

for conservation globally

Building evidence
Journal of
Threatened
TAXA

Open Access

10.11609/jott.2023.15.12.24291-24450
www.threatenedtaxa.org

26 December 2023 (Online & Print)
15(12): 24291-24450
ISSN 0974-7907 (Online)
ISSN 0974-7893 (Print)

43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS**Founder & Chief Editor****Dr. Sanjay Molur**Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India**Deputy Chief Editor****Dr. Neelesh Dahanukar**

Noida, Uttar Pradesh, India

Managing Editor**Mr. B. Ravichandran**, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India**Associate Editors****Dr. Mandar Paingankar**, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India**Dr. B.A. Daniel**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India**Editorial Board****Dr. Russel Mittermeier**

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinahalli PO, Nilgiris, Tamil Nadu 643223, India

Dr. Martin Fisher

Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhura Stothra Bhashyam**, Hyderabad, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2020–2022****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annasaheb Magar Mahavidyalaya, Maharashtra, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Mander Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Baños, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: The critically endangered *Lilium polyphyllum* in watercolour and acrylics. © Aishwarya S Kumar.

Assessing and understanding diversity and foraging guilds of bird community structure in Gautam Buddha Wildlife Sanctuary, Bihar and Jharkhand, India

Umar Saeed¹ , Mujahid Ahamed² , Vivek Ranjan³ , Syed Ainul Hussain⁴ & Ruchi Badola⁵

¹⁻⁵ Department of Eco-Development Planning and Participatory Management, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India.

¹ umar2673@gmail.com, ² syedmujahidahmed@gmail.com (corresponding author), ³ vivek.nil@gmail.com, ⁴ ainul.hussain@gmail.com, ⁵ ruchi@wii.gov.in

Abstract: This study was conducted between June 2017 and December 2018 to assess the bird community structure, diversity, feeding guilds, and the residential status of birds in Gautam Buddha Wildlife Sanctuary (GBWS). Avian diversity and guild organization in five different habitat types were classified according to the forest type present in the landscape. The results indicated a total of 99 avifauna that belongs to 48 families, distributed in 16 orders. Among the 99 species, 77 were residents, 17 were winter visitors, four were summer visitors, and only one was a passage migrant. Based on the feeding guild evaluation, the majority were insectivorous (47%), followed by omnivorous (24%), carnivorous (14%), granivorous (8%), frugivorous (4%), insectivorous (1%), and piscivorous (1%). The scrubland, among other forest types, represented the highest diversity value for the Shannon-Weiner diversity index (3.2), evenness was recorded highest in riverine habitat (0.63), whereas utmost Simpson's dominance (0.98) and Fisher's index value (41) were in human settlement. These findings of our study illustrate the outstanding potential of GBWS as an important protected site for mixed bird diversity and specific feeding guilds, precisely in terms of the insectivorous and omnivorous communities. Hence, the study outcomes set a notable landmark for understanding birds and their habitats.

Keywords: Avifauna, evenness, Fisher's index, habitat types, protected site, residential status, Simpson's dominance, Shannon-Weiner diversity index.

Editor: H. Byju, Coimbatore, Tamil Nadu, India.

Date of publication: 26 December 2023 (online & print)

Citation: Saeed, U., M. Ahamed, V. Ranjan, S.A. Hussain & R. Badola (2023). Assessing and understanding diversity and foraging guilds of bird community structure in Gautam Buddha Wildlife Sanctuary, Bihar and Jharkhand, India. *Journal of Threatened Taxa* 15(12): 24331-24344. <https://doi.org/10.11609/jott.8357.15.12.24331-24344>

Copyright: © Saeed et al. 2023. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: The study is funded by the Dedicated Freight Corridor Corporation of India Limited (DFCCIL) [Permission no. CPM/DFCCIL/KKK wildlife – 186 dated 22 December 2015].

Competing interests: The authors declare no competing interests.

Author details: UMAR SAEED is a senior research fellow at the Wildlife Institute of India and currently pursuing PhD from Graphic Era University and perceives a field of interest in grassland management and conservation ecology. MUJAHID AHAMED is a PhD scholar and currently working as a senior project biologist at the Wildlife Institute of India, Dehradun. He specialized in animal ecology and human-wildlife interaction. VIVEK RANJAN is a PhD scholar at the Wildlife Institute of India working on human-wildlife interaction in human-dominated landscapes. He has been actively supporting Uttarakhand State Forest Department in the management and mitigation of negative human-wildlife interaction and encouraging coexistence through technical advisory. SYED AINUL HUSSAIN is the project manager (NMCG) and former scientist-G at the Wildlife Institute of India. RUCHI BADOLA is dean and scientist-G at the Wildlife Institute of India.

Author contributions: US—conceptualization, data collection, data analysis & visualization, methodology, writing the original draft. MA—conceptualization, writing original draft, data collection. VR—data collection. SAH—conceptualization, funding acquisition, investigation, supervision, writing - review & editing. RB—conceptualization, writing - review & editing.

Acknowledgements: We express our thanks for the financial support from the DFCCIL (Dedicated Freight Corridors Corporation Limited) for this study. The study permission no. CPM/DFCCIL/KKK wildlife – 186 dated 22 December 2015. We take this opportunity to express a deep sense of gratitude for the constant support received from Mr. A.K. Dwivedi CF, Gaya forest circle, and Mr. Arvind Kumar Singh DFO Gaya forest circle (Environment and Forests Department, Government of Bihar) and D.K. Yadav Singh DFO Hazaribagh forest division Jharkhand for providing the necessary support during the fieldwork and assure the good environment around us. We also thank our colleagues Rashmi Das and Kumar Ankit for their valuable suggestions and comments for the improvement of the Manuscript.

INTRODUCTION

Bird communities are considered to provide excellent model structures for studying biodiversity due to their occurrence in all habitat types and climatic zones (McCain & Grytnes 2010; Panda et al. 2021). Mixed habitats such as woodland, cropland, scrubland, riverine, and grasslands ensure the existence of habitat-restricted taxa and amplify community diversity (Berg 2002; Stein et al. 2014; Stein & Kretz 2015). Additionally, the diverse characteristics within natural environments and species diversity are pivotal in upholding essential traits that contribute significantly to biodiversity. (Manhães & Loures-Ribeiro 2005). Species diversity and richness in a particular area are determined by habitat heterogeneity and may also impact habitat resources (Lorenzón et al. 2016). At the same time, the absence of a natural environment leads to species homogenization with low species richness (Pickett et al. 2011; Lepczyk & Warren 2012; Aronson et al. 2014; Beninde et al. 2015) and high similarity (Blair 2001a,b). Bird diversity is always correlated with specific habitat types (Brawn et al. 2001; Seymour & Simmons 2008; Harisha & Hosetti 2009). Changes in their vegetation structure are affected by bird community structure and composition (Caziani & Derlindati 2000; Gabbe 2002; Earnst & Holmes 2012; Nsor et al. 2018), population trends, behaviour patterns, and reproductive ability (Harisha & Hosetti 2009). Vegetation structure is essential in structuring bird communities (Gabbe et al. 2002; Earnst & Holmes 2012); thus, the relative abundance of birds is often linked to vegetation community (Caziani & Derlindati 2000). For example, MacArthur & MacArthur (1961) pointed out the importance of vegetation structure for local bird species diversity. Williams (1964) highlighted that various environmental conditions and habitat types increase with an increase in the study area.

Feeding guild is a fundamental concept in avian ecology and is shaped when a community of birds uses the same class of environmental resources (Balestrieri et al. 2015). Katuwal et al. (2016) stated that all guilds have different resource requirements and tolerance capacities depending on ecological conditions, which are influenced by various environmental factors such as vegetation cover, food supply, predatory availability, and various other ecological factors reflecting different temporal variations and diversity gradients (O'Connell et al. 2000; Kissling et al. 2012). Studies of avian feeding guilds help to understand complex ecosystem structures and improve knowledge about the habitats of a particular ecosystem (Rathod & Padate 2017).

The distribution and feeding guild of the birds is associated with their habitat type and structural complexity, which influence species diversity and the inter-relationship between vegetation and the avian population (MacArthur & MacArthur 1961). Many studies have been conducted to determine relationships between bird species diversity and habitat attributes such as heterogeneity and vegetation structure (Chettri et al. 2005; Corbett 2006; Yeany 2009; Beasley 2013; Stirnemann et al. 2015). Bird populations in fragmented landscapes respond resiliently to complex environmental combinations and are an indicator of habitat change, and they also show a wide range of feeding guilds (Azman et al. 2011). Protected areas with substantial anthropogenic disturbance causes habitat fragmentation and degradation (Haddad et al. 2015; Wilson et al. 2016; Pardini et al. 2017).

In the Gautam Buddha Wildlife Sanctuary (GBWS), over the past few years, the widening of the National Highway (NH-2) has split the sanctuary into two halves. Moreover, anthropogenic pressures, selective hunting, and the expansion of villages in and around the sanctuary have been significant causes of biodiversity decline (Kumar 2016). The study of bird diversity and feeding guilds is crucial for understanding the complexity of ecosystem structure and for providing up-to-date knowledge on each habitat type in the ecosystem. In addition, we have also assessed the abundance of birds in the various habitat types. Thus, the present study aimed to understand the diversity of birds and feeding guilds with different habitat types, such as woodland, scrubland, human settlement, riverine, and cultivation lands. The study will also provide baseline information on the bird community's species richness, which will help design management plans and conservation strategies for the sanctuary.

Study area

The GBWS lies between 24.379°–24.425° N and 85.136°–85.213° E and is situated in the southeast part of the sacred city of Gaya district, Bihar. The sanctuary spreads over an area of 259.47 km² in the states of Bihar and Jharkhand under three forest divisions: the Gaya Forest Division (138.33 km²) in Bihar and the Hazaribagh and Chatra Forest Division (121.24 km²) in Jharkhand (Figure 1). The Bihar government notified the sanctuary in 1976. Before becoming a sanctuary, it used to be the hunting ground of the Tikri king. The terrain of the sanctuary is undulating, with an elevation ranging 213–529 m. The sanctuary is drained by the perennial river Mohane, a sink for all the streams and rivulets flowing in

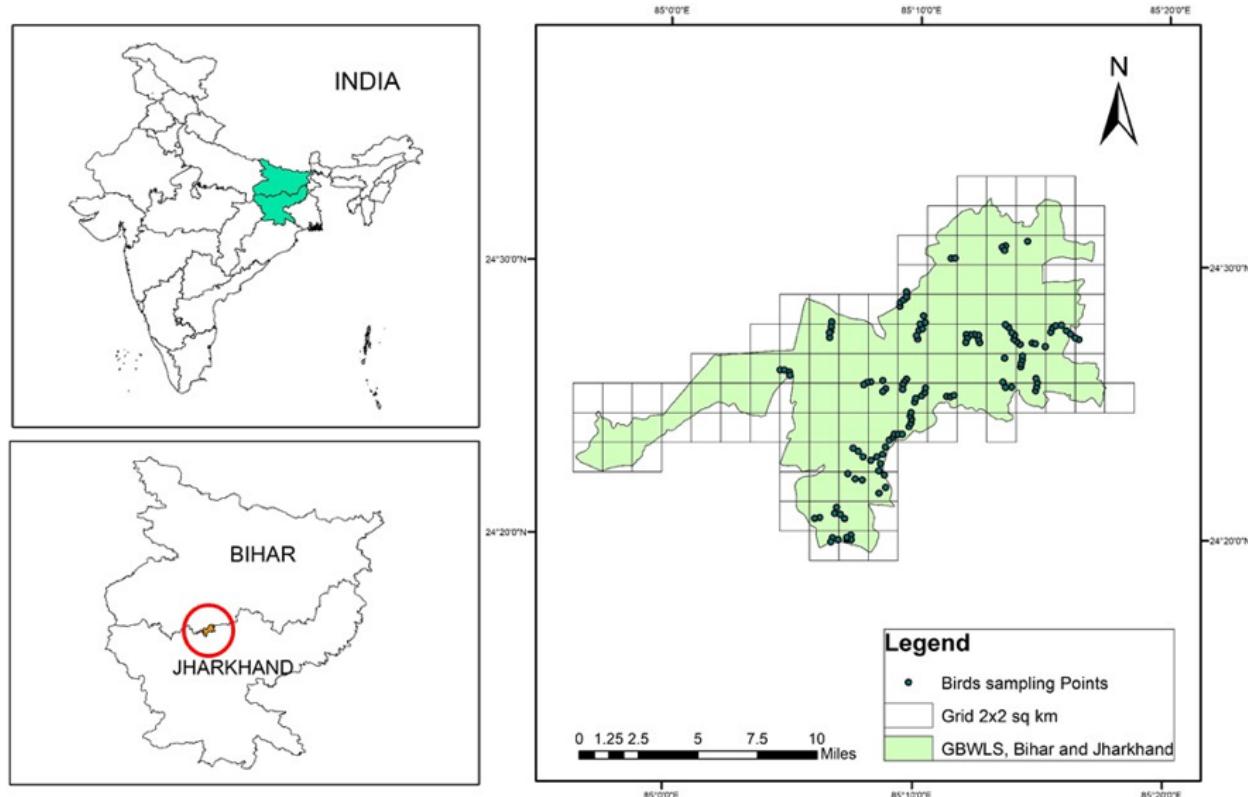


Figure 1. The study area of Gautam Buddha Wildlife Sanctuary Bihar and Jharkhand.

the sanctuary (Kumar 2016). The south-west monsoon starts in June and lasts until September. Rainfall is highest between June and July, with an average rainfall of 159 mm. The average temperature varies 26–90°C during the winter season, which commences from November to February (Nirbhay & Singh 2009). The average summer temperature ranges around 40°C maximum, even touching 47°C, and is usually characterized by dry and hot weather conditions from March to June.

The sanctuary falls in the lower Gangetic Plains and Chota Nagpur biogeographical regions of India and shares wildlife species from both regions. Making it a unique ecosystem that supports a wide diversity of floral and faunal species (Rodgers & Panwar 1988; Kumar 2016; Kumar et al. 2021). The sanctuary is characterized by moist and dry deciduous forests (Kumar et al. 2021). Forest communities are further divided into dry peninsular sal forest, northern dry mixed deciduous forest, dry deciduous scrub forest, ravine thorn forest, and tropical dry riverine forest (Kumar 2016; Kumar & Sahu 2020). More than 100 species of plants and 75 species of birds enrich the biodiversity of the sanctuary (Kumar et al. 2021). Various dominant flora of the sanctuary comprises *Shorea robusta*, *Pterocarpus*

marsupium, *Diospyros melanoxylon*, *Lagerstroemia parviflora*, *Buchanania lanza*, *Butea monosperma*, *Madhuca indica*, *Acacia catechu*, and *Boswellia serrata*. It also supports various wild animal species, such as *Axis axis*, *Rusa unicolor*, *Melursus ursinus*, *Boselaphus tragocamelus*, *Vulpes bengalensis*, and *Felis chaus*, among others (Kumar 2016).

METHODS AND MATERIALS

Data collection

The avifaunal status, habitat characteristics, and community structure were assessed using the point count transect method during summer (June–August 2017) and winter (November–December 2018). Bird observations occurred from 0700 h to 1000 h, avoiding adverse weather conditions (Ding et al. 2019). A 1-km trail transect with five observation points at 250 m intervals was used, involving two observers. Within a 50-m radius during a 15-minute duration, bird species, distances, and individual numbers were recorded. Birds flying overhead of the observer were not recorded to avoid the double count. The birds were observed with

the help of Nikon (8x10) binoculars, and photographs were taken using a Cannon 80D camera for further identification. The birds were identified with the help of Grimmett et al. (2016).

Guild classification

In this study, birds were systematically categorized into distinct feeding guilds based on their primary diet and foraging habitats, following the classification outlined by Ding et al. (2019) and Panda et al. (2021). The seven identified guild categories are as follows: insectivores (species consuming insects, earthworms, small crustaceans, and arthropods), carnivores (species preying on large animals or scavenging their carcasses), omnivores (species with a mixed diet of both animals and plants), granivores (species primarily feeding on seeds and grains), nectarivores (species relying on nectar as a primary food source), frugivores (species mainly consuming fruits), and piscivores (species specialized in a fish-based diet). This classification scheme provides a comprehensive framework for understanding the diverse dietary preferences and foraging behaviors exhibited by avian species within the studied ecosystem.

Data analysis

In the data analysis phase, various species diversity indices were computed using the Paleontological Statistics (Past 2001 version 3.2) program (Hammer & Harper 2001). Shannon's diversity index (H) was employed to assess community diversity, calculated using the formula $H = -\sum(pi \ln pi)$, where pi represents the proportion of individuals of a particular species with the total number of individuals (n/N), and s is the number of species. Simpson's index (D), a dominance measure, was also utilized, given by the formula $1/(\sum(pi^2))$, where pi is as defined for Shannon's index. Fisher alpha (S) was employed to mathematically describe the relationship between species and individuals, expressed as $S = \alpha \times \ln(1 + n/a)$, with S denoting the number of taxa, n representing the number of individuals, and α as Fisher's alpha (Fisher & Yates 1953). Evenness (e), comparing actual diversity to maximum potential diversity, was determined using $e = H'/H_{\max}$, with E constrained between 0 and 1. Relative abundance (RA) of each bird species was calculated as $ni/N \times 100$, with ni being the number of individuals of the i th species and N being the total number of individuals. Abundance categories were assigned based on sightings, from rare (1–5) to very abundant (>50). The Sorenson similarity index (C_s) gauged species association between habitats using $C_s = 2j/(a + b)$, where j is the number of common species, a is

the number of species in habitat A, and b is the number of species in habitat B. Bird residential status categories (resident, summer visitor, winter visitor influx) were determined using the presence and absence method (Sorenson 1948). Statistical analyses were conducted in SPSS, with significance at $p = 0.01$. Pearson's correlation (r) explored relationships between guilds, residential status, and habitat types, and post-hoc Wald tests with Bonferroni adjustments were performed for identified significant differences. Additionally, a one-way analysis of variance (ANOVA) examined significant differences in habitat-related species richness concerning feeding guilds and residential status.

RESULTS

The present study recorded 99 avifaunal species belonging to 16 orders and 48 families in GBWS. Amongst the habitats, the highest species richness was recorded in woodland (53.52%), and the lowest species richness was recorded in cultivation land (20.20%) (Table 1). The highest number of species belongs to the order Passeriformes (52.52%), followed by Accipitriformes and Charadriiformes (Figure 2). The species diversity of birds in five different habitats of the study area revealed that the highest Shannon diversity was recorded in scrubland ($H = 3.186$), followed by woodland ($H = 3.181$) and human settlement ($H = 3.136$). In contrast, the lowest Shannon diversity was recorded in cultivation land ($H = 2.527$). The Simpson diversity index value was maximum in human settlement ($1-D = 0.978$) and minimum in woodland ($1-D = 0.926$). The Evenness of bird species was highest in the riverine (0.629) and lowest in the woodland forest (0.454) (Table 1). At a 95% confidence interval level, we found that scrubland possesses the highest holding capacity of diversity compared to the other habitats. The Fisher alpha diversity index was highest in human settlement ($\alpha = 41.12$). The lowest Fisher alpha diversity profile was recorded in cultivation land ($\alpha = 16.47$) (Figure 3).

According to the frequency of sightings, 68.68% of bird species were rare, and 1.01% were abundant in GBWS (Figure 4). The relative abundance of Red-vented Bulbul *Pycnonotus cafer* was highest in the study area, followed by Jungle Babbler *Turdoides striata* and Grey-breasted Prinia *Prinia hodgsonii* (Appendix 1). Results of Sorenson's similarity index indicate that woodland and scrubland (0.31) were ecologically the most similar habitats, followed by the similarity between woodland and human settlement (0.30). However, riverine and

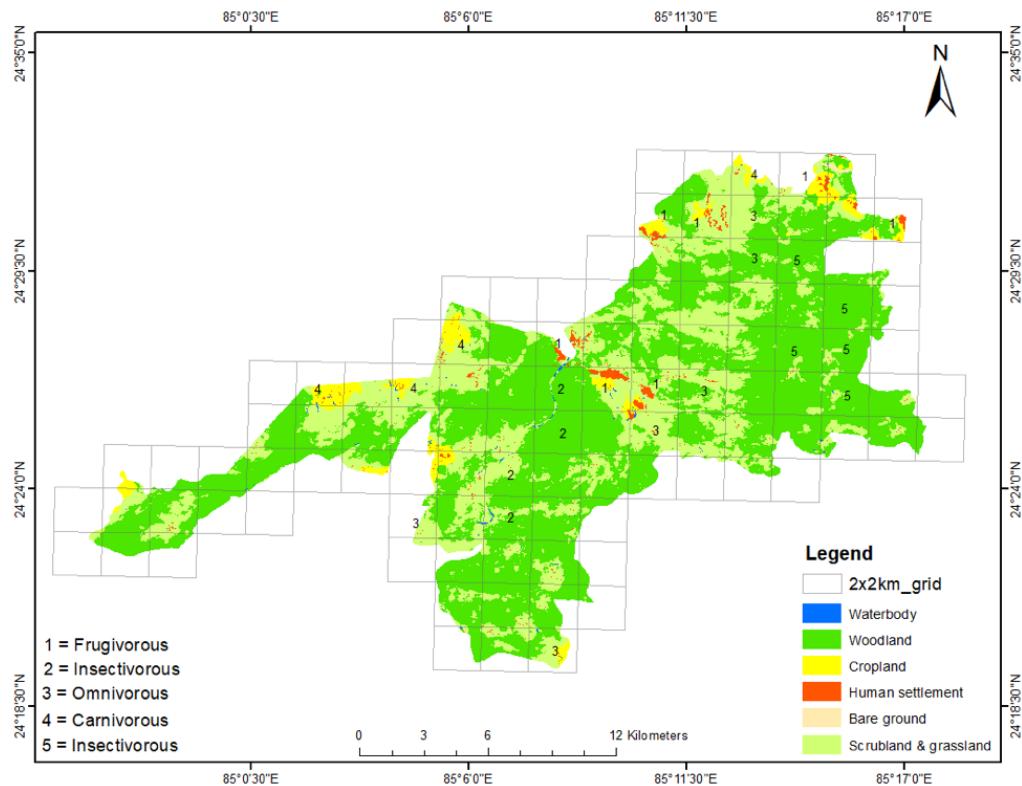


Figure 2. Land use Land cover of Gautam Buddha Wildlife Sanctuary Bihar and Jharkhand.

Table 1. Percentage, feeding guild, diversity, and dominance of birds in different habitats in GBWS Bihar and Jharkhand.

	Habitat	Number of species	Percentage	Feeding guild	Shannon diversity	Simpson (1-D)	Evenness	Fisher alpha
1	Woodland	53	53.53	6	3.181	0.926	0.454	17.26
2	Scrubland	47	47.47	7	3.186	0.950	0.514	24.83
3	Riverine	32	32.32	5	3.003	0.960	0.629	19.77
4	Human settlement	37	37.37	6	3.136	0.978	0.621	41.12
5	Cultivation land	20	20.20	5	2.527	0.947	0.625	16.47

woodland had the most negligible ecological similarity value (0.14) (Table 3).

Further, the bird species were categorized according to their feeding guild. Among the feeding guilds, the insectivorous guild recorded a maximum percentage of species (47.47%), and nectarivores and piscivorous guild recorded a minimum percentage of species (1.01%) (Figure 5). Regardless of the habitats, the dominant guild remained the insectivorous among all the guilds. The comparison of the abundance of species from all habitats within every feeding guild is shown in Table 2.

The Pearson correlation coefficient provided visions of the specific preference of the bird species under different foraging guild towards some particular habitats. The frugivorous guild was most positively correlated with

human settlement ($r = 0.282$, $t = 0.320$ $p < 0.01$), and negatively with cultivation ($r = -0.29$, $t = 1.988$, $p > 0.01$), riverine ($r = -0.102$, $t = 2.267$, $p > 0.01$), and scrubland ($r = -0.045$, $t = 2.021$, $p > 0.01$). Insectivorous bird species were only positively correlated with the riverine habitat ($r = 0.127$, $t = 8.037$ $p < 0.01$) and negatively correlated with the remaining habitats. Omnivores were most positively correlated with scrubland habitat ($r = 0.156$, $t = 4.459$ $p < 0.01$) and a negative correlation with riverine habitat ($r = -0.150$, $t = 1.9885$, $p < 0.01$). On the other hand, the carnivorous guild was strongly associated with cultivation habitat ($r = 0.128$, $t = 3.295$ $p < 0.01$). Granivores showed a positive association with only scrubland habitat ($r = 0.105$, $t = 2.038$ $p < 0.01$).

Further, the residential status of the species revealed

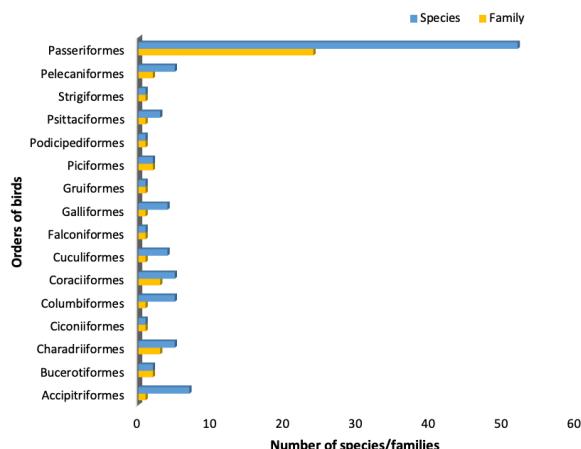


Figure 3. Composition of avian community in Gautam Buddha Wildlife Sanctuary Bihar & Jharkhand.

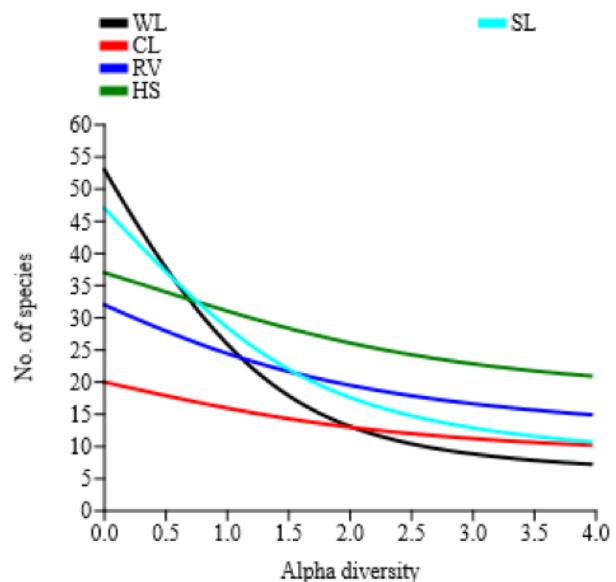


Figure 4. Species diversity profile of bird species in different habitats of Gautam Buddha Wildlife Sanctuary.

WL—woodland | CL—cultivation land | RV—riverine | HS—human settlement | SL—scrubland.

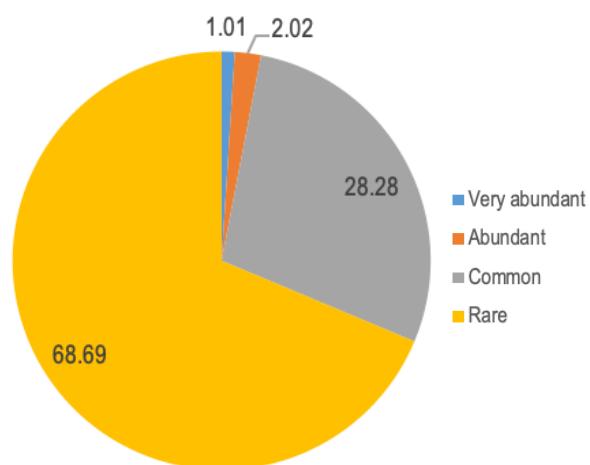


Figure 5. The pie chart shows the percentage of bird species in different abundance categories in Gautam Buddha Wildlife Sanctuary Bihar and Jharkhand.

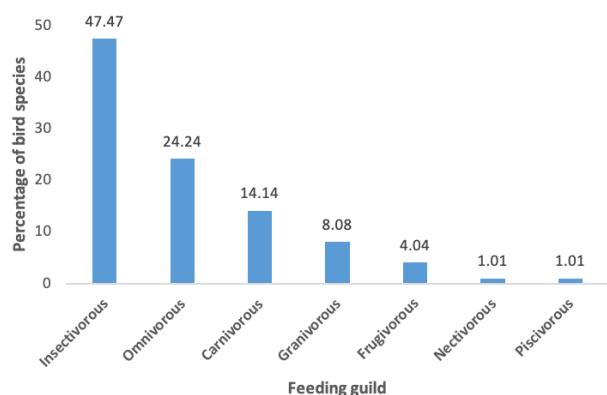


Figure 6. Percentage of the bird community in different feeding guilds observed in Gautam Buddha Wildlife Sanctuary Bihar and Jharkhand.

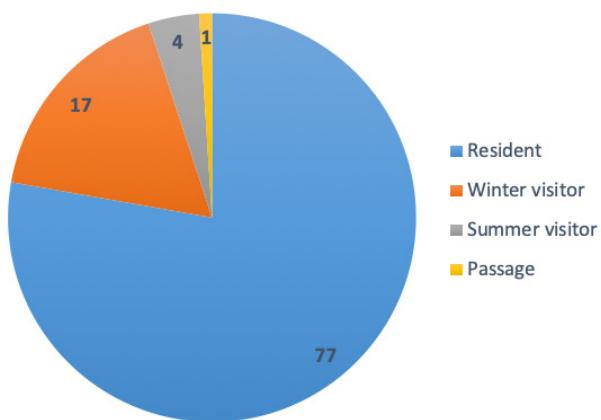


Figure 7. The pie chart shows the number of birds under different residential statuses in Gautam Buddha Wildlife Sanctuary Bihar and Jharkhand.

that 77 birds were residents, whereas the remaining 17 were winter visitors, four were summer visitors, and one species was a passage migrant (Figure 6). While analyzing the association of different habitats according to their residential status, we found that resident bird species were positively correlated with all the habitat types, but the association was highest with scrubland ($r = 0.177$, $t = 16.226$ $p < 0.01$). It was discovered that there was no significant correlation between any of the habitat categories and summer visitors, winter visitors, or passage migrants.

DISCUSSION

The bird diversity and their distribution concerning habitat types characterize the importance of GBWS as an essential bird habitat. The present study revealed that Passeriformes was the dominant order comprising the highest number of bird species. Two species represented the order Bucerotiformes and Piciformes; besides the order Ciconiiformes, Falconiformes, Gruiformes, Podicipediformes, and Strigiformes were represented by single species. This study agrees with the prior result that order Passeriformes is the leading avian taxon in India (Praveen et al. 2016; Kumar & Sahu 2020; Singh 2022). Data analysis on relative abundance shows that the Accipitridae family is the most dominant one. A similar pattern of dominance of Accipitridae was recorded by different authors from different protected areas in India, for example, from the Araku Valley of Ananthagiri Hills of the Eastern Ghats in Visakhapatnam, Andhra Pradesh (Kumar et al. 2010), a scrub forest of Sri Lankamalleswara Wildlife Sanctuary, Andhra Pradesh (Mali et al. 2017), Tamhini Wildlife Sanctuary, the northern Western Ghats, Maharashtra (Vinayak & Mali 2018), and Bhimbandh Wildlife Sanctuary, Bihar (Khan & Pant 2017).

The GBWS comprises a mosaic habitat, which supports a significant diversity of bird species. Habitat heterogeneity favors habitat specialists (through niche partitioning) for birds with broad niches (Surasinghe et al. 2010; Chakdar et al. 2016). The overall Shannon diversity index ($H = 3.935$) of GBWS is high. Therefore, the Shannon diversity in all habitats was good except in cultivation land ($H = 2.527$). The habitat heterogeneity hypothesis suggests that a landscape's species diversity increases with the number of habitats because of an expansion in the number of partitionable niche dimensions (Cramer & Willing 2005; Chakdar et al. 2016). Numerous studies have revealed that the distribution and diversities of bird species were highly dependent on habitat heterogeneity (Hettiarachchi & Wijesundara 2017; Chandrasiri et al. 2018; Panda et al. 2021; Thilakarathne et al. 2021).

As the Simpson diversity index has swift convergence to limit diversity value for a minor sample size, it is principally suitable for rapidly estimating regions for conservation (Lande et al. 2000). Analysis of data on the Simpson dominance index revealed that human settlement ($1-D = 0.978$) was the most dominated habitat in the sanctuary followed by riverine habitat ($1-D = 0.960$). The high value of Simpson's index of diversity is an indication of the richness of bird diversity in the GBWS. The result revealed that bird species' Evenness varied in

Table 2. Species presence at all habitats of each feeding guild.

Feeding guild	Habitat					Number of species
	WL	RV	H	CL	SL	
Carnivorous	7	5	3	4	3	15
Frugivorous	4	0	2	1	2	4
Granivorous	3	1	3	0	6	7
Insectivorous	27	20	16	9	19	47
Nectivorous	1	0	1	1	1	1
Omnivorous	11	5	12	5	15	24
Piscivorous	0	1	0	0	1	1
Number of species	53	32	37	20	47	

WL—woodland | CL—cultivation land | RV—riverine | HS—human settlement | SL—scrubland.

Table 3. Sorenson's similarity index value between different habitats.

	Habitat	WL	CL	RV	HS	SL
1	SL	0.31	0.22	0.17	0.26	
2	HS	0.30	0.17	0.20		
3	WB	0.14	0.21			
4	RV	0.21				
5	WL					

WL—woodland | CL—cultivation land | RV—riverine | HS—human settlement | SL—scrubland.

the sanctuary's different habitats. The highest evenness index value was recorded in the riverine habitat. Several reasons, including food availability, breeding, migration, and change in vegetation cover, could be attributed to this pattern (Harisha & Hosetti 2009). However, the lowest evenness index value recorded in woodland habitat expresses that the species-rich site may result from the occurrence of rare species or two or three species being hyper-abundant in the area compared to the other sites (Symonds & Johnson 2008).

However, the Fisher alpha diversity index was highest in human settlement ($\alpha = 41.12$), as the number of individuals was low compared to the species number. In woodland habitats, the species diversity is highest, but due to the presence of more individuals of the bird species, Fisher's alpha was lower ($\alpha = 17.26$) than in human settlement. The lowest Fisher alpha diversity profile was recorded in cultivation land ($\alpha = 16.47$) (Figure 3). The diversity, which compares the similarity between habitats, is measured by Sorenson's similarity index between the five selected habitats. The result revealed that woodland and scrubland had the highest similarity value (0.31), while the lowest species similarity (0.14)

© Umar Saeed

Image 1. Dhodiya village situated inside the Gautam Buddha Wildlife Sanctuary.

© Mujahid Ahamed

Image 2. Livestock rearing and grazing in the Gautam Buddha Wildlife Sanctuary.

© Umar Saeed

Image 3. Cutting of trees in Gautam Buddha Wildlife Sanctuary.

was recorded between woodland and riverine habitats. The highest value of Sorenson's similarity indices documented between woodland and scrubland habitats might be attributed to landscape characteristics. Better habitat structural similarity tended to support more similar bird communities (Tubelis & Cavalcanti 2001; Andrade et al. 2018; Kumar & Sahu 2020).

Correlation values between different feeding guilds and habitat preferences displayed that the frugivorous

bird population flourished well in the area with human settlement due to the sufficient availability of food sources. Gomes et al. (2008) have shown that resilient frugivores that increased in densities have occurred under all habitat disturbance regimes of the forest area, which markedly supports our study. In another study (Pejchar et al. 2008), frugivore abundance and richness were found to strongly account for a positive relationship with the human-dominated landscape. These results account for the fact that frugivores can tolerate moderate to intermediate levels of disturbance.

The significant positive correlation of insectivores was highest with riverine habitat. Other studies supporting the observation state that in wetlands, aquatic insects classically dominate the macroinvertebrate communities (Maher 1984; Euliss & Grodhaus 1987; Batzer & Resh 1992; Mukhopadhyay & Mazumdar 2019) and are an integral part of various aquatic ecosystems (Sivaramakrishnan et al. 2000). Omnivores and granivores were most favorable and significantly correlated with the scrubland habitat due to the mosaic structure of the habitat of GBWS. This contrasts with the findings of Mukhopadhyay & Mazumdar (2019), in a suburban landscape of the lower Gangetic plains of West Bengal, where the omnivores mostly dominated the residential and plantation forest area. Panda (2021) has also found a significant close association between human habitation with omnivores.

Additionally, granivores are positively related to the scrubland area, Poulin et al. (1993), support and validate our outcomes as they found a peak number of granivores interactions in the scrubland of the Guarapo region on the Araya Peninsula. In contrast, other studies support the preference of granivores for low-stratification crops (Henderson et al. 2000) and the positive relation with orchards due to the protection these areas offer from predation by birds of prey (Figueroa & Corales 2005). Furthermore, our study revealed that carnivorous species were primarily observed in cultivated forest areas due to the enormous presence of small size of frogs, fishes, molluscs, and small vertebrate species. Likewise, Tanalgo et al. (2015) agree with our study that carnivorous species were primarily observed in the rice fields. Stafford et al. (2010) indicated that the abundance of carnivorous bird species in rice fields is due to the availability of a large number of food resources, such as polychaetes, crustaceans, and molluscs. Besides, King et al. (2010) also noted that the rice fields in many countries support large numbers of migratory water birds and are essential for many species.

A significant positive correlation of the resident

bird species with all the habitat types shows that these species are well distributed in the GBWS, but they mostly prefer the scrubland area. A study by Daily et al. (2001) also suggests that bird species mainly were correlated with the forest fragments. The migratory bird species do not possess any significant positive correlation with the different habitats. This is because migrants distribute themselves spatially and temporally relative to available fruit resources at different intervals (Wolfe et al. 2014).

Moreover, human interference and livestock pressure significantly threatened bird species in the sanctuary (Image 1,2). The presence of livestock in bird habitats caused a significant negative impact on the abundance and species richness of bird species ($r = -0.308$, $p = <0.01$). After agriculture, local inhabitants also depend on the sanctuary for livestock grazing. Overgrazing led to the destruction of plant seedlings and restricted forest regeneration. Studies by Adhikari et al. (2019) support our finding as they have also found that livestock pressure and human disturbances were the major threats to birds in Chitwan National Park. The presence of local people in the forested land caused a non-significant negative impact on bird species richness and abundance in the sanctuary ($r = -0.091$, $p = >0.01$). Another major cause of disturbance in bird habitat is the cutting of trees for fodder and fuelwood collection (Image 3). The Pearson correlation coefficient value of tree cutting was negatively not significant to habitat ($r = -0.064$, $p = >0.01$). These pragmatic findings suggest a negative impact of livestock and human interference on the bird species richness and abundance.

CONCLUSION

The present study is the first documentation of the bird diversity, richness, and feeding guilds found in GBWS. Our study concludes with evidence that GBWS is an essential habitat for birds with high conservation status.

The diversity of bird species recorded is highest in the scrubland habitat and lowest in the cultivation habitat. However, these habitats are under constant threat of high risk for immense anthropogenic pressure. Also, if human disturbance increases at the same pace, there would be the threat of homogenization of avian species, as these generalist species have the advantage over the specialists in disturbed ecosystems. Consequently, the study suggests that maintaining heterogeneous habitats could be a better strategy for the long-term survival of resident and migratory birds in GBWS.

REFERENCES

Adhikari, J.N., B.P. Bhattarai & T.B. Thapa (2019). Factors affecting diversity and distribution of threatened birds in Chitwan National Park, Nepal. *Journal of Threatened Taxa* 11(5): 13511–13522. <https://doi.org/10.11609/jot.4137.11.5.13511-13522>

Andrade, R., H.L. Bateman, J. Franklin & D. Allen (2018). Waterbird community composition, abundance, and diversity along an urban gradient. *Landscape and Urban Planning* 170: 103–111. <https://doi.org/10.1016/j.landurbplan.2017.11.003>

Arnon, M.F., F.A. la Sorte, C.H. Nilon, M. Katti, M.A. Goddard, C.A. Lepczyk, P.S. Warren, N.S. Williams, S. Cilliers, B. Clarkson, C. Dobbs, R. Dolan, M. Hedblom, S. Klotz, J.L. Kooijmans, I. Kühn, I. Macgregor-Fors, M. McDonnell, U. Mörtberg, P. Petr, S. Stefan, S. Jessica, W. Peter & W. Marten (2014). A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. *Proceedings of the Royal Society B: Biological Sciences* 281(1780): 2013–3330. <https://doi.org/10.1098/rspb.2013.3330>

Azman, N.M., N.S.A. Latip, S.A.M. Sah, M.A.M.M. Akil, N.J. Shafie & N.L. Khairuddin (2011). Avian diversity and feeding guilds in a secondary forest, an oil palm plantation and a paddy field in Riparian areas of the Kerian River Basin, Perak, Malaysia. *Tropical Life Sciences Research* 22(2): 45.

Balestrieri, R., M. Basile, M. Posillico, T. Altea, B. De Cinti & G. Matteucci (2015). A guild-based approach to assessing the influence of beech forest structure on bird communities. *Forest Ecology and Management* 356: 216–223. <https://doi.org/10.1016/j.foreco.2015.07.011>

Batzer, D.P. & V.H. Resh (1992). Macroinvertebrates of a California seasonal wetland and responses to experimental habitat manipulation. *Wetlands* 12(1): 1–7. <https://doi.org/10.1007/BF03160538>

Beasley, C.J. (2013). Avian communities in suspended development: disentangling mechanistic effects of changing habitat structure versus human habitation (Doctoral dissertation, University of Georgia).

Beninde, J., M. Veith & A. Hochkirch (2015). Biodiversity in cities needs space: a meta-analysis of factors determining intra-urban biodiversity variation. *Ecology Letters* 18(6): 581–592. <https://doi.org/10.1111/ele.12427>

Berg, Å. (2002). Composition and diversity of bird communities in Swedish farmland–forest mosaic landscapes. *Bird Study* 49(2): 153–165. <https://doi.org/10.1080/00063650209461260>

Bibby, C.J. (2000). *Bird census techniques*. Elsevier, 40 pp.

Blair, R.B. (2001a). Birds and butterflies along urban gradients in two ecoregions of the United States: is urbanization creating a homogeneous fauna? pp. 33–56. In: *Biotic Homogenization*. Springer, Boston, MA.

Blair, R.B. (2001b). Creating a homogeneous avifauna. *Avian Ecology and Conservation in an Urbanizing World*: 459–486. https://doi.org/10.1007/978-1-4615-1531-9_22

Brawn, J.D., S.K. Robinson & F.R. Thompson III (2001). The role of disturbance in the ecology and conservation of birds. *Annual Review of Ecology and Systematics*: 251–276. <https://doi.org/10.1146/annurev.ecolsys.32.081501.114031>

Caziani, S.M. & E. Derlindati (2000). Abundance and habitat of high Andes flamingos in northwestern Argentina. *Waterbirds*: 121–133. <https://doi.org/10.2307/1522157>

Chakdar, B., P. Choudhury & H. Singha (2016). Avifaunal diversity in Assam University Campus, Silchar, India. *Journal of Threatened Taxa* 8(1): 8369–8378. <https://doi.org/10.11609/jott.2524.8.1.8369-8378>

Chandrasiri, P.H.S.P., W.D.S.C. Dharmarathne & W.A.D. Mahaupatha (2018). Diversity and Distribution of Avifauna at the Tropical Montane Cloud Forests of Horton Plains National Park. *Journal of Tropical Forestry and Environment* 8(1): 36–49. <https://doi.org/10.31357/jtfe.v8i1.3481>

Chettri, N., D.C. Deb, E. Sharma & R. Jackson (2005). The relationship between bird communities and habitat. *Mountain Research and Development* 25(3): 235–243. [https://doi.org/10.1659/0276-4741\(2005\)025\[0235:TRBBCA\]2.0.CO;2](https://doi.org/10.1659/0276-4741(2005)025[0235:TRBBCA]2.0.CO;2)

Corbett, J. (2006). Measuring wildlife habitat: What to measure and how to measure it. *Wildlife-Habitat Relationships: Concepts and Applications* 151. University of Wisconsin Press, 416 pp.

Cramer, M.J. & M.R. Willig (2005). Habitat heterogeneity, species diversity and null models. *Oikos* 108(2): 209–218; It was discovered that there was no significant correlation between any of the habitat categories and summer visits, winter visitors, or passage migrants. <https://doi.org/10.1111/j.0030-1299.2005.12944.x>

Daily, G.C., P.R. Ehrlich & G.A. Sanchez-Azofeifa (2001). Countryside biogeography: use of human-dominated habitats by the avifauna of southern Costa Rica. *Ecological Applications* 11(1): 1–13. [https://doi.org/10.1890/1051-0761\(2001\)011\[0001:CBUOHD\]2.0.CO;2](https://doi.org/10.1890/1051-0761(2001)011[0001:CBUOHD]2.0.CO;2)

Ding, Z., J. Liang, Y. Hu, Z. Zhou, H. Sun, L. Liu & X. Si (2019). Different responses of avian feeding guilds to spatial and environmental factors across an elevation gradient in the central Himalaya. *Ecology and Evolution* 9(7): 4116–4128. <https://doi.org/10.1002/ece3.5040>

Earnst, S.L. & A.L. Holmes (2012). Bird–habitat relationships in interior Columbia basin shrub steppe. *The Condor* 114(1): 15–29. <https://doi.org/10.1525/cond.2012.100176>

Euliss Jr, N.H. & G. Grodhaus (1987). Management of midges and other invertebrates for waterfowl wintering in California. *California Fish and Game* 73(4): 238–243.

Evans, K.L., S.E. Newson & K.J. Gaston (2009). Habitat influences on urban avian assemblages. *Ibis* 151(1): 19–39. <https://doi.org/10.1111/j.1474-919X.2008.00898.x>

Figueroa, R.A. & E.S. Corales (2005). Seasonal diet of the Aplomado Falcon (*Falco femoralis*) in an agricultural area of Araucanía, southern Chile. *Journal of Raptor Research* 39(1): 55–60.

Fisher, R.A. & F. Yates (1953). Statistical Tables for Biological, Agricultural and Medical Research. Hafner Publishing Company.

Gabbe, A.P., S.K. Robinson & J.D. Brawn (2002). Tree-species preferences of foraging insectivorous birds: implications for floodplain forest restoration. *Conservation Biology* 16(2): 462–470. <https://doi.org/10.1046/j.1523-1739.2002.00460.x>

Gomes, L.G., V. Oostra, V. Nijman, A.M. Cleef & M. Kappelle (2008). Tolerance of frugivorous birds to habitat disturbance in a tropical cloud forest. *Biological Conservation* 141(3): 860–871. <https://doi.org/10.1016/j.biocon.2008.01.007>

Grimmett, R., C. Inskip & T. Inskip (2016). *Birds of the Indian Subcontinent: India, Pakistan, Sri Lanka, Nepal, Bhutan, Bangladesh and the Maldives*. Bloomsbury India, 448 pp.

Haddad, N.M., L.A. Brudvig, J. Clobert, K.F. Davies, A. Gonzalez, R.D. Holt & J.R. Townshend (2015). Habitat fragmentation and its lasting impact on Earth's ecosystems. *Science Advances* 1(2): e1500052. <https://doi.org/10.1126/sciadv.1500052>

Hammer, Ø., & D.A. Harper (2001). PAST: Paleontological statistics software package for education and data analysis. *Palaeontologia Electronica* 4(1): 9.

Harisha, M.N. & B.B. Hosetti (2009). Diversity and distribution of avifauna of Lakkavalli range forest, Bhadra wildlife sanctuary, western ghat, India. *Ecoprint: An International Journal of Ecology* 16: 21–27. <https://doi.org/10.3126/eco.v16i0.3469>

Henderson, I.G., J. Cooper, R.J. Fuller & J. Vickery (2000). The relative abundance of birds on set-aside and neighbouring fields in summer. *Journal of Applied Ecology* 37(2): 335–347. <https://doi.org/10.1046/j.1365-2664.2000.00497.x>

Hettiarachchi, T. & C.S. Wijesundara (2017). Conservation significance of Dunumadalawa Forest Reserve in Central Sri Lanka based on the endemism of its avifauna. *Ceylon Journal of Science* 46(3): 21–30. <https://doi.org/10.4038/cjs.v46i3.7439>

Katuwal, H.B., K. Basnet, B. Khanal, S. Devkota, S.K. Rai, J.P. Gajurel & M.P. Nobis (2016). Seasonal changes in bird species and feeding guilds along elevational gradients of the Central Himalayas, Nepal. *PLoS One* 11(7): e0158362. <https://doi.org/10.1371/journal.pone.0158362>

Khan, M.S. & A. Pant (2017). Conservation status, species composition, and distribution of Avian Community in Bhimbandh Wildlife Sanctuary, India. *Journal of Asia-Pacific Biodiversity* 10(1): 20–26. <https://doi.org/10.1016/j.japb.2016.07.004>

King, S., C.S. Elphick, D. Guadagnin, O. Taft & T. Amano (2010). Effects of landscape features on waterbird use of rice fields. *Waterbirds* 33(sp1): 151–159. <https://doi.org/10.1675/063.033.s111>

Kissling, W.D., F. Carsten, Dорман, G. Ju"rgen, H. Thomas, I. Ku"hn, G.J. McInerny, J.M. Montoya, C. Ro"ermann, K. Schifflers, F.M. Schurr, A. Singer, J. Svenning, N.E. Zimmermann & R.B. O'Hara (2012). Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. *Journal of Biogeography* 39(12): 2163–2178. <https://doi.org/10.1111/j.1365-2699.2011.02663.x>

Kumar, A. (2016). Forest ecology of Gautam Buddha Wildlife Sanctuary of Bihar, India. *Flora* 22(1): 93–96.

Kumar, G., A. Alam, M. Maaz, M.S.D. Kumari & A. Kumar (2021). First Record of Occurrence of Indian Tree Shrew (*Anathana elliotti*) in Gautam Buddha Wildlife Sanctuary, Gaya, Bihar (India). *Indian Journal of Ecology* 48(5): 1566–1568.

Kumar, P. & S. Sahu (2020). Composition, diversity and foraging guilds of avifauna in agricultural landscapes in Panipat, Haryana, India. *Journal of Threatened Taxa* 12(1): 15140–15153. <https://doi.org/10.11609/jott.5267.12.1.15140-15153>

Kumar, T.S., R. Chandra & P.A. Azeez (2010). The birds of Araku, Visakhapatnam, Andhra Pradesh, India. *Journal of Threatened Taxa* 2(1): 662–665. <https://doi.org/10.11609/jott.02108.662-5>

Lande, R., P.J. DeVries & T.R. Walla (2000). When species accumulation curves intersect: implications for ranking diversity using small samples. *Oikos* 89(3): 601–605. <https://doi.org/10.1034/j.1600-0706.2000.890320.x>

Lepczyk, C.A. & P.S. Warren (2012). *Urban Bird Ecology and Conservation*. Studies in Avian Biology No. 45. University of California Press, Berkeley, CA. xiv + 326 pp.

Lorenzón, R.E., A.H. Beltzner, P.F. Olgun & A.L. Ronchi-Virgolini (2016). Habitat heterogeneity drives bird species richness, nestedness and habitat selection by individual species in fluvial wetlands of the Paraná River, Argentina. *Austral Ecology* 41(7): 829–841. <https://doi.org/10.1111/aec.12375>

MacArthur, R.H. & J.W. MacArthur (1961). On bird species diversity. *Ecology* 42(3): 594–598.

Maher, M. (1984). Benthic studies of waterfowl breeding habitat in south-western New South Wales. I. The fauna. *Marine and Freshwater Research* 35(1): 85–96. <https://doi.org/10.1071/MF9840085>

Mali, S., C. Srinivasulu & A.R. Rahmani (2017). Avifaunal diversity in the scrub forest of Sri Lankamalleswara Wildlife Sanctuary, Andhra Pradesh, India. *Journal of Threatened Taxa* 9(9): 10679–10691. <https://doi.org/10.11609/jott.2720.9.9.10679-10691>

Manhães, M.A. & A. Loures-Ribeiro (2005). Spatial distribution and diversity of bird community in an urban area of Southeast Brazil. *Brazilian Archives of Biology and Technology* 48: 285–294. <https://doi.org/10.1590/S1516-89132005000200016>

McCain, C.M. & J.A. Grytnes (2010). Elevational gradients in species richness. *Encyclopedia of Life Sciences*. <https://doi.org/10.1002/9780470015902.a0022548>

McKinney, M.L. (2006). Urbanization as a major cause of biotic homogenization. *Biological Conservation* 127(3): 247–260. <https://doi.org/10.1016/j.biocon.2005.09.005>

Mukhopadhyay, S. & S. Mazumdar (2019). Habitat-wise composition and foraging guilds of avian community in a suburban landscape of lower Gangetic plains, West Bengal, India. *Biology* 74(8): 1001–1010. <https://doi.org/10.2478/s11756-019-00226-x>

Nirbhay, A. & C.T.N. Singh (2009). Summer grasses of Gautam Buddha wild life sanctuary, Hazaribagh. *Advances in Plant Sciences* 22(2): 575–576.

Nsor, C.A., E. Acquah, G. Mensah, V. Kusi-Kyei & S. Boadi (2018). Avian Community Structure as a Function of Season, Habitat

Type, and Disturbance, in Mole National Park, Northern Region (Ghana). *International Journal of Ecology* 2018: 2045629. <https://doi.org/10.1155/2018/2045629>

O'Connell, T.J., L.E. Jackson & R.P. Brooks (2000). Bird guilds as indicators of ecological condition in the central Appalachians. *Ecological Applications* 10(6): 1706–1721. [https://doi.org/10.1890/1051-0761\(2000\)010\[1706:BGAIOE\]2.0.CO;2](https://doi.org/10.1890/1051-0761(2000)010[1706:BGAIOE]2.0.CO;2)

Panda, B.P., B. Prusty, B. Panda, A. Pradhan & S.P. Parida (2021). Habitat heterogeneity influences avian feeding guild composition in urban landscapes: evidence from Bhubaneswar, India. *Ecological Processes* 10(1): 1–10. <https://doi.org/10.1186/s13717-021-00304-6>

Pardini, R., E. Nichols & T. Püttker (2017). Biodiversity response to habitat loss and fragmentation. *Encyclopedia of the Anthropocene* 3: 229–239. <https://doi.org/10.1016/B978-0-12-809665-9.09824-4>

Pejchar, L., R.M. Pringle, J. Ranganathan, J.R. Zook, G. Duran, F. Oviedo & G.C. Daily (2008). Birds as agents of seed dispersal in a human-dominated landscape in southern Costa Rica. *Biological Conservation* 141(2): 536–544. <https://doi.org/10.1016/j.biocon.2007.11.008>

Pickett, S.T., M.L. Cadenasso, J.M. Grove, C.G. Boone, P.M. Groffman, E. Irwin, S.S. Kaushal, V. Marshall, B.P. McGrath, C.H. Nilon, R.V. Pouyat, K. Szlavecz, A. Troy & P. Warren (2011). Urban ecological systems: Scientific foundations and a decade of progress. *Journal of Environmental Management* 92(3): 331–362. <https://doi.org/10.1016/j.jenvman.2010.08.022>

Poulin, B., G. Lefebvre & R.A.Y.M.O.N.D. McNeil (1993). Variations in bird abundance in tropical arid and semi-arid habitats. *Ibis* 135(4): 432–441. <https://doi.org/10.1111/j.1474-919X.1993.tb02116.x>

Praveen, J., R. Jayapal & A. Pittie (2016). A Checklist of the birds of India. *Indian Birds* 11(5&6): 113–172.

Rathod, J. & G. Padate (2017). Feeding guilds of urban birds of Vadodara city. *International Journal of Fauna Biological Studies* 4: 78–85.

Rodgers, W.A. & H.S. Panwar (1988). Planning a Wildlife Protected area Network in India. 2 Volumes. Project FO: IND/82/003, FAO, Dehradun, 339 pp, 267 pp.

Seymour, C.L. & R.E. Simmons (2008). Can severely fragmented patches of riparian vegetation still be important for arid-land bird diversity? *Journal of Arid Environments* 72(12): 2275–2281. <https://doi.org/10.1016/j.jaridenv.2008.07.014>

Shannon, C.E. (1948). A mathematical theory of communication. *The Bell system technical journal* 27(3): 379–423. <https://doi.org/10.1002/j.1538-7305.1948.tb01338.x>

Simpson, E.H. (1949). Measurement of diversity. *Nature* 163(4148): 688–688. <https://doi.org/10.1038/163688a0>

Singh, M. (2022). Avifaunal diversity in unprotected wetlands of Ayodhya District, Uttar Pradesh, India. *Journal of Threatened Taxa* 14(8): 21561–21578. <https://doi.org/10.11609/jott.7067.14.8.21561-21578>

Sivaramakrishnan, K. (2000). Crafting the public sphere in the forests of West Bengal: Democracy, development, and political action. *American Ethnologist* 27(2): 431–461. <https://doi.org/10.1525/ae.2000.27.2.431>

Sorensen, T.A. (1948). A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. *Biological Sarker* 5: 1–34.

Stafford, J.D., R.M. Kaminski & K.J. Reinecke (2010). Avian foods, foraging and habitat conservation in world rice fields. *Waterbirds* 33(sp1): 133–150. <https://doi.org/10.1675/063.033.s110>

Statsoft (2001). Statistica (data analysis software system), ver.6. - StatSoft, <www.statsoft.com>.

Stein, A. & H. Kretz (2015). Terminology and quantification of environmental heterogeneity in species-richness research. *Biological Reviews* 90(3): 815–836. <https://doi.org/10.1111/brv.12135>

Stein, A., K. Gerstner & H. Kretz (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. *Ecology letters* 17(7): 866–880. <https://doi.org/10.1111/ele.12277>

Stiernemann, I.A., K. Ikin, P. Gibbons, W. Blanchard & D.B. Lindenmayer (2015). Measuring habitat heterogeneity reveals new insights into bird community composition. *Oecologia* 177(3): 733–746. <https://doi.org/10.1007/s00442-014-3134-0>

Surasinghe, T.D. & C. De Alwis (2010). Birds of Sabaragamuwa University campus, Buttala, Sri Lanka. *Journal of Threatened Taxa* 2(5): 876–888. <https://doi.org/10.11609/JoTT.o2113.876-88>

Symonds, M.R. & C.N. Johnson (2008). Species richness and evenness in Australian birds. *The American Naturalist* 171(4): 480–490. <https://doi.org/10.1086/528960>

Tanalogo, K.C., J.A.F. Pineda, M.E. Agravante & Z.M. Amerol (2015). Bird diversity and structure in different land-use types in lowland south-central Mindanao, Philippines. *Tropical Life Sciences Research* 26(2): 85.

Tanveer, A., H.S. Bargali & K. Afifullah (2019). Status and distribution of avifauna in Ramnagar Forest Division, Western Terai-Arc Landscape, Uttarakhand. *Indian Forester* 145(10): 935–945.

Thakur, M.L. & V.K. Mattu (2011). Avifauna of Kaza area of Spiti (Himachal Pradesh), India. *International Journal of Science and Nature* 2(3): 483–487.

Thilakarathne, D., T. Lakkana, G. Hirumthugoda, C. Wijesundara & S. Kumburegama (2021). Diversity and distribution of avifauna at Warathenna-Hakkinda Environmental Protection Area in Kandy, Sri Lanka. *Journal of Threatened Taxa* 13(12): 19689–19701. <https://doi.org/10.11609/jott.7447.13.12.19689-19701>

Tubelis, D.P. & R.B. Cavalcanti (2001). Community similarity and abundance of bird species in open habitats of a central Brazilian Cerrado. *Ornitologia Neotropical* 12(1): 57–73.

Vinayak, D.C. & S.V. Mali (2018). A checklist of bird communities In Tamhini Wildlife Sanctuary, the northern Western Ghats, Maharashtra, India. *Journal of Threatened Taxa* 10(3): 11399–11409. <https://doi.org/10.11609/jot.3377.10.3.11399-11409>

Williams, C.B. (1964). Patterns in the balance of nature and related problems of quantitative ecology. *Journal of Ecology* 54(2): 549–550. <https://doi.org/10.2307/2257968>

Wilson, M.C., X.Y. Chen, R.T. Corlett, R.K. Didham, P. Ding, R.D. Holt & M. Yu (2016). Habitat fragmentation and biodiversity conservation: key findings and future challenges. *Landscape Ecology* 31(2): 219–227. <https://doi.org/10.1007/s10980-015-0312-3>

Wolfe, J.D., M.D. Johnson & C.J. Ralph (2014). Do birds select habitat or food resources? Nearctic-Neotropic migrants in northeastern Costa Rica. *PLoS One* 9(1): e86221. <https://doi.org/10.1371/journal.pone.0086221>

Yeany II, D. (2009). Avian Community Analysis and Habitat Relationships at Finzel Swamp, Maryland. Master Thesis, xi + 153 pp. <https://doi.org/10.13140/RG.2.1.4669.9283>

Appendix 1. Systematic checklist and status of birds recorded in Gautam Buddha Wildlife Sanctuary Bihar and Jharkhand, India.

LC—Least Concern | EN—Endangered | NT—Near Threatened | WV—Winter visitor | R—Resident | SV—Summer visitor | PM—Passage migrant.

	Order	Family	Common name	Scientific name	IUCN Red List status	Relative abundance	Residential status	Feeding guild
1	Accipitriformes	Accipitridae	Black Eagle	<i>Ictinaetus malaiensis</i>	LC	0.61	WV	Carnivores
2			Black Kite	<i>Milvus migrans</i>	LC	0.15	R	Carnivores
3			Black-winged Kite	<i>Elanus caeruleus</i>	LC	0.61	R	Carnivores
4			Booted Eagle	<i>Hieraetus pennatus</i>	LC	0.30	WV	Carnivores
5			Egyptian Vulture	<i>Neophron percnopterus</i>	EN	0.46	R	Carnivores
6			Oriental Honey-buzzard	<i>Pernis ptilorhynchus</i>	LC	0.30	R	Carnivores
7			Shikra	<i>Accipiter badius</i>	LC	0.46	R	Carnivores
8	Bucerotiformes	Bucerotidae	Indian Grey Hornbill	<i>Ocyceros birostris</i>	LC	0.46	R	Frugivores
9		Upupidae	Common Hoopoe	<i>Upupa epops</i>	LC	0.46	R	Insectivores
10	Charadriiformes	Turnicidae	Barred Buttonquail	<i>Turnix suscitator</i>	LC	2.44	R	Omnivores
11		Recurvirostridae	Black-winged Stilt	<i>Himantopus himantopus</i>	LC	1.07	WV	Insectivores
12		Charadriidae	Little-ringed Plover	<i>Charadrius dubius</i>	LC	0.46	R	Insectivores
13			Red-wattled Lapwing	<i>Vanellus indicus</i>	LC	0.30	R	Insectivores
14			Yellow-wattled Lapwing	<i>Vanellus malabaricus</i>	LC	0.61	R	Insectivores
15	Ciconiiformes	Ciconiidae	Asian Openbill	<i>Anastomus oscitans</i>	LC	0.30	R	Carnivores
16	Columbiformes	Columbidae	Rock Pigeon	<i>Columba livia</i>	LC	0.30	R	Granivores
17			Spotted Dove	<i>Streptopelia chinensis</i>	LC	2.74	R	Granivores
18			Eurasian Collared Dove	<i>Streptopelia decaocto</i>	LC	0.30	R	Granivores
19			Laughing Dove	<i>Streptopelia senegalensis</i>	LC	0.30	R	Granivores
20			Orange-breasted Green Pigeon	<i>Treron bicinctus</i>	LC	0.76	R	Granivores
21	Coraciiformes	Coraciidae	Indian Roller	<i>Coracias benghalensis</i>	LC	0.91	R	Insectivores
22		Alcedinidae	White-throated Kingfisher	<i>Halcyon smyrnensis</i>	LC	0.91	R	Piscivores
23		Meropidae	Chestnut-headed Bee-eater	<i>Merops leschenaulti</i>	LC	1.37	R	Insectivores
24			Green Bee-eater	<i>Merops orientalis</i>	LC	2.74	R	Insectivores
25			Blue-tailed Bee-eater	<i>Merops philippinus</i>	LC	0.91	SV	Insectivores
26	Cuculiformes	Cuculidae	Greater Coucal	<i>Centropus sinensis</i>	LC	0.61	R	Omnivores
27			Jacobin Cuckoo	<i>Clamator jacobinus</i>	LC	0.30	SV	Insectivores
28			Asian Koel	<i>Eudynamys scolopaceus</i>	LC	0.46	R	Omnivores
29			Common Hawk-cuckoo	<i>Hierococcyx varius</i>	LC	0.76	R	Omnivores
30	Falconiformes	Falconidae	Common Kestrel	<i>Falco tinnunculus</i>	LC	0.15	WV	Carnivores
31	Galliformes	Phasianidae	Grey Francolin	<i>Francolinus pondicerianus</i>	LC	0.91	R	Omnivores
32			Painted Spurfowl	<i>Galloperdix lunulata</i>	LC	0.61	R	Omnivores
33			Red Junglefowl	<i>Gallus gallus</i>	LC	0.61	R	Omnivores
34			Indian Peafowl	<i>Pavo cristatus</i>	LC	0.15	R	Omnivores
35	Gruiformes	Rallidae	White-breasted Waterhen	<i>Amaurornis phoenicurus</i>	LC	0.30	R	Insectivores
36	Passeriformes	Sturnidae	Jungle Myna	<i>Acridotheres fuscus</i>	LC	0.61	R	Omnivores
37		Sturnidae	Common Myna	<i>Acridotheres tristis</i>	LC	3.50	R	Omnivores
38		Aegithinidae	Common Iora	<i>Aegithina tiphia</i>	LC	0.15	R	Insectivores
39		Motacillidae	Paddyfield Pipit	<i>Anthus rufulus</i>	LC	0.15	R	Insectivores

	Order	Family	Common name	Scientific name	IUCN Red List status	Relative abundance	Residential status	Feeding guild
40	Passeriformes	Motacillidae	Tree Pipit	<i>Anthus trivialis</i>	LC	0.15	WV	Insectivores
41		Chloropseidae	Golden-fronted Leafbird	<i>Chloropsis aurifrons</i>	LC	0.46	R	Omnivores
42		Sylviidae	Yellow-eyed Babbler	<i>Chrysomma sinense</i>	LC	1.37	R	Insectivores
43		Nectariniidae	Purple Sunbird	<i>Cinnyris asiaticus</i>	LC	2.28	R	Nectivores
44		Muscicapidae	Indian Robin	<i>Copsychus fulicatus</i>	LC	2.59	R	Insectivores
45		Muscicapidae	Oriental Magpie Robin	<i>Copsychus saularis</i>	LC	2.13	R	Insectivores
46		Campephagidae	Large Cuckooshrike	<i>Coracina macei</i>	LC	0.61	R	Insectivores
47		Corvidae	Large-billed Crow	<i>Corvus macrorhynchos</i>	LC	0.46	R	Omnivores
48		Corvidae	House Crow	<i>Corvus splendens</i>	LC	0.30	R	Omnivores
49		Muscicapidae	Tickell's Blue Flycatcher	<i>Cyornis tickelliae</i>	LC	0.15	WV	Insectivores
50		Corvidae	Rufous Treepie	<i>Dendrocitta vagabunda</i>	LC	1.67	R	Omnivores
51		Dicaeidae	Thick-billed Flowerpecker	<i>Dicaeum agile</i>	LC	0.61	R	Omnivores
52		Dicruridae	White-bellied Drongo	<i>Dicrurus caerulescens</i>	LC	0.30	R	Insectivores
53		Dicruridae	Ashy Drongo	<i>Dicrurus leucophaeus</i>	LC	0.30	WV	Insectivores
54		Dicruridae	Black Drongo	<i>Dicrurus macrocercus</i>	LC	2.74	R	Insectivores
55		Alaudidae	Ashy-crowned Sparrow-lark	<i>Eremopterix griseus</i>	LC	0.46	R	Omnivores
56		Estrildidae	Indian Silverbill	<i>Euodice malabarica</i>	LC	0.46	R	Granivores
57		Muscicapidae	Taiga Flycatcher	<i>Ficedula albicilla</i>	LC	0.15	WV	Insectivores
58		Sturnidae	Asian Pied Starling	<i>Gracupica contra</i>	LC	1.37	R	Omnivores
59		Laniidae	Brown Shrike	<i>Lanius cristatus</i>	LC	0.30	WV	Insectivores
60		Laniidae	Long-tailed Shrike	<i>Lanius schach</i>	LC	0.91	WV	Insectivores
61		Laniidae	Bay-backed Shrike	<i>Lanius vittatus</i>	LC	0.15	R	Insectivores
62		Estrildidae	Scaly-breasted Munia	<i>Lonchura punctulata</i>	LC	0.91	R	Granivores
63		Alaudidae	Indian Bush Lark	<i>Mirafra erythroptera</i>	LC	0.30	R	Omnivores
64		Motacillidae	White Wagtail	<i>Motacilla alba</i>	LC	0.30	WV	Insectivores
65		Motacillidae	Grey Wagtail	<i>Motacilla cinerea</i>	LC	0.15	WV	Insectivores
66		Muscicapidae	Brown Rock Chat	<i>Oenanthe fusca</i>	LC	0.30	R	Insectivores
67		Oriolidae	Indian Golden Oriole	<i>Oriolus kundoo</i>	LC	0.61	R	Insectivores
68		Cisticolidae	Common Tailorbird	<i>Orthotomus sutorius</i>	LC	0.46	R	Insectivores
69		Sturnidae	Rosy Starling	<i>Pastor roseus</i>	LC	0.15	PM	Omnivores
70		Campephagidae	Small Minivet	<i>Pericrocotus cinnamomeus</i>	LC	0.76	R	Insectivores
71		Muscicapidae	Black Redstart	<i>Phoenicurus ochruros</i>	LC	0.15	WV	Insectivores
72		Phylloscopidae	Tickell's Leaf Warbler	<i>Phylloscopus affinis</i>	LC	0.15	WV	Insectivores
73		Phylloscopidae	Hume's Leaf Warbler	<i>Phylloscopus humei</i>	LC	0.15	WV	Insectivores
74		Phylloscopidae	Greenish Warbler	<i>Phylloscopus trochiloides</i>	LC	0.76	WV	Insectivores
75		Pittidae	Indian Pitta	<i>Pitta brachyura</i>	LC	0.30	SV	Insectivores
76		Cisticolidae	Grey-breasted Prinia	<i>Prinia hodgsonii</i>	LC	4.41	R	Insectivores
77		Cisticolidae	Plain Prinia	<i>Prinia inornata</i>	LC	0.46	R	Insectivores
78		Cisticolidae	Ashy Prinia	<i>Prinia socialis</i>	LC	0.15	R	Insectivores
79		Pycnonotidae	Red-vented Bulbul	<i>Pycnonotus cafer</i>	LC	16.74	R	Omnivores
80		Pycnonotidae	Red-whiskered Bulbul	<i>Pycnonotus jocosus</i>	LC	0.30	R	Omnivores
81		Rhipiduridae	White-browed Fantail	<i>Rhipidura aureola</i>	LC	0.61	R	Insectivores
82		Sturnidae	Brahminy Starling	<i>Sturnia pagodarum</i>	LC	0.15	R	Omnivores

	Order	Family	Common name	Scientific name	IUCN Red List status	Relative abundance	Residential status	Feeding guild
83	Passeriformes	Vangidae	Common Woodshrike	<i>Tephrodornis pondicerianus</i>	LC	1.22	R	Insectivores
84		Vangidae	Large Woodshrike	<i>Tephrodornis virgatus</i>	LC	0.30	R	Insectivores
85		Monarchidae	Indian Paradise Flycatcher	<i>Terpsiphone paradisi</i>	LC	1.07	SV	Insectivores
86		Leiothrichidae	Jungle Babbler	<i>Turdoides striata</i>	LC	5.94	R	Insectivores
87		Zosteropidae	Oriental White-eye	<i>Zosterops palpebrosus</i>	LC	1.83	R	Insectivores
88	Pelecaniformes	Ardeidae	Great Egret	<i>Ardea alba</i>	LC	0.15	R	Carnivores
89			Indian Pond Heron	<i>Ardeola grayii</i>	LC	0.76	R	Carnivores
90			Cattle Egret	<i>Bubulcus ibis</i>	LC	0.91	R	Carnivores
91			Little Egret	<i>Egretta garzetta</i>	LC	1.37	R	Carnivores
92		Threskiornithidae	Red-naped Ibis	<i>Pseudibis papillosa</i>	LC	0.61	WV	Omnivores
93	Piciformes	Picidae	Lesser-goldenbacked Woodpecker	<i>Dinopium benghalensis</i>	LC	1.98	R	Insectivores
94		Megalaimidae	Brown-headed Barbet	<i>Psilopogon zeylanicus</i>	LC	0.30	R	Omnivores
95	Podicipediformes	Podicipedidae	Little Grebe	<i>Tachybaptus ruficollis</i>	LC	0.91	R	Insectivores
96	Psittaciformes	Psittaculidae	Plum-headed Parakeet	<i>Psittacula cyanocephala</i>	LC	0.15	R	Frugivores
97			Alexandrine Parakeet	<i>Psittacula eupatria</i>	NT	1.98	R	Frugivores
98			Rose-ringed Parakeet	<i>Psittacula krameri</i>	LC	2.28	R	Frugivores
99	Strigiformes	Strigidae	Jungle Owlet	<i>Glaucidium radiatum</i>	LC	0.46	R	Carnivores

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2020–2022

Due to paucity of space, the list of reviewers for 2020–2022 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org

Articles

Patterns of livestock depredation by carnivores: Leopard *Panthera pardus* (Linnaeus, 1758) and Grey Wolf *Canis lupus* (Linnaeus, 1758) in and around Mahuadnr Wolf Sanctuary, Jharkhand, India
– Shahzada Iqbal & Orus Ilyas, Pp. 24291–24298

Wetland biodiversity of Ramaroshan Lake complex: a need for conservation

– Ram Devi Tachamo-Shah, Deep Narayan Shah, Subodh Sharma, Lila Sharma, Jagan Nath Adhikari & Deepak Rijal, Pp. 24299–24320

Diversity of wintering avifauna throughout the heterogeneous aquatic habitats of Bankura District, West Bengal, India

– Biplob Kumar Modak, Subha Shankar Mukherjee, Susobhan Mondal, Mainak Sarkar & Asif Hossain, Pp. 24321–24330

Assessing and understanding diversity and foraging guilds of bird community structure in Gautam Buddha Wildlife Sanctuary, Bihar and Jharkhand, India

– Umar Saeed, Mujahid Ahamad, Vivek Ranjan, Syed Ainul Hussain & Ruchi Badola, Pp. 24331–24344

Communications

Identifying potential habitats of Himalayan Red Panda *Ailurus fulgens* (Cuvier, 1825) (Mammalia: Carnivora: Ailuridae) in Neora Valley National Park, West Bengal, India

– Sangay W. Bhutia, Asim Giri, Pranita Gupta & Basavaraj S. Holeyachi, Pp. 24345–24351

Recent record of Eurasian Otter *Lutra lutra* (Linnaeus, 1758) (Mammalia: Carnivora: Mustellidae) from Kerala part of the Western Ghats, India and an insight into the behaviour and habitat preferences

– Sreehari K. Mohan, Lathish R. Nath, K.S. Subin, Sreekumar K. Govindankutty & P.O. Nameer, Pp. 24352–24356

A review of Baya Weaver *Ploceus philippinus* (Linnaeus, 1766) (Aves: Passeriformes: Ploceidae): ecological and conservation status

– Yusufkhan Pathan & Arvindgiri Goswami, Pp. 24357–24367

An updated checklist of non-marine molluscs of the western Himalaya

– Hilal Ahmed, Imtiaz Ahmed & Neelavar Ananthram Aravind, Pp. 24368–24395

Nonessential elements (Al, As, Cd, & Pb) in shrimps and mussels from southeastern Brazil

– Ana Paula Madeira Di Beneditto, Inácio Abreu Pestana, Dayvison Felismindo Lima & Roberto Weider de Assis Franco, Pp. 24396–24401

Three new additions to the flora of Himachal Pradesh, India from Khokhan Wildlife Sanctuary, Kullu District

– Ashutosh Sharma, S. Noorunnisa Begum, G.S. Goraya, Gopal S. Rawat & Vaneet Jishtu, Pp. 24402–24408

Comparative morphological and ethnobotanical assessment of certain taxa of genus *Glochidion* (Phyllanthaceae) from Assam, India

– Priyanka Brahma & Sanjib Baruah, Pp. 24409–24419

Notes on *Discospermum sphaerocarpum* Dalzell ex Hook.f., a rare species of Rubiaceae (Ixoroideae: Coffeeae) from southern India

– C. Pramod, V.V. Drisya, A.K. Pradeep & K.T. Chandramohan, Pp. 24420–24426

Legumes (Fabaceae) from Satmala hills, Maharashtra, India

– Swapnil D. Wagh & Manoj T. Patil, Pp. 24427–24436

Report of new myristica swamp ecosystems from the Western Ghats at Pathanapuram, Kerala, India

– Niji Joseph, R. Sreejai & M. Ajayakumar, Pp. 24437–24442

Short Communications

First confirmed record of Arabian Gazelle *Gazella arabica* Lichtenstein, 1827 (Mammalia: Artiodactyla: Bovidae) on Masirah Island, off the coast of eastern Oman in the Arabian Sea

– Taimur Al Said, Haitham Al Rawahi, Maha Al Ansari, Al Mutasim Al Hinai, Ahmed Al Amri, Ahmed Al Wahaibi, Ghazi Al Farsi, Saud Al Wihibi & Salman Al Farsi, Pp. 24443–24446

First report of the longhorn beetle, *Rosalia (Eurybatus) formosa* (Saunders, 1839) (Insecta: Coleoptera: Cerambycidae) from Mizoram, India

– Amit Rana & Lobeno Mozhui, Pp. 24447–24450

Publisher & Host

Threatened Taxa