | n—Hyaline tip of *G. donniana* | o—Hyaline tip of *G. funalis* | p—Middle leaf cells along with marginal cells of *Ptychostomum pseudotriquetrum*. © Anshul Dhyani.

of a long, hyaline tip which covers ca. 20–40% of leaf length; abaxial papillae which varies from branched to stellate and leaf margin either recurved on lower half or plane. *H. ciliata* has been previously reported from Himachal Pradesh and Uttarakhand (Asthana & Sahu 2014). *H. stellata* has been reported from Kashmir and the distribution of *H. emodica* was previously found in Jammu & Kashmir (Dalton et al. 2013). The presence of *H. emodica* in Himachal Pradesh, therefore, implies the range extension of this taxon. Present populations were found growing on sand rocks, boulders, and creeks as well as the lower trunks of *Cedrus* trees. It appears that *Hedwigia* prefers to grow on acidic substratum.

Bryophyte distribution is affected by the macroclimatic conditions, including precipitation and temperature. However, moisture is considered as an important growth stimulator more than any other factor for bryophyte productivity (Skre & Oechel 1981;

Porley & Hodgetts 2005). The dominance of families such as Pottiaceae and Grimmiaceae, generally growing in exposed sites on granite-mica rocks, indicate that the area has harsh and extreme climatic conditions. Wide distribution of members of Bartramiaceae shows presence of calcareous substrata (Tewari & Pant 1994). The average bryophyte cover was higher in exposed sites and under coniferous forest patch, and thus considered as important ground cover in the area. The area is dominated by the acrocarpous turfs and cushion forming mosses in comparison to the pleurocarpous mosses. A deep bryophyte layer thickness is commonly associated with species groups that often have large cover, which therefore, produce a high biomass (Sun et al. 2013). This area harbours rich plant diversity. Less population, low developmental activities, and remote location of the area gives the opportunity to have the high regeneration rate of the species. Moreover, the harsh

environmental conditions stimulate the adaptations in the species, hence the species occurring in the area remain unique. It is important to understand the plant communities, especially of lower plant groups, of such sites for comparative study and distribution modelling in future. There is an abundance of rocky bulges and depressions, which provide refuge to species with morphological adaptations to stressful climates and to rare communities of plants, including bryophytes.

The existence of 21 distinct families in this region serves as a clear indication of the considerable diversity in terms of bryophyte richness and composition. This underscores the importance of conducting expeditions in the surrounding areas to compile a cumulative checklist. Such an endeavour will contribute to the formulation of effective policy management and conservation approaches. Although the area is remote, but the small hydroelectric units and camps on ground may make the habitat vulnerable. These anthropogenic disturbances may pose a threat to the survival of many different moss taxa. Poor dispersal range of bryophytes not only limits the population recruitment but also leads to conservation implications. The niche specificity and the role of associated species together with genetic diversity need to be studied further.

CONCLUSIONS

Bryophytes constitute an important component of the ecosystem and contribute a significant portion of species richness and biomass as well as ground cover. Although, they play a significant role in ecosystem functioning yet they receive less attention in biodiversity mapping. These interesting groups of plants are very sensitive to environmental perturbation and fairly used as indicator species. The present study revealed the species diversity of mosses in Pangi Valley (Himachal Pradesh, India) which will help in forest policies and management to conserve the biodiversity of the area. The developmental projects in the area may cause destruction of habitats of these mosses and thus can be a potential threat to their survival. Therefore, efficient and sustainable forest practices should be adopted to safeguard this economically important plant group.

REFERENCES

Alam, A. (2013). Moss flora of Western Himalayas, India- An updated Checklist. *Archive for Bryology* 168: 1–28.

Anderson, E.L. (2007). *Flora of North America, North of Mexico. Bryophyta*. Oxford University Press, 713 pp.

Arora, R.K. (1995). Himalayan Resources, Diversity and Conservation, pp. 39–55. In: Dhar, U. (ed.). *Himalayan Biodiversity*. Gyanodaya Prakashan, Nainital, 553 pp.

Asthana, A.K. & V. Sahu (2014). Occurrence of a rare and interesting moss *Hedwigia ciliata* (Hedw.) Ehrh. ex P. Beauv. var. *ciliata* Prodr. in Govind Wildlife Sanctuary, Uttarakhand. *Phytotaxonomy* 14: 155–157.

Chopra, R.S. (1975). *Taxonomy of Indian Mosses (An Introduction)*. Botanical Monograph, CSIR, New Delhi, 631 pp.

Chopra, R.S. & S.S. Kumar (1981). *Mosses of the Western Himalayas and Adjacent Plains (Vol. 5)*. Chronica Botanica Company, New Delhi, 142 pp.

Dalton, N.J., E.M. Kungu & D.G. Long (2013). A taxonomic revision of Hedwigiaeae Schimp. from the Sino-Himalaya. *Journal of Bryology* 35(2): 96–111. <https://doi.org/10.1179/174328012Y.0000000043>

Dunn, J.L. & S.A. Robinson (2006). Ultraviolet B screening potential is higher in two cosmopolitan moss species than in a co-occurring Antarctic endemic moss: implications of continuing ozone depletion. *Global Change Biology* 12(12): 2282–2296. <https://doi.org/10.1111/j.1365-2486.2006.01283.x>

Dandotiya, D., H. Govindapuri, S. Suman & P.L. Uniyal (2011). Checklist of the bryophytes of India. *Archive for Bryology* 88(1): 1–126.

Gangulee, H.C. (1969–1980). *Mosses of Eastern India and Adjacent Regions. Fascicle I–VIII*. Eastend Printers, Calcutta, India.

Geissler, P. (1982). Alpine Communities, pp. 167–190. In: Smith, A.J.E (eds.). *Bryophyte Ecology*. Chapman and Hall, New York, U.S.A.

Glime, J.M. (2017). Temperature: Cold. Chapter 10-2, pp. 1–38. In: Glime, J.M. (ed.). *Bryophyte Ecology. Volume 1. Physiological Ecology*, Michigan Technological University & International Association of Bryologists, U.S.A.

Goffinet, B., W.R. Buck & A.J. Shaw (2008). Morphology, anatomy, and classification of the Bryophyta. *Bryophyte Biology* 2: 55–138.

Hajra, P.K. & R.R. Rao (1990). Distribution of vegetation types in northwest Himalaya with brief remarks on phytogeography and floral resource conservation. *Proceedings of the Indian Academy of Sciences* 100: 263–277. <https://doi.org/10.1007/BF03053480>

Haq, S.M., E.S. Calixto & M. Kumar (2021). Assessing biodiversity and productivity over a small-scale gradient in the protected forests of Indian Western Himalayas. *Journal of Sustainable Forestry* 40(7): 675–694.

Khan, S.M., S. Page, H. Ahmad, H. Shaheen & D.M. Harper (2012). Vegetation dynamics in the Western Himalayas, diversity indices and climate change. *Science Technology and Development* 31(3): 232–243.

Körner, C. (2000). Why are there global gradients in species richness? Mountains might hold the answer. *Trends in Ecology & Evolution* 15(12): 513–514.

Kumar, K., K.K. Singh, A.K. Asthana & V. Nath (2000). Ethnotherapeutics of bryophyte *Plagiochasma appendiculatum* among the Gaddi tribes of Kangra valley, Himachal Pradesh, India. *Pharmaceutical Biology* 38(5): 353–356.

Kumar, S.S., A. Rao & M. Sharma (2022). A preliminary survey of moss flora of Chail Wildlife Sanctuary, Himachal Pradesh, India. *Journal of Threatened Taxa* 14(12): 22207–22214. <https://doi.org/10.11609/jott.7886.14.12.22207-22214>

Lal, J. (2005). *A Checklist of Indian Mosses*. Bishen Singh Mahendra Pal Singh, Dehradun, 152 pp.

Nath, V., A.K. Asthana & V. Sahu (2008). Addition of three moss species to West Himalayan Bryoflora. *Cryptogamie, Bryologie* 29(4): 387–392. <https://sciencepress.mnhn.fr/en/periodiques/>

bryologie/29/4/addition-three-moss-species-west-himalayan-bryoflora

Pande, N., G. Dayanidhi, K.K. Rawat, V. Sahu & A.K. Asthana (2017). Rediscovery of *Anthelia julacea* (L.) Dumort. (Marchantiophyta: Antheliaceae) from India. *Indian Journal of Forestry* 40(2): 173–175.

Porley, R. & N.G. Hodgetts (2005). *Mosses and Liverworts* (Vol. 97). Harper Collins, London, UK, 495 pp.

Sahu, V. & A.K. Asthana (2014). Two mosses new to west Himalayan Bryoflora. *Proceedings of the National Academy of Sciences, India Section B: Biological Sciences* 84: 805–810.

Scott, G.A.M. (1982). Desert bryophytes. In: Smith, A.J.E (edn. 1) *Bryophyte Ecology*, Chapman and Hall, New York, U.S.A, pp. 105–122.

Singh, D.K. & S.K. Singh (2008). Diversity in Liverworts and Hornworts of Great Himalayan National Park, Western Himalaya, India. *Bryology in the New Millennium*. University of Malaya. Kuala Lumpur, 291–317 pp.

Singh, S.K. & D.K. Singh (2010). A catalogue of the liverworts and hornworts of Himachal Pradesh, India. *Archive for Bryology* 61: 1–13.

Skre, O. & W.C. Oechel (1981). Moss functioning in different taiga ecosystems in interior Alaska: I. Seasonal, phenotypic, and drought effects on photosynthesis and response patterns. *Oecologia* 48: 50–59.

Sun, S.Q., Y.H. Wu, G.X. Wang, J. Zhou, D. Yu, H.J. Bing & J. Luo (2013). Bryophyte species richness and composition along an altitudinal gradient in Gongga Mountain, China. *PLoS One* 8(3): e58131. <https://doi.org/10.1371/journal.pone.0058131>

Tewari, S.D. & G. Pant (1994). *Bryophytes of Kumaun Himalaya*. Bishen Singh Mahendra Pal Singh, Dehradun, 240 pp.

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org

Articles

Tree architecture model of Sumatran Orangutan *Pongo abelii* Lesson, 1827 (Mammalia: Primates: Hominidae) nests at Soraya Research Station, Leuser Ecosystem, Indonesia

– Anugrah Gilang Permana Lubis & Nursahara Pasaribu, Pp. 25119–25128

Diet of Rusty-spotted Cat *Prionailurus rubiginosus* (I. Geoffroy Saint-Hilaire, 1831) (Mammalia: Carnivora: Felidae) in Sanjay Gandhi National Park, Mumbai, India

– Shomita Mukherjee, Arati Ramdas Gawari, Kartik Pillai, Pankaj Koparde, P.V. Karunakaran & Nayan Khanolkar, Pp. 25129–25136

An avifaunal checklist of the Bani Wildlife Sanctuary, Jammu & Kashmir, India

– Iyaz Quyoom, Bilal A. Bhat, Wasim Sajad Malik, Taslima Sheikh & Arif Nabi Lone, Pp. 25137–25146

Traditional harvesting practices employed for freshwater turtles by the indigenous communities along Shilabati River, West Bengal, India

– Prasun Mandal, Pathik Kumar Jana, Priyanka Halder Mallick, Shailendra Singh & Tanmay Bhattacharya, Pp. 25147–25156

Diversity and abundance of mayflies (Insecta: Ephemeroptera) in Achenkovil River, southern Western Ghats, Kerala, India

– S. Sujitha, R. Sreejai & C. Selvakumar, Pp. 25157–25165

Legumes (Angiosperm: Fabaceae) of Birbhum District, West Bengal, India

– Shamim Alam & Adani Lokho, Pp. 25166–25187

Floristic diversity of mangroves and mangrove associate species of Kali River Estuary, Karwar, Karnataka, India

– Amruta G. Honappa, Shivanand S. Bhat & Praveen Kumar Verma, Pp. 25188–25197

Reproductive biology of *Senna spectabilis* (DC.) H.S.Irwin & Barneby (Fabaceae) - an invasive tree species in the tropical forests of the Western Ghats, India

– K. Muraleekrishnan, Sanal C. Viswanath & T.K. Hrideek, Pp. 25198–25208

Communications

Diversity and status of butterfly fauna at Kurukshetra University campus, Haryana, India

– Vidisha Gupta & Parmesh Kumar, Pp. 25209–25219

First report of *Lutevula hortensis* (Distant) (Heteroptera: Reduviidae: Emesinae) from India

– Vijay Anand Ismavel & Hemant V. Ghate, Pp. 25220–25226

Diversity of mosses (Bryophyta) in Pangi valley (Himachal Pradesh, India): an unexplored domain of northwestern Himalaya

– Anshul Dhyani, Kumar Shantanu, Rajender Kumar Sharma & Prem Lal Uniyal, Pp. 25227–25234

Morphological characterization and distribution of four corticioid fungi species (Basidiomycota) in India

– Tanya Joshi, Ellu Ram, Avneet Kaur & Avneet Pal Singh, Pp. 25235–25242

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

May 2024 | Vol. 16 | No. 5 | Pages: 25119–25282

Date of Publication: 26 May 2024 (Online & Print)

DOI: 10.11609/jott.2024.16.5.25119-25282

Taxonomy and molecular systematics of marasmoid fungi occurring (Basidiomycetes: Agaricales: Marasmiaceae) in Puducherry, India

– Yuvarani Krishnan, Thokur Sreepathy Murali, Gunasekaran Senthilarasu & Vadivelu Kumaresan, Pp. 25243–25251

Short Communications

First photo evidence of Siberian Weasel *Mustela sibirica* Pallas, 1773 (Mammalia: Carnivora: Mustelidae) in Gaurishankar Conservation Area, Nepal

– Madhu Chetri, Purna Bahadur Ale & Morten Odden, Pp. 25252–25255

Post-tsunami status, distribution, and way forward for the conservation of Andaman Teal *Anas albogularis* Hume, 1873 (Aves: Anatidae) in the Andaman Islands

– Anoop Raj Singh, Gaurav Sirola, Sipu Kumar & Nehru Prabakaran, Pp. 25256–25260

A preliminary checklist of Copepoda in the mangrove areas of Munroe Island, adjacent to Ashtamudi estuary, Kerala, India

– M.S. Arya, A. Biju & Dani Benchamin, Pp. 25261–25264

Notes

First photographic record of Asiatic Brush-tailed Porcupine *Atherurus macrourus* Linnaeus, 1758 from Sonai Rupai Wildlife Sanctuary, Assam, India

– B. Piraisoodan, Asish Immanuel Baglary & Bibhuti Mazumder, Pp. 25265–25267

New country record of *Trimeresurus uetzi* Vogel, Nguyen & David, 2023 (Reptilia: Squamata: Viperidae) from India

– Lal Biakzuala, Lal Muansanga, Fanai Malsawmdawngiana, Lalrinnunga Hmar & Hmar Tlawmte Lalremsanga, Pp. 25268–25272

New record of Giant Redeye *Gangara thyrsis thyrsis* (Fabricius, 1775) (Lepidoptera: Hesperiidae) from Garhwal region of western Himalaya, India

– Ankita Singh Sajwan & Arun Pratap Singh, Pp. 25273–25275

Strobilanthes khasiana (Acanthaceae): an addition to the flora of Nagaland, India

– Pfüchüpe-ü Mero, Kazuhrii Eshuo & Neizo Puro, Pp. 25276–25278

Sonerila konkanensis Resmi & Nampy (Melastomataceae)

– an addition to the flora of Karnataka, India

– Prashant Karadakatti & Siddappa B. Kakkalameli, Pp. 25279–25282

Publisher & Host

Threatened Taxa