

Building evidence for conservation globally

Journal of Threatened Taxa

10.11609/jott.2023.15.8.23631-23826

www.threatenedtaxa.org

26 August 2023 (Online & Print)

15(8): 23631-23826

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Open Access

43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS**Founder & Chief Editor****Dr. Sanjay Molur**Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India**Deputy Chief Editor****Dr. Neelesh Dahanukar**

Noida, Uttar Pradesh, India

Managing Editor**Mr. B. Ravichandran**, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India**Associate Editors****Dr. Mandar Paingankar**, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India**Dr. B.A. Daniel**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India**Editorial Board****Dr. Russel Mittermeier**

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinahalli PO, Nilgiris, Tamil Nadu 643223, India

Dr. Martin Fisher

Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhura Stothra Bhashyam**, Hyderabad, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2020–2022****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annasaheb Magar Mahavidyalaya, Maharashtra, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Mander Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Baños, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Coromandal Sacred Langur *Semnopithecus priam* - made with acrylic paint. © P. Kritika.

Notes on nesting behavior of Yellow-footed Green Pigeon *Treron phoenicopterus* (Latham, 1790) in Aligarh Muslim University campus and its surroundings, Uttar Pradesh, India

Ayesha Mohammad Maslehuddin¹ & Satish Kumar²

^{1,2} Department of Wildlife Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.

¹ ayesha.wildlife@gmail.com, ² satishkumaramu@gmail.com (corresponding author)

Abstract: The nesting behavior of the Yellow-footed Green Pigeon *Treron phoenicopterus* was observed during its breeding season in 2021 in an urban region encompassing the Aligarh Muslim University Campus and the surrounding areas. Data were collected by searching nests in the study area. The breeding season for the species in the study sites begins in March and re-nesting is attempted even in July. A total of 31 nests were found on 24 trees belonging to eight species. The analysis of nest site characteristics revealed that *Millingtonia hortensis*, *Azadirachta indica*, and *Dalbergia sissoo* were the most important nest tree species, accounting for 69% of the identified nests during the study period. These findings contribute to our understanding of the nesting behavior of the Yellow-footed Green Pigeon in an urban environment and have implications for its conservation and management.

Keywords: Aligarh Fort, canopy, columbidae, incubation, mating season, nest site characteristics, squabs, urban region.

Hindi: हरियल (ट्रेरॉन फॉलीकोप्टरस) का घोसला बनाने का व्यवहार 2021 में इसके प्रजनन के मौसम के दौरान देखा गया था। एक शहरी क्षेत्र में जिसमें अलीगढ़ मुस्लिम विश्वविद्यालय परिसर और आसपास के क्षेत्र शामिल हैं। घोसले खोजकर डेटा एकत्र किया गया। अध्ययन क्षेत्र में, अध्ययन स्थलों में प्रजातियों के लिए प्रजनन का मौसम मार्च में शुरू होता है और जुलाई में भी पुनः घोसले बनाने का प्रयास किया जाता है। कुल आठ प्रजातियों के 24 पेड़ों पर 31 घोसले पाए गए। घोसला स्थल की विशेषताओं के विश्लेषण से पता चला कि नीम घोसली, नीम, और शीशम सबसे महत्वपूर्ण घोसला वृक्ष प्रजातियाँ थीं, जो इस दौरान पहचाने गए घोसलों में से 69% के लिए जिम्मेदार थीं। ये अनुसंधान के परिणाम हर्में शहरी पर्यावरण में हरियल के घोसला बनाने का व्यवहार की समझ में योगदान करते हैं और इसके संरक्षण और प्रबंधन के लिए प्रासंगिकताएँ रखते हैं।

Editor: Anonymity requested.

Date of publication: 26 August 2023 (online & print)

Citation: Maslehuddin, A.M. & S. Kumar (2023). Notes on nesting behavior of Yellow-footed Green Pigeon *Treron phoenicopterus* (Latham, 1790) in Aligarh Muslim University campus and its surroundings, Uttar Pradesh, India. *Journal of Threatened Taxa* 15(8): 23742-23749. <https://doi.org/10.11609/jott.8390.15.8.23742-23749>

Copyright: © Maslehuddin & Kumar 2023. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: The first author was awarded Junior Research Fellowship and subsequently Senior Research Fellowship by the University Grants Commission to conduct research.

Competing interests: The authors declare no competing interests.

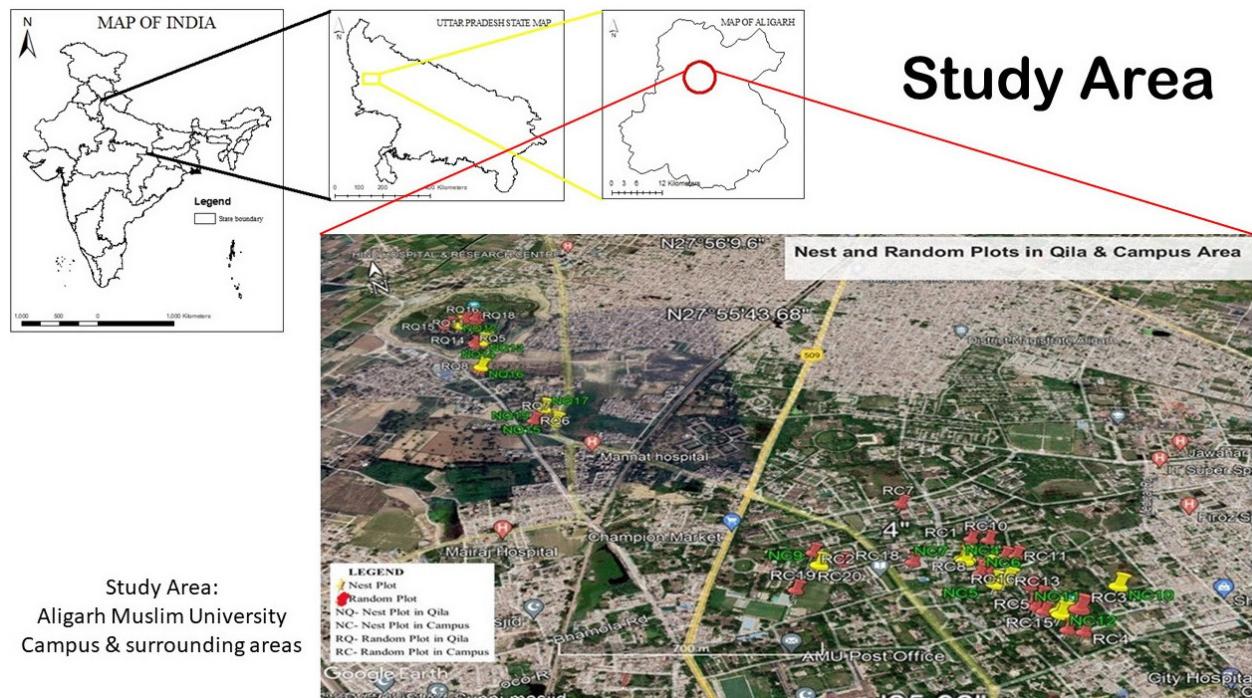
Author details: AYESHA MOHAMMAD MASLEHUDDIN is a PhD candidate (UGC-NET SRF) at the Department of Wildlife Sciences, Aligarh Muslim University, Aligarh with keen interest in avian ecology and bioacoustics. SATISH KUMAR is presently an associate professor at the Department of Wildlife Sciences, Aligarh Muslim University, Aligarh. He has more than 25 years of research experience with specialization in wildlife ecology and management. He has been working on ecology of large carnivores, long-term monitoring of semi-arid ecosystems, avian ecology and behavior, conservation and management of threatened biodiversity.

Author contributions: AMM undertook field surveys, noted behavioral data, took images in the field, collected the literature for manuscript preparation and wrote the manuscript. SK designed and planned the study including interpretation of the data. SK checked the manuscript and provided inputs for improvements.

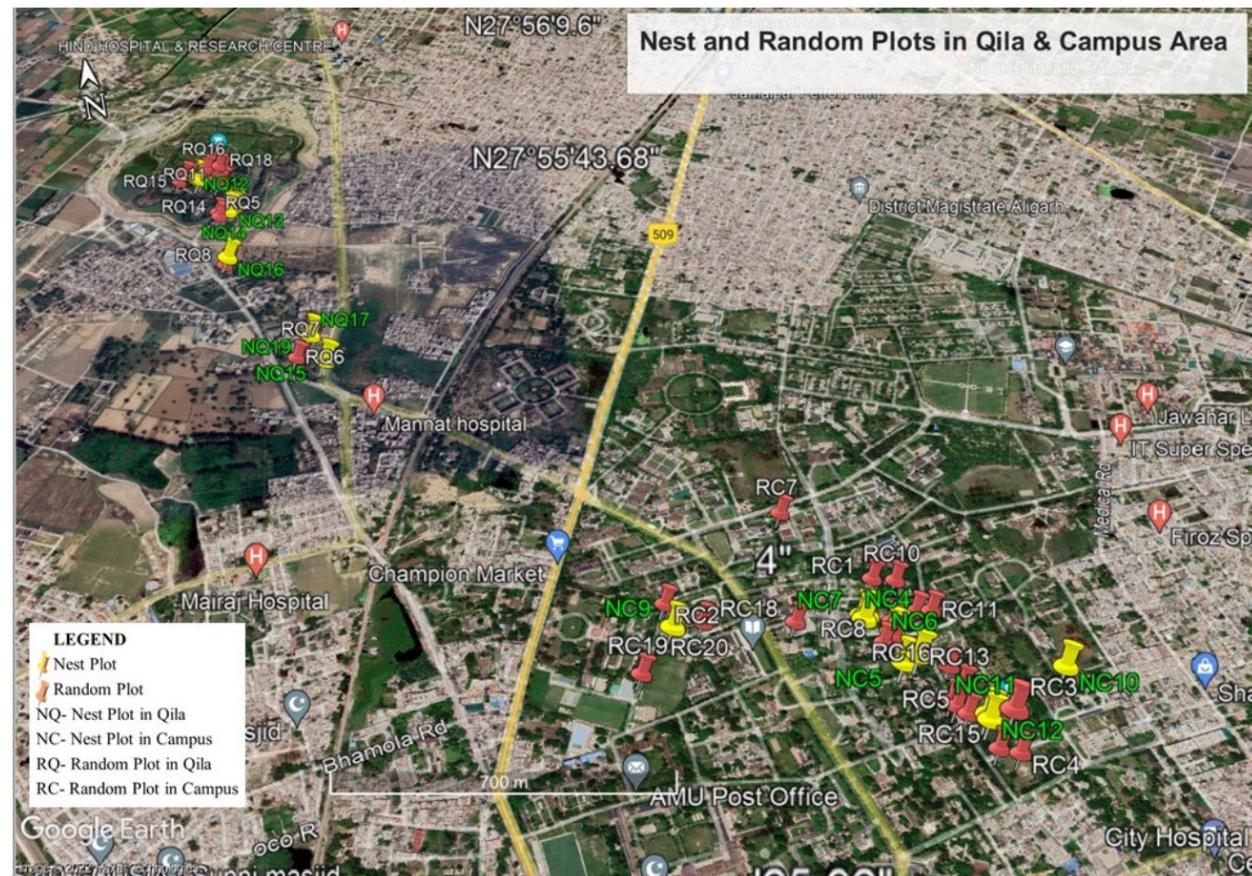
Acknowledgements: First author acknowledge Uttam, Amber, and Arif for their constant support and encouragement. Also, all help extended by Uttam during fieldwork is highly recognized and appreciated.

INTRODUCTION

The Columbidae family is one of the world's most threatened families. Despite its widespread distribution, the family, which contains pigeons and doves worldwide has received little conservation attention; is considered to have 369 species, 16 of whom are extinct, and one is extinct in the wild (the Socorro Dove *Zenaida graysoni*) (Birdlife International 2020). Thirty-three species of Columbidae have a distribution in India. It is most likely because it is one of a group of birds threatened by human persecution, habitat degradation, and introduced predators (Owens & Bennett 2000).


India has an incredible diversity of Columbiformes, inhabiting 33 species, including fruit pigeons (Ali & Ripley 1987; Grimmett et al. 2016). Frugivorous birds are the key functional species, performing valuable seed dispersal services and regeneration and their decline or local extinction may have severe consequences for the functioning of an ecosystem (McConkey & Drake 2002). Yellow-footed Green Pigeon is frugivorous species and is a common resident species in Aligarh district in Uttar Pradesh, where no studies have been carried out on its status, distribution, or ecology. As a result, we planned to investigate the Yellow-footed Green Pigeon nesting ecology in this area. It breeds in the Aligarh Muslim University campus and adjoining areas regularly, and the Indian Jungle Crow *Corvus macrorhynchos* and House Crow *Corvus splendens* prey on their clutches and nestlings. A few studies on Columbidae are by Bhattacharya (1994) on morphological adaptations, Somasundaram (2006) and Devi (2012) on the ecology of Nilgiri Wood Pigeon and Yellow-footed Green Pigeon, respectively, and Kour (2016) on eco-biology of some species from Jammu. Therefore, the present study was conducted to present preliminary data on the nesting behavior of Yellow-footed Green Pigeons in an urban region.

Study Area


Aligarh Muslim University is in Aligarh district in Uttar Pradesh, India, in the Ganga-Yamuna doab region. It is located at the northernmost part of the Agra division, stretching from 27.4833°N to 28.0166°N latitude and 77.4833°E to 78.6666°E longitude (Image 1). The district covers an area of 3,650 km² and is 130 km from Delhi. The flora in the area is dry deciduous with mostly deciduous trees in most areas. The locations of the nest and random plots at both the study sites, i.e., AMU campus (NC_i & RC_i) and Aligarh Fort (NQ_i & RQ_i) are shown in Image 2.

The study area has arid open scrub called 'Rakhs' (Champion & Seth 1968). The study region has soil known as 'usar', mesquite plantation, and agricultural terrain. *Prosopis juliflora* (a weed species from central America) dominates most forest patches, followed by *Acacia catechu*, *P. cineraria*, *P. specigera*, *Melia azadirach*, *Azadirachta indica*, *Cordia dichotoma*, *Pongamia pinnata*, *Syzygium cumini*, *Dalbergia sissoo*, *Butea monosperma*, *Acacia nilotica*, *Acacia leucophloea*, and *Phoenix sylvestris* (Yasmin 1995).

In central Ganga Plain, the interfluvial stretch of the Ganga and Yamuna passes through Aligarh district. Most of the principal physiographic are made out of alluvial infill. The deposition of the Ganga and Yamuna rivers significantly influences the main soil types in the district. The Aligarh Fort and AMU Campus in Aligarh city (27.9135°N, 78.0782°E) harbor a diverse range of flora, including exotic species that have been intentionally planted. The Aligarh Fort, now managed by the Aligarh Muslim University, serves as a botanical garden and spans over an area of 47.87 ha with an average elevation of around 200 m. The vegetation within the Fort can be classified into different types. The central plain area, covering 10.31 ha, predominantly consists of ornamental and fruit trees such as *Terminalia arjuna*, *Mangifera indica*, *Psidium guajava*, *Emblica officinalis*, *Syzygium cumini*, *Morus alba*, *Tectona grandis*, *Bombax ceiba*, and others. Surrounding this central plantation is an elevated ridge of scrubland with eight bastions, covering 6.85 ha, featuring natural vegetation including *Azadirachta indica*, *Dalbergia sissoo*, and a dominant shrub cover of *Capparis sepiaria*. *Prosopis juliflora* is notably prominent in the ridge area of the Fort. Encircling the ridge is a 50-m-wide depression that consists of barren land, covering an area of 12.1 ha. During the monsoon season, this area is adorned with herbaceous plants, while dry seeds of these monsoon herbs are available for the rest of the year. The flora of the Fort includes various plants including shrubs, climbers, and trees. Additionally, the area is inhabited by several mammalian species, including the Indian Grey Mongoose *Herpestes edwardsii*, Jungle Cat *Felis chaus*, Indian Hare *Lepus nigricollis*, Indian Gerbil *Tatera indica*, Five-striped Palm Squirrel *Funambulus pennantii*, India Bush Rat *Golunda ellioti*, and Rhesus Monkey *Macaca mulatta*, as documented in previous studies (Qureshi 1991; Khan 1992; Khan 2014).

Image 1. Study area – Aligarh Muslim University Campus and Aligarh Fort.

Image 2. Map depicting Nest plots (NCi and NQi) and Random Plots (RCi and RQi) located in AMU Campus and Aligarh Fort.

METHODS

Based on Devi (2012), the study focused on observing the nesting behavior of the Yellow-footed Green Pigeon during its 2021 breeding season in an urban region. The study sites included the Aligarh Muslim University (AMU) campus, Naqvi Park (27.9022° N, 78.0733° E), and the Aligarh Fort (27.9135° N, 78.0707° E). The methodology adopted by Devi (2012) aimed to understand the characteristics of the nesting sites and the factors influencing nesting site selection. To quantify the nesting environment, the methods outlined by James & Shugart (1970), subsequently refined by Mudappa & Kannan (1997), were employed. Data on nesting trees and nesting environment factors were collected and quantified. In order to detect nests of Yellow-footed Green Pigeons in the beginning of their nesting season, we largely depended on their behavioral cues such as collecting nesting material. During the mating season of Yellow-footed Green Pigeons, nest searches were conducted in the study region, and observations on nest trees and nest-site characteristics were made, following the methods used in previous studies (Gokula 2001; Devi & Saikia 2012). To ensure minimal disturbance to the nesting birds, all observations of their nesting activities were conducted from a safe distance, thus preserving the natural nesting behavior of the Yellow-footed Green Pigeon.

Observations of its nesting sites and nest site characteristics were undertaken from 10 March to 13 July 2021, when the final fledglings of active nests fledged. Once an individual or pair was sighted gathering twigs from the trees or constructing a nest, they were followed using binoculars or a camera and their nesting activities were recorded daily from 0630 h to 1130 h. A comprehensive dataset was obtained by closely observing selected nests, while additional nests were also monitored to determine the overall nesting success

and gather supplementary data.

Adult birds undertaking breeding activities such as nest construction, incubation, and feeding the young in or near the nest indicated the presence of an active nest. A circular plot with a radius of 10 m was set up around each nesting tree to measure nest-site selection along with random plots which were also placed at a distance of 30–50 m from the nest plot. All characteristics were recorded in these plots as exercised in some earlier investigations (James & Shugart 1970; MacKenzie & Saely 1981; Clark et al. 1983; Sieg & Becker 1990; Liebezeit & George 2002).

Nest site and random site characteristics recorded during the study were tree number to be used subsequently for density calculations (trees/hectare), tree height (m), tree GBH (cm), basal area (m^2), the height of the first branch (m), distance from the nearest road (m), distance from nearest habitation (m), ground cover (%), shrub cover (%), canopy cover (%), canopy spread (m^3) and nest height (m). In addition, the species of nesting trees were identified and recorded. To ensure comparability and permit statistical analysis, the collected data were normalized beforehand. In the Qila (Aligarh Fort) area, the listed nest plots were labeled as NQi, while the random plots were labeled as RQi. On the other hand, in the University Campus area, the nest plots were labeled as NCi, and the random plots as RCi.

RESULTS

The Yellow-footed Green Pigeon's mating season begins in March and continues until July having re-nesting attempts towards the end of June and July. During this period, birds whose nests have been destroyed by predators seek to re-nest (Ayesha Mohammad Maslehuddin pers. obs. 31 May 2021). A total of thirty-one nests of Yellow-footed Green Pigeons

Table 1. Characteristics of nest tree species of Yellow-footed Green Pigeon in the study area.

	Tree species	Tree height (m)	Tree GBH (m)	Wood type	Foliage type	No. of nests
1	<i>Millingtonia hortensis</i>	15–25	0.20–0.55	Softwood	Deciduous	9
2	<i>Azadirachta indica</i>	10–21	0.19–1.09	Softwood	Deciduous	5
3	<i>Dalbergia sisso</i>	10–15	1.20–1.40	Hardwood	Deciduous	4
4	<i>Prosopis juliflora</i>	10–17	0.20–0.65	Softwood	Deciduous	6
5	<i>Holoptelea integrifolia</i>	17–27	0.22–1.11	Softwood	Deciduous	3
6	<i>Mangifera indica</i>	15–21	0.36–0.85	Softwood	Deciduous	2
7	<i>Syzygium cumini</i>	17–21	0.57–0.67	Softwood	Deciduous	1
8	<i>Bombax ceiba</i>	18–20	0.25–0.71	Softwood	Deciduous	1

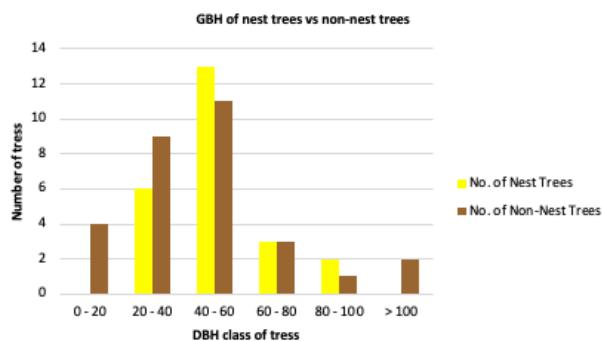


Figure 1. Girth at breast height (GBH) of nest trees and non-nest trees.

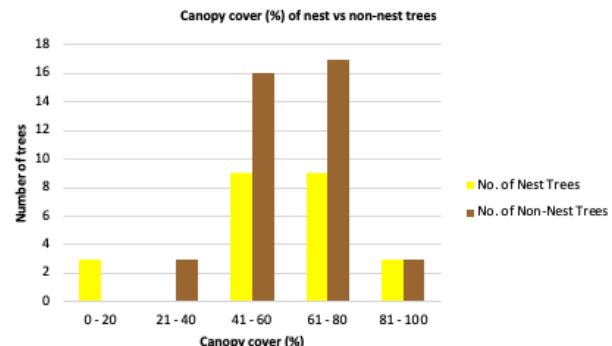


Figure 2. Canopy cover of nest trees and non-nest trees.

Figure 3. Total counts of nest tree species in nesting and random plots and number of nests.

were found, with 14 nests located at Aligarh Fort and 12 nests situated on the AMU campus. These nests were distributed among 26 trees in the study area. Out of the 26 nest trees, six were *Prosopis juliflora* (25%), five *Azadirachta indica* (Neem) (21%), four *Millingtonia hortensis* (Indian Cork Tree), and *Dalbergia sissoo* (Sheesham) (17%), two were *Mangifera indica* (Mango) and one each of *Holoptelea integrifolia* (Jungle Cork Tree), *Syzygium cumini* (Black Plum), and *Bombax ceiba* (Silk Cotton Tree) (Table 1).

The GBH of non-nest trees (0.46 ± 0.03) was slightly higher than that of the nest trees (0.42 ± 0.05) (Figure 1), but there was no significant difference ($t = -0.754$, $p > 0.05$) among them.

The canopy cover of non-nest trees (63.35 ± 2.26) was greater than the canopy cover of nest trees (58.37 ± 4.36) (Figure 2), and the difference was significant ($t = 17.958$, $p < 0.05$).

Tree species used for nesting by Yellow-footed Green Pigeons were *Millingtonia hortensis*, *Prosopis juliflora*, *Azadirachta indica*, *Dalbergia sissoo*, *Holoptelea integrifolia*, *Mangifera indica*, *Syzygium cumini*, and *Bombax ceiba*. The number of nests on different tree species and the total number of individuals of each species, including those in the centre of random plots, are shown in Figure 3. The maximum number of nests were found on *Millingtonia hortensis*.

DISCUSSION AND CONCLUSION

The semi-natural plantations on the AMU Campus provide habitat to a wide variety of avifaunal species. The current study was one of the few attempts to acquire useful data regarding the ecology of species nesting.

Nest site characteristics show that *Millingtonia*

hortensis, *Azadirachta indica*, and *Dalbergia sissoo* are essential nest tree species accounting for 69% of the total nest trees identified during the study period. These tree species ranged 11–25 m in height and were branched and bifurcated to provide a better place to hold the nest and a safe base for the pigeons to make their nests. Another reason was the abundance of these tree species at the study site.

The study revealed that the breeding season of Yellow-footed Green Pigeon is from late March to July in the study area. Nest building begins in early April, and they make open nests of mostly twigs (Image 3). Nests of Yellow-footed Green Pigeons are very simple in structure and made up of small twigs placed crisscrossed over one another. Both sexes were seen sharing nest building and duty of incubation, i.e., one of the breeding males or females continued to sit on the eggs while the other pair went foraging. As per observation, only one squab is hatched per nest. The duration from nest building until the fledgling left the nest was 39–44 days.

Nest building by Yellow-footed Green Pigeons was observed during the study period. Most of the nest-building activity occurred 0630–1000 h. Nest materials such as twigs were collected from dried branches of *Holoptelea integrifolia*, *Azadirachta indica*, *Tectona grandis*, *Eucalyptus citriodora*, *Syzygium cumini*, and *Casuarina equisetifolia* trees 15–30 m away from nest site by one of the mates. One of the breeding pair individuals broke suitable twigs from the branches and carried them toward the nest. The waiting individual on the tree gently arranged it into the nest securely. Also, it was observed that the individual carrying the twig never landed directly at the location where another mate was building the nest; instead, it would land on branches higher in the canopy and then move down towards the nest location cautiously. Apart from these, the frequency of nest-building trips was maximum during the 2nd and 3rd days of nesting, which gradually declined in the following days.

During the study, birds of prey such as Pariah Kites *Milvus migrans* and occasionally crows (*Corvus splendens* or *C. macrorhynchos*) were commonly seen preying on nests of Yellow-footed Green Pigeon. Some competitors like Common Mynas *Acridotheres tristis*, Eurasian Collared Dove *Streptopelia decaocto*, and Indian Palm Squirrel *Funambulus palmarum* mostly destroyed the nests; they forcefully entered the nest area of the pigeon, destroyed it and occupied the territory. Natural calamities like heavy rain and the storm destroyed most nests during the pre-hatching stage. Generally, the Yellow-footed Green Pigeons construct their nests on

softwood trees, which are easily broken due to heavy rain and storm.

Association of yellow-footed Green Pigeons with the Black Drongo *Dicrurus macrocercus* during nesting season (Image 3) may be a great driver in predicting nests' success and subsequently emerging chicks. Around 40% of nests were successfully raised due to a Black Drongo nest in the vicinity of nests of Yellow-footed Green Pigeons. It has also been observed by Ali & Ripley (1987).

The success of nesting attempts by Yellow-footed Green Pigeons was determined based on the presence of hatched squabs in each nest. Of all the nests encountered, it was determined that only 35% achieved successful nesting, indicating the successful hatching of squabs. In contrast, the remaining 65% of nests were deemed unsuccessful due to their destruction by storms or abandonment caused by excessive disturbance, resulting in the absence of hatched squabs.

REFERENCES

Ali, S. & S.D. Ripley (1987). *Handbook of the Birds of India and Pakistan*. Compact edition, Oxford University Press, New Delhi, 737 pp.

Birdlife International (2020). Species factsheet: *Zenaida graysoni*. Downloaded from <http://www.birdlife.org> on 14 September 2021.

Bhattacharya, B.N. (1994). Diversity of feeding adaptations in certain columbid birds: a functional morphological approach. *Journal of Bioscience* 19(4): 415–427.

Champion, H.G. & S.K. Seth (1968). *A Revised Survey of The Forest Type of India*. Govt. of India Press. New Delhi, 404 pp.

Chapman, C.A. & L.J. Chapman (1995). Survival without dispersers: seedling recruitment under parents. *Conservation Biology* 9(3): 675–678.

Clark, L., R.E. Ricklefs & R.W. Schreiber (1983). Nest-site selection by the Red-tailed Tropicbird. *The Auk* 100(4): 953–959.

Devi, O.S. (2012). Diversity of Frugivorous birds and Ecology of Brown Hornbill *Anorrhinus tickelli* (Blyth) and Yellow-legged Green-pigeon *Treron phoenicoptera* (Latham) in Jeypore Reserve Forest, Assam. PhD Thesis. Department of Zoology, Guwahati University, 184 pp.

Devi, O.S. & P.K. Saikia (2012). Nest-site characteristics of Yellow-legged Green-Pigeon, *Treron phoenicoptera* in a tropical evergreen forest patches of eastern Assam, India. *The Bioscan* 7(2): 277–282.

Gokula, V. (2001). Nesting ecology of the Spotted Munia *Lonchura punctulata* in Mudumalai Wildlife Sanctuary (Southern India). *Acta Ornithologica* 36(1): 1–5.

Grimmett, R., C. Inskip & T. Inskip (2016). *Birds of the Indian Subcontinent*. Oxford University Press, New Delhi, 556 pp.

James, F.C. & H.H. Shugart (1970). A quantitative method of habitat description. *Audubon Field Notes* 24: 727–736.

Khan, I. (1992). Distribution and crop raiding behaviour of Nilgai in western U.P. in the village of Aligarh district. M.Phil. Dissertation. Aligarh Muslim University, Aligarh, 81 pp.

Khan, K.A. (2014). Current status and distribution of Nilgai in Aligarh District. M.Phil. Dissertation. Aligarh Muslim University, Aligarh, 89 pp.

Kour, D.N. (2016). Ecobiology of some species of Columbiformes from Jammu. PhD Thesis. University of Jammu, Jammu, 976 pp.

Image 3. Nesting behavior of *Treron phoenicopterus* in the study area: a—Breeding pair | b—Nest building activity | c—Incubation activity | d—Nest exchange behavior of breeding pair | e—One of the parents with nestling | f—Feeding the nestling | g—One of the parents with the fledgling | h—built their nest nearby the nest of *Dicrurus macrocercus*. © Ayesha Mohammad Maslehuddin.

Liebezeit, J.R. & T.L. George (2002). Nest predators, nest-site selection, and nesting success of the Dusky Flycatcher in a managed ponderosa pine forest. *The Condor* 104(3): 507–517.

MacKenzie, D.I. & S.G. Sealy (1981). Nest site selection in eastern and western kingbirds: a multivariate approach. *The Condor* 83(4): 310–321.

McConkey, K.R. & D.R. Drake (2002). Extinct pigeons and declining bat populations: are large seeds still being dispersed in the tropical Pacific? pp. 381–395. In: Seed dispersal and frugivory: ecology, evolution and conservation. Third International Symposium-Workshop on Frugivores and Seed Dispersal, São Pedro, Brazil, 6–11 August 2000.

McConkey, K.R., H.J. Meehan & D.R. Drake (2004). Seed dispersal by Pacific Pigeons (*Ducula pacifica*) in Tonga, Western Polynesia. *Emu* 104: 369–376.

Meehan, H.J., K.R. McConkey & D.R. Drake (2005). Early fate of *Myristica hypargyraea* seeds dispersed by *Ducula pacifica* in Tonga, Western Polynesia. *Austral Ecology* 30(4): 374–382.

Mudappa, D.C. & R. Kannan (1997). Nest-site characteristics and nesting success of the Malabar Gray Hornbill in the southern Western Ghats, India. *The Wilson Bulletin* 109(1): 102–111.

Owens, I.P. & P.M. Bennett (2000). Ecological basis of extinction risk in birds: habitat loss versus human persecution and introduced predators. *Proceedings of the National Academy of Sciences* 97(22): 12144–12148.

Qureshi, M.Q. (1991). Population status and movement of nilgai around the village Ghursikaran near Aligarh University. M.Phil. Dissertation. Aligarh Muslim University, Aligarh, 72 pp.

Sieg, C.H. & D.M. Becker (1990). Nest-site habitat selected by Merlins in southeastern Montana. *The Condor* 92(3): 688–694.

Somasundaram, S. (2006). Status and Ecology of the Nilgiri Wood Pigeon in the Western Ghats. PhD Thesis. Bharathiar University, Coimbatore, 157 pp.

Thornton, I.W., S.G. Compton & C.N. Wilson (1996). The role of animals in the colonization of the Krakatau Islands by fig trees (*Ficus* species). *Journal of Biogeography* 23(4): 577–592.

Walker, J. (2007). Geographical patterns of threat among pigeons and doves (Columbidae). *Oryx* 41(3): 289–299. <https://doi.org/10.1017/S0030605307001016>

Yasmin, S. (1995). Ecology and Biology of the Indian Peafowl, *Pavo cristatus* in the Aligarh region. PhD Thesis. Aligarh Muslim University, Aligarh, 129 pp.

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.

Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK

Dr. George Mathew, Kerala Forest Research Institute, Peechi, India

Dr. John Noyes, Natural History Museum, London, UK

Dr. Albert G. Orr, Griffith University, Nathan, Australia

Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium

Dr. Nancy van der Poorten, Toronto, Canada

Dr. Karen Schnabel, NIWA, Wellington, New Zealand

Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India

Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India

Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India

Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India

Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India

Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain

Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong

Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India

Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait

Dr. Himender Bharti, Punjabi University, Punjab, India

Mr. Purnendu Roy, London, UK

Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan

Dr. Sanjay Sondi, TITLI TRUST, Kalpavriksh, Dehradun, India

Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam

Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India

Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore

Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.

Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India

Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil

Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany

Dr. James M. Carpenter, American Museum of Natural History, New York, USA

Dr. David M. Claborn, Missouri State University, Springfield, USA

Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand

Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil

Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India

Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia

Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia

Dr. Siddharth Kulkarni, The George Washington University, Washington, USA

Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India

Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia

Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia

Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.

Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan

Dr. Keith V. Wolfe, Antioch, California, USA

Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA

Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic

Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway

Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India

Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India

Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México

Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore

Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India

Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK

Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India

Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia

Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India

Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research

Centre, Mumbai, Maharashtra, India

Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India

Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India

Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany

Dr. Raju Vyas, Vadodara, Gujarat, India

Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.

Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey

Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India

Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India

Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zootaxa, and Biological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia

Mr. H. Byju, Coimbatore, Tamil Nadu, India

Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK

Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India

Dr. J.W. Duckworth, IUCN SSC, Bath, UK

Dr. Rajah Jayapal, SACON, Coimbatore, Tamil Nadu, India

Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India

Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India

Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India

Mr. J. Praveen, Bengaluru, India

Dr. C. Srinivasulu, Osmania University, Hyderabad, India

Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA

Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia

Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel

Dr. Taej Munduk, Wetlands International, Wageningen, The Netherlands

Dr. Carol Inskip, Bishop Auckland Co., Durham, UK

Dr. Tim Inskip, Bishop Auckland Co., Durham, UK

Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India

Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia

Dr. Simon Dowell, Science Director, Chester Zoo, UK

Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal

Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA

Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy

Dr. Anwaruddin Chowdhury, Guwahati, India

Dr. David Mallon, Zoological Society of London, UK

Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India

Dr. Angie Appel, Wild Cat Network, Germany

Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India

Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK

Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA

Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.

Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India

Dr. Mewa Singh, Mysore University, Mysore, India

Dr. Paul Racey, University of Exeter, Devon, UK

Dr. Honnavalli N. Kumar, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India

Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India

Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy

Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India

Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India

Dr. Paul Bates, Harison Institute, Kent, UK

Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA

Dr. Dan Challender, University of Kent, Canterbury, UK

Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK

Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA

Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India

Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal

Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraja, Indonesia

Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)

Dr. Manda S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)

Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)

Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)

Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)

Dr. Rayanna Hellenn Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil

Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand

Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa

Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India

Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India

Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India

Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka

Dr. Bahar Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2020–2022

Due to paucity of space, the list of reviewers for 2018–2020 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:

The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org

OPEN ACCESS

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under [Creative Commons Attribution 4.0 International License](#) unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

www.threatenedtaxa.org

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

August 2023 | Vol. 15 | No. 8 | Pages: 23631–23826

Date of Publication: 26 August 2023 (Online & Print)

DOI: 10.11609/jott.2023.15.8.23631-23836

Articles

Group densities of endangered small apes (Hylobatidae) in two adjacent forest reserves in Merapoh, Pahang, Malaysia

– Adilah Suhailin Kamaruzaman, Nurul Iza Adriana Mohd Rameli, Susan Lappan, Thad Quincy Bartlett, Nik Rosely Nik Fadzly, Mohd Sah Shahru Anuar & Nadine Ruppert, Pp. 23631–23640

Population demography of the Blackbuck *Antilope cervicapra* (Cetartiodactyla: Bovidae) at Point Calimere Wildlife Sanctuary, India

– Subhasish Arandhara, Selvaraj Sathishkumar, Sourav Gupta & Nagarajan Baskaran, Pp. 23641–23652

Communications

Camera trap surveys reveal a wildlife haven: mammal communities in a tropical forest adjacent to a coal mining landscape in India

– Nimaan Charan Palei, Bhakta Padarbinda Rath, Himanshu Shekhar Palei & Arun Kumar Mishra, Pp. 23653–23661

Observations of Gray Fox *Urocyon cinereoargenteus* (Schreber, 1775) (Mammalia: Carnivora: Canidae) denning behavior in New Hampshire, USA

– Maximilian L. Allen & Jacob P. Kritzer, Pp. 23662–23668

Historical and contemporary perpetuation of assumed occurrence reports of two species of bats in Rajasthan, India

– Dharmendra Khandal, Ishan Dhar & Shyamkant S. Talmale, Pp. 23669–23674

Preference of *Helopsaltes pleskei* (Taczanowski, 1890) (Aves: Passeriformes: Locustellidae) on uninhabited islets (Chengdo, Jikgudo, and Heukgeomdo) in South Korea as breeding sites

– Young-Hun Jeong, Sung-Hwan Choi, Seon-Mi Park, Jun-Won Lee & Hong-Shik Oh, Pp. 23675–23680

Avifaunal diversity of Tsirang District with a new country record for Bhutan

– Gyeltshen, Sangay Chhophel, Karma Wangda, Kinley, Tshering Penjor & Karma Dorji, Pp. 23681–23695

Importance of conserving a critical wintering ground for shorebirds in the Valinokkam Lagoon—a first study of the avifaunal distribution of the southeastern coast of India

– H. Byju, N. Raveendran, S. Ravichandran & R. Kishore, Pp. 23696–23709

Diversity and conservation status of avifauna in the Surguja region, Chhattisgarh, India

– A.M.K. Bharos, Anurag Vishwakarma, Akhilesh Bharos & Ravi Naidu, Pp. 23710–23728

Seasonal variation and habitat role in distribution and activity patterns of Red-wattled Lapwing *Vanellus indicus* (Boddaert, 1783) (Aves: Charadriiformes: Charadriidae) in Udaipur, Rajasthan, India

– Sahil Gupta & Kanan Saxena, Pp. 23729–23741

Notes on nesting behavior of Yellow-footed Green Pigeon *Treron phoenicopterus* (Latham, 1790) in Aligarh Muslim University campus and its surroundings, Uttar Pradesh, India

– Ayesha Mohammad Maslehuddin & Satish Kumar, Pp. 23742–23749

Observations on cooperative fishing, use of bait for hunting, propensity for marigold flowers and sentient behaviour in Mugger Crocodiles *Crocodylus palustris* (Lesson, 1831) of river Savitri at Mahad, Maharashtra, India
– Utkarsha M. Chavan & Manoj R. Borkar, Pp. 23750–23762

Communal egg-laying by the Frontier Bow-fingered Gecko *Altiphylax stoliczkai* (Steindachner, 1867) in Ladakh, India
– Dimpi A. Patel, Chinnasamy Ramesh, Sunetro Ghosal & Pankaj Raina, Pp. 23763–23770

Description of a new species of the genus *Anthaxia* (Haplanthaxia Reitter, 1911) from India with molecular barcoding and phylogenetic analysis
– S. Seena, P.P. Anand & Y. Shibu Vardhanan, Pp. 23771–23777

Odonata diversity in the Egra and its adjoining blocks of Purba Medinipur District, West Bengal, India
– Tarak Samanta, Asim Giri, Lina Chatterjee & Arjan Basu Roy, Pp. 23778–23785

Morpho-anatomy and habitat characteristics of *Xanthostemon verdugonianus* Náves ex Fern.-Vill. (Myrtaceae), a threatened and endemic species in the Philippines
– Jess H. Jumawan, Arlyn Jane M. Sinogbuhan, Angie A. Abucayon & Princess Ansie T. Taperla, Pp. 23786–23798

The epiphytic pteridophyte flora of Cooch Behar District of West Bengal, India, and its ethnomedicinal value
– Aninda Mandal, Pp. 23799–23804

Seed germination and storage conditions of *Ilex embeloides* Hook.f. (Magnoliopsida: Aquifoliaceae), a threatened northeastern Indian species
– Leoris Malngiang, Krishna Upadhyaya & Hiranjit Choudhury, Pp. 23805–23811

Short Communications

Mantispa indica Westwood, 1852 (Neuroptera: Mantispidae), a rare species with some morphological notes from Assam, India
– Kushal Choudhury, Pp. 23812–23816

Notes

Auto-fellatio behaviour observed in the Indian Palm Squirrel *Funambulus palmarum* (Linnaeus, 1766)
– Anbazhagan Abinesh, C.S. Vishnu & Chinnasamy Ramesh, Pp. 23817–23818

A novel anti-predatory mechanism in *Indrella ampulla* (Gastropoda: Ariophantidae)
– Karunakar Majhi, Maitreya Sil & Aniruddha Datta-Roy, Pp. 23819–23821

Hedychium coccineum Buch.-Ham. ex Sm. (Zingiberaceae): an addition to the flora of Andhra Pradesh, India
– P. Janaki Rao, J. Prakasa Rao & S.B. Padal, Pp. 23822–23826

Publisher & Host

