

Building evidence for conservation globally

Journal of Threatened Taxa

Open Access

10.11609/jott.2023.15.7.23463-23630
www.threatenedtaxa.org

26 July 2023 (Online & Print)
15(7): 23463-23630
ISSN 0974-7907 (Online)
ISSN 0974-7893 (Print)

43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS**Founder & Chief Editor****Dr. Sanjay Molur**Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India**Deputy Chief Editor****Dr. Neelesh Dahanukar**

Noida, Uttar Pradesh, India

Managing Editor**Mr. B. Ravichandran**, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India**Associate Editors****Dr. Mandar Paingankar**, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India**Dr. B.A. Daniel**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India**Editorial Board****Dr. Russel Mittermeier**

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinahalli PO, Nilgiris, Tamil Nadu 643223, India

Dr. Martin Fisher

Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhura Stothra Bhashyam**, Hyderabad, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2020–2022****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annasaheb Magar Mahavidyalaya, Maharashtra, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Mander Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Baños, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Celebrating the unsung heroes—moths, our nocturnal pollinators. © Priyanka Iyer.

An assessment of the diet of Brown Fish-Owl *Ketupa zeylonensis* (J.F. Gmelin, 1788) (Aves: Strigiformes: Strigidae) from two localities in the foothills of the Western Ghats of Goa, India

Stephen Jonah Dias¹ & Atul Sinai Borker²

^{1,2} Planet Life Foundation, C8/G4, Maple Grove Apartments, Belloy, Nuvem, Salcete, Goa 403601, India

² Luta Innovation, 887/13, Kamat Nagar, Porvorim, Socorro, Bardez, Goa 403501, India

¹ stephendias46@gmail.com (corresponding author), ² borker.atul@gmail.com

Abstract: The Brown Fish-Owl *Ketupa zeylonensis* is a large nocturnal bird of prey that has a vast distribution range. However, there is a significant literature gap on the ecology of this species in the Western Ghats ecoregion, particularly in regard to its food spectrum. In the present study, we assessed the diet composition of this species in the foothills of the Western Ghats of Goa, India. The diet was evaluated by analysing the undigested prey remains in regurgitated pellets obtained from the banks of forest streams and roosting sites. A total of 104 pellets were collected from two localities that exhibited similar landscape characteristics. Our analysis indicated that crabs contributed to a significant proportion of the diet of the species (75.47%), followed by amphibians (frogs, 8.02%), fishes (7.08%), reptiles (snakes, 2.83%), birds (2.36%), scorpions (1.89%), and insects (Odonata, 0.47%). Additionally, 1.89% (n = 4) of the prey items could not be identified due to their disintegrated nature. Furthermore, an assessment of Food Niche Breadth (FNB) indicated that *K. zeylonensis* exhibited a high degree of specialization in terms of its diet in the study areas.

Keywords: Diet analysis, feeding ecology, food niche breadth, food spectrum, forest streams, owl pellets, prey composition, relative frequency of occurrence.

Abbreviations: CITES—Convention on International Trade in Endangered Species of Wild Fauna and Flora | FNB—Food Niche Breadth | IUCN—International Union for Conservation of Nature | NP—National Park | RFO%—Relative Frequency of Occurrence | UNESCO—United Nations Educational, Scientific and Cultural Organization | WS—Wildlife Sanctuary.

Editor: Prachi Mehta, Wildlife Research and Conservation Society (WRCS), Pune, India.

Date of publication: 26 July 2023 (online & print)

Citation: Dias, S.J. & A.S. Borker (2023). An assessment of the diet of Brown Fish-Owl *Ketupa zeylonensis* (J.F. Gmelin, 1788) (Aves: Strigiformes: Strigidae) from two localities in the foothills of the Western Ghats of Goa, India. *Journal of Threatened Taxa* 15(7): 23514–23520. <https://doi.org/10.11609/jott.8415.15.7.23514-23520>

Copyright: © Dias & Borker 2023. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: No funding was acquired to carry out the study.

Competing interests: The authors declare no competing interests.

Author details: STEPHEN JONAH DIAS holds a master's degree in wildlife biology and conservation. He served as research associate at Planet Life Foundation. He has previously worked on otters in human-dominated landscapes of Goa, India. Presently, he is working on several research projects pertaining to the ecology of mammals and birds in Goa. ATUL ARUN SINAI BORKER has served as director of Planet Life Foundation. Currently, he is working on wildlife research and conservation projects in the Western Ghats.

Author contributions: SJD & ASB: Conceptualized the study and carried out the field work; SJD: Performed the data analysis; SJD & ASB: Prepared the draft of the manuscript.

Acknowledgements: We are grateful to the trustees of Planet Life Foundation and the staff of Nature's Nest Nature Resort for their support during the project. Our gratitude to the Goa State Biodiversity Board for granting the necessary approvals for the project. Special thanks to Swanand Patil of Arcane Conservancy for his assistance during the initial stages of the project and for providing us with the photograph of Brown Fish-Owl from his personal collection. We would also like to thank Rohan Gaonkar and Gautam Gad for extending their support. We are thankful to Sophia Dias, Anselia Da Costa, and Dr. Claret Shastry for proofreading the manuscript. Lastly, we would like to appreciate the efforts of the reviewers for their constructive comments and suggestions on the manuscript.

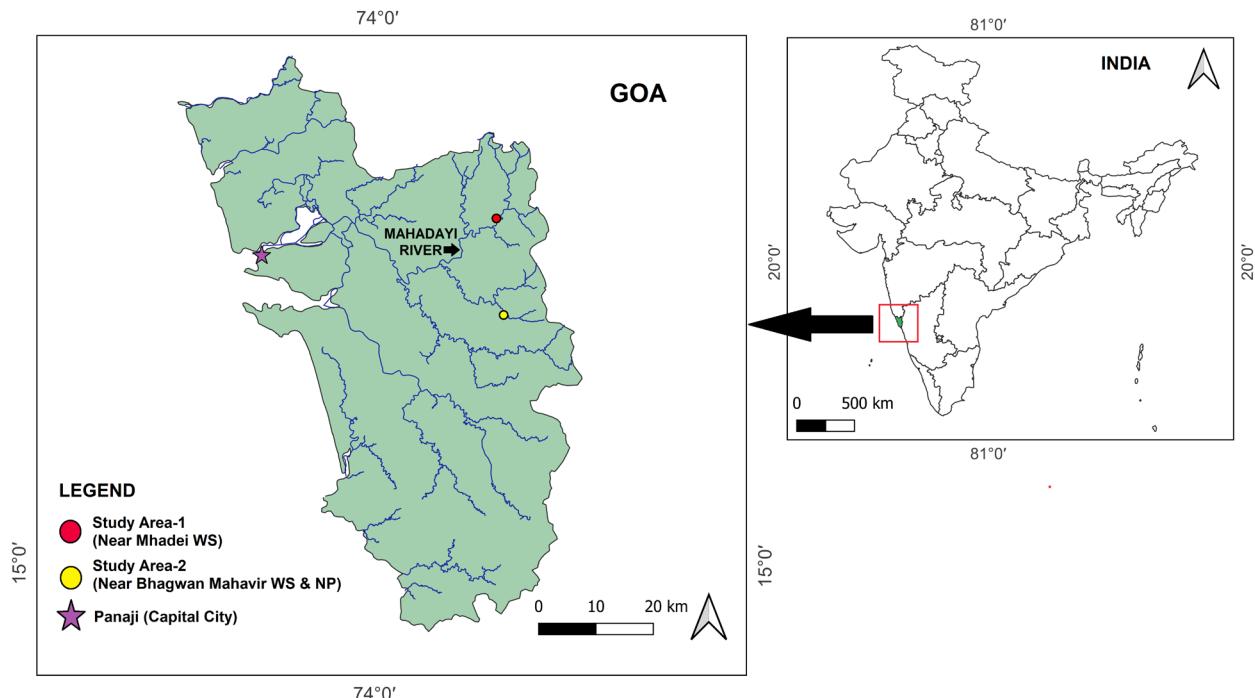
INTRODUCTION

Birds of prey occupy the apex position in food web assemblages. Therefore, they are considered to be important bioindicators of the environments in which they persist (González-Rubio et al. 2021). The taxonomic order Strigiformes is represented by 250 extant species of owls distributed across the world (Gill et al. 2023). This order is divided into two families: (i) Tytonidae, which includes barn owls, bay owls, and grass owls, and (ii) Strigidae, which includes true (or typical) owls (Sieradzki 2023). India is home to 32 species of owls, 13 of which are found in the state of Goa (Baidya & Bhagat 2018; BirdLife International 2020). The Brown Fish-Owl *Ketupa zeylonensis* is a nocturnal bird of prey that is distributed across southern and southeastern Asia with isolated populations occurring in Turkey and Iran, and vagrant populations occurring in Seychelles (Birdlife International 2016). It is a large bird (approx. 56 cm) having bright yellow eyes and outward-facing ear tufts. It exhibits rufous-brown upper parts with heavy streaking, and pale underparts with dark streaks (Ali 2002; Kazmierczak & Perlo 2012; Grewal et al. 2016). The species is classified as 'Least Concern' in the IUCN Red List of Threatened Species. Although global populations of this species have not been evaluated, it is suspected to be in decline due to habitat destruction (Birdlife International 2016). In addition, the species is listed under 'Schedule I' of the Indian Wild Life (Protection) Amendment Act, 2022 and under Appendix II of CITES (Ministry of Law and Justice 2022; CITES 2023). In India, this species faces threats from the illegal wildlife trade, persecution by fishermen, and its use in witchcraft (Ahmed 2010).

The Brown Fish-Owl inhabits deciduous, semi-deciduous and evergreen woodland ecosystems and is found in close proximity to water bodies. Its diet is reported to constitute crabs, fish, frogs, reptiles, birds, mammals, and carrion (Ali 2002; Bindu & Balakrishnan 2015; Grewal et al. 2016).

Owls are highly specialized hunters that regurgitate undigested prey remains such as bones, feathers, hair, scales, and other exoskeletal structures of their prey in the form of compact pellets. The analysis of regurgitated pellets has proven to be a robust technique to assess the food spectrum of owls and understand the diversity and population structure of prey species (Meek et al. 2012; Andrade et al. 2016). In an Indian context, published literature on the diet composition of the Brown Fish-Owl is sparse. Vyas et al. (2013) reported the food spectrum of *K. zeylonensis* from Jambughoda WS in

Gujarat. However, there is a significant literature gap in the diet composition of the species from the Western Ghats ecoregion, particularly in the context to the Indian state of Goa. This study was carried out to understand the diet composition of the species in two sites located in the foothills of the Western Ghats of Goa.


MATERIALS AND METHODS

Study Area

Goa is located on the western coast of India (15.492°N, 73.826°E) (Figure 1). The Western Ghats is a 1,600 km long mountain range that runs parallel to the western coast of the Indian peninsula and extends through the Indian states of Gujarat, Maharashtra, Goa, Karnataka, Tamil Nadu, and Kerala. These mountains are recognized as one of the world's eight 'hottest hotspots' for biological diversity and endemism (Molur et al. 2011; UNESCO 2023). In Goa, these mountains pass through the eastern regions of the state where a significant section of the range is protected through four protected areas: Mhadei WS, Bhagwan Mahavir WS & NP, Netravali WS, and Cotigao WS. The vegetation type of the Western Ghats of Goa is varied and includes tropical evergreen, semi-evergreen, and moist mixed deciduous forests (Goa Forest Department 2023). This study was conducted along forest streams that originate from the Western Ghats. The sections of the streams surveyed for this study were located outside the boundaries of protected areas. Study Area 1 was located near Mhadei WS and Study Area 2 was located near Bhagwan Mahavir WS & NP. The streams that were considered for the study were of the perennial and intermittent type. The general vegetation type of the study areas is dominated by tropical evergreen, semi-evergreen, and moist mixed deciduous forests. In addition, both study areas were located in close proximity to plantations and human settlements. The streams considered for this study are part of a larger catchment system that empties into the Mahadayi River of Goa (see Figure 1). The aerial distance between the two study areas was approximately 16.7 km.

Data Collection

This study was conducted from 20 October 2022 to 5 February 2023. Prior to this study, Brown Fish-Owl activity in Study Area 1 was established by conducting field surveys. In addition, the feeding and breeding activity of this species in Study Area 2 was recorded for over two years with the help of camera traps and

Figure 1. Map depicting the study areas. WS—Wildlife Sanctuary | NP—National Park.

direct observations respectively. This was part of a larger nocturnal wildlife monitoring effort by Planet Life Foundation, Belloy, Nuvem, Goa and Nature's Nest Nature Resort, Surla, Sancordem, Goa. Brown Fish-Owl pellets were collected from the study areas once a week. The pellets were usually found deposited along stream banks and in close proximity to roosting sites (Image 1). A total of four roosting sites were identified across our study areas based on repetitive pellet deposition observed during our surveys. The entire pellet was collected and temporarily stored in plastic zip-lock bags. Prior to analysis, we manually removed all conspicuous debris from the pellet by hand. Following this, the pellets were soaked in 70% ethyl alcohol for 24 h to kill all microorganisms. The pellets were then air-dried for 24 h to remove moisture. During analysis, the dry weight of each pellet was recorded using a weighing balance with 0.001 g accuracy. The prey items in the pellets were then sorted into eight categories: crabs, insects, scorpions, fishes, amphibians, reptiles, birds, and unidentified prey. These prey categories were established based on literature review and field observations. As we did not have access to reference specimens, the items in the pellets could not be identified at the species level. Identification of the prey items was carried out using reference books and taxonomic keys (Verma 2014; Ganguly et al. 2015; Saxena & Saxena 2019; Mehta et al. 2020; Mishra et al. 2021).

As most of the items in the pellets were conspicuous, identification and sorting were possible by the naked eye. However, we used a compound microscope (ESAW SM-02, ESAW India, Ambala Cantt, Haryana, India) set at 10x magnification to identify the inconspicuous prey remains. Arthropods were identified primarily from structures such as mouthparts, chelipeds, pereiopods, abdomen, and carapace (in the case of crabs); wings (in the case of insects); pedipalps, cephalothorax shield, mesosoma, metasoma, walking legs, and telson (in the case of scorpions). Scorpion identification was also aided by shining an ultraviolet light at 395 nm and observing fluorescence (Gaffin et al. 2012) (Image 1). Chordates were identified from endoskeletal and exoskeletal structures such as bones and scales (in the case of fishes), bones and mouthparts (in the case of amphibians i.e., frogs), vertebrae, ribs, and skin (in the case of reptiles i.e., snakes), and bones and feathers (in the case of birds). The prey items that could not be identified were sorted into the 'unidentified' category. For each pellet, we estimated the number of individuals for each prey category (Table 1). The data for both study sites was pooled and subsequently analyzed.

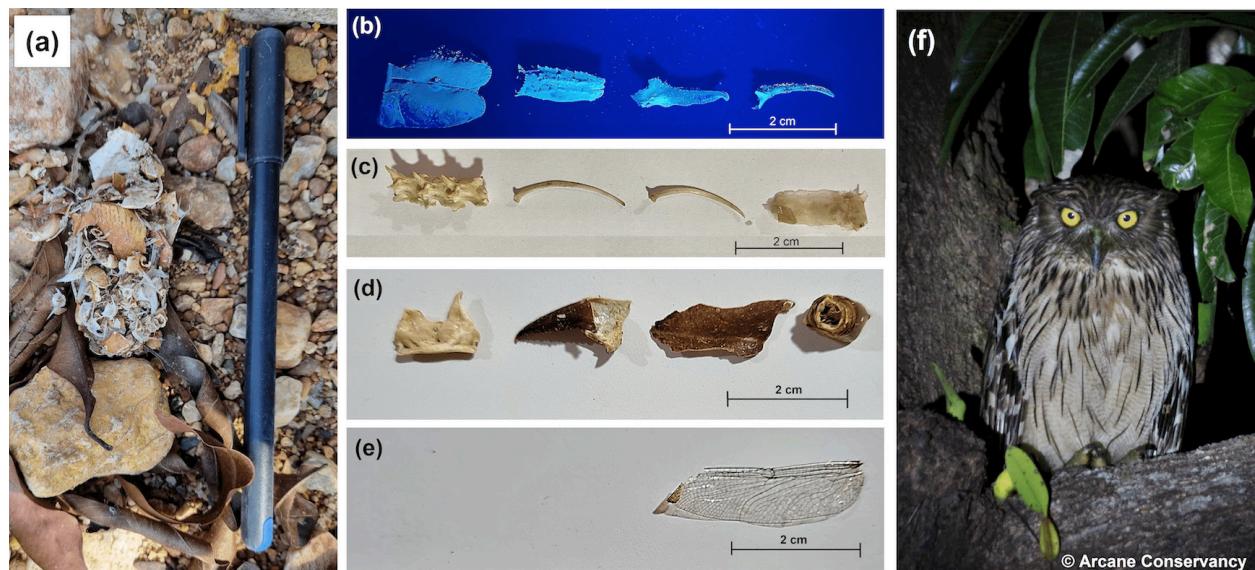
Data Analysis

We estimated the Relative Frequency of Occurrence (RFO%) for each prey group by dividing the number of occurrences of each prey category by the total number

of occurrences of all prey categories multiplied by 100 (Mehta et al. 2020). To assess the diversity of prey in the owl diet, we estimated the Food Niche Breadth (FNB) by employing the standardized Levin's Index (B_A) formula (Levins 1968; Colwell & Futuyma 1971; Mehta et al. 2018) as follows:

$$B_A = \left(\frac{1}{\sum P_i^2} - 1 \right) \times \frac{1}{n-1}$$

Where P_i is the proportion of i^{th} prey category and n is the number of prey categories recorded in the diet of the Brown Fish-Owl. This standardized index computes a value that can range from 0–1. Values closer to 0 indicate a specialist diet whereas values closer to 1 indicate a generalist diet (Mehta et al. 2018).


RESULTS

A total of 104 Brown Fish-Owl pellets were collected during the present study (50 pellets from Study Area 1 and 54 pellets from Study Area 2). The average dry weight of the pellets was estimated to be 4.053 g (SD = \pm 2.627; Range = 0.590–12.953). The total number of prey individuals recorded was 212. The average number of prey individuals per pellet was estimated to be 2.029 (SD \pm 1.074; Range = 1–5). The diet of the Brown Fish-Owl was dominated by crabs followed by amphibians (frogs), fishes, reptiles (snakes), birds, scorpions, and insects (Odonata). The unidentified prey individuals constituted a minor portion of the diet ($n = 4$, Table 2). Although we

were unable to positively identify the type of prey items in the 'unidentified' category due to their disintegrated nature, we were able to identify the remnants as vertebrates. In such cases, all the unidentified remains having similar characteristics were assumed to originate from a single individual. The number of occurrences of prey categories was largely comparable across the two study areas. However, insects were only present in the pellets collected from Study Area 1 (Odonata, $n = 1$) and scorpions were only present in pellets collected from Study Area 2 ($n = 4$) (Figure 2). Lastly, the Food Niche Breadth (FNB) value was estimated to be 0.1, indicating that the Brown Fish-Owl exhibits a high degree of specialization in terms of its diet in the study areas. The diet composition of the species in the present study has been detailed in Table 2.

DISCUSSION

The Brown Fish-Owl is a nocturnal predator that is known to feed on a wide variety of prey, such as fish, frogs, crabs, small mammals, birds, and reptiles. It is also reported to occasionally feed on carrion (Ali 2002). Published literature on the diet composition of *K. zeylonensis* in India is sparse. A study conducted by Vyas et al. (2013) on the breeding behaviour of *K. zeylonensis* in Jambughoda WS and surrounding areas in Gujarat, India reported fishes, crabs, insects, and prawns in the pellets of the species. However, the authors identified

Image 1. Pellet analysis of Brown Fish-Owl *Ketupa zeylonensis*: a—A typical pellet deposited along a stream bank | b—Scorpion remains exhibiting fluorescence under ultraviolet light | c—Snake vertebral column, ribs, and skin | d—Crab remains | e—Insect remains (odonate wing) | f—A Brown Fish-Owl on its perch in Study Area 2 (© Arcane Conservancy).

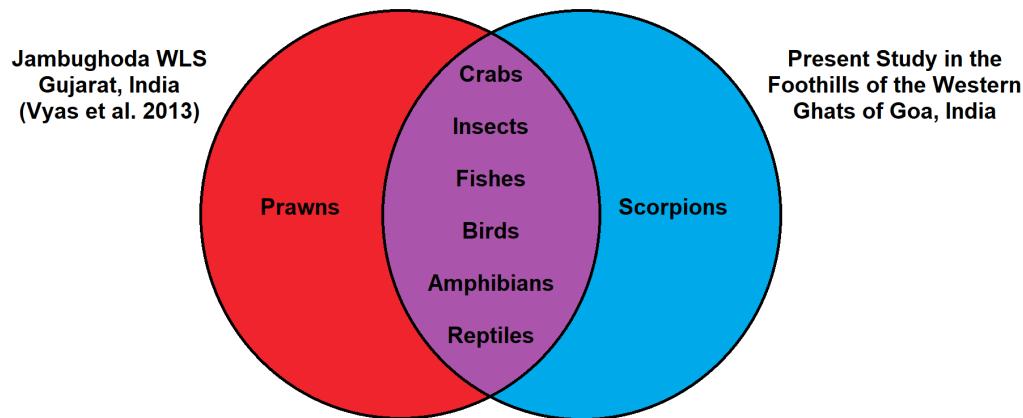

Figure 2. A comparison between prey categories recorded in the pellets of *Ketupa zeylonensis* in the study areas.

Table 1. Details of key body parts examined for the identification of the number of prey individuals in each pellet.

Prey Category	Key body parts used for assessing the number of individuals	Details of analysis
Crabs	Mouthparts, chelipeds, carapace, abdomen	The number of duplicates of exoskeletal structures (either whole parts or fragments) was used to estimate the number of individuals in each pellet.
Insects	Wings	
Scorpions	Pedipalps, cephalothorax shields, and telson	
Amphibians (Frogs)	Mouthparts, vertebrae (e.g., urostyle), pelvic girdle, humerus, radio-ulna, femur, tibio-fibula, and astragalus-calcaneum.	
Fishes	Parts of the axial skeleton (skull, vertebrae, and ribs), and scales.	Microscopic examinations of the morphological patterns on fish scales were conducted based on the principle that the patterns serve as useful taxonomic identifiers of fish species (Bräger & Moritz 2016). This was further supported by observations of the bones from the axial skeleton. As it was difficult to determine the number of individuals of the same species, all endoskeletal remains of similar size were assumed to be derived from a single individual unless morphological examinations of the scales indicated more than one species in the pellet.
Reptiles (Snakes)	Vertebrae, ribs, and skin	Identifying the number of individual snakes was straightforward in instances where the vertebral column was found to be relatively intact in the pellets. However, in instances where the vertebral column was found to be in a dismantled state, we used the general shape and size of the vertebrae and ribs to estimate the number of individuals. This was further supplemented by the remnants of snake skin present in the pellets.
Birds	Parts of the endoskeleton and feathers.	The number of duplicate endoskeletal remains was utilized to estimate the number of individuals. In cases where only feathers were present, feathers having similar morphological characteristics were assumed to originate from a single individual.

several other prey groups such as amphibians, reptiles, and birds from direct feeding observations and analysis of discarded prey items at the nests. This indicates that pellet analysis when supplemented with other observational protocols can significantly aid in the understanding of the food spectrum of the species. The diet composition of *K. zeylonensis* in Jambughoda WS was very similar to our observations in the Western Ghats of Goa with minor differences (Figure 3). In addition, the study in Jambughoda Wildlife Sanctuary was conducted during

the pre-monsoon season (March–April) as compared to the present study that was conducted during the post-monsoon and winter seasons (October–February). Furthermore, fish owls are specialist birds of prey that have preferences for certain prey groups (Sieradzki 2023). Our data analysis supports this fact as the food niche breadth assessment indicated that *K. zeylonensis* is a specialist predator that feeds mainly on crabs whilst supplementing its diet with other invertebrate and vertebrate prey groups (Figure 2; Table 2).

Figure 3. A comparative account of the diet of the Brown Fish-Owl *Ketupa zeylonensis* between Jambughoda Wildlife Sanctuary, Gujarat, and the present study conducted in the foothills of the Western Ghats of Goa, India

Table 2. Diet composition of the Brown Fish-Owl *Ketupa zeylonensis* in the foothills of the Western Ghats of Goa.

Phylum	Prey category	n	RFO %	FNB
Arthropoda	Crabs	160	75.47	0.1
	Insects	1	0.47	
	Scorpions	4	1.89	
Chordata	Fishes	15	7.08	0.1
	Amphibians	17	8.02	
	Reptiles	6	2.83	
	Birds	5	2.36	
	Unidentified	4	1.89	
Total		212	100	

n—Number of individuals in each prey category | RFO %—Relative frequency of occurrence | FNB—Food niche breadth.

Pellet analysis is considered to be a robust indicator of the food spectrum of owls. In addition, such analysis can shed light on the richness, evenness, and abundance of prey groups constituting owl diet in the foraging environments (Heisler et al. 2015; Andrade et al. 2016). The present study was conducted due to the gap in knowledge in regards to the diet composition of *K. zeylonensis* in the Western Ghats ecoregion, particularly in the state of Goa. However, it is imperative to note that pellet collection in the present study was conducted for a relatively short period of time (post-monsoon and winter seasons), and the diet composition of owls is reported to change based on seasonal variations in prey availability (Kafkaletou-Diez et al. 2008; Santhanakrishnan et al. 2010). This may be an important factor to consider in landscapes such as the Western Ghats that undergo changes in hydrology across seasons. Organisms in such aquatic ecosystems may exhibit population changes on

a seasonal scale that may influence the diet composition of the Brown Fish-Owl. Therefore, further assessments are required to understand the trends in the diet composition of the species across a seasonal gradient in the Western Ghats landscape.

REFERENCES

Ahmed, A. (2010). Imperilled Custodians of the Night: A Study on Illegal Trade, Trapping, and Use of Owls in India. TRAFFIC India, New Delhi, 76 pp.

Ali, S. (2002). *The Book of Indian Birds*. Bombay Natural History Society, Mumbai, 326 pp.

Andrade, A., J.F. de Menezes & A. Monjeau (2016). Are owl pellets good estimators of prey abundance? *Journal of King Saud University- Science* 28(3): 239–244. <https://doi.org/10.1016/j.jksus.2015.10.007>

Baidya, P. & M. Bhagat (2018). A checklist of the birds of Goa. *Indian BIRDS* 14(1): 1–31.

Bindu, T.N. & P. Balakrishnan (2015). Observations on the breeding of the Brown Fish-Owl *Ketupa zeylonensis* in Kerala, Southern India. *Journal of the Bombay Natural History Society* 112(2): 97–98. <https://doi.org/10.17087/jbnhs/2015/v112i2/104938>

BirdLife International (2016). *Ketupa zeylonensis*. In: The IUCN Red List of Threatened Species 2016: e.T22689012A90010491. <https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T22689012A90010491.en>. Accessed 8 February 2023.

BirdLife International (2020). Country Profile: India. <http://www.birdlife.org/datazone/country/india>. Electronic version accessed 8 February 2023.

Bräger, Z. & T. Moritz (2016). A scale atlas for common Mediterranean teleost fishes. *Vertebrate Zoology* 66(3): 275–386. <https://doi.org/10.25225/fozo.v66.i3.a1>

CITES (2023). Appendices I, II and III. In: Convention on International Trade in Endangered Species of Wild Fauna and Flora. <https://cites.org/sites/default/files/eng/app/2023/E-Appendices-2023-02-23.pdf>. Accessed 28 March 2023.

Colwell, R.K. & D.J. Futuyma (1971). On the measurement of niche breadth and overlap. *Ecology* 52(4): 567–576. <https://doi.org/10.2307/1934144>

Gaffin, D.D., L.A. Bumm, M.S. Taylor, N.V. Popokina & S. Mann (2012). Scorpion fluorescence and reaction to light. *Animal Behaviour* 83(2): 429–436. <https://doi.org/10.1016/j.anbehav.2011.11.0142>

Ganguly, B.B., A.K. Sinha, S. Adhikari & B.C.B. Goswami (2015). *Biology of Animals, 4th edition, Vol. 1.* New Central Book Agency (P) Ltd., Kolkata, 1293 pp.

Gill, F., P. Rasmussen & D. Donsker (2023). IOC World Bird list (v 13.1). IOC World Bird List. <https://doi.org/10.14344/IOC.ml.13.1>. Electronic version accessed 28 March 2023.

Goa Forest Department (2023). Forest and Tree Cover. <https://forest.goa.gov.in/node/896>. Electronic version accessed 1 February 2023

González-Rubio, S., A. Ballesteros-Gómez, A.G. Asimakopoulos & V.L.B. Jaspers (2021). A review on contaminants of emerging concern in European raptors (2002–2020). *Science of The Total Environment* 760: 143337. <https://doi.org/10.1016/j.scitotenv.2020.143337>

Grewal, B., S. Sen, S. Singh, N. Devasar & G. Bhatia (2016). *A Pictorial Field Guide to Birds of India, Pakistan, Nepal, Bhutan, Sri Lanka and Bangladesh.* Om Books International, Noida, 791 pp.

Heisler, L.M., C.M. Somers & R.G. Poulin (2015). Owl Pellets: A more effective alternative to conventional trapping for broad-scale studies of Small Mammal Communities. *Methods in Ecology and Evolution* 7(1): 96–103. <https://doi.org/10.1111/2041-210x.12454>

Kafkaleto-Diez A., E.P. Tsachalidis & K. Poirazidis (2008). Seasonal variation in the diet of the Long-eared Owl (*Asio otus*) in a northeastern agricultural area of Greece. *Journal of Biological Research-Thessalonik* 10: 181–189.

Kazmierczak, K. & B. Perlo (2012). *Birds of India, Sri Lanka, Pakistan, Nepal, Bhutan, Bangladesh, and the Maldives.* Christopher Helm, London, 352 pp.

Levins, R. (1968). *Evolution in changing environments: Some theoretical explorations.* Princeton University Press, Princeton, 132 pp.

Meek, W.R., P.J. Burman, T.H. Sparks, M. Nowakowski & N.J. Burman (2012). The use of Barn Owl *Tyto alba* pellets to assess population change in small mammals. *Bird Study* 59(2): 166–174. <https://doi.org/10.1080/00063657.2012.656076>

Mehta, P., J. Kulkarni, S. Talmale & R. Chandarana (2018). Diets of sympatric Forest Owlets, Spotted Owlets, and Jungle Owlets in East Kalibhit forests, Madhya Pradesh, India. *Journal of Raptor Research* 52(3): 338–348. <https://doi.org/10.3356/jrr-17-00002.1>

Mehta, P., S. Talmale, V. Kulkarni & J. Kulkarni (2020). *All About Owl Diet: A Technical Manual for Identification of Prey Remains from Owl Pellets in Central India.* Raptor Research and Conservation Foundation, Mumbai, and Wildlife Research and Conservation Society, Pune, 216 pp.

Ministry of Law and Justice (2022). The Wild Life (Protection) Amendment Act, 2022. <https://egazette.nic.in/WriteReadData/2022/241252.pdf>. Electronic version accessed 28 March 2023.

Mishra, T., D. Mishra & S. Srivastav (2021). *Comparative Anatomy of Vertebrates.* Mahaveer Publications, Dibrugarh, 291 pp.

Molur, S., D. Allen & K. Smith (2011). Chapter 1. Background, pp. 12. In: Molur, S., K.G. Smith, B.A. Daniel & W.R.T. Darwall (eds.). *The Status And Distribution of Freshwater Biodiversity In The Western Ghats, India.* IUCN, UK and Switzerland, 116 pp.

Santhanakrishnan R., A.H.M.S. Ali & U. Anbarasan (2010). Diet Variations of the Barn Owl *Tyto alba* (Scopoli, 1769) in Madurai District, Tamil Nadu, Southern India. *Podoces* 5(2): 95–103.

Saxena, R.K. & S. Saxena (2019). *Comparative Anatomy of Vertebrates.* Viva Books Private Limited, New Delhi, 667 pp.

Sieradzki, A. (2023). Designed for Darkness: The Unique Physiology and Anatomy of Owls, pp. 24. In: Mikkola, H.J. (ed.). *Owls - Clever Survivors.* Intech Open, London, 174 pp.

UNESCO (2023). Western Ghats. <https://whc.unesco.org/en/list/1342/>. Electronic version accessed 17 January 2023.

Verma, P.S. (2014). *A Manual of Practical Zoology: Chordates.* S. Chand & Company Pvt. Ltd., New Delhi, 515 pp.

Vyas, R., K. Upadhyay, M.R. Patel, R.D. Bhatt & P. Patel (2013). Notes on the breeding of the Brown Fish Owl *Ketupa zeylonensis*. *Indian BIRDS* 8(6): 147–51.

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.

Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK

Dr. George Mathew, Kerala Forest Research Institute, Peechi, India

Dr. John Noyes, Natural History Museum, London, UK

Dr. Albert G. Orr, Griffith University, Nathan, Australia

Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium

Dr. Nancy van der Poorten, Toronto, Canada

Dr. Karen Schnabel, NIWA, Wellington, New Zealand

Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India

Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India

Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India

Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India

Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India

Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain

Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong

Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India

Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait

Dr. Himender Bharti, Punjabi University, Punjab, India

Mr. Purnendu Roy, London, UK

Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan

Dr. Sanjay Sondi, TITLI TRUST, Kalpavriksh, Dehradun, India

Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam

Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India

Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore

Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.

Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India

Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil

Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany

Dr. James M. Carpenter, American Museum of Natural History, New York, USA

Dr. David M. Claborn, Missouri State University, Springfield, USA

Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand

Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil

Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India

Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia

Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia

Dr. Siddharth Kulkarni, The George Washington University, Washington, USA

Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India

Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia

Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia

Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.

Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan

Dr. Keith V. Wolfe, Antioch, California, USA

Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA

Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic

Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway

Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India

Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India

Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México

Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore

Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India

Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK

Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India

Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia

Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India

Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research

Centre, Mumbai, Maharashtra, India

Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India

Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India

Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany

Dr. Raju Vyas, Vadodara, Gujarat, India

Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.

Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey

Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India

Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India

Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zootaxa, and Biological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia

Mr. H. Byju, Coimbatore, Tamil Nadu, India

Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK

Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India

Dr. J.W. Duckworth, IUCN SSC, Bath, UK

Dr. Rajah Jayapal, SACON, Coimbatore, Tamil Nadu, India

Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India

Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India

Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India

Mr. J. Praveen, Bengaluru, India

Dr. C. Srinivasula, Osmania University, Hyderabad, India

Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA

Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia

Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel

Dr. Taej Munduk, Wetlands International, Wageningen, The Netherlands

Dr. Carol Inskip, Bishop Auckland Co., Durham, UK

Dr. Tim Inskip, Bishop Auckland Co., Durham, UK

Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India

Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia

Dr. Simon Dowell, Science Director, Chester Zoo, UK

Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal

Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA

Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy

Dr. Anwaruddin Chowdhury, Guwahati, India

Dr. David Mallon, Zoological Society of London, UK

Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India

Dr. Angie Appel, Wild Cat Network, Germany

Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India

Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK

Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA

Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.

Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India

Dr. Mewa Singh, Mysore University, Mysore, India

Dr. Paul Racey, University of Exeter, Devon, UK

Dr. Honnavalli N. Kumar, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India

Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India

Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy

Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India

Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India

Dr. Paul Bates, Harison Institute, Kent, UK

Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA

Dr. Dan Challender, University of Kent, Canterbury, UK

Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK

Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA

Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India

Prof. Karan Bahadur Shah, Budhanilakantha Municipality, Kathmandu, Nepal

Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraja, Indonesia

Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)

Dr. Manda S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)

Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)

Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)

Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)

Dr. Rayanna Hellenn Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil

Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand

Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa

Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India

Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India

Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India

Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka

Dr. Bahar Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2020–2022

Due to paucity of space, the list of reviewers for 2018–2020 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:

The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org

OPEN ACCESS

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under [Creative Commons Attribution 4.0 International License](#) unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

www.threatenedtaxa.org

Articles

Predicting suitable habitat for the endangered Javan Gibbon in a submontane forest in Indonesia

– Rahayu Oktaviani, Amaël Borzée, Andi Nugraha Cahyana, Susan Lappan, Ani Mardiastuti & Misbah Satria Giri, Pp. 23463–23471

Babesa Sewage Treatment Plant as a vital artificial wetland habitat for a multitude of avian species

– Pelden Nima, Mahendra Timsina, Tenzin Jamtsho & Pema Khandu, Pp. 23472–23486

Communications

Proximate nutrients of selected forage and the diet composition of adult elephants in Udawalawe National Park, Sri Lanka, a preliminary study

– I.V. Dinithi Hemachandra, C. Dilrukshi Wijayarathna & P. Nihal Dayawansa, Pp. 23487–23498

Does small mammal species richness have a bimodal elevation gradient in Sikkim Himalaya?

– Sunita Khatiwara, Joya Thapa & Ajith Kumar, Pp. 23499–23506

Re-sighting record of Kelaart's Pipistrelle *Pipistrellus ceylonicus* (Kelaart, 1852) (Mammalia: Chiroptera: Vespertilionidae) from Rajasthan, India

– Dharmendra Khandal, Dau Lal Bohra & Shyamkant S. Talmale, Pp. 23507–23513

An assessment of the diet of Brown Fish-Owl *Ketupa zeylonensis* (J.F. Gmelin, 1788) (Aves: Strigiformes: Strigidae) from two localities in the foothills of the Western Ghats of Goa, India

– Stephen Jonah Dias & Atul Sinai Borker, Pp. 23514–23520

Tree cover and built-up area regulate the territory size in Eurasian Magpie *Pica pica* in Ladakh, India

– Iqbal Ali Khan, Anil Kumar, Dinesh Bhatt & Prakhar Rawal, Pp. 23521–23528

Birds of Kanetiya area - inventory, notable sightings, and overview of seasonal changes in reporting frequency of bird species in an unprotected area of Himachal Pradesh, India

– Samakshi Tiwari, Pp. 23529–23544

A preliminary assessment of Odonata (dragonflies & damselflies) across an elevation gradient – insights from Shiwaliks to Alpines, northwestern Himalaya, India

– Neeraj Sharma, Dinesh Singh, Shakha Sharma & Ajaz Ansari Pp. 23545–23556

Checklist of soil nematode diversity from Udupi District, Karnataka, India

– M.V. Keshava Murthy & A. Shwetha, Pp. 23557–23566

Checklist of the genus *Dendrobium* Sw. (Orchidaceae) in Manipur, India

– Hidangmayum Bishwajit Sharma & Debjyoti Bhattacharyya, Pp. 23567–23574

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

July 2023 | Vol. 15 | No. 7 | Pages: 23463–23630

Date of Publication: 26 July 2023 (Online & Print)

DOI: 10.11609/jott.2023.15.7.23463-23630

Status of macrofungal diversity in the wet evergreen forests of Agasthyamala Biosphere Reserve, Western Ghats, India

– Kurunnan Kandy Akshaya, Arumugam Karthikeyan & Cheravengat Kunhikannan, Pp. 23575–23586

Developing a fast, reproducible, and simple protocol for virtual lichen herbarium using barcoding and QR code techniques

– S. Jeya Preethi & P. Ponmurugan, Pp. 23587–23595

Short Communications

Population status of Oriental Darter *Anhinga melanogaster* Pennant, 1769 (Aves: Suliformes: Anhingidae) in Keoladeo National Park, India

– Neha Imtiyaz & Satish Kumar, Pp. 23596–23600

Breeding of Himalayan Vulture *Gyps himalayensis* Hume, 1869 (Aves: Accipitriformes: Accipitridae) in the Assam State Zoo, Guwahati, Assam, India

– Sachin Ranade, Jay Gore & Ashwini Kumar, Pp. 23601–23605

Notes

Unusual foraging behaviour of the Bengal Slow Loris *Nycticebus bengalensis* (Lacépède, 1800) (Mammalia: Primates: Lorisidae) in the Shan Highlands, Myanmar

– Sai Sein Lin Oo, Khun Aung Naing Oo & Paul Jeremy James Bates, Pp. 23606–23609

Powerline pylons: an unusual nesting success of White-bellied Sea-Eagle *Haliaeetus leucogaster* (Gmelin, 1788) (Aves: Accipitriformes: Accipitridae) from Ramanathapuram, southeastern coast of India

– H. Byju, N. Raveendran & A.J. Mathiyazhagan, Pp. 23610–23614

First record of Horned Grebe *Podiceps auritus* (Linnaeus, 1758) (Aves: Passeriformes: Podicipedidae) from Jammu & Kashmir, India

– Bilal Nasir Zargar, Umer Nazir & Zakir Hussain Najar, Pp. 23615–23617

First photographic record of White Royal *Tajuria illurgis illurgis* (Hewitson, [1869]) (Insecta: Lepidoptera: Lycaenidae) from Arunachal Pradesh, India

– Ruksha Limbu, Roshan Upadhyaya, Renu Gogoi & Jyoti Gaur, Pp. 23618–23620

Preliminary observations of moth fauna of Purna Wildlife Sanctuary, Gujarat, India

– Preeti Choudhary & Indu Sharma, Pp. 23621–23626

Argyreia lawii C.B.Clarke (Convolvulaceae) – an extended distribution record in the Western Ghats of Kerala

– A. Raja Rajeswari & M.K. Nisha, Pp. 23627–23630

Publisher & Host

