

Building evidence for conservation globally

Journal of Threatened TAXA

10.11609/jott.2024.16.12.26187-26330

www.threatenedtaxa.org

26 December 2024 (Online & Print)

16(12): 26187-26330

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Open Access

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Deputy Chief Editor

Dr. Neelesh Dahanukar

Noida, Uttar Pradesh, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Editorial Board

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalia PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors

Mrs. Mira Bhojwani, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhu Stothra Bhashyam**, Hyderabad, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting

Mrs. Radhika, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India

Fundraising/Communications

Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2021–2023

Fungi

Dr. B. Shivaraju, Bengaluru, Karnataka, India

Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India

Dr. Vatsavaya S. Raju, Kakatiya University, Warangal, Andhra Pradesh, India

Dr. M. Krishnappa, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India

Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India

Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India

Dr. Kiran Ramchandra Ranadive, Annasaheb Magar Mahavidyalaya, Maharashtra, India

Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India

Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India

Dr. Shonil Bhagwat, Open University and University of Oxford, UK

Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India

Dr. Ferdinand Boero, Università del Salento, Lecce, Italy

Dr. Dale R. Calder, Royal Ontario Museum, Toronto, Ontario, Canada

Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines

Dr. F.B. Vincent Florens, University of Mauritius, Mauritius

Dr. Merlin Franco, Curtin University, Malaysia

Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India

Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India

Dr. Pankaj Kumar, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA

Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India

Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Vijayasankar Raman, University of Mississippi, USA

Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantapur, India

Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India

Dr. Aparna Watve, Pune, Maharashtra, India

Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China

Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia

Dr. M.K. Vasudeva Rao, Shiv Ranjan Housing Society, Pune, Maharashtra, India

Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Manda Datar, Agharkar Research Institute, Pune, Maharashtra, India

Dr. M.K. Janarthanam, Goa University, Goa, India

Dr. K. Karthigeyan, Botanical Survey of India, India

Dr. Errol Vela, University of Montpellier, Montpellier, France

Dr. P. Lakshminarasiham, Botanical Survey of India, Howrah, India

Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA

Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India

Dr. Analinda Manila-Fajard, University of the Philippines Los Banos, Laguna, Philippines

Dr. P.A. Siru, Central University of Kerala, Kasaragod, Kerala, India

Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India

Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India

Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA

Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India

Dr. A.G. Pandurangan, Thiruvananthapuram, Kerala, India

Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India

Dr. Kannan C.S. Warrier, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India

Dr. D.B. Bastawade, Maharashtra, India

Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India

Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India

Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa

Dr. Rory Dow, National Museum of natural History Naturalis, The Netherlands

Dr. Brian Fisher, California Academy of Sciences, USA

Dr. Richard Gallon, Llandudno, North Wales, LL30 1UP

Dr. Hemant V. Ghate, Modern College, Pune, India

Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Life and death in one night - wolf hunting the hare. Mixed media—gouache, acrylics, pen & colour pencils. © Dupati Poojitha.

A preliminary study of odonate fauna in the high ranges of Munnar, southern Western Ghats, India

T.S. Krishnanunni¹ , Nazar Neha² , R. Arya³ & P.O. Nameer

^{1,2,3,4}College of Forestry, Kerala Agricultural University, Thrissur, Kerala 680656, India.

¹tskrishnanunni@gmail.com, ²neh.nazpkm@gmail.com, ³aryaa.anilr@gmail.com, ⁴nameer.po@kau.in (corresponding author)

Abstract: A study was conducted at Munnar Forest Division Idukki District, Kerala, the southern Western Ghats, to assess the diversity of odonates. Around 44 species of odonates, which include 29 species of Anisoptera (dragonflies) and 15 species of Zygoptera (damselflies). The odonate diversity of Munnar Forest Division accounted for 24.72 % of the odonates in Kerala and 22.45 % of the odonates of the Western Ghats. The study highlights the importance of biodiversity documentation at high altitudes in the Western Ghats.

Keywords: Anisoptera, biodiversity, ecosystem, endemic, Idukki District, Kerala, Odonata, pre-monsoon, Zygoptera.

Malayalam: പശ്ചിമഘട്ടമലനിരകളുടെ ഭാഗമായ ഇടുക്കി ജില്ലയിലെ മുന്നാർ ഹോറ്റു ഡിവിഷൻിൽ തുമികളുടെ വൈവിധ്യം വിലയിരുത്തുന്നതിനായി ഒരു പഠനം നടത്തുകയുണ്ടായി. 44 വിവിധയിനം തുമികളെ ഇവ പഠനത്തിന്റെ ഭാഗമായി കണക്കത്തുകയുണ്ടായി. അതിൽ 29 ഇനം കല്ലൻതുമികളുടെ (അനിസോപ്പോറ) വിഭാഗത്തിലും 15 ഇനം സുചിത്തുമികളുടെ (ബൈസോപ്പോറ) വിഭാഗത്തിലും ഉൾപ്പെടുന്നു. മുന്നാർ വനം ഡിവിഷൻിൽ കേരളത്തിലെ മൊത്തം തുമിവൈവിധ്യത്തിന്റെ 24.72%, പശ്ചിമഘട്ടത്തിലെ മൊത്തം തുമിവൈവിധ്യത്തിന്റെ 22.45% കാണപ്പെടുന്നു. കേരളത്തിലെ തുമികളുടെ സംരക്ഷണവുമായി ബന്ധപ്പെട്ട പ്രാധാന്യമർഹിക്കുന്ന ഒരു മേഖലയാണ് മുന്നാർ എന്ന് ഇവ പഠനം സൂചിപ്പിക്കുന്നത്.

Editor: Ashish D. Tiple, Dr. R.G. Bhowar Arts, Commerce and Science College, Wardha, India.

Date of publication: 26 December 2024 (online & print)

Citation: Krishnanunni, T.S., Nazar Neha, R. Arya & P.O. Nameer (2024). A preliminary study of odonate fauna in the high ranges of Munnar, southern Western Ghats, India. *Journal of Threatened Taxa* 16(12): 26240-26250. <https://doi.org/10.11609/jott.8366.16.12.26240-26250>

Copyright: © Krishnanunni et al. 2024. Creative Commons Attribution 4.0 International License. JOTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: We would like to express our profound appreciation to the GoI GEF UNDP IHRML Project for its logistical, financial, and technical assistance during the project.

Competing interests: The authors declare no competing interests.

Author details: KRISHNANUNNI, T.S.—Erasmus Mundus scholar, currently pursuing master of science in European Forestry at the University of Natural Resources and Life Sciences (BOKU) Vienna, Austria. His research interest is broadened on remote sensing and GIS topics, spatial statistics, qualitative research and forest inventory and modelling, preparing for a career in research or academia. NEHA NAZAR—master's student in Forest Ecology and Management at the University of Alberta, Canada, supported by a Graduate Research Assistantship Fellowship. Her research focuses on understanding forest ecosystem dynamics, with a specific interest in coarse woody debris characteristics in post-fire and post-harvest remnants. ARYA, R.—completed her graduation from the College of Forestry, Kerala Agricultural University, Thrissur, Kerala and post-graduation in Forestry from College of Forestry, KSNUADS, Shimoga, Karnataka. NAMEER P.O.—professor and head of the Department of Wildlife Sciences at Kerala Agricultural University, south India. His basic training is in forest ecology and ornithology. But works extensively on mammals, including bats. His current work includes biodiversity documentation of the Western Ghats, the study of the impact of climate change on the different taxa, citizen science, etc.

Author contributions: TSK—fieldwork, analysis and manuscript preparation. NN—fieldwork and analysis. AR—fieldwork and analysis. PON—principal supervisor throughout the project work and guidance during manuscript preparation.

Acknowledgements: We would like to express our profound appreciation to the GoI GEF UNDP IHRML Project for its logistical, financial, and technical assistance during the project. We thank the then Munnar DFO, Mr. Raju Francis IFS and other officers of the Munnar FD. We thank the dean, College of Forestry, Kerala Agricultural University for the encouragement and support. We wish to extend our gratitude to the professors in the Department of Wildlife Science, KAU and Abin M. Sunil and Sreehari K. Mohan, the research scholars, for their support.

INTRODUCTION

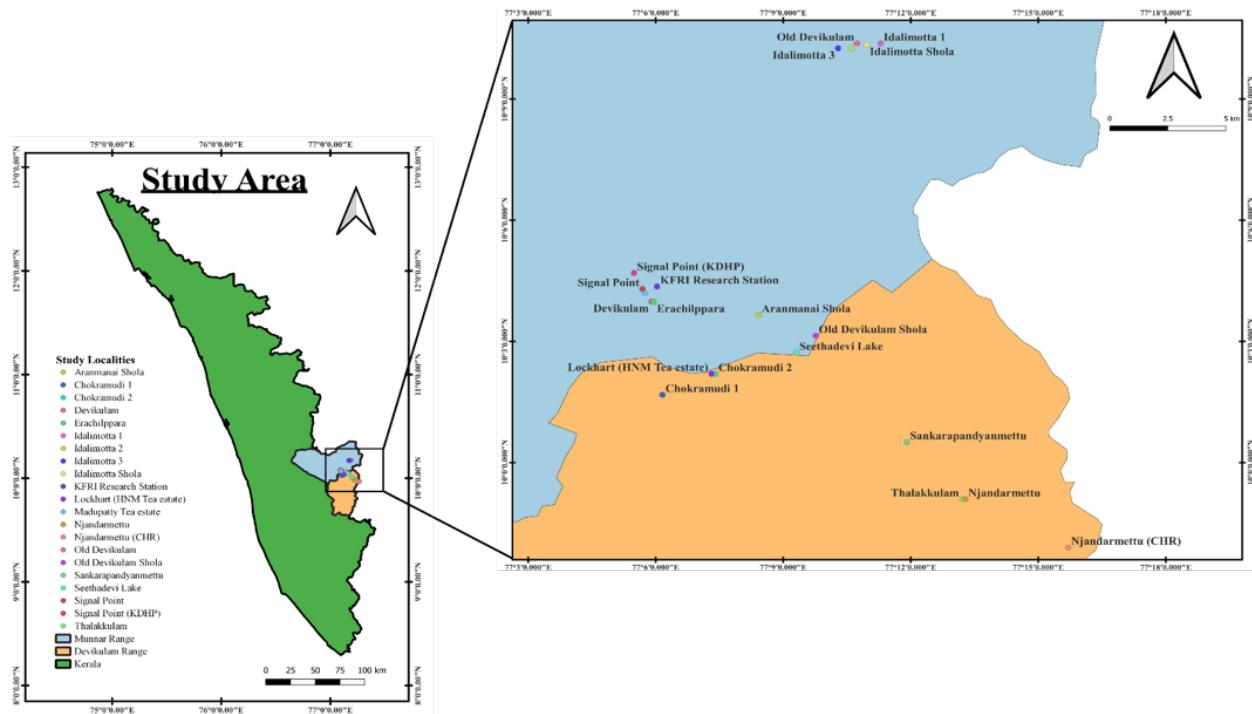
The order Odonata is one of the fascinating groups of winged insects which comprises both dragonflies and damselflies (Grimaldi & Engel 2005). They act as an important top predator at both larval and adult stages and hence form an important tool for various types of assessments and monitoring, such as measures of biodiversity, wetland health, integrity, and the biological impact of climate change. There are over 6,376 odonate species known worldwide (Paulson et al. 2022), 493 in India, 196 in the Western Ghats (Subramanian & Babu 2020), and 178 in Kerala (Chandran et al. 2022; Society for Odonate Studies 2022). The 178 species of odonates of Kerala belong to 87 genera in two suborders and 14 families (Chandran et al. 2022; Society for Odonate Studies 2022), and 68 species are endemic to the Western Ghats.

Studies on odonates of the Western Ghats are far and in between. These include the studies by Mathavan & Miller (1989) who reported 36 species of odonates from Periyar Tiger Reserve, Idukki District, Kerala; 29 species of odonates were recorded from Silent Valley and New Amarambalam Reserved Forests in Kerala by Rao & Lahiri (1982), Emiliyamma & Radhakrishnan (2000), recorded 25 species of odonates from Parambikulam Wildlife Sanctuary, Palakkad dt. Kerala, Adarsh et al. (2015) recorded 48 species of odonates from Chinnar Wildlife Sanctuary, Idukki District, Kerala and Sadasivan et al. (2022) recorded 116 species of odonates from Shendurney Wildlife Sanctuary, Kollam District, Kerala. The present paper summarises the findings of odonates from Munnar Forest Division conducted during the pre-monsoon months: February to May 2022.

STUDY AREA

The Munnar Forest Division is located in the high ranges of the southern Western Ghats. It consists of four ranges, namely Munnar Range, Devikulam Range, Adimaly Range, and Neriamangalam Range with a total area of 892.707 km². The study focused on the hilly regions (>1100 m) of the Munnar Forest Division, which majorly included the Munnar and Devikulam Ranges. The study area is located between 10.067–10.167 °N & 77.083–77.167 °E (Figure 1). The details of the study localities are given in Table 1.

The topography of the study area is hilly with undulating terrain. The altitude varies from 33 m near Palamattom on the bank of the river Periyar in the Neriamangalam Range to Anamudi (2,695 m) in the Munnar Range. The average annual rainfall of the region


is about 3,000 mm, and it receives both southwestern and northeastern monsoons. Temperatures range 6–35 °C, and the climate is more or less temperate in high-altitude areas. The air is highly humid throughout the year, and the relative humidity is about 80 % and above (Kerala Forest and Wildlife Department 2011).

The Munnar Forest Division consists of different habitat types, which include, west coast tropical evergreen forest, west coast semi-evergreen forest, southern moist mixed deciduous forest, southern montane wet grasslands, the southern montane wet temperate forest along with tea plantations, eucalyptus plantations, cardamom hill reserves, and wattle plantations (Kerala Forest and Wildlife Department 2011).

METHODS

The study was carried out in the pre-monsoon months from February 2022 to May 2022 at selected high-altitude sites (above 1,100 m) in the Munnar Forest Division. The field was categorized into seven habitats, and three sites were randomly selected from each habitat for surveying (21 sites in total). The habitats include grassland, eucalyptus plantation, shola forest (southern montane wet temperate forest), wattle plantations, pond and riverine ecosystem, Cardamom Hill Reserve (evergreen), and tea plantation. A single field visit was made to each of the three sites in each of the seven habitats between 0900 and 1300 h when odonate activity was at its peak. The belt transect method (Kulkarni et al. 2013) was done to document odonates and a 500 m transect line having a width of 10 m was taken on each site. The transect and the coordinates were taken using a mobile application called 'Geotracker' (<https://geo-tracker.org/>).

Collection and killing were avoided for species identification. Observed odonates were photo-documented using a Nikon COOLPIX P900 and a Nikon D5600 DSLR camera with a 70–300 mm lens. Most of the species were identified on the spot by close observation and later confirmed using taxonomic monographs of Fraser (1933, 1934, 1936) and field guides (Subramanian 2009; Kiran & Raju 2013). The taxonomy and nomenclature that have been used are as per Kalkman et al. (2020). The odonates observed during the study period were categorized into five groups based on their relative abundance. Accordingly, those species which were sighted 80–100 % of the survey days were categorized as very common (VC), 60–79 % as common (C), 40–59 % as occasional (O), 20–39 % as rare (R), and

Figure 1. Study locations from the present survey.

HNM Tea estate—Harrisons Malayalam Tea estate | CHR—Cardamom Hill Reserve | KDHP—Kannan Devan Hills Plantation.

very rare (VR) for those that were sighted less than 20% of the field days. The species richness and abundance were recorded and Simpson & Shannon diversity indices and evenness values were also calculated using PAST software.

RESULTS AND DISCUSSION

The study has encompassed 44 species of odonates, which include 29 species of Anisoptera (Dragonflies) and 15 species of Zygoptera (Damselflies) spread across eight families (Table 2). The family Libellulidae was the most dominant in Anisoptera with 24 species, followed by Aeshnidae (3), Macromiidae (1), and Gomphidae (1). Among Zygoptera, Coenagrionidae (9) was the dominant family, followed by Lestidae (3), Platycnemididae (2), and Chlorocyphidae (1). Family-wise species richness of odonates (both Anisoptera and Zygoptera) along with their relative abundance is given in Figure 2.

The distribution of odonates in the study area was classified into seven different habitat types. Habitat-wise distribution and species diversity of odonates in the Munnar Forest Division are given in Table 3. Maximum species richness was observed in the pond and riverine ecosystem (26 species), followed by

eucalyptus plantation (17 species), Cardamom Hill Reserve (11 species), wattle infested areas (8), grassland (6 species), shola forest (6 species), and tea plantation (5). The species abundance was maximum in the pond and riverine ecosystem and minimum in the shola forest.

The Simpson & Shannon diversity indices and evenness values of the seven habitats were calculated (Table 4). In this study, the value of the Gini Simpson's index ranged 0.794–0.932 in different habitats. The Simpson index showed the maximum value for the pond and riverine ecosystem (0.932) and the minimum value for grassland (0.794). Hence, species diversity is high in pond and riverine ecosystem habitats. The value of the Shannon Weiner index for different habitats range 1.47–2.87, with the maximum value shown by pond and riverine ecosystem and the minimum by tea plantation. As a result, pond and riverine ecosystems have the highest species richness and evenness.

Out of the 44 species recorded, four of the odonate species are endemic, two to the Western Ghats, one to peninsular India, and one to India. *Esme cyaneovittata* and *Esme mudiensis* are endemic to the Western Ghats, *Heliocypha bisignata* is endemic to peninsular India and *Hylaeothemis apicalis* is endemic to India. There are 196 species of odonates in the Western Ghats and 178 species of odonates in Kerala. Considering the total

Table 1. Details of the study localities at Munnar Forest Division.

	Habitat	Coordinates	Altitude (m)	Weather	Temperature (°C)	Humidity (%)
1	Grassland a) Chokramudi 1 b) Old Devikulam 2 c) Chokramudi 2	10.028 °N & 77.102 °E 10.173 °N & 77.179 °E 10.036 °N & 77.123 °E	1,736 1,788 1,736	Sunny Sunny Sunny	25 23 25	48 47 48
		10.067 °N & 77.098 °E 10.072 °N & 77.100 °E 10.071 °N & 77.095 °E	1,615 1,594 1,522	Cloudy Partly Cloudy Sunny	24 22 24	68 63 47
		10.061 °N & 77.140 °E 10.052 °N & 77.163 °E 10.172 °N & 77.183 °E	1,676 1,801 2,239	Sunny Sunny Cloudy	22 23 19	51 47 68
4	Wattle infested area a) Idalimotta 1 b) Idalimotta 2 c) Idalimotta 3	10.173 °N & 77.188 °E 10.171 °N & 77.177 °E 10.171 °N & 77.171 °E	2,190 2,372 2,387	Cloudy Cloudy Cloudy	17 17 17	95 95 95
		10.066 °N & 77.099 °E 10.045 °N & 77.155 °E 9.965 °N & 77.261 °E	1,615 1,762 1,143	Partly cloudy Sunny Cloudy	21 24 22	72 42 81
		9.985 °N & 77.220 °E 9.985 °N & 77.221 °E 10.008 °N & 77.199 °E	1,254 1,143 1,249	Cloudy Cloudy Cloudy	22 24 23	81 75 75
7	Tea plantation a) Signal Point (KDHP) b) Lockhart (HNM Tea estate) c) Madupatty Tea estate	10.078 °N & 77.091 °E 10.036 °N & 77.122 °E 10.069 °N & 77.096 °E	1,537 1,518 1,630	Partly Cloudy Sunny Cloudy	23 22 24	63 66 68

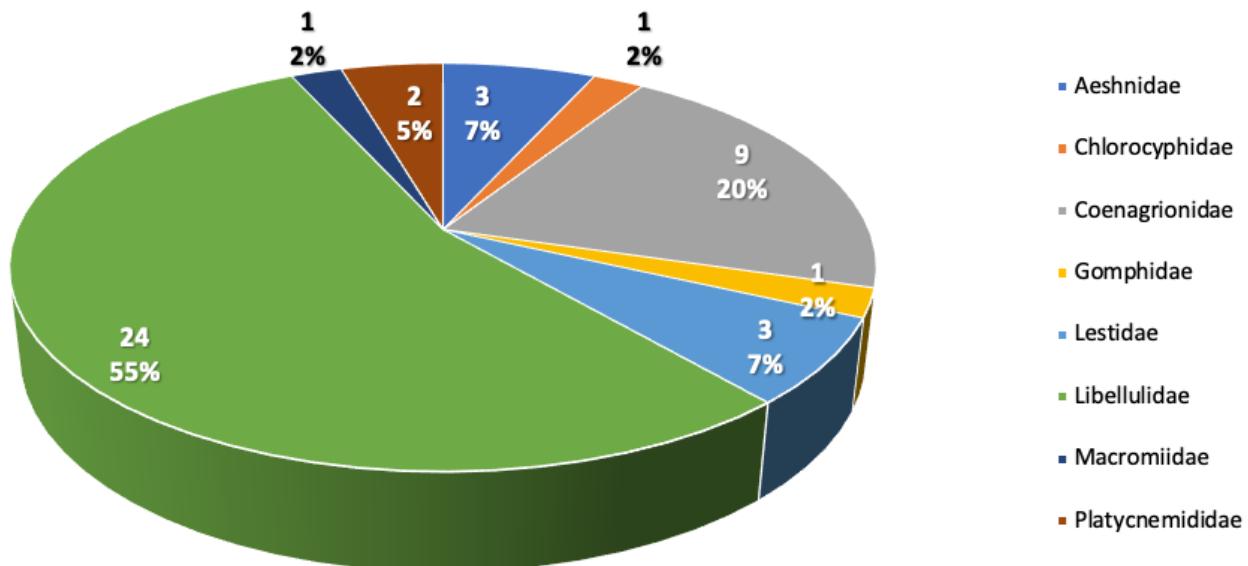


Figure 2. Family-wise species richness and relative abundance of odonates in Munnar Forest Division.

number of species of Odonates in Kerala, the present study accounted for 24.72 % of the odonates in Kerala and 22.45 % of the odonates of the Western Ghats. None of the odonate species from the region is protected under the Indian Wildlife Protection Act (WPA) of 1972. According to the IUCN Red List 2022, one species is staged under the 'Not Evaluated' category, four species

under the 'Data Deficient' category, and the remaining 39 species are staged under the 'Least Concern' category, which implies that none of the species from the present study is listed as a threatened species.

Due to their amphibious life history, relatively short generation time, high trophic position, and diversity, the order Odonata is considered an important component

Table 2. Checklist of odonates recorded from the study habitats of Munnar Forest Division, Idukki, Kerala, southern Western Ghats.

	Family/Scientific name	Endemicity	IUCN status	Abundance	Study habitats
A.	Zygoptera (Damselflies)				
	Coenagrionidae				
1	<i>Aciagrion approximans krishna</i> Fraser, 1921		LC	R	P, C
2	<i>Aciagrion occidentale</i> Laidlaw, 1919		LC	O	E, P, C
3	<i>Agriocnemis pieris</i> Laidlaw, 1919		LC	R	E, W
4	<i>Agriocnemis pygmaea</i> (Rambur, 1842)		LC	VR	P
5	<i>Ceriagrion coromandelianum</i> (Fabricius, 1798)		LC	VR	P
6	<i>Ischnura rubilio</i> Selys, 1876		NE	VR	P
7	<i>Ischnura senegalensis</i> (Rambur, 1842)		LC	R	G, P
8	<i>Pseudagrion microcephalum</i> (Rambur, 1842)		LC	VR	P
9	<i>Pseudagrion rubriceps</i> Selys, 1876		LC	VR	P
	Platycnemididae				
10	<i>Esme cyaneovittata</i> Fraser, 1922	EN WG	DD	VR	S
11	<i>Esme mudiensis</i> Fraser, 1931	EN WG	DD	VR	S
	Chlorocyphidae				
12	<i>Heliocypha bisignata</i> (Hagen in Selys, 1853)	EN P	LC	VR	S
	Lestidae				
13	<i>Indolestes gracilis davenporti</i> (Fraser, 1930)		LC	VC	G, E, W, P, C, T
14	<i>Lestes dorothaea</i> Fraser, 1924		LC	VR	P
15	<i>Lestes elatus</i> Hagen in Selys, 1862		LC	VR	P
B.	Anisoptera (Dragonflies)				
	Aeshnidae				
16	<i>Anaciaeschna martini</i> (Selys, 1897)		LC	VR	P
17	<i>Anax immaculifrons</i> Rambur, 1842		LC	VR	P
18	<i>Gynacantha dravida</i> Lieftinck, 1960		DD	VR	E
	Libellulidae				
19	<i>Acisoma panorpoides</i> Rambur, 1842		LC	R	E, T
20	<i>Brachydiplax chalybea</i> Brauer, 1868		LC	VR	P
21	<i>Brachydiplax sobrina</i> (Rambur, 1842)		LC	O	E, S, W, P
22	<i>Brachythemis contaminata</i> (Fabricius, 1793)		LC	R	E, P
23	<i>Bradinopyga geminata</i> (Rambur, 1842)		LC	O	G, E, T
24	<i>Crocothemis servilia</i> (Drury, 1770)		LC	O	G, E, W, C
25	<i>Diplacodes trivialis</i> (Rambur, 1842)		LC	O	E, W, T
26	<i>Hylaeothemis apicalis</i> Fraser, 1924	EN I	DD	R	P, C
27	<i>Orthetrum chrysis</i> (Selys, 1892)		LC	O	E, W, P, C
28	<i>Orthetrum glaucum</i> (Brauer, 1865)		LC	VR	C
29	<i>Orthetrum luzonicum</i> (Brauer, 1868)		LC	R	G, C
30	<i>Orthetrum pruinosum</i> (Burmeister, 1839)		LC	O	E, P, T
31	<i>Orthetrum sabina</i> (Drury, 1770)		LC	VR	P
32	<i>Orthetrum triangulare</i> (Selys, 1878)		LC	R	W, C
33	<i>Palpopleura sexmaculata</i> (Fabricius, 1787)		LC	VR	E
34	<i>Pantala flavescens</i> (Fabricius, 1798)		LC	R	G, W
35	<i>Rhodothemis rufa</i> (Rambur, 1842)		LC	VR	P
36	<i>Sympetrum fonscolombii</i> (Selys, 1840)		LC	VR	S

	Family/Scientific name	Endemicity	IUCN status	Abundance	Study habitats
37	<i>Tetrathemis platyptera</i> Selys, 1878		LC	O	E, P, C
38	<i>Tramea limbata</i> (Rambur, 1842)		LC	VR	P
39	<i>Trithemis aurora</i> (Burmeister, 1839)		LC	VR	E
40	<i>Trithemis festiva</i> (Rambur, 1842)		LC	VR	E
41	<i>Urothemis signata</i> (Rambur, 1842)		LC	VR	P
42	<i>Zyxomma petiolatum</i> Rambur, 184		LC	R	E, P
	Macromiidae				
43	<i>Epophthalmia vittata</i> Burmeister, 1839		LC	VR	C
	Gomphidae				
44	<i>Ictinogomphus rapax</i> (Rambur, 1842)		LC	R	S, P

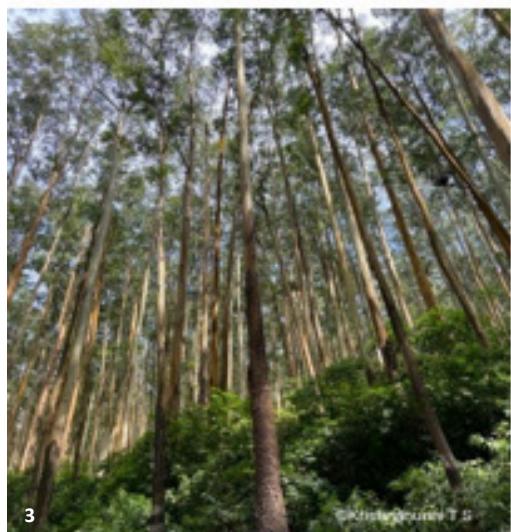
Legend: EN W—Endemic to Western Ghats | EN P—Endemic to Peninsular India | EN I—Endemic to India.

LC—Least Concern | DD—Data Deficient | NE—Not Evaluated.

G—Grassland | E—Eucalyptus Plantation | S—Shola Forest | W—Wattle Plantation | P—Pond and Riverine Ecosystem | C—Cardamom Hill Reserve | T—Tea Plantation.

Table 3. Habitat-wise distribution of odonates at Munnar Forest Division.

Habitat	Aeshnidae	Chlorocyphidae	Coenagrionidae	Gomphidae	Lestidae	Libellulidae	Macromiidae	Platycnemididae
Grassland	0	0	2	0	7	8	0	0
Eucalyptus Plantation	1	0	6	0	7	23	0	0
Shola Forest	0	2	0	1	0	2	0	3
Wattle Plantation	0	0	2	0	5	9	0	0
Pond and Riverine Ecosystem	2	0	25	1	17	25	0	0
Cardamom Hill Reserve	0	0	7	0	4	15	1	0
Tea Plantation	0	0	0	0	4	7	0	0


Table 4. Species richness and diversity of odonates in high ranges of Munnar Forest division.

Habitats	Grassland	Eucalyptus plantation	Shola forest	Wattle plantation	Pond and riverine Ecosystem	Cardamom Hill Reserve	Tea plantation
Species richness	6	17	6	8	26	11	5
Abundance	17	37	8	16	70	27	11
Species relative abundance	0.14	0.39	0.14	0.18	0.59	0.25	0.11
Shannon's diversity index (H')	1.56	2.53	1.73	1.89	2.87	2.07	1.47
Simpson's diversity index (D)	0.21	0.08	0.07	0.12	0.07	0.131	0.182
Inverse Simpson's diversity index (1/D)	4.86	12.81	14.00	8.00	14.64	7.63	5.50
Gini Simpson's index (1-D)	0.79	0.92	0.93	0.88	0.93	0.87	0.82

of freshwater ecosystems as well as a good indicator of ecosystem health (Corbet 1993). This reiterates the fact that more systematic exploration of biodiversity should be carried out in unexplored regions of the Western Ghats, especially in light of increasing anthropogenic influences and habitat transformations. The present study highlights the existing diversity of unexplored odonate fauna in the high ranges of the Munnar

Territorial Division. Major changes in the degradation quality of available habitats could also result in a loss of regional odonate diversity, especially for endemic species. These changes could also have a cascading effect on terrestrial biodiversity.

A previous study on odonates from Chinnar Wildlife Sanctuary (Adarsh et al. 2015), a component of Munnar Wildlife Division, has recorded a total of 48 species of

Image 1–7. Habitat photos: 1—Aranmanai Shola (Shola forest) | 2—Idalimotta (Wattle infested area) | 3—KFRI Research Station (Eucalyptus plantation) | 4—Sankarapandyanmettu (Cardamom hill reserve) | 5—Signal Point (Tea plantation) | 6—Chokramudi (Grassland) | 7—Seethadevi Lake (Pond and riverine ecosystem).

Image 8–15. Odonates photos: 8—*Agriocnemis pygmaea* | 9—*Pseudagrion microcephalum* | 10—*Brachidiplax chalybea* | 11—*Orthetrum triangulare* | 12—*Hylaeothemis apicalis* | 13—*Orthetrum glaucum* | 14—*Epophthalmia vittata* | 15—*Diplacodes trivialis*.

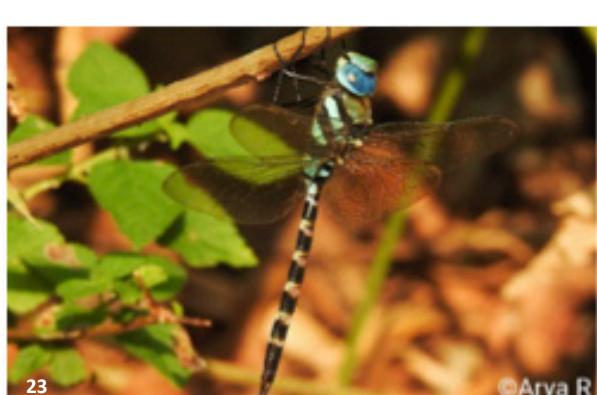


Image 16–23. Odonates photos: 16—*Trithemis festiva* | 17—*Sympetrum fonscolombii* | 18—*Orthetrum sabina* | 19—*Palpopleura sexmaculata* | 20—*Anaciaeschna martini* | 21—*Gynacantha dravida* | 22—*Acisoma panorpoides* | 23—*Anax immaculifrons*.

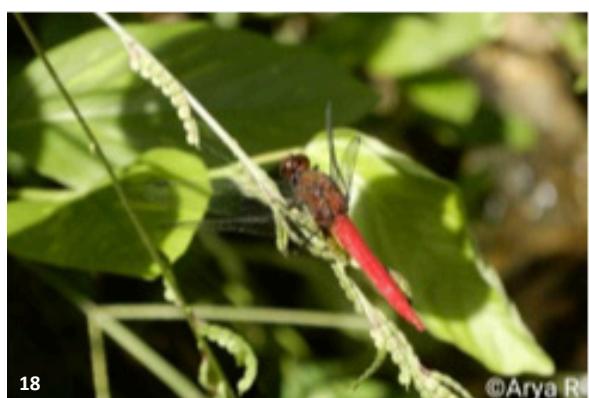


Image 24–31. Odonates photos: 24—*Orthetrum luzonicum* | 25—*Crocothemis servilia* | 26—*Orthetrum chrysostigma* | 27—*Orthetrum pruinosum* | 28—*Pantala flavescens* | 29—*Brachydiplax sobrina* | 30—*Urothemis signata* | 31—*Rhodothemis rufa*.

odonates, which includes 31 species of dragonflies and 17 species of damselflies. The present study has recorded 14 new records of odonates, which include nine species of dragonflies and five species of damselflies.

The study also highlights the sighting of Martin's Duskhawker *Anaciaeschna martini* (Selys 1897) from wattle-infested areas of Idalimotta (above 2000m), which was previously recorded as a rediscovery from Nilgiris in September 2014 and later from the Munnar region in the Anamalais landscape of the Western Ghats in June 2019 (Sadasivan et al. 2021). The observed individual was a female ovipositing on emergent vegetation and no males were observed guarding or nearby the female. The species was identified by the typical female morphological characteristics of a brownish body with yellowish-green markings on the thorax and a brownish-yellow abdomen, as well as a dark band along the leading edge of the wings. Disturbed habitats such as wattle-infested areas may provide suitable breeding sites and hunting grounds for species like Martin's Duskhawker, which may explain the presence of this locally 'not common' species.

Even though there have been frequent surveys and few published papers (Adarsh et al. 2015; Sadasivan et al. 2021) in the wildlife division of Munnar, currently there are no published papers in Munnar territorial division as far as odonates are concerned. Under the circumstance that no previous research papers have been published under the Munnar territorial division, the present study comes into the light, providing far-reaching information regarding the diversity, distribution, and habitat preference of the recorded odonate species during the pre-monsoon period. The short-term study also acts as a preliminary report on odonates and forms a trail for further studies during the monsoon and post-monsoon months, where a peak in species richness can be expected due to the southwest monsoon.

REFERENCES

- Adarsh, C.K., R. Arunraj & P.O. Nameer (2015). Odonata (Insecta) diversity of Chinnar Wildlife Sanctuary, the southern Western Ghats, India. *Journal of Threatened Taxa* 7(2): 6910–6919. <https://doi.org/10.11609/jott.03771.6910-9>
- Chandran, A.V. & K.M. Sheriff (2022). Comments on "The Dragonflies and Damselflies (Odonata) of Kerala—Status and Distribution". *Journal of Threatened Taxa* 14(6): 21282–21284. <https://doi.org/10.11609/jott.7989.14.6.21282-21284>
- Corbet, P.S. (1993). Are Odonata useful as bioindicators. *Libellula* 12(3/4): 91–102.
- Emiliyamma, K.G. & C. Radhakrishnan (2000). Odonata (Insecta) of Parambikulam Wildlife Sanctuary, Kerala, India. *Records of the Zoological Survey of India* 98(1): 157–167.
- Fraser, F.C. (1933). *The Fauna of British-India Including Ceylon and Burma, Odonata. Vol. I.* Taylor and Francis Ltd., London, 436 pp.
- Fraser, F.C. (1934). *The Fauna of British-India Including Ceylon and Burma, Odonata. Vol. II.* Taylor and Francis Ltd., London, 442 pp.
- Fraser, F.C. (1936). *The Fauna of British-India Including Ceylon and Burma, Odonata. Vol. III.* Taylor and Francis Ltd., London, 461 pp.
- Grimaldi, D. & M.S. Engel (2005). *Evolution of the Insects*. Cambridge University Press, New York, 733 pp.
- Kalkman, V.J., R. Babu, M. Bedjanic, K. Conniff, T. Gyeltshen, M.K. Khan & A.G. Orr (2020). Checklist of the dragonflies and damselflies (Insecta: Odonata) of Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka. *Zootaxa* 4849(1): 1– 84. <https://doi.org/10.11646/zootaxa.4849.1.1>
- Kerala Forest and Wildlife Department. (2011). Working Plan of Munnar Forest Division. Part I Chapter I, 1–8. http://old.forest.kerala.gov.in/images/wpmunnar/1_tract_wp_mnr.pdf
- Kiran, C.G. & D.V. Raju (2013). *Dragonflies and Damselflies of Kerala (Keralathile Thumbikal)*. Tropical Institute of Ecological Sciences, 156 pp.
- Kulkarni, A.S. & K.A. Subramanian (2013). Habitat and seasonal distribution of Odonata (Insecta) of Mula and Mutha river basins, Maharashtra, India. *Journal of Threatened Taxa* 5(7): 4084–4095. <https://doi.org/10.11609/jott.03253.4084-95>
- Mathavan, S. & P. L. Miller (1989). A collection of dragonflies (Odonata) made in the Periyar National Park, Kerala, south India, in January, 1988. *Rapid Communications* 10(1): 1–10.
- Paulson, D., M. Schorr & C. Deliry (2022). World Odonata List. <https://www.pugetsound.edu/academics/academicresources/slater-museum/biodiversity-resources/dragonflies/worldodonata-list2/>. Accessed on 20 August 2022.
- Rao, R.K. & A.R. Lahiri (1982). First records of odonates (Arthropoda: Insecta) from the Silent Valley and New Amarambalam reserved forests. *Journal of the Bombay Natural History Society* 79(3): 557–562.
- Sadasivan, K., M. Sethumadhavan S. Jeewith & B. Kochunarayanan (2021). Rediscovery of Martin's Duskhawker *Anaciaeschna martini* (Selys, 1897) (Odonata: Aeshnidae) from Western Ghats, peninsular India, with notes on its current distribution and oviposition behavior. *Journal of Threatened Taxa* 13(1): 17543–17547. <https://doi.org/10.11609/jott.6301.13.1.17543-17547>
- Sadasivan, K., V.P. Nair & K.A. Samuel (2022). The dragonflies and damselflies (Insecta: Odonata) of Shendurney Wildlife Sanctuary, southern Western Ghats, India. *Journal of Threatened Taxa* 14(6): 21213–21226. <https://doi.org/10.11609/jott.7885.14.6.21213-21226>
- Society for Odonate Studies. (2022). List of odonates of Kerala. <https://odonatesociety.org/list-of-odonates-of-kerala/>. Accessed on 20 August 2022.
- Subramanian, K.A. & R. Babu (2020). Dragonflies and Damselflies (Insecta: Odonata) of India, pp. 29–45. In: Ramani, S., P. Mohanraj & H.M. Yeshwanth (eds.). *Indian Insects: Diversity and Science*. CRC Press, Taylor & Francis Group, London, 450 pp.
- Subramanian, K.A. (2009). *Dragonflies and Damselflies of Peninsular India — A Field Guide*. Vigyan Prasar, Noida, India, 168 pp.

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

OPEN ACCESS

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under [Creative Commons Attribution 4.0 International License](#) unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

www.threatenedtaxa.org

Articles

Negative interaction or coexistence? Livestock predation and conservation of wild carnivores in Kazinag National Park and adjacent region in the Kashmir Himalaya, India
– Uzma Dawood & Bilal A. Bhat, Pp. 26187–26197

Avifaunal diversity and conservation significance of coastal ecosystems on Rameswaram Island, Tamil Nadu, India
– H. Byju, H. Maitreyi, S. Ravichandran & N. Raveendran, Pp. 26198–26212

Conservation of sea turtles on the beach areas from Sonadia Island to Saint Martin's Island in the Bay of Bengal in Bangladesh
– M. Farid Ahsan, Shital Kumar Nath & Ashim Barua, Pp. 26213–26224

Noteworthy records of vascular plants from the West Bank, occupied Palestinian territories
– Banan Al-Sheikh, Mazin B. Qumsiyeh & Abdel-Salam Hubbieh, Pp. 26225–26233

Communications

Citizen science conservation: a case study using two threatened large aquatic American salamanders (Amphibia: Urodela), the Common Mudpuppy *Necturus maculosus* (Proteidae) and the Eastern Hellbender *Cryptobranchus alleganiensis* (Cryptobranchidae) observations on iNaturalist
– Shem Unger, Pp. 26234–26239

A preliminary study of odonate fauna in the high ranges of Munnar, southern Western Ghats, India
– T.S. Krishnanunni, Nazar Neha, R. Arya & P.O. Nameer, Pp. 26240–26250

A new species of *Arctodiaptomus* Kiefer, 1932 (Copepoda: Diaptomidae) from the Kumaun Himalaya of India
– Shaikhom Inaotombi & Debajit Sarma, Pp. 26251–26263

Morpho-anatomical characterization and conservation status of the Whisk Fern *Psilotum nudum* (L.) P.Beauv. (Polypodiopsida: Psilotaceae) from Cooch Behar District of West Bengal, India
– Aninda Mandal, Pp. 26264–26271

Six new reports of corticioid fungi from India
– Poonam, Avneet Pal Singh & Gurpaul Singh Dhingra, Pp. 26272–26282

On the *Maravalia echinulata* (Niessl ex Rabenh.) Ono (Pucciniales: Chaconiaceae) with reference to its host range and distribution
– Sayantan Jash & Asit Baran De, Pp. 26283–26290

Short Communications

A rare low elevation photographic record of Himalayan Serow *Capricornis sumatraensis* ssp. *thar* (Hodgson, 1831) from Nameri National Park, Assam, India
– B. Piraisoodan, Asish Immanuel Baglary, Saumitro Das & Debasish Buragohain, Pp. 26291–26295

Sightings of Red Goral *Nemorhaedus baileyi* in the community forest of the Upper Siang region, Arunachal Pradesh: an insight into its conservation challenges and implications within a tribal-managed landscape

– Takhe Bamin, Kishon Tekseng & Daniel Mize, Pp. 26296–26300

New record of *Sapria himalayana* Griff. (Rafflesiaceae) from Eaglenest Wildlife Sanctuary, Arunachal Pradesh, India

– Anisha Mandal, Aman Bishwakarma, Dibi Soma Monpa, Kabir Pradhan, Karma Wangdi Monpa & Rohit Rai, Pp. 26301–26305

***Pinnatella limbata* (Bryophyta: Neckeraceae): reassessment of conservation status based on recent findings**

– O.M. Sruthi, C.N. Manju, K.P. Rajesh & J. Enroth, Pp. 26306–26311

Additions of two genera of liverworts (Marchantiophyta) to the bryoflora of Nagaland, India

– Kazhuhrii Eshuo, Kholi Kaini & S.K. Chaturvedi, Pp. 26312–26316

***Phycolepidozia indica* (Marchantiophyta: Jungermanniales) an endemic leafless liverwort from Kerala part of Western Ghats, India**

– T. Krishnendhu, C.N. Manju, Ravi Athira & K.P. Rajesh, Pp. 26317–26321

Notes

First photographic documentation of avian egg predation by Common Palm Civet *Paradoxurus hermaphroditus* (Pallas, 1777) (Mammalia: Carnivora: Viverridae)

– Aritra Bhattacharya, B.N. Achyutha, Nandini Iyer, Somaiah Sundarapandian & Kuppusamy Sivakumar, Pp. 26322–26324

First record of Eurasian Crag Martin *Ptyonoprogne rupestris* (Scopoli, 1769) (Aves: Passeriformes: Hirundinidae) from Tamil Nadu, India

– S. Naveenkumar, Pp. 26325–26327

***Megachile vera* Nurse, 1901 (Insecta: Hymenoptera: Megachilidae): a new record of leaf cutter bee from Kerala, India**

– Anju Sara Prakash & C. Bijoy, Pp. 26328–26330

Publisher & Host

Threatened Taxa