

Building evidence for conservation globally

Journal of Threatened Taxa

10.11609/jott.2023.15.8.23631-23826

www.threatenedtaxa.org

26 August 2023 (Online & Print)

15(8): 23631-23826

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Open Access

43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS**Founder & Chief Editor****Dr. Sanjay Molur**Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India**Deputy Chief Editor****Dr. Neelesh Dahanukar**

Noida, Uttar Pradesh, India

Managing Editor**Mr. B. Ravichandran**, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India**Associate Editors****Dr. Mandar Paingankar**, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India**Dr. B.A. Daniel**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India**Editorial Board****Dr. Russel Mittermeier**

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinahalli PO, Nilgiris, Tamil Nadu 643223, India

Dr. Martin Fisher

Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhura Stothra Bhashyam**, Hyderabad, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2020–2022****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annasaheb Magar Mahavidyalaya, Maharashtra, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Mander Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Baños, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Coromandal Sacred Langur *Semnopithecus priam* - made with acrylic paint. © P. Kritika.

Morpho-anatomy and habitat characteristics of *Xanthostemon verdugonianus* Náves ex Fern.-Vill. (Myrtaceae), a threatened and endemic species in the Philippines

Jess H. Jumawan¹ , Arlyn Jane M. Sinogbuhan² , Angie A. Abucayon³ & Princess Ansie T. Taperla⁴

^{1,3} Department of Biology, College of Mathematics and Natural Sciences, Caraga State University, Ampayon, Butuan City, Philippines.

² ACLC College, 999 J.C. Aquino Avenue, Butuan City, Philippines.

⁴ Saint James High School, Buenavista, Agusan Del Norte, Philippines.

¹jhjumawan@carsu.edu.ph, ²arlynjane.sinogbuhan@gmail.com (corresponding author), ³aaabucayon@gmail.com,

⁴princessataperla@gmail.com

Abstract: This study provided insights into the morpho-anatomy of *Xanthostemon verdugonianus* Náves ex Fern.-Vill., a threatened species endemic to the Philippines. Sampling was conducted in its natural habitat with the presence of dominant vegetation and rehabilitated sites of the species. Quadrats were established to study the population size and document associated species & soil particle characteristics. The leaves are alternate in arrangement, reddish when young, and are hypostomatic with paracytic stomata. The distinctly thick cuticle and the compact spongy layer could be an adaptation to tropical island conditions. The stem and roots contain tissues manifesting secondary growth with secondary xylem and outer bark formation. The inflorescence is a corymb, and the flowers are bright red, with a prominent cup-shaped hypanthium, persistent lobe-shaped calyx, and a superior ovary. Fruit is a globular capsule round-ovoid in shape with a woody texture. Placental seeds are visible upon splitting matured fruits which are flattened and deltoid to semicircular shape. Twenty-nine species of plants belonging to 19 families were found to be associated with *X. verdugonianus*, with a mean abundance of eight species per plot. The ultramafic substrate was dominantly composed of medium sand particles, and the reddish color indicated the oxidation of metallic elements in the soil. Analyzing the morpho-anatomical features can help explain endemism, survival, and adaptation to climate change.

Keywords: Associated flora, Dinagat Island, diversity, habitat, Ironwood, lowland forest, ornamental, soil types, ultramafic.

Editor: Vijayasankar Raman, University of Mississippi, USA.

Date of publication: 26 August 2023 (online & print)

Citation: Jumawan, J.H., A.J.M. Sinogbuhan, A.A. Abucayon & P.A.T. Taperla (2023). Morpho-anatomy and habitat characteristics of *Xanthostemon verdugonianus* Náves ex Fern.-Vill. (Myrtaceae), a threatened and endemic species in the Philippines. *Journal of Threatened Taxa* 15(8): 23786–23798. <https://doi.org/10.11609/jott.8394.15.8.23786-23798>

Copyright: © Jumawan et al. 2023. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: The study was under the research program of Caraga State University research and publications initiative.

Competing interests: The authors declare no competing interests.

Author details: DR. JESS H. JUMAWAN is a plant biologist working as senior faculty in Biology Department, Caraga State University, Philippines mentoring research capable graduate students. His research interest is anchored in understanding the endangered and threatened species of plants leading to conservation actions. He steered his research team to generate research projects which seeks science-based solutions to biodiversity and environmental issues. ARLYN JANE M. SINOGBUHAN (A.J.M.S) is a faculty in General Education Unit, teaching General Sciences at ACLC College of Butuan City, Philippines. She is a graduate student currently taking her Master's in Biology at Caraga State University. ANGIE A. ABUCAYON (A.A.A) is a biology laboratory aide at Caraga State University, Philippines. She is a graduate student taking her Master of Science in Biology in the said institution. PRINCESS ANSIE T. TAPERLA (P.A.T.A) is a Junior/Senior Science teacher at Saint James High School, Buenavista, Agusan Del Norte, Philippines. She is also a graduate student in Biology at Caraga State University, Philippines.

Author contributions: The topic for research investigation, study design, workflow, and editing were performed by Dr. Jess H. Jumawan. The species collection of *Xanthostemon verdugonianus* and associated species were assessed by Arlyn Jane M. Sinogbuhan, Angie A. Abucayon and Princess Ansie T. Taperla. Morphoanatomical sectioning of plant samples, leaf section was performed by Arlyn Jane M. Sinogbuhan. Stem and root sectioning were conducted by Princess Ansie A. Taperla and Angie A. Abucayon. Data analysis including statistical analysis was performed by the second author. The manuscript was drafted initially by Arlyn Jane M. Sinogbuhan, Angie A. Abucayon and Princess Ansie T. Taperla under the guidance of the primary author.

Acknowledgements: The researchers would like to acknowledge the local guide of Brgy. Liberty, Loreto, Dinagat Island for the successful assessment of flora in the area. Moreover, to the Graduate School and Biology Department of Caraga State University for their approval to use the Biology laboratory while conducting this research.

INTRODUCTION

The genus *Xanthostemon* F.Muell. (Myrtaceae) comprises approximately of 50 species of trees and shrubs (Ruales & Jumawan 2023) distributed in Australia, Malaysia, Indonesia, New Guinea, and the Philippines (Nazarudin et al. 2012; Nazarudin 2020). *Xanthostemon* species are grown as ornamental plants in parks and roadsides due to their colorful flowers that bloom throughout the year in the tropics (Nazarudin & Tsan 2018). Essential oils are present in the leaves of many *Xanthostemon* species found in Australia (Brophy et al. 2006). Oils can also be present in other plant organs, which could be the basis for many species used as medicinal plants (Nazarudin et al. 2015). In the Philippines, six species of *Xanthostemon* occur in the wild, of which five species are endemic and one introduced to the country (Ruales & Jumawan 2023). These are *X. verdugonianus* Náves ex Fern.-Vill., *X. speciosus* Merr., *X. fruticosus* Peter G. Wilson & Co, *X. bracteatus* Merr., *X. philippinensis* Merr., and *X. chrysanthus* (F.Muell.) Benth.. These species are collectively known as Philippine ironwood.

Xanthostemon verdugonianus is a dominant species in Dinagat Island, forming a distinct vegetation community compared to other species. This unique characteristic was observed in evaluating forest habitat types of Dinagat Island, Philippines (Lillo et al. 2019). *X. verdugonianus* can also be found in Surigao del Norte, Agusan del Norte, Tinago, Samar, Leyte, and Dinagat (Ocon et al. 2018; Sarmiento 2020). The common features of these areas are the ultramafic rocks and soils that are rich in heavy metals (Fernando et al. 2008; Malabriga & Gibe 2020). It is a hardwood species used as timber posts for houses and materials for furniture. The reddish inflorescence in terminal branches blooms in an open canopy during dry seasons. The attractive reddish flowers are preferred as ornamental plants and are commonly planted in parks and along roadsides outside their natural habitat (Flora Fauna Web).

Xanthostemon verdugonianus is considered a threatened species and is assigned 'Vulnerable' status (DENR DAO 2017; Energy Department Corporation 2018), making this plant a conservation priority. Mining activities in Surigao province threaten its natural habitat. In particular, Dinagat Islands is a Mineral Reserve under Republic Act No. 391 issued in 1939 by the Department of Environment and Natural Resources (DENR) because of its rich mineral resources, metallic and non-metallic deposits in aluminous laterite, phosphate, limestone, siliceous, and gold depositions (Sarmiento 2018). There

are few studies conducted to understand the morpho-anatomical traits of *X. verdugonianus*. Studying the anatomy of this species can help better understand its growth, development, cultivation, and economic importance. An essential application of the anatomical studies on plants and trees will be to identify which type of tissues help plants survive different stresses in their environment (Lubis et al. 2022). Understanding the anatomical features of endemic plants in their natural habitats can help project the extreme effects of global warming and climate change (Lynch et al. 2021). Thus, this study aimed to examine the morpho-anatomical description of *X. verdugonianus*, including its associated flora, species richness, abundance, and soil particle characterization.

MATERIALS AND METHODS

The study was conducted in two sites within Barangay Liberty, Gibusong Island Loreto, Dinagat Islands positioned at 10.424829°N, 125.492350°E (Site 1), 10.4377°N, 125.493517°E (Site 2) (Figure 1), with an annual temperature of 27.66 °C, humidity of 79.67%, and precipitation of 16.66 mm for the year 2022 (Visual Crossing Corporation 2022). Site 1 is approximately 700 m away from the shore at 105 m, while site 2 is around 400 m away from the shore and at 45 m (Image 1). The sampling areas are located on the east side facing the Pacific Ocean.

Study Area

This study was conducted on two sites. The first site was located in Purok 3, Sun-ok and the second site was located in Purok 1, Lu-ok (Figure 2). It was observed that Site 1 comprises naturally grown *X. verdugonianus* bearing fruits and flowers associated with taller trees and other vegetation. Site 2 is a habitat with rehabilitated *X. verdugonianus* associated with fewer trees and vegetation. Following the study of Lillo et al. (2019), the present study area falls within the lowland forest type, which was categorized into lowland tall forest (Site 1) and shrub forest (Site 2).

Morpho-Anatomical Description of *X. verdugonianus* Samples

Morphological measurements of the leaves, flowers, fruits, and seeds of *X. verdugonianus* were done following the method of Berghetti et al. (2019) with some modifications. Twenty samples of leaves were measured using the caliper to get the mean leaf

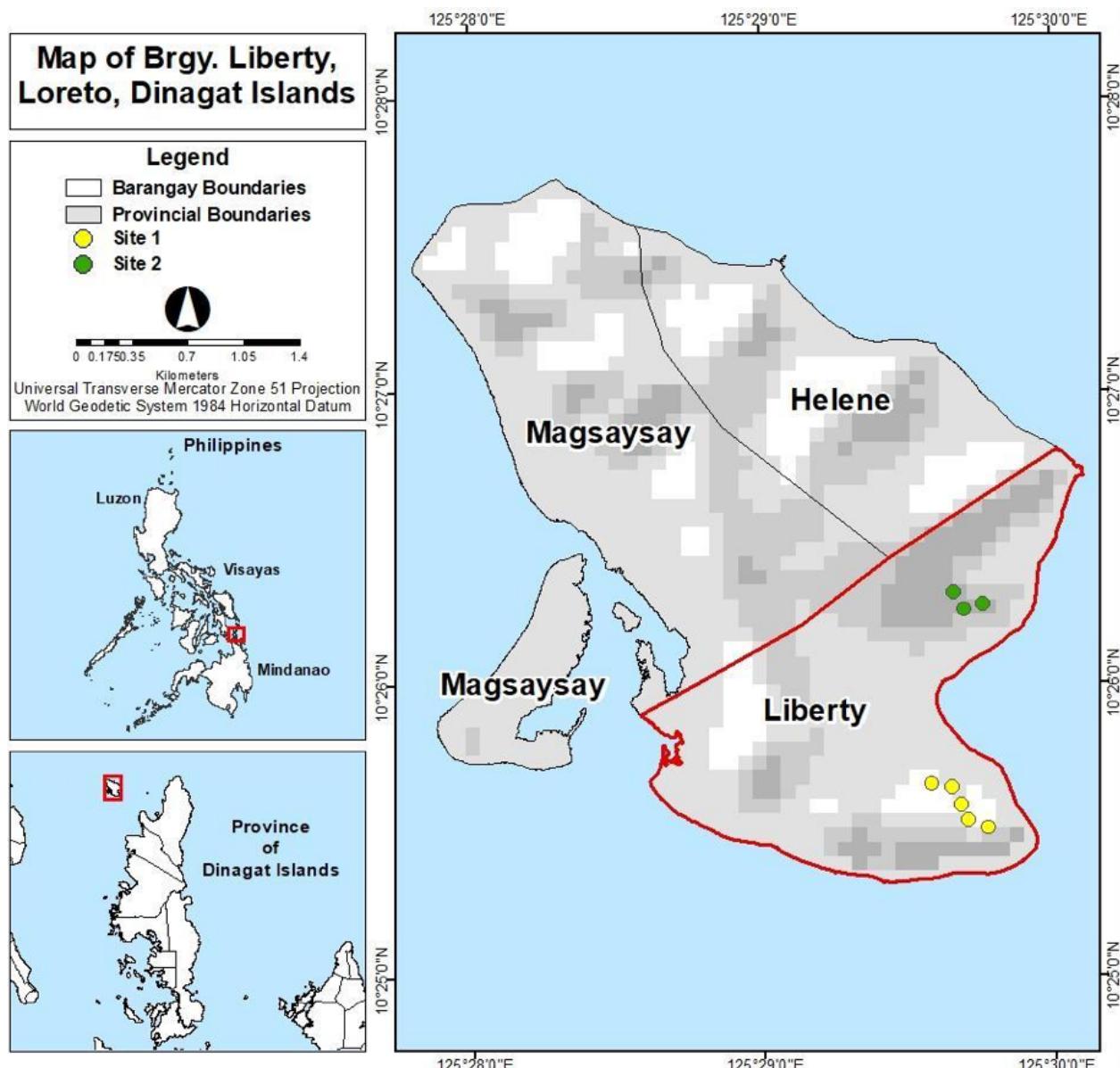


Figure 1. Map of Barangay Liberty, Gibusong Island Loreto, Dinagat Island, Philippines.

length (LL) and leaf width (LW). Randomly selected trees of *X. verdugonianus* were measured in terms of tree height using a tree pole and stem diameter using a tape measure. Photographs depicting the morphological features of the plant were taken using a Canon SX70 digital camera. Tree characteristics were measured in situ and expressed in metric units. Fruits, flowers, and seeds samples were collected, preserved in glycerine, and brought to the Biology Laboratory at Caraga State University for analysis. Flower and seed samples were measured using a digital caliper (mm) and dissecting microscope (KOPPACE) in the laboratory. The samples were collected in November 2022, and photographs of

the plants were taken to aid an accurate description.

The fresh samples of *X. verdugonianus* were subjected to anatomical characterization following the method of Dubowsky (2009) and Sultana & Rahman (2020) with some modifications. The adopted procedure utilized stains, but in this study fresh plant samples showed the best results. A handheld microtome instrument (AYM brand Student Hand Microtome) was used for anatomical sectioning, and cross-sections were prepared from the stems, leaves, and roots. It was done by cutting into thin sections with a razor, mounting them on a glass slide, and observing under the microscope. The anatomical structures of some significant parts,

Image 1. Sampling sites showing naturally grown and rehabilitated *Xanthostemon verdugonianus*. © Arlyn Jane Sinogbuhan for 1A&B, Angie A. Abucayon for 1C and Vivian R. Badlis for 1D.

including the leaf, stem, and root of *X. verdugonianus*, were viewed, described, and photographed using the KERN compound microscope.

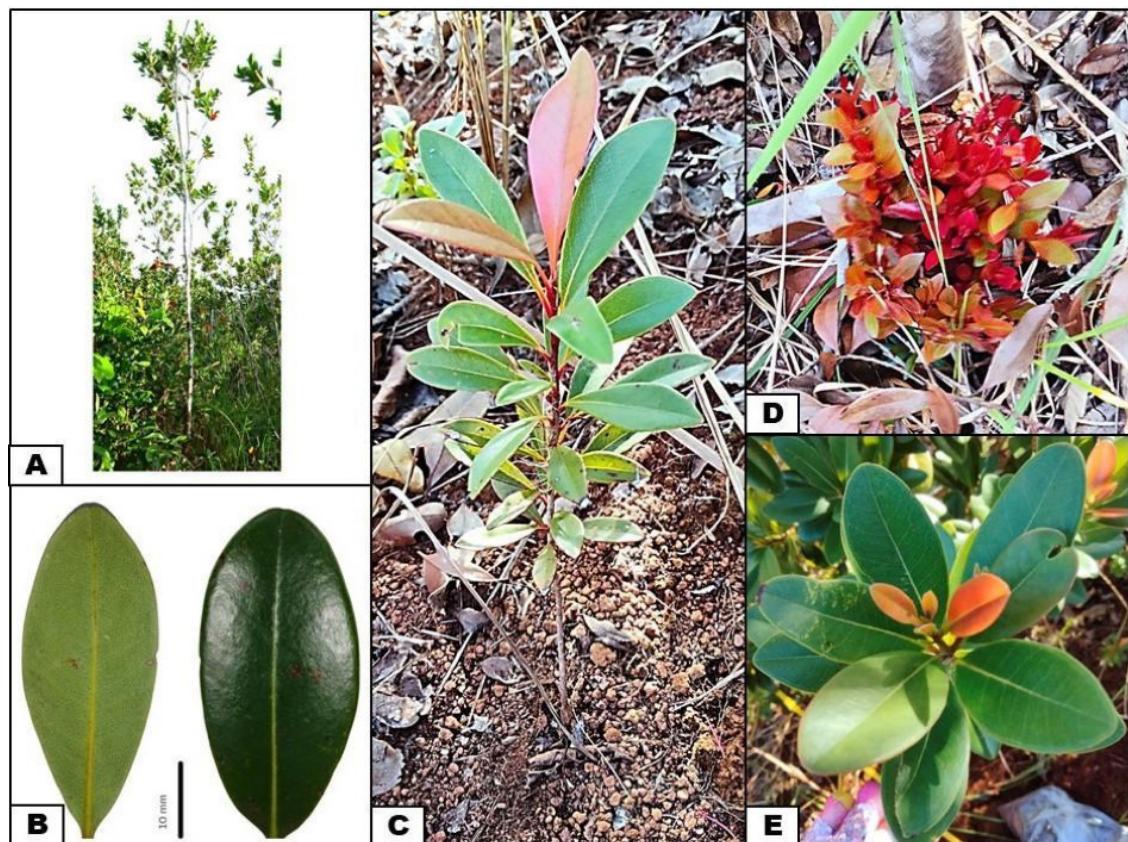
Field Sampling and Identification of Associated Species

A total of eight sampling plots were established in the two sites with dimensions of 10 x 10 m each. A purposive sampling was conducted across all sampling plots with identified naturally grown and rehabilitated *X. verdugonianus* in the area. The associated flora was determined in situ, and other species were verified using the identification guides of Fernando (2017) on the flora of Dinagat and Co's Digital Flora of the Philippines (Pelser et al. 2011). The species count data were summarized and used to derive abundance and species richness for biodiversity implications of species associated with *X. verdugonianus*. The PAST software (Hømmer et al. 2001) computed diversity values.

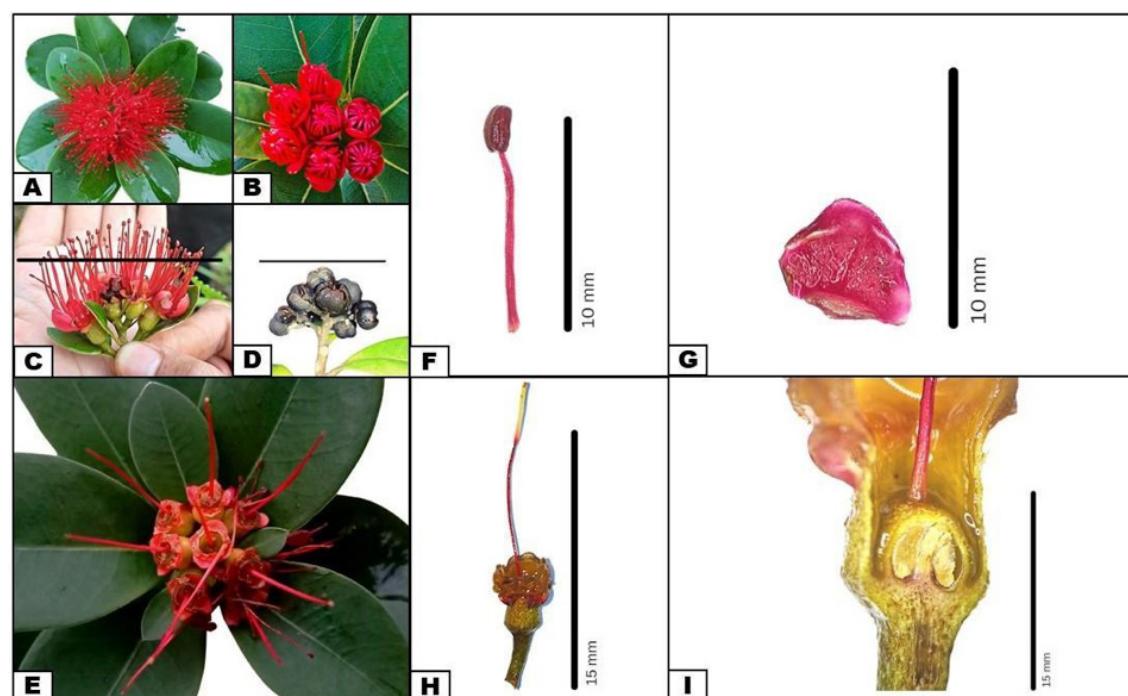
Soil particle characteristics in *X. verdugonianus* habitats.

Soil samples were collected within the established sampling plots for soil particle analysis. At least 300 g of soil samples collected at 10 cm depth (Mullet et al. 2014) were transported to Biology Department Laboratory, Caraga State University. Soil was air-dried in a well-ventilated area for 5–7 days. Completely dried samples were weighed at exactly 300 g each and subjected to soil particle characterization using a sieve (W. S TYLER

brand) with the following sizes and descriptions: gravel (2 mm), very coarse sand (850 µm), medium sand (425 µm), fine sand 180 µm, very fine sand (150 µm), and silt or clay (<150 µm) (Jumawan et al. 2015).


RESULTS AND DISCUSSION

Morphological characteristics of *X. verdugonianus*


In its natural habitat, *X. verdugonianus* is a shrub to a tree with a mean height of 5.28 m and a mean stem diameter of 20.27 cm. Most of the individual samples are primarily shrubs, and few are trees, with a height ranging from 14–30 m (Image 2A). As observed, one of the unique character traits of *X. verdugonianus* was the rampant growth of new shoots with bright red regenerated leaves (Image 2D).

The leaves are simple and alternate in young and adult plants, with oval to elliptical lamina, glossy green on the adaxial and white greenish on the abaxial side. The leaf has a mean diameter of 4.5 cm and 8.6 cm in length (Image 2B). Young leaves are bright reddish, showing pinnate venation with visible secondary veins (Image 2E).

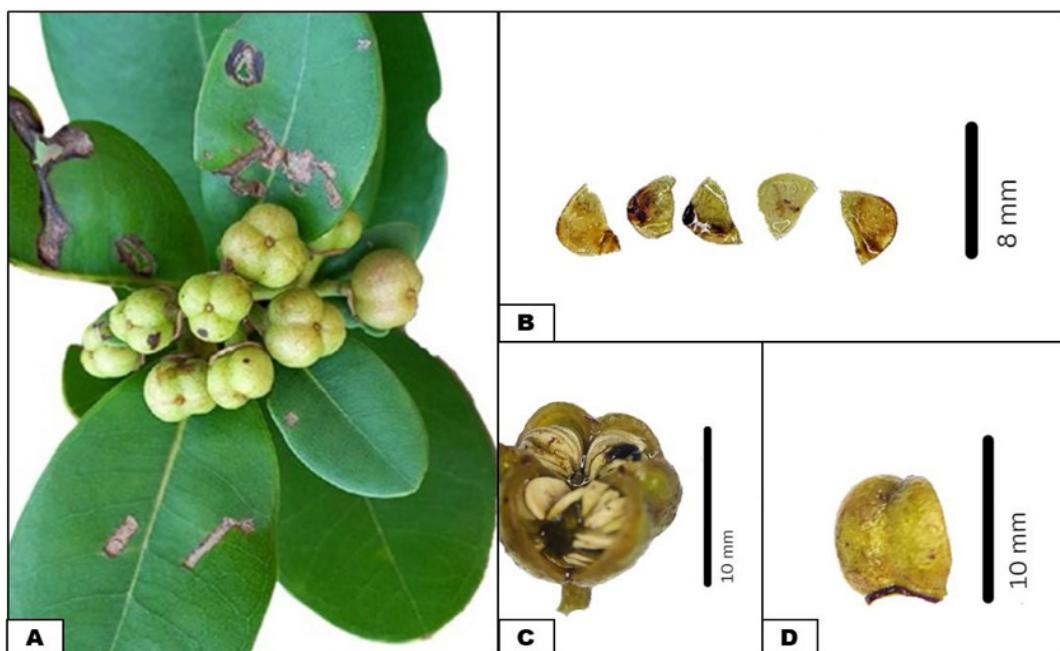
The inflorescence is a simple corymb, 3–6 flowered, bright red, found at the terminals of branchlets. Each flower is complete with sepals, petals, androecium, and gynoecium (Image 3A,B). A prominent cup-shaped hypanthium is connected to a sturdy pedicel (Image

Image 2. Morphological Characterization of *Xanthostemon verdugonianus*: A—Tree | B—Leaves (adaxial and abaxial) | C—Juvenile stage | D—Newly develop branches or young branches | E—Axillary shoot (mature plant). © Angie A. Abucayon for 2A, Jeco Jade Ruales for 2 B and Arlyn Jane M. Sinogbuhan for 2 C-E.

Image 3. *Xanthostemon verdugonianus* flower morphology: A,B—Flower bud | C,D—Flower Inflorescence | E—Complete flower | F—Anther and filament (Stamen) | G—Petals (corolla) | H—Style | I—Ovary. © Angie A. Abucayon for 3 A & D, Arlyn Jane M. Sinogbuhan for B-C & E and Vivian Badlis for 4 F-I.

3C,D). The calyx is persistent (Image 3E). The stamens are 18–25, red, 1.5–1.9 mm long (Image 3F). Petals are 4–8, red, slightly triangular in shape, 4.5–6.7 mm long, 4.3–6.4 mm broad (Image 3G). The style is 6.9–12.6 mm long (Image 3H). The ovary is enclosed in the hypanthium connected to the pedicel. Ovaries are almost superior (Wilson 1990), 2–3 locular, glabrous, 5.4–8.8 mm long, and 5.1–9.5 mm in diameter (Image 3I).

The fruit is an ovoid-globular capsule, measuring 10–12 mm in diameter and 4.4–5 mm long (Image 4A). Seeds are bilaterally flattened and deltoid to semicircular in outline (Image 4C). Mature fruits dehisce open, exposing the seeds (Image 4D). The capsule is woody, 2–4-lobed (Image 4E).


Anatomical Characterization of *X. verdugonianus*

The leaf. The depicted section is the adaxial surface of a leaf covering the lamina and midrib portion. The midrib cross-section has prominent xylem and phloem. The upper and lower epidermis showed similar thickness with distinct cuticle layers (C) (Image 5). The mesophyll consists of a palisade and spongy layer. The mesophyll layer is a conspicuously greenish layer composed mainly of compact palisade box shape cells with no distinct spongy layer of loosely arranged cells observed in the leaf cross-section. The stomata are found in the lower epidermis with a diameter of about 240 μ m, hypostomatic with a paracytic type of stomata

(Image 6).

The study's leaf anatomy findings are the same observed in the family Myrtaceae. According to Ali et al. (2009), the leaf section of *Eucalyptus* (family Myrtaceae) from the Faisalabad region showed epidermis and cuticle were similar to the present study. Another similar observation in *Eugenia luschnathiana* (Myrtaceae) was reported by Lemos et al. (2018). Nazarudin et al. (2015) study on the anatomy of *Xanthostemon chrysanthus* treated with PBZ (paclobutrazol) reveals tightly arranged palisade and mesophyll cells on the leaf which is similar to the findings on the *X. verdugonianus*. As Ali et al. (2009) reported, the thicker epidermis and the thick cuticle could be adapted to island conditions in tropical environments. According to Savaldi-Goldstein et al. (2007) and Domínguez et al. (2011), the cuticle mechanically protects plants by reducing the impact of external stresses such as wind or heavy rain and, in conjunction with the epidermis, preventing tissue breaking and participating in the control of organ growth.

The stem. Samples performed for stem anatomy were taken from shoot tips of mature shrubs in their natural habitat. The cross-section of the stem was generally smooth and circular, with an indication of secondary growth. The section of the stem (Image 7) shows the thick periderm (Pr), which later forms the outer bark—followed by the primary phloem (Ph¹), and secondary

Image 4. Fruit morphology of *Xanthostemon verdugonianus*: A—Fruiting twig | B—Seeds | C—Dehisced fruit showing the seeds | D—A valve of the fruit shell. © Angie A. Abucayon for 4 A and Vivian Badlis for 4 B-D.

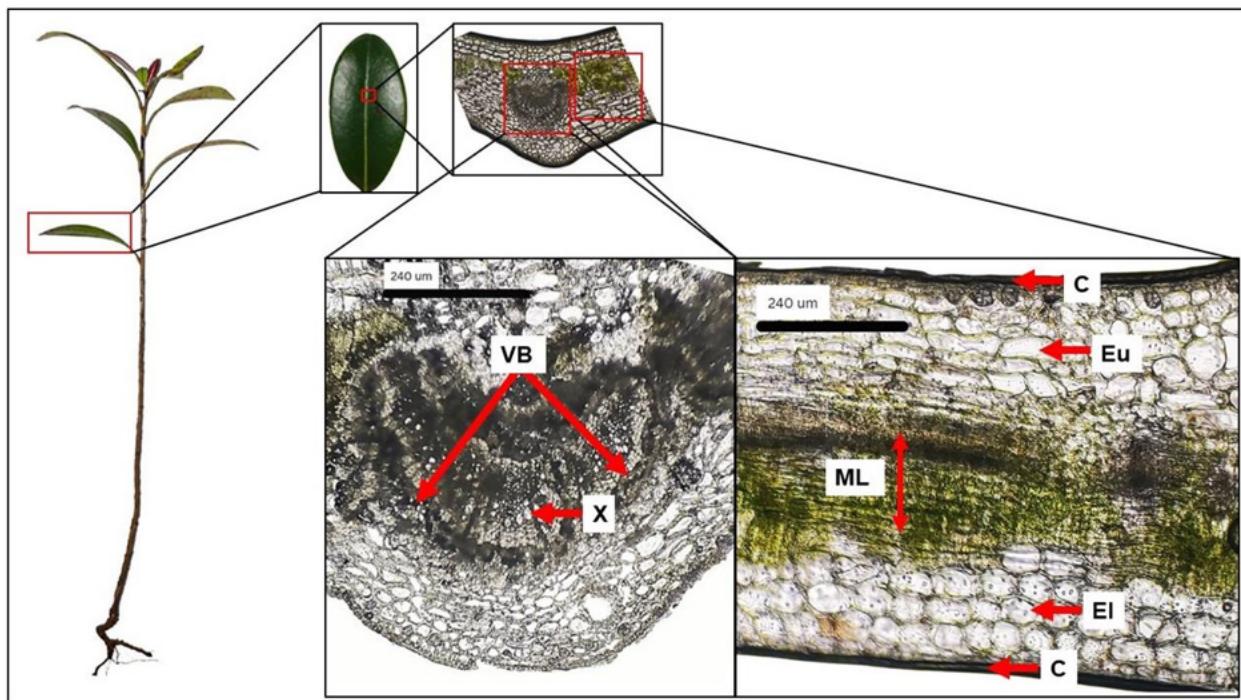


Image 5. Leaf anatomy of *Xanthostemon verdugonianus* showing the various tissues: VB—Vascular bundle | X—Xylem | C—Cuticle | Eu—Upper epidermis | ML—Mesophyll layer | EI—Lower epidermis. © Arlyn Jane M. Sinogbuhan.

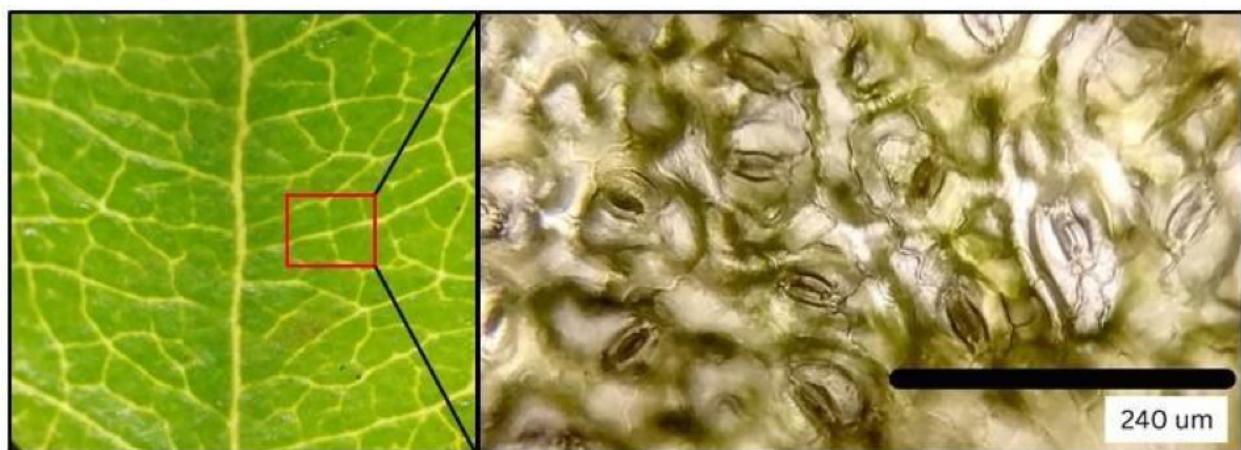


Image 6. Leaf lower epidermis of *Xanthostemon verdugonianus*: Stomata- paracytic. © Arlyn Jane M. Sinogbuhan.

phloem (Ph^2). These tissues are undifferentiated due to their similar composition. The vascular cambium (Vc) is sandwiched between the phloem and the xylem. Xylem rays (Xr) appear as dark lines and vessel elements (V) emerge as distinct solitary-circular cells dispersed within the premises of the secondary xylem (X^2). The less intact primary xylem (X^1) is noticeable as it shows small-circular compacted cells near the pith. The pith (P), which is positioned at the innermost part of the stem composed of irregular parenchyma cells showing a less clearly stellate shape (Image 7).

The findings of the stem anatomy of *X. verdugonianus* were compared to some studies of the Myrtaceae family. The stem in the present study lacks a secretory cavity similar to *Eugenia pyriformis* Cambess in the study Armstrong et al. (2012). However, the presence of secretory cavities is recorded to be found in stems of some *Eucalyptus* species, such as *E. grandis*, *E. urophylla*, and *Eucalyptus saligna*, measuring 78, 45, and 40–110 μm in diameter, respectively, were included in the study of Saulle et al. (2018) and Brisola & Demarco (2011). The xylem forms inward while the phloem forms outward, as

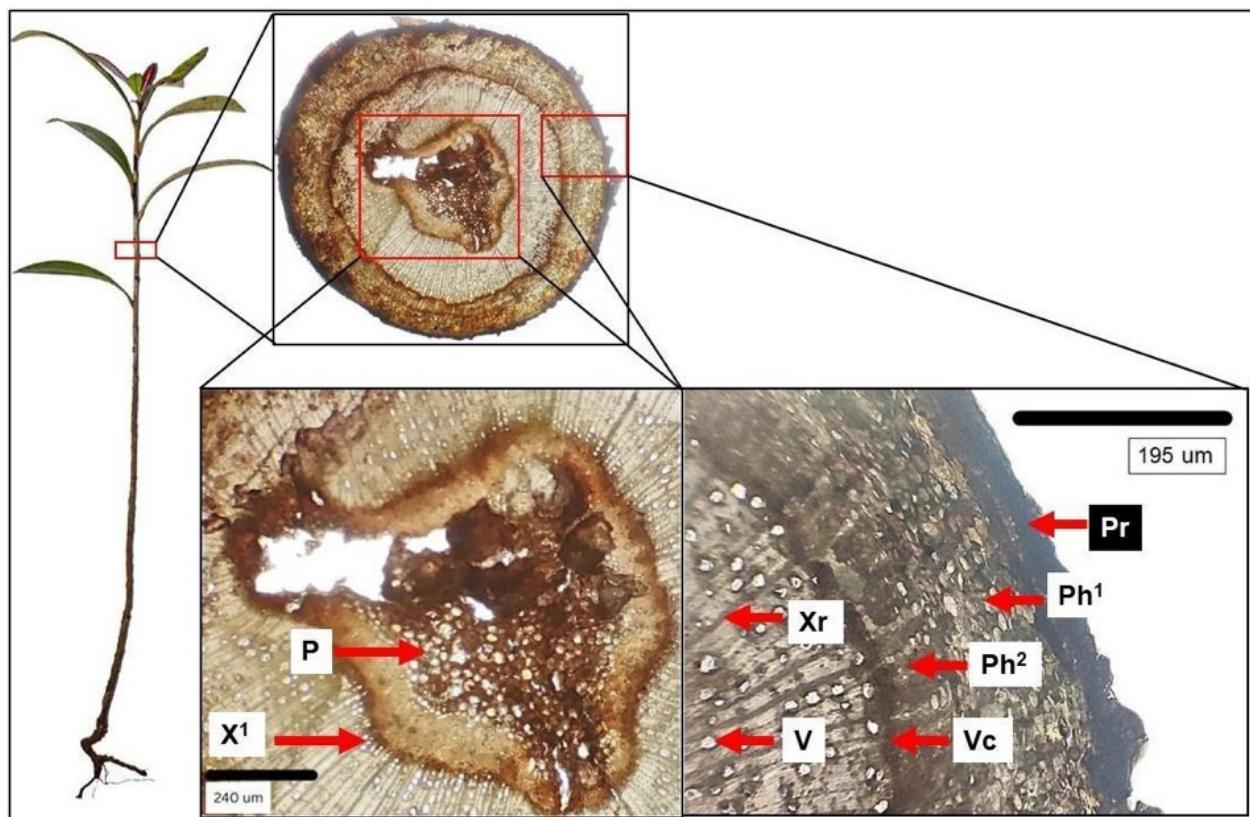


Image 7. Stem anatomy of *Xanthostemon verdugonianus*: P—Pith | X¹—Primary xylem | X²—Secondary xylem | V—Vessel element | Xr—Xylem rays | VC—Vascular cambium | Ph²—Secondary phloem | Ph¹—Primary phloem | Pr—Periderm. © Princess Ansie T. Taperla.

observed in *Eucalyptus cinerea* (Pauzer et al. 2021). The less clearly stellate pith shape observed in this study was similar to the results of *E. microcorys*, *E. pilularis*, and *E. marginata* Sm. in the study by Bryant & Trueman (2015).

The roots. The woody root of the juvenile *X. verdugonianus* was examined in the study and is found to be positively geotropic. Anatomical features are shown in Image 8 and appear to have a distinct demarcation of epidermal, cortical, and vascular regions. The cross-section shows the unilayered periderm (Pr) consists of thin-walled cutinized cells as the outermost protective layer of the root, followed by the primary phloem (Ph¹) characterized by round and oval shape, clumped (usually 5–10) in a linear manner and secondary phloem (Ph²) portray a much smaller round and oval cells, also arranged in a linear manner (usually 3–5 in a clump) designated just before the vascular cambium. Dividing the phloem and the xylem is the vascular cambium (Vc) appears to have undistinguished cells. The secondary xylem (X²) covers a larger part of the root, displaying round to oval vessel elements irregularly scattered and the xylem rays (Xr) display a distinct line along the periphery of the stele. The primary xylem (X¹) encloses

the remnants of the pith at the innermost part of the root, which was pushed to the center due to the production or development of the secondary xylem (Evert 2006). The primary and secondary phloem is also pushed in the opposite direction of the primary vascular system, which will later become the woody part of the root and serve as protection along with the periderm (Pr).

There is a limited study on the anatomical structure of *X. verdugonianus* in its natural habitat, and in this study, the noticeable feature found in the root are the phloem fibers (see white arrow in Image 8) along the vascular cambium. This species is endemic and vulnerable in its ecological status and data provided anatomical descriptions as baseline information. Findings such as the solitary vessel elements and the conspicuous xylem rays throughout the length of the secondary xylem were also observed in the root anatomy of *Syzygium* sp. (Rahayu & Husodo 2020) and *Syzygium cumini* Skeels, a vascular plant under the family Myrtaceae (Singh & Misra 2015).

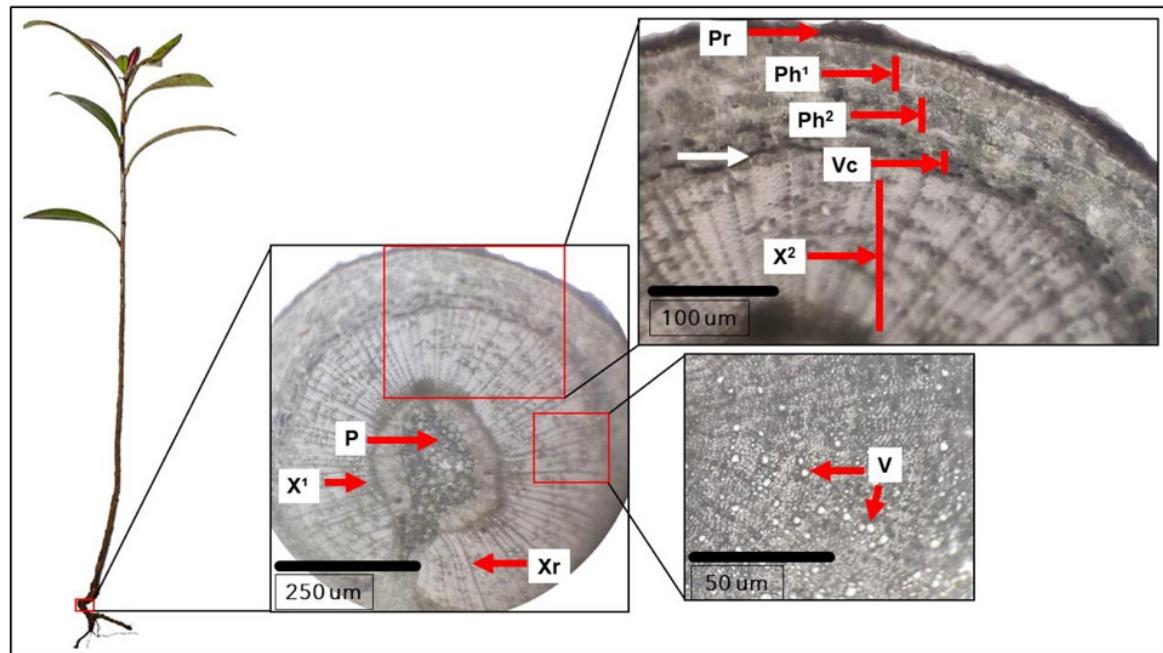


Image 8. Root anatomy of *Xanthostemon verdugonianus*: P—Pith | X¹—Primary xylem | X²—Secondary xylem | V—Vessel element | Xr—Xylem rays | VC—Vascular cambium | Ph²—Secondary phloem | Ph¹—Primary phloem | Pr—Periderm. © Angie A. Abucayon.

Table 1. Plant associations of *Xanthostemon verdugonianus* in Loreto, Dinagat Island.

Family name	Scientific name number of individual	Total number of individual	Present in Site 1	Present in Site 2	Family name	Scientific name number of individual	Total number of individual	Present in Site 1	Present in Site 2
Anacardiaceae	<i>Buchanania arborescens</i> F. Muell.	7	*	*	Myrtaceae	<i>Tristaniopsis decorticata</i> (Merr.) Peter G. Wilson & J.T. Waterh.	4	*	*
	<i>Mangifera indica</i> L.	2		*	Moraceae	<i>Artocarpus pinnatisectus</i> Merr.	1	*	
Apocynaceae	<i>Alstonia parvifolia</i> Merr.	6	*		Rubiaceae	<i>Pavetta williamsii</i> Merr.	1	*	
	<i>Kibatalia stenopetala</i> Merr.	1		*		<i>Timonius valetonii</i> Elmer	8	*	
	<i>Kibatalia</i> sp.	7		*	Pandanaceae	<i>Freyelinia</i> sp.	2	*	
Bignoniaceae	<i>Radermachera pinnata</i> Seem.	2	*			<i>Pandanus dinagatensis</i> Merr.	2	*	*
Burseraceae	<i>Canarium euryphyllum</i> var. <i>euryphyllum</i>	5	*			<i>Sararanga philippinensis</i> Merr.	1		*
Calophyllaceae	<i>Calophyllum inophyllum</i> L.	1		*	Pentaphragmataceae	<i>Pentaphragma</i> sp.	2		*
Ebenaceae	<i>Diospyros</i> sp.	8	*		Phyllantaceae	<i>Phyllanthus ramosii</i> Quisumb. & Merr.	8	*	
Gnetaceae	<i>Gnetum gnemon</i> L.	8	*	*		<i>Phyllanthus</i> sp. 1	6	*	
Melastomataceae	<i>Medinilla myrtiformis</i> (Naudin) Triana	6	*			<i>Phyllanthus</i> sp. 2	2	*	
	<i>Medinilla</i> sp.	1	*		Podocarpaceae	<i>Podocarpus</i> sp.	7	*	
	<i>Melastoma malabathricum</i> L.	1		*	Sapindaceae	<i>Guioa diplopetala</i> (Hassk.) Radlk.	6	*	
Meliaceae	<i>Swietenia mahagoni</i> (L.) Jacq.	1		*		<i>Guioa koelreuteria</i> (Blanco) Merr.	8	*	
					Thymelaeaceae	<i>Wikstroemia indica</i> (L.) C.A. Mey.	8	*	

*represents the presence of species in the site.

Table 2. Species richness and abundance of plants associated with *Xanthostemon verdugonianus* in Barangay Liberty, Loreto Dinagat Island.

	Site 1					Site 2			Average
	Plot 1	Plot 2	Plot 3	Plot 4	Plot 5	Plot 6	Plot 7	Plot 8	
Species richness	11	11	4	10	8	6	6	8	8
Abundance	77	62	44	23	15	35	131	53	55

Table 3. Mean values of Soil Particles Obtained in Barangay Liberty, Loreto, Dinagat Island.

Soil Particle	Plot 1	Plot 2	Plot 3	Plot 4	Plot 5	Plot 6	Plot 7	Plot 8	Soil obtain (g)	Percentage (%)
Gravel	44	69	124	114	78	107	62	73	671	28.74
Very coarse sand	55	78	57	100	66	109	80	71	616	26.39
Medium sand	40	133	115	85	101	73	132	147	826	35.38
Fine sand	40	10	0.4	77	39	8	18	8	200.4	8.58
Very fine sand	0	0	0	4	6	0	0	0	10	0.43
Silt or clay	0	0	0	0	11	0	0	0	11	0.47

Associated Flora to *X. verdugonianus* in its habitat

Twenty-nine species under 19 families of vascular plants were identified (Table 1) in the study plots of *X. verdugonianus*. The family Phyllantaceae is the most presented with 16 individual species. The least represented families were Meliaceae and Moraceae, each with one species. Phyllantaceae family included *Phyllanthus ramosii* Quisumb. & Merr. and two other unidentified species of *Phyllanthus*. The other associated plants belonging to other families included *Tristaniopsis decorticata* (Merr.) Peter G.Wilson & J.T.Waterh., *Alstonia parvifolia* Merr., *Artocarpus pinnatisectus* Merr., *Pavetta williamsii* Merr., *Timonius valetonii* Elmer, *Buchanania arborescens* F.Muell., *Calophyllum inophyllum* L., *Canarium euryphyllum* G.Perkins var. euryphyllum, *Diospyros* sp., *Freycinetia* sp., *Gnetum gnemon* L., *Guioa diplopetala* (Hassk.) Radlk., *Guioa koelreuteria* (Blanco) Merr., *Kibatalia stenopetala* Merr., *Kibatalia* sp., *Mangifera indica* L., *Medinilla myrtiformis* (Naudin) Triana, *Melastoma malabathricum* L., *Pandanus dinagatensis* Merr., *Podocarpus* sp., *Radermachera pinnata* Seem., *Swietenia mahagoni* (L.) Jacq., *Wikstroemia indica* (L.) C.A.Mey., and *Sararanga philippinensis* Merr. The sampling was considered a rapid procedure conducted in a short period. By increasing sampling intensity, more species could be associated with *X. verdugonianus* in other areas.

Species richness and abundance of associated flora

Species richness, defined as the number of species per unit area, is perhaps the most straightforward measure of biodiversity (Brown 2003). According to

Fedor & Zvaríková (2019), species richness presents a measure of the variety of species based simply on a count of the number of species in a particular area. Associated species to *X. verdugonianus* in Barangay Liberty, Loreto, Dinagat Island has an average species richness of 8. It was observed that plants that thrive in this area had developed morphological adaptations to lessen their water intake and water loss (Brady et al. 2005). The abundance of species recorded in plot 1 (45), plot 2 (40), plot 4 (17), plot 7 (16), and plot 8 (13), respectively, where *X. verdugonianus* dominated in the area (Table 2).

Soil Particle Characteristics Sampled from *X. verdugonianus* habitats

As observed in the field, *X. verdugonianus* grow in reddish soils of Surigao del Norte, Philippines. The soil type in the province is derived from serpentinized ultramafic rocks composed of Mg, Fe, Cu, Co, Ni, and Cr elements subjected to weathering of olivine, pyroxene, and chromite minerals (Ocon et al. 2018). The reddish soil coloration is due to oxidized iron minerals resulting in red color commonly referred to as rust (Pérez-Guzmán et al. 2010). Aside from iron, the red soils contain the heavy metals preferred for mining activities (Navarrete & Asio 2011). Similar ultramafic substrate in Palawan Island, Philippines where another species of *Xanthostemon speciosus* was observed (De Castro et al. 2020). Medium sand has the most abundant percent value, 35.38%, followed by gravel (2 mm) which is 28.74%, and very coarse sand (850 µm), with a percent value of 26.39%, respectively (Image 9). The

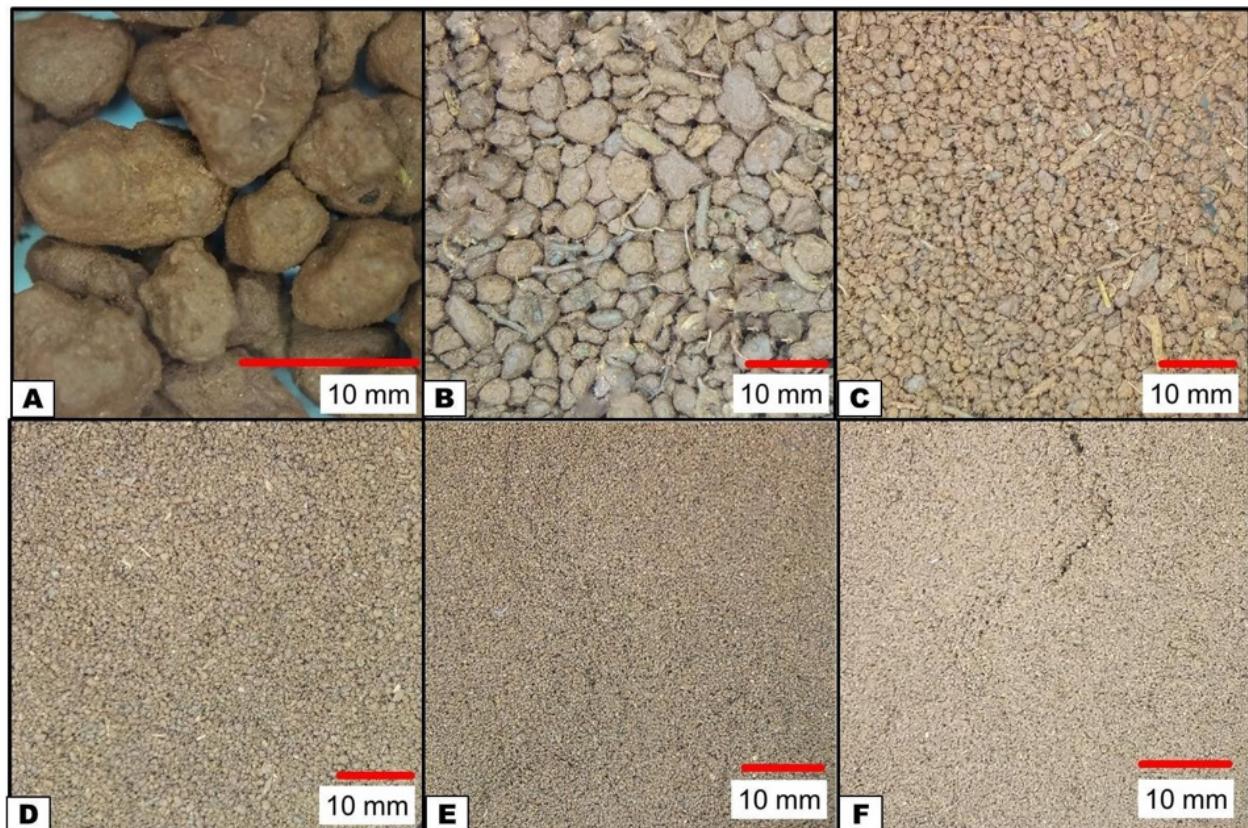


Image 9. The soil type in Barangay Liberty, Loreto, Dinagat Island: A—Gravel | B—Very coarse sand | C—Medium sand | D—Fine sand | E—Very fine sand | F—Silt or clay. © Angie A. Abucayon.

least mean value of all the substrates was very fine sand (150 μm) with a percentage value of 0.43% (Table 3). Few articles described soil particle characteristics that are preferential to the growth and development of *X. verdugonianus*. The study provides baseline information on soil particles of the species in the sampling area. The data suggested that the bigger soil particle size consisting of medium sand, very coarse sand, and gravel is preferable to the growth of *X. verdugonianus*.

CONCLUSION

Xanthostemon verdugonianus is a threatened species endemic to the Philippines. The plants grow in the mineral-rich red soils and are characterized by their reddish young foliage, red flowers arranged in red corymbs in the terminals of branches. The woody, dehiscent capsules are 2–4-lobed and have many flattened seeds. The leaf is arranged alternately in both young and adults. With corymb inflorescence, the complete flower of *X. verdugonianus* possessed a cup-shaped hypanthium and semi-circular calyx. The ovoid-

globular fruit consists of a woody covering and the seeds are bilaterally flattened and deltoid to semicircular in shape. The leaf anatomy was observed to have a thick cuticle on the adaxial side that displays the characteristic of plants to adapt to island conditions in tropical environments. The stem shows secondary growth, with a pith arranged in a less clearly stellate shape. Xylem rays and the vessel elements scattered along the length of the secondary xylem are the distinctive features of its stem and root anatomy. Twenty-nine associated plant species belonging to 19 families were recorded in the study area. Soil substrate mainly comprises medium sand particles, and reddish coloration could be due to oxidized metallic elements. Distinct anatomical characteristics of *X. verdugonianus*, such as the compressed palisade and spongy layer of the leaf midrib cross-section and the irregular shape of the pith in the stem cross-section, may be due to environmental stress like the presence of heavy metal in the soil, limited water intake, and temperature fluctuations in the island conditions. To better understand the unique features and adaptations of *X. verdugonianus*, detailed morpho-anatomy studies of the plants growing in the rainforest

and island conditions are needed. The effects of heavy metals in the habitats on the plants should also be investigated.

REFERENCES

Ali, I., S.Q. Abbas, M. Hmeed, N. Naz, S. Zafar & S. Kanwal (2009). Leaf Anatomical Adaptations in Some Exotic Species of Eucalyptus L'her (Myrtaceae). *Pakistan Journal of Botany* 41(6): 2717–2727.

Armstrong, L., M.D.R. Duarte & O.G. Miguel (2012). Morpho-anatomy of the leaf and stem of *Eugenia pyriformis*. *Revista Brasileira de Farmacognosia. Brazilian Journal of Pharmacognosy* 22(3): 475–481. <https://doi.org/10.1590/S0102-695X2012005000023>

Berghetti, Á.L.P., M.M. Araujo, L.A. Tabaldi, S.C. Aimi, T.S. Tonetto, F. Turchetto & G. Brunetto (2019). Morphological and Physiological Parameters in Young Plants of *Cordia trichotoma* Submitted to the Application of Phosphorus in the Soil. *Revista Árvore* 44(44). <https://doi.org/10.1590/1806-908820200000004>

Brady, K.U., A.R. Kruckeberg & H.D. Bradshaw Jr. (2005). Evolutionary Ecology of Plant Adaptation to Serpentine Soils. *Annual Review of Ecology, Evolution and Systematics* 36: 243–266. <https://doi.org/10.1146/annurev.ecolsys.35.021103.105730>

Brisola, S.H. & D. Demarco (2011). Stem Anatomical Analysis of *Eucalyptus grandis*, *E. urophylla* and *E. grandis x urophylla*: Wood development and Its Industrial Importance. *Scientia Forestalis* 39(91): 317–330.

Brown, R.B. (2003). Soil Texture. *University of Florida, Institute of Food and Agricultural Sciences Extension*, 1–6 pp. <http://edis.ifas.ufl.edu/SS169>

Brophy, J.J., R.J. Goldstack & P.I. Foster (2006). A Preliminary Examination of the Leaf Oils of Genus *Xanthostemon* (Myrtaceae) in Australia. *Journal of Essential Oil Research* 18(2): 222–230. <https://doi.org/10.1080/10412905.2006.9699071>

Bryant, P.H. & S.J. Trueman (2015). Stem Anatomy and Adventitious Root Formation in Cutting of *Angophora*, *Corymbia* and *Eucalyptus*. *Forest* 6(4): 1227–1238. <https://doi.org/10.3390/f6041227>

DENR DAO (2017). Updated national List of Threatened Philippine Plants and their Categories. DENR Administrative order. Downloaded on 02 December 2022.

De Castro, M.E., J.S. Carandang Vi & E.M. Agoo (2020). Floristic study of an ultramafic formation in Sitio Magarwak, Sta. Lourdes, Puerto Princesa City, Palawan Island, Philippines. *Biodiversitas* 21(8): 3769–3779. <https://doi.org/10.13057/biodiv/d210844>

Domínguez, E., J. Cuartero & A. Heredia (2011). An Overview on Plant Cuticle Biomechanics. *Plant Science* 181(2): 77–84. <https://doi.org/10.1016/j.plantsci.2011.04.016>

Dubowsky, N. (2009). An Inexpensive, Simple, Homemade "Microtome" to Prepare Thin Sections of Tissues for Microscopic Study. *The American Biology Teacher* 7(9): 553. <https://doi.org/10.2307/20565379>

Energy Department Corporation (EDC) (2018). *Xanthostemon verdugonianus*. The IUCN Red List of Threatened Species 2018: eT3338A125945052. <https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T3338A125945052.en>. Accessed on 13 August 2023.

Evert, R.F. (2006). *Esau's Plants Anatomy: Meristems, Cells and Tissues of the Plant Body: Their Structure, Functions, and Development*. Third Edition. *Annals of Botany* 99(4): 785–786. <https://doi.org/10.1093/aob/mcm015>

Fedor, P. & M. Zvaríková (2019). Biodiversity Indices. *Encyclopedia of Ecology* (Second Edition). Elsevier 1(2):337–346. <https://doi.org/10.1016/B978-0-12-409548-9.10558-5>

Fernando E.S., Suh, M.H., Lee, J. & D.K. Lee (2008). Forest formations of the Philippines. ASEAN-Korea Environmental Cooperation Unit, Seoul, Korea. ISBN 978-89-92239-40-0 93530.

Fernando, E.S., R.B. Arbolonio & E.P. Lillo (2017). *Forest Flora of Dinagat Island, An Introductory Guide*. Department of Environmental and Natural Resources (DENR)- Provincial Environment and Natural Resources Office (PENRO), San Jose, Province of Dinagat Island Philippines. ISBN 978-621-95785-0-9.

Flora Fauna Web (2022). *Xanthostemon verdugonianus* Naves. <https://www.nparks.gov.sg/florafaunaweb/flora/2/5/2561>. Electronic version accessed 1 February 2023.

Lemos, V.O.T., E.M. Pereira de Lucena, O.H. Bonilla, B. Edson-Chaves, M.A. De Castro & V.S. Sampaio (2018). Ecological Anatomy of *Eugenia luschnathiana* (O.Berg) Klotzsch ex B.D.Jacks. (Myrtaceae) Leaves in the Restinga Region, State of Ceara. *Revista Brasileira de Fruticultura* 40(4). <https://doi.org/10.1590/0100-294520186969>

Lillo, E.P., E.S. Fernando & M.J.R. Lillo (2019). Plant Diversity and Structure of Forest Habitat Types on Dinagat Island, Philippines. *Journal of Asia-Pacific Biodiversity* 12: 83–105. <https://doi.org/10.1016/j.japb.2018.07.003>

Lubis, S.T., E.T.S. Putra & B. Kurniasih (2022). Anatomical characteristics of cocoa plant roots as affected by the levels of calcium fertilization. *Ilmu Pertanian (Agricultural Science)* 7(2): 68–74. <https://doi.org/10.22146/ips.69842>

Lynch, J.P., C.F. Strock, H.M. Schneider, J.S. Sidhu, I. Ajmera, T. Galindo-Castaneda, S.P. Klein & M.T. Hanlon (2021). Root anatomy and soil resource capture. *Plant Soil* 466: 21–63. <https://doi.org/10.1007/s11104-021-05010-y>

Malabriga, Jr. P.L & R.C. Gibe (2020). Red List Assessment of Philippine Ironwood (*Xanthostemon* spp. Myrtaceae). *Sylvatrop, The Technical Journal of Philippine Ecosystems and Natural Resources* 30(1): 1–21. <https://www.ukdr.uplb.edu.ph/journal-articles/5088>

Mullet, E.K.C., G.H. Lacorte, R.M.A. Hamiladan, C.E.M. Arabit, S.O. Cuales, L.G.C. Lasutan, N.S. Alagos, H.G. Kamantu, K.J.T. Protacio & J.H. Jumawan (2014). Assessment of Mangrove Species and Its Relation to Soil Substrates in Malapatan, Sarangani Province, Philippines. *Journal of Biodiversity and Environmental Sciences* 5(4): 100–107.

Navarrete, I.A. & V. Asio (2011). Heavy Metals Content of Two Red Soils in Samar. *Annals of Tropical Research*. 33(2): 162–174. <https://doi.org/10.32945/atr3329.2011>

Nazarudin, A.M.R., F.Y. Tsan, O. Normaniza & Y. Adzmi (2012). Phenological Growth Stages of the Golden Penda Trees (*Xanthostemon chrysanthus*). *Annals of Applied Biology* 161(1): 12–15. <https://doi.org/10.1111/j.1744-7348.2012.00546>

Nazarudin, A.M.R., F.Y. Tsan, O. Normaniza & Y. Adzmi (2015). Growth and Anatomical Responses in *Xanthostemon chrysanthus* as Influenced by Pacllobutrazol and Potassium Nitrate. *Sains Malaysiana* 44(4): 483–489. <https://doi.org/10.17576/jsm-2015-4404-01>

Nazarudin, A.M.R. & F.Y. Tsan (2018). Vegetative and Reproductive Growth Behaviour of *Xanthostemon chrysanthus* (F. Muell.) Benth. An Ornamental Tree in Malaysia. *Sains Malaysiana* 47(2): 227–233. <https://doi.org/10.17576/jsm-2018-4702-03>

Nazarudin, A.M.R. (2020). Induction of Flower in *Xanthostemon chrysanthus* by the Combined Effects of Pacllobutrazol and Potassium Nitrate. *Transaction of Malaysian Society of Plant Physiology* 27:13–17. ISSN 2600-9595.

Pauzer, M.S., T.O. Borsato, V.P. De Almeida, V. Raman, B. Justus, C.B. Pereira, T.B. Flores, B.H.L.N.S. Maia, E.K. Meneghetti, C.C. Kanunfre, J.F.P. De Paula, P.V. Farago & J.M. Budel (2021). *Eucalyptus cinerea*: microscopic profile, chemical composition of essential oil and Its antioxidant, microbiological and cytotoxic activities. *Brazilian Archives of Biology and Technology* 64. <https://doi.org/10.1590/1678-4324-75years-2021200772>

Pelser, P.B., J.F. Barcelona & D.L. Nickrent (2011). Co's Digital Flora of the Philippines. Philippine Journal of Science. www.philippineplants.org. Electronic version accessed 21 November 2022.

Pérez-Guzmán, L., K.R. Bogner & B.H. Lower (2010). Earth's Ferrous Wheel. *Nature Education Knowledge* 3(10): 32. <https://www.nature.com/scitable/knowledge/library/earth-s-ferrous-wheel-15180940/> Electronic version accessed 27 July 2023.

Rahayu, Y. & S.B. Husodo (2020). Comparing Wood Anatomy and Stem of *Syzygium* sp from Natural Tropical Forest of Papua. *Institute of Physics Conference Series: Materials Science and Engineering*

935. <https://doi.org/10.1088/1757-899X/935/1/012036>

Ruales, J.J. & J.H. Jumawan (2023). Geospatial Distribution Pattern of *Xanthostemon* F. Muell. Species (Iron Wood) in the Philippines Based on Updated Literature and Internet Digital Checklist Platforms. *Journal of Ecosystem Sciences and Eco-Governance* 5(1): 42–55. <https://doi.org/10.54610/jeseg/5.1.2023.005>

Sarmiento, R.T. (2018). Vegetation of the Ultramafic Soils of Hinatuan Island, Tagana-An, Surigao Del Norte: An Assessment as Basis for Ecological Restoration. *Ambient Science* 05(2): 44–50. <https://doi.org/10.21276/ambi.2018.05.2. aa01>

Sarmiento, R.T. (2020). Floristic Diversity of the Biodiversity Monitoring Plots and Its Environs within Agata Mining Ventures, Inc., Tubay, Agusan del Norte, Philippines. *Ambient Science* 7(1): 11–18. <https://doi.org/10.21276/ambi.2020.07.1.aa01>

Saulle, C.C., V. Raman, A.V.G. Oliveira, B.H.L.N.S. Maia, E.K. Meneghetti, T.B. Flores, P.V. Farago, I.A. Khan & J.M. Budel (2018). Anatomy and Volatile Oil Chemistry of *Eucalyptus saligna* cultivated in South Brazil. *Brazilian Journal of Pharmacognosy* 28(2): 125–134. <https://doi.org/10.1016/j.bjp.2018.03.001>

Savaldi-Goldstein, S., C. Peto & J. Chory (2007). The Epidermis Both Drives and Restricts Plant Shoot Growth. *Nature* (446): 199–202. <https://doi.org/10.1038/nature05618>

Singh, L.J. & D.R. Misra (2015). Morpho-Anatomical Diversity of Roots of *Syzygium cumini* Skeels (Myrtaceae): An Adaptive Strategy Under Stress Ecosystem. *Phytomorphology* 65(1): 42–55.

Sultana, R.S. & M.M. Rahman (2020). Anatomy of *Phyllanthus niruri* (Euphorbiaceae). *An Academic Journal in EXEM Bank Agricultural University Bangladesh* 2: 24–29.

Visual Crossing Corporation (2022). Visual Crossing Weather (DATA QUERY RANGE). Retrieved from <https://www.visualcrossing.com/> Electronic version accessed 21 March 2023.

Wilson, P.G. (1990). A Revision of the Genus *Xanthostemon* (Myrtaceae) in Australia. *Telopea, Journal of Plant Systematics* 3(4): 451–476. <https://doi.org/10.7751/telopea19904903>

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.

Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK

Dr. George Mathew, Kerala Forest Research Institute, Peechi, India

Dr. John Noyes, Natural History Museum, London, UK

Dr. Albert G. Orr, Griffith University, Nathan, Australia

Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium

Dr. Nancy van der Poorten, Toronto, Canada

Dr. Karen Schnabel, NIWA, Wellington, New Zealand

Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India

Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India

Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India

Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India

Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India

Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain

Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong

Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India

Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait

Dr. Himender Bharti, Punjabi University, Punjab, India

Mr. Purnendu Roy, London, UK

Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan

Dr. Sanjay Sondi, TITLI TRUST, Kalpavriksh, Dehradun, India

Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam

Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India

Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore

Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.

Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India

Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil

Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany

Dr. James M. Carpenter, American Museum of Natural History, New York, USA

Dr. David M. Claborn, Missouri State University, Springfield, USA

Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand

Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil

Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India

Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia

Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia

Dr. Siddharth Kulkarni, The George Washington University, Washington, USA

Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India

Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia

Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia

Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.

Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan

Dr. Keith V. Wolfe, Antioch, California, USA

Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA

Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic

Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway

Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India

Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India

Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México

Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore

Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India

Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK

Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India

Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia

Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India

Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research

Centre, Mumbai, Maharashtra, India

Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India

Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India

Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany

Dr. Raju Vyas, Vadodara, Gujarat, India

Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.

Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey

Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India

Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India

Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zootaxa, and Biological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia

Mr. H. Byju, Coimbatore, Tamil Nadu, India

Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK

Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India

Dr. J.W. Duckworth, IUCN SSC, Bath, UK

Dr. Rajah Jayapal, SACON, Coimbatore, Tamil Nadu, India

Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India

Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India

Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India

Mr. J. Praveen, Bengaluru, India

Dr. C. Srinivasulu, Osmania University, Hyderabad, India

Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA

Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia

Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel

Dr. Taej Munduk, Wetlands International, Wageningen, The Netherlands

Dr. Carol Inskip, Bishop Auckland Co., Durham, UK

Dr. Tim Inskip, Bishop Auckland Co., Durham, UK

Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India

Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia

Dr. Simon Dowell, Science Director, Chester Zoo, UK

Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal

Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA

Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy

Dr. Anwaruddin Chowdhury, Guwahati, India

Dr. David Mallon, Zoological Society of London, UK

Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India

Dr. Angie Appel, Wild Cat Network, Germany

Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India

Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK

Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA

Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.

Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India

Dr. Mewa Singh, Mysore University, Mysore, India

Dr. Paul Racey, University of Exeter, Devon, UK

Dr. Honnavalli N. Kumar, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India

Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India

Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy

Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India

Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India

Dr. Paul Bates, Harison Institute, Kent, UK

Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA

Dr. Dan Challender, University of Kent, Canterbury, UK

Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK

Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA

Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India

Prof. Karan Bahadur Shah, Budhanilakantha Municipality, Kathmandu, Nepal

Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraja, Indonesia

Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)

Dr. Manda S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)

Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)

Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)

Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)

Dr. Rayanna Hellenn Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil

Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand

Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa

Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India

Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India

Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India

Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka

Dr. Bahar Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2020–2022

Due to paucity of space, the list of reviewers for 2018–2020 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:

The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org

OPEN ACCESS

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under [Creative Commons Attribution 4.0 International License](#) unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

www.threatenedtaxa.org

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

August 2023 | Vol. 15 | No. 8 | Pages: 23631–23826

Date of Publication: 26 August 2023 (Online & Print)

DOI: 10.11609/jott.2023.15.8.23631-23836

Articles

Group densities of endangered small apes (Hylobatidae) in two adjacent forest reserves in Merapoh, Pahang, Malaysia

– Adilah Suhailin Kamaruzaman, Nurul Iza Adriana Mohd Rameli, Susan Lappan, Thad Quincy Bartlett, Nik Rosely Nik Fadzly, Mohd Sah Shahru Anuar & Nadine Ruppert, Pp. 23631–23640

Population demography of the Blackbuck *Antilope cervicapra* (Cetartiodactyla: Bovidae) at Point Calimere Wildlife Sanctuary, India

– Subhasish Arandhara, Selvaraj Sathishkumar, Sourav Gupta & Nagarajan Baskaran, Pp. 23641–23652

Communications

Camera trap surveys reveal a wildlife haven: mammal communities in a tropical forest adjacent to a coal mining landscape in India

– Nimaan Charan Palei, Bhakta Padarbinda Rath, Himanshu Shekhar Palei & Arun Kumar Mishra, Pp. 23653–23661

Observations of Gray Fox *Urocyon cinereoargenteus* (Schreber, 1775) (Mammalia: Carnivora: Canidae) denning behavior in New Hampshire, USA

– Maximilian L. Allen & Jacob P. Kritzer, Pp. 23662–23668

Historical and contemporary perpetuation of assumed occurrence reports of two species of bats in Rajasthan, India

– Dharmendra Khandal, Ishan Dhar & Shyamkant S. Talmale, Pp. 23669–23674

Preference of *Helopsaltes pleskei* (Taczanowski, 1890) (Aves: Passeriformes: Locustellidae) on uninhabited islets (Chengdo, Jikgudo, and Heukgeomdo) in South Korea as breeding sites

– Young-Hun Jeong, Sung-Hwan Choi, Seon-Mi Park, Jun-Won Lee & Hong-Shik Oh, Pp. 23675–23680

Avifaunal diversity of Tsirang District with a new country record for Bhutan

– Gyeltshen, Sangay Chhophel, Karma Wangda, Kinley, Tshering Penjor & Karma Dorji, Pp. 23681–23695

Importance of conserving a critical wintering ground for shorebirds in the Valinokkam Lagoon—a first study of the avifaunal distribution of the southeastern coast of India

– H. Byju, N. Raveendran, S. Ravichandran & R. Kishore, Pp. 23696–23709

Diversity and conservation status of avifauna in the Surguja region, Chhattisgarh, India

– A.M.K. Bharos, Anurag Vishwakarma, Akhilesh Bharos & Ravi Naidu, Pp. 23710–23728

Seasonal variation and habitat role in distribution and activity patterns of Red-wattled Lapwing *Vanellus indicus* (Boddaert, 1783) (Aves: Charadriiformes: Charadriidae) in Udaipur, Rajasthan, India

– Sahil Gupta & Kanan Saxena, Pp. 23729–23741

Notes on nesting behavior of Yellow-footed Green Pigeon *Treron phoenicopterus* (Latham, 1790) in Aligarh Muslim University campus and its surroundings, Uttar Pradesh, India

– Ayesha Mohammad Maslehuddin & Satish Kumar, Pp. 23742–23749

Observations on cooperative fishing, use of bait for hunting, propensity for marigold flowers and sentient behaviour in Mugger Crocodiles *Crocodylus palustris* (Lesson, 1831) of river Savitri at Mahad, Maharashtra, India
– Utkarsha M. Chavan & Manoj R. Borkar, Pp. 23750–23762

Communal egg-laying by the Frontier Bow-fingered Gecko *Altiphylax stoliczkai* (Steindachner, 1867) in Ladakh, India
– Dimpi A. Patel, Chinnasamy Ramesh, Sunetro Ghosal & Pankaj Raina, Pp. 23763–23770

Description of a new species of the genus *Anthaxia* (Haplanthaxia Reitter, 1911) from India with molecular barcoding and phylogenetic analysis
– S. Seena, P.P. Anand & Y. Shibu Vardhanan, Pp. 23771–23777

Odonata diversity in the Egra and its adjoining blocks of Purba Medinipur District, West Bengal, India
– Tarak Samanta, Asim Giri, Lina Chatterjee & Arjan Basu Roy, Pp. 23778–23785

Morpho-anatomy and habitat characteristics of *Xanthostemon verdugonianus* Náves ex Fern.-Vill. (Myrtaceae), a threatened and endemic species in the Philippines
– Jess H. Jumawan, Arlyn Jane M. Sinogbuhan, Angie A. Abucayon & Princess Ansie T. Taperla, Pp. 23786–23798

The epiphytic pteridophyte flora of Cooch Behar District of West Bengal, India, and its ethnomedicinal value
– Aninda Mandal, Pp. 23799–23804

Seed germination and storage conditions of *Ilex embeloides* Hook.f. (Magnoliopsida: Aquifoliaceae), a threatened northeastern Indian species
– Leoris Malngiang, Krishna Upadhyaya & Hiranjit Choudhury, Pp. 23805–23811

Short Communications

Mantispa indica Westwood, 1852 (Neuroptera: Mantispidae), a rare species with some morphological notes from Assam, India
– Kushal Choudhury, Pp. 23812–23816

Notes

Auto-fellatio behaviour observed in the Indian Palm Squirrel *Funambulus palmarum* (Linnaeus, 1766)
– Anbazhagan Abinesh, C.S. Vishnu & Chinnasamy Ramesh, Pp. 23817–23818

A novel anti-predatory mechanism in *Indrella ampulla* (Gastropoda: Ariophantidae)
– Karunakar Majhi, Maitreya Sil & Aniruddha Datta-Roy, Pp. 23819–23821

Hedychium coccineum Buch.-Ham. ex Sm. (Zingiberaceae): an addition to the flora of Andhra Pradesh, India
– P. Janaki Rao, J. Prakasa Rao & S.B. Padal, Pp. 23822–23826

Publisher & Host

