Plastral deossification zones in the Endangered Spiny Hill Turtle

Heosemys spinosa (Testudines: Geoemydidae) on Borneo

Siti Nor Baizurah & Indraneil Das

1. Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
2. Department of Biology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.

Abstract: Studies of the evolution of turtle shell morphology have raised numerous questions. In this study, five adult females and two adult males of the Endangered Spiny Hill Turtle *Heosemys spinosa* from two localities in western Sarawak in East Malaysia (Borneo) were examined for the presence of plastral deossification zones, reported as indicative of kinesis in earlier studies. A total of 52 (34 females, 18 males) radiographs demonstrated distinct poorly-ossified areas across the hyo-hypoplastral and the hypo-xiphiplastral junctures in females of straight carapace length (SCL) 143.4–211.4 mm. The feature is here interpreted as a permanent plastral hinge, which was not observed in either of the males examined. The smallest female with a weak but discernible hinge line at the contact of these bones had a SCL of 125 mm, suggestive of minimum size of maturity in *Heosemys spinosa* in this population.

Keywords: Biology, growth, maturity, osteology, plastron, reproductive biology, sulcus, turtle.

Plastral deossification zones in the Endangered Spiny Hill Turtle

© Baizurah & Das 2023. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: Niche Research Grant from the Ministry of Higher Education, Government of Malaysia (NRGS/1087/2013(01)). Research permit: Sarawak Forest Department, for issuing the permit (No. 181/JHS/NCCD/600–72/107; Park Permit No. Wl 88/2018)

Competing interests: The authors declare no competing interests.

Author details: Siti Nor Baizurah is a PhD graduate from UNIMAS, previously worked on the herpetofauna ecology for her postgraduate studies and her research interests include ecology, anthropogenic effects on ecosystem, human wildlife conflicts and wildlife management. INDRANEIL DAS received a DPhil in Zoology from the University of Oxford, and was a Fulbright Fellow at Harvard University. He is currently professor at the Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, where he conducts research on the systematics and ecology of the herpetofauna of Borneo and south-east Asia.

Author contributions: SBN carried out the research work, providing data (ie: photographs, measurements) and drafted the manuscripts. ID coordinated the data and participate in writing and reviewing the manuscript. All author agreed to the final version.

Acknowledgements: This project was funded by a grant under the Niche Research Grant Scheme (NRGS), awarded by the Ministry of Higher Education, Government of Malaysia (NRGS/1087/2013(01)) and a Conservation Leadership Programme (CLP) Grant. Our deepest gratitude goes to our veterinarian, Davies Belayong and his colleagues at the Animal Veterinary Clinic Kuching for assisting with radiography. We would like to acknowledge the Institute of Biodiversity and Environmental Conservation, UNIMAS for providing facilities and equipment, and would like to single out Andrew Alek Tuen, Gabriel Tonga Noweg and Rahah Belayong and his colleagues at the Animal Veterinary Clinic Kuching for assisting with radiography. We would also like to acknowledge the University of Oxford, and was a Fulbright Fellow at Harvard University. He is currently professor at the Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, where he conducts research on the systematics and ecology of the herpetofauna of Borneo and south-east Asia.
INTRODUCTION

Evolution of turtles has produced variations in shell morphology and pelvic elements (Rivera 2008; Williams & Stayton 2019) and shell kinesis, although female plastral kinesis remains speculative in most species. The degree of kinesis depend on specializations in muscle and ligament systems, and active kinesis usually involves modifications of kinetic structures that allow flexibility through voluntary muscle connections (Pritchard 2003). In passive kinesis, modifications of muscles are not necessary and may rely on pressures exerted over certain periods, including for respiration. For instance, pelvic kinesis in *Homopus signatus* (Hofmeyr et al. 2005), posterior plastral lobe kinesis in *Heosemys spinosa* (Mertens 1942, 1971), carapacial pankinesis in *Dogania subplana* (Pritchard 1993) and *Kinixys erosa* (Pritchard 2008) have been assumed on the basis of structure, although their mechanism and function is poorly known. Shell kinesis has been reported in smaller individuals of terrestrial or semi-terrestrial species as a possible adaptation to escape predation and aid locomotion (Berlant & Stayton 2017; Cordero et al. 2018). In contrast, posterior plastral lobe kinesis reported in *H. spinosa* has been hypothesized to be part of its reproductive strategy (Waagen 1984; Moll 1985), even though the shell was once considered as akegetic, and the possibility of plastral muscle specialization has been proposed (Bramble 1974). The hinge in *H. spinosa* reportedly develops in mature females (Moll 1985), resembling the hinge position displayed in the genus *Cuora*, albeit the kinesis in *H. spinosa* is limited to the posterior part of the plastron (Pritchard 1993).

Shell kinesis harbours numerous advantages, including predation survival, locomotion and facilitation of the passage of large eggs in small turtles. Accordingly, variation in the turtle shell has been speculated to be affected by multiple pressures, including phylogenetic, environmental and reproduction, in which plastral kinesis is one result of those pressures (Angielczyk et al. 2011). It is important to note that plastral modifications is usually expressed strongly in adults of both sexes in kinetic species (Ernst & Barbour 1989). Consequently, a number of studies (reviewed in Cordero & Quinteros 2015) discusses the adaptations of shell kinesis to habitat preferences, while sexually dimorphic kinesis must be related to reproduction strategy benefits, although a recent study suggests that the evolutionary structure of shell kinesis may stem from more complex relationships between ecological, phylogeny, and developmental processes in turtles (Cordero et al. 2018).

In the present study, we examine adults of the Spiny Hill Turtle from two free-ranging populations in Sarawak, East Malaysia (northern Borneo), in order to understand plastral kinesis (represented by plastral sulcus). Specifically, we will try to ascertain if the feature is restricted to females, the specific plastral bones associated with sulcus, the minimal size of animal that correlates with the development of the feature, and finally, if there are seasonality in variation of the feature.

MATERIALS AND METHODS

Data on plastral morphology were collected within a larger study on the spatial and thermal ecology of the Spiny Hill Turtle from two localities in western Sarawak, northern Borneo. The first was from Kubah National Park (headquarters at 1.6115°N, 110.1964°E, WGS 84), a protected area of 2,230 ha, located within the Matang Massif, the second from forests attached to a privately-owned farmland (1.3073°N, 110.5037°E, WGS 84), around the township of Serian (Image 1). Vegetation types represented include mixed dipterocarp forest, Kerangas (Bornean heath forest) and submontane forests (Hazebrook & Morshidi 2000). Data were obtained between 11 April 2017 and 30 January 2019 from five females that were fitted with temperature sensitive transmitters (Holohil™ Ri2B and Holohil™ PD-2T) for a study of spatial and thermal ecology, during which the present study was conducted. Animals were brought to a veterinary clinic for radiography and released at the point of encounter within a week.

Radiography procedures were conducted by a qualified veterinarian. A Sedecal Apr-Vet (Model E7239X) radiographic unit was used to produce three views per individual (dorsal, ventral and lateral positions). Each exposure was 78 kV (25 mA to 320 mA) for 0.08 sec, following which individuals were weighed using a digital scale (Camry/ACS-3—JC31). General anaesthesia was not used in the procedure, and depending on the mobility of the individual turtle, manual restraints with tape was used. An Xscan Radiology Application (Version 2.10) was used to edit the image obtained, prior to examination.

OBSERVATIONS AND DISCUSSION

A total of 34 radiographic images were taken of five females, which displayed a distinct sulcus, presumably comprising connective tissue, across the midbody,
specifically transversely between the hyoplastral-hypoplastral bones, and the hypoplastral & xiphiplastral bones, under the abdominal and femoral scute regions. None of the 18 radiographs of the two males showed evidence of a sulcus (refer to Image 5), which has been referred in the literature as indicative of a plastral hinge (Mertens 1942, 1971; Bramble 1974; Waagen 1984). The feature is known to exist only in adult females of the species (Moll 1985), presumably to facilitate oviposition and perhaps to allow the passage of large eggs (Yasukawa et al. 2001; Joyce et al. 2012). Other sexually dimorphic features have been listed in Baizurah & Das (2021). Images 2–4 indicate that kinesis of plastral elements may be shown by *H. spinosa* as seen in two females (SNB 638 and SNB 641) across time. The smallest female (mean SCL of 125.1 mm) was beginning to display presence of such a gap (Image 3) indicating possible size at maturity of females in *H. spinosa*. Examination of the radiographs of these individuals do not indicate a greater development of the hinge at any particular month, as might be expected if the hinge becomes functional only periodically, for the passage of the eggs.

Previous studies have discussed that pelvic aperture dimensions may be a limiting factor in reproductive output, and how it relates to sexual dimorphism in some turtles (Clark et al. 2001; Matysiak et al. 2017; Cordero et al. 2018). Apart from pelvic size variation and reduced relative plastral length in males in increasing reproduction output, plastral kinesis can serve a similar function in increasing reproduction output. Plastral kinesis is thought to reduce pelvic strain in females during egg-laying (Legler 1960; Yasukawa et al. 2001). The first

Image 1. Map of north-western Borneo; expanded area to top right show locations of study sites at Kubah National Park and the township of Serian, Sarawak State, East Malaysia.
A record of a plastral hinge in *H. spinosa* was by Mertens (1942, 1971), followed by the detailed examination of two females by Waagen (1984), who speculated that kinesis is rather weak in adult females. Hence the likelihood that kinesis serves a probably protective mechanism is unlikely. It is important to note that these descriptions are not supported by histological data hence lacking the information needed to functionally validate female-specific plastral kinesis in *Heosemys*. Waagen (1984) described the hinge as consisting of fibrous tissues internally that did not appear to change with body size, although the possibility of temporal change was mentioned. As described in that study, the present one found that the structure does not remain distinct year round, the deossification of bones presumed related to oviposition, not affected by seasonal changes, as evidenced in our radiographs (see Images 1–3). However, we have no indication that any of our females were preparing to reproduce, and no mating behaviour was observed. Previous literature on reproduction of *H. spinosa*, albeit in captivity, stated that copulation is typically triggered by rain showers, and egg deposition usually occurs in March-July (Herman 1993; Goetz 2007). In Sarawak (northwestern Borneo), high humidity and temperatures are encountered throughout the year, and periods associated with high rainfall events occur between November and March, with the passage of the north-east monsoons, and a weaker one between May and September, coinciding with the south-west monsoons (Sa’adi et al. 2019).

Numerous functional traits usually emerge late in turtle ontogeny, including development of fibrous tissues, which are known to progress slowly via repatterning of tissue which is acquired over the growth period (Cordero et al. 2018). The gradual process may explain the changes in hyo-hyoplastral, and hypo-xiphiplastral regions we noted across time. For instance, hatchling plastron shape of kinetic-shelled species undergoes differentiation post embryonic stages, especially in area where the hinge presumably occurs, as they reached maturity, in contrast to akinetic species which undergoes plastron differentiation at extreme and posterior ends (Cordero et al. 2019). Lastly, extrinsic factors such as abundance of resources and rainfall are known to affect reproductive cycles in some species (Akani et al. 2005; Loehr et al. 2011; Graham et al. 2015). Our radiographic observations suggest that hyo-hyoplastral and hypo-xiphiplastral kinesis in *H. spinosa* is possibly influenced by reproductive needs, developing during ontogeny, and may not be associated with local climate.

Table 1. Details of *Heosemys spinosa* radiographically examined.

<table>
<thead>
<tr>
<th>Identification</th>
<th>Sex</th>
<th>Total radiographs</th>
<th>Locality</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNB 637</td>
<td>Male</td>
<td>16</td>
<td>Kubah NP</td>
</tr>
<tr>
<td>SNB 638</td>
<td>Female</td>
<td>14</td>
<td>Kubah NP</td>
</tr>
<tr>
<td>SNB 639</td>
<td>Male</td>
<td>2</td>
<td>Kubah NP</td>
</tr>
<tr>
<td>SNB 641</td>
<td>Female</td>
<td>12</td>
<td>Kubah NP</td>
</tr>
<tr>
<td>SNB 642</td>
<td>Female</td>
<td>2</td>
<td>Kubah NP</td>
</tr>
<tr>
<td>SNB 643</td>
<td>Female</td>
<td>4</td>
<td>Kubah NP</td>
</tr>
<tr>
<td>SNB 640</td>
<td>Female</td>
<td>2</td>
<td>Serian</td>
</tr>
</tbody>
</table>

Image 2. Radiographs of plastron showing sulcus at juncture of hyo-hyoplastra of an adult (SCL 191 mm) female *Heosemys spinosa* (SNB 643). Image taken in November 2018. Also visible in this and the subsequent images are the externally-attached radio-transmitter, and an iButton, implanted for a larger study of movement and thermoregulation in the species.

REFERENCES

Image 3. Radiographs of plastron showing sulcus at junctures of hyo-hypoplastra and hypoplastra-xiphiplastra of a female *Heosemys spinosa* (SNB 638). Straight carapace length (SCL in mm) as follows: a) 191.33; b) 195.46; c) 198.12; d) 198.12; e) 201.3; f) 208.31; g) 210.06; h) 210.53. Diameter of scale markers = 22 mm. a) Aug-2017; b) Oct-2017; c) Dec-2017; d) Feb-2018; e) April 2018; f) Nov-2018.
Plastral deossification zones in Spiny Hill Turtle on Borneo

Image 4. Radiographs of plastron showing sulcus at junctures of hyo-hypoplastra and hypoplastra-xiphiplastra of a female Heosemys spinosa (SNB 641). Straight carapace length (SCL in mm) as follows: a) 125.1; b) 126.2; c) 126.96; d) 128.52; e) 131.07; f) 143.29. Diameter of scale markers: 22 mm.

Image 5. Radiographs of plastron of a male *Heosemys spinosa* (SNB 637). Straight carapace length (SCL) 637 mm. Straight carapace length (SCL in mm) as follows: a) 198.2; b) 200.8; c) 205.1; d) 218.5; e) 223.19; f) 225.91; g) 231.27; h) 237.72. Diameter of scale markers: 22 mm.

Communications

Presence of medium and large sized terrestrial mammals highlights the conservation potential of Patharia Hill Reserve in Bangladesh

Diversity and abundance of aquatic birds in Koonthankulam village pond, Tamil Nadu, India

Plastral deossification zones in the Endangered Spiny Hill Turtle Heosemys spinosa (Testudines: Geomycidae) on Borneo
– Siti Nor Baiturah & Indraneil Das, Pp. 23307–23314

Addition of new four records of pit vipers (Squamata: Crotalinae) to Manipur, India

Addition to the Odonata fauna of Tripura, India

Occurrence and distribution of two new libellulids (Odonata: Insecta) of the Kashmir Valley, India: Orthetrum sobina (Drury, 1770) and Palpopleura sexmaculata (Fabricius, 1787)
– Tahir Gazanfar & Mehreen Khaleef, Pp. 23338–23343

Rayed Thistly Fly Tephritis cometa Loew (Diptera: Tephritidae) a new record to India
– Rajeev Ahmad, Tariq Ahmad & Barkat Hussain, Pp. 23344–23349

New state records of some Dermaptera De Geer, 1773 (Insecta) species in India
– Tanusri Das, Kochumackel George Emilyamitra & Subhankar Kumar Sarkar, Pp. 23350–23358

Moth diversity of Guindy, Chennai, India and DNA barcoding of selected eribed moths
– Sreeramu Bhuvaragavan, Mani Meenakumari, Ramanathan Nivetha & Sundaram Janarthanan, Pp. 23359–23372

New record of the sphingid moth Acherontia styx Westwood, its parasitoid Trichogramma achaeae in Jasmine Jasminum sambac L., and its bioecology
– I. Merlin K. Davidson, Pp. 23373–23381

Identification and phylogenetic analysis of some termite species distributed across southern Haryana, India
– Bhanupriya, Shubhankur Mukherjee, Nidhi Kakkar & Sanjeev K. Gupta, Pp. 23382–23396

Survey of Black Band Disease-affected scleractinian corals via drone-based observations in Okinawa, Japan

Trace elements in Penaeus shrimp from two anthropized estuarine systems in Brazil
– Ana Paula Madeira Di Benedetto, Inácio Abreu Pestana & Cássea de Carvalho, Pp. 23403–23407

Aquatic Hemiptera inhabiting rice fields in Karaikal, Puducherry, India
– M. Kandibane & L. Gopianand, Pp. 23408–23415

Leaf defoliation and Tabernaemontana rotensis (Asterids: Gentianaceae) flower induction and fruit development
– Thomas E. Marler, Pp. 23416–23424

Short Communications

First record and DNA barcode of a scarab beetle, Adoretus kanarensis Arrow, 1917 (Coleoptera: Scarabaeidae: Rutelinae), from Maharashtra, India
– Pranil Jagdale, Sujata Magdum, Aparna Sureshchandra Kalawate, Swapnil Kajale & Yogesh Shouche, Pp. 23425–23430

New record of Lucilia cuprina (Wiedemann, 1830) (Diptera: Calliphoridae) from the Trans-Himalayan Region, cold arid desert of Kargil Ladakh, India
– Mohd Hussain, Altaf Hussain Mir, Hidayatullah Tak & Nassreen Fatima Kacho, Pp. 23431–23435

On the occurrence of Nitella myriothicha A.Braun ex Kützing, 1857 ssp. acuminata D.Subramanian, 1999 (Charophyceae: Charales: Characeae), from eastern India
– Kailash Mondal & Jain Prakash Keshri, Pp. 23436–23440

Notes

Dark Clouds Ahead? Anecdotal evidence for an illegal live trade in Sunda Neofelis diardi and Indochehsian N. nebulosa Clouded Leopards (Mammalia: Carnivora: Felidae)
– Anthony J. Giordano, Leah M. Winstead, Muhammad Ali Imron, Rustam, Jephte Sompud, Jayaraj Vijaya Kumar & Kurtis Jai-Chyi Pei, Pp. 23441–23445

Further photographic record of Asiatic Brush-tailed Porcupine Atherurus macrourus Linnaeus, 1758 (Mammalia: Rodentia: Hystricidae) from Manas National Park, Assam, India
– Urijt Bhatt, Bilal Habib & Salvador Lyngdoh, Pp. 23446–23448

Predation of the Nicobar Shrew Crocidura nicobarica by a Cattle Egret Bubulcus ibis

War prompts distress symptoms in Israeli Blind Snake
– Shahar Dubiner, Shai Meiri & Eran Levin, Pp. 23452–23454

Further distribution records of Varadzia ambolensis (Styloarmmatophora: Helicarionoidea) from the state of Goa
– Nittin Sawant, Shubham Rane, Sagar Naik, Seema Vishwakarma & Mayur Gawas, Pp. 23455–23457

Eleocharis acutangula ssp. neotropica D.J.Rosen (Cyperaceae): a new record for southern Western Ghats, India

Book Review

Putting wetland science to practice: a review
– Review by Tiasa Adhya & Partha Dey, Pp. 23461–23462