

Building evidence for conservation globally
**Journal of
Threatened
Taxa**

Open Access

[10.11609/jott.2024.16.1.24451-24614](https://doi.org/10.11609/jott.2024.16.1.24451-24614)
www.threatenedtaxa.org

26 January 2024 (Online & Print)
16(1): 24451-24614
ISSN 0974-7907 (Online)
ISSN 0974-7893 (Print)

Publisher

Wildlife Information Liaison Development Society
www.wild.zooreach.org

Host
Zoo Outreach Organisation
www.zooreach.org

43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur
Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Deputy Chief Editor

Dr. Neelesh Dahanukar
Noida, Uttar Pradesh, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India
Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA
Ms. Priyanka Iyer, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India
Dr. B.A. Daniel, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Editorial Board

Dr. Russel Mittermeier
Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNASC, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and
Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary
Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct
Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences
Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinahalli PO, Nilgiris, Tamil Nadu 643223, India

Dr. Martin Fisher

Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish
Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of
Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador
do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000)
Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors

Mrs. Mira Bhojwani, Pune, India
Dr. Fred Pluthero, Toronto, Canada
Mr. P. Ilangovan, Chennai, India
Ms. Sindhura Stothra Bhashyam, Hyderabad, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting

Mrs. Radhika, ZOO, Coimbatore, India
Mrs. Geetha, ZOO, Coimbatore India

Fundraising/Communications

Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2020–2022

Fungi

Dr. B. Shivaraju, Bengaluru, Karnataka, India
Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India
Dr. Vatsavaya S. Raju, Kakatiya University, Warangal, Andhra Pradesh, India
Dr. M. Krishnappa, Jnana Sahyadri, Kuvempu University, Shimoga, Karnataka, India
Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India
Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India
Dr. Kiran Ramchandra Ranadive, Annaheeb Magar Mahavidyalaya, Maharashtra, India

Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India
Dr. Shonil Bhagwat, Open University and University of Oxford, UK
Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India
Dr. Ferdinando Boero, Università del Salento, Lecce, Italy
Dr. Dale R. Calder, Royal Ontario Museum, Toronto, Ontario, Canada
Dr. Cleofas Cervanca, Univ. of Philippines Los Baños College Laguna, Philippines
Dr. F.B. Vincent Florens, University of Mauritius, Mauritius
Dr. Merlin Franco, Curtin University, Malaysia
Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India
Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India
Dr. Pankaj Kumar, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA
Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India
Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India
Dr. Vijayasankar Raman, University of Mississippi, USA
Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantapur, India
Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India
Dr. Aparna Watve, Pune, Maharashtra, India
Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China
Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
Dr. M.K. Vasudeva Rao, Shiv Ranjan Housing Society, Pune, Maharashtra, India
Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India
Dr. Manda Datar, Agharkar Research Institute, Pune, Maharashtra, India
Dr. M.K. Janarthanan, Goa University, Goa, India
Dr. K. Karthigeyan, Botanical Survey of India, India
Dr. Errol Vela, University of Montpellier, Montpellier, France
Dr. P. Lakshminarasimhan, Botanical Survey of India, Howrah, India
Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA
Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India
Dr. Analinda Manila-Fajard, University of the Philippines Los Baños, Laguna, Philippines
Dr. P.A. Sinu, Central University of Kerala, Kasaragod, Kerala, India
Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India
Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India
Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA
Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India
Dr. A.G. Pandurangan, Thiruvananthapuram, Kerala, India
Dr. Navendra Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
Dr. Kannan C.S. Warrier, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India
Dr. D.B. Bastawade, Maharashtra, India
Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India
Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India
Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa
Dr. Rory Dow, National Museum of natural History Naturalis, The Netherlands
Dr. Brian Fisher, California Academy of Sciences, USA
Dr. Richard Gallon, Llandudno, North Wales, LL30 1UP
Dr. Hemant V. Ghate, Modern College, Pune, India
Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scope

For Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>

For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Green Sea Turtle *Chelonia mydas* watercolour by Elakshi Mahika Molur.

First documentation of diversity of the Heteroptera of Cotton University Campus, Kamrup (Metropolitan), Assam, India

Santana Saikia¹ & Anjana Singha Naorem²

^{1,2} Department of Zoology, Cotton University, Pan Bazaar, Guwahati, Assam 781001, India

¹santanasaikia7@gmail.com, ²anjanasingha@cottonuniversity.ac.in (corresponding author)

Abstract: Cotton University, a developing university in Guwahati city of Kamrup district from Assam is undergoing a lot of developmental changes leading to a change in land use pattern which will have an impact on insect distribution. Heteroptera studies being severely lacking from this region needs attention for their documentation. A survey conducted on the campus from July 2018 to July 2019 every week between 0700–0900 h on all types of vegetation documented a total of 163 bugs of 20 different species under 10 families of Heteroptera. Pentatomidae was found to be the most dominant family with eight recorded species. Wild vegetation supported more diverse bug forms than the other garden plants. This survey is the first record of these insects from the Cotton University campus and such data forms an important database of available bugs from this region in the wake of the developmental changes the university is going through. Any change in their distribution, if found in the future, will reflect the impact of anthropogenic activities on their existence and distribution. Studies of this kind may be minuscule in level, but it forms an important record of their presence before we lose them to time.

Keywords: Abundance, anthropogenic activities, evenness, host-switching behaviour, insect distribution, insect inventory, nature, pentatomidae, polyphagous, species richness, vegetation.

Editor: M.E. Hassan, Zoological Survey of India, Patna, India.

Date of publication: 26 January 2024 (online & print)

Citation: Saikia, S. & A.S. Naorem (2024). First documentation of diversity of the Heteroptera of Cotton University Campus, Kamrup (Metropolitan), Assam, India. *Journal of Threatened Taxa* 16(1): 24496–24502. <https://doi.org/10.11609/jott.8349.16.1.24496-24502>

Copyright: © Saikia & Naorem 2024. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: Department of Biotechnology, India. Project No. BT/IN/Indo-US/Foldscope/39/2015.

Competing interests: The authors declare no competing interests.

Author details: SANTANA SAIKIA did her B.Sc. from Nowgong College and M.Sc. from Cotton University. She has recently been awarded doctorate degree from Cotton University. Her research area includes insect diversity, taxonomy and insect behaviour. DR. ANJANA SINGHA NAOREM is presently working as an assistant professor (Selection Grade) at Cotton University, Assam. She did her M.Sc., MPhil and Ph.D. from University of Delhi. Her research area includes-plant insect interaction, insect toxicology, taxonomy and diversity.

Author contributions: Concept & Supervision-ASN; Data collection and survey—SS; Data analysis—ASN & SS; Manuscript writing—SS; Manuscript editing and reviewing—ASN.

Acknowledgements: We are thankful to the Department of Biotechnology, India for all the financial support under the project BT/IN/Indo-US/Foldscope/39/2015. We are grateful to the Cotton University authorities for all the institutional support and facilities. We are also thankful to Dr. H.V. Ghate, Department of Zoology, Modern College of Arts, Science and Commerce, Pune, Maharashtra for identification of few bugs and to the esteemed anonymous reviewers for their critical reviews and suggestions. We thank Sadhika Naorem with graphic designing and redefining.

INTRODUCTION

Northeastern region of India is one of the biodiversity hotspots. Assam with tropical monsoon rainfall type region with a mix of hot and humid climate serves as one of the best places for insect population to flourish. However, literature report on Heteroptera diversity from this region is almost negligible. Most of the literature reports about Heteroptera diversity are from northern India or southern India and a few are from western India (Azim 2011; Salini & Viraktamath 2015). Heteroptera is the largest suborder under the order Hemiptera comprising more than 40,000 reported species and possibly 25,000 species are still to be identified (Schaefer & Panizzi 2000). This group of insects are economically very important as they include pests, predators, and vectors of plant pathogens (Mitchell 2004; Kaur et al. 2012; Halder et al. 2020).

Heteropterans are not just insect pests but some of them are important predators of insect pests and they are an important component of our ecosystem. Unfortunately, literature reports on the terrestrial heteropteran studies are lacking from this region despite its faunistic richness. Due to increasing anthropogenic activities related to the developmental work and urbanisation, existence of many organisms, invertebrates, in particular, have become critical, many of them even get extinct over time without having been noticed for their existence. Heteroptera is one such neglected insect group whose records are sparse and limited. Therefore, this work was undertaken to build a biodiversity inventory of heteropteran fauna of Cotton University campus (α diversity) which is a developing university and many new constructions are under way, so an attempt was made to record the available Heteroptera diversity of the campus before much tampering with the natural ecosystem of the campus is done. Study of such insect diversity and their documentation is important to understand the systematics, ecological role, and significance of the insects in an ecosystem. Change in land use pattern, habitat fragmentation, etc., result in distributional variation in insect fauna (Kruess & Tscharntke 2000). So, the objective of this study was to record all the available heteropteran diversity of Cotton University campus before more habitat destruction/fragmentation occurs.

MATERIAL AND METHODS

Study area

Cotton University campus (26.1868 N & 91.7476 E) is situated in the heart of the city Kamrup (M), Assam on the south bank of the mighty Brahmaputra River covering an area of 12.04-acre land (Figure 1). The weather of this location during summer is very hot and humid with heavy rainfall but relatively cooler during winter. The temperature during our study period ranged 10.3–34.4 °C. University campus has the residential area of staff, hostels and cafeteria apart from the main university building. There is a mixed vegetation of wild plants, trees, some herbaceous plants, and vegetable garden but the vegetation distribution is patchy.

Collection

A survey of Heteroptera diversity of the Cotton University campus was carried out from July 2018 to July 2019. For insect collection, random sampling method was used as the vegetation distribution was patchy and not a continuous kind and there is also no specific sampling method for Heteroptera (Fauvel 1999). Insects were collected directly by hand or sweep net and transferred directly into plastic containers. Time of collection was 0700–0900 h as insects are generally active during this time period. The host plants from where the insects were collected were also recorded.

Identification

After collection, insects were observed under stereozoom microscope (Magnus, 2X to 4X) and then they were identified on the basis of morphological characters, using suitable keys (Distant 1902) and book (Rider et al. 2018). Photographs were taken with mobile camera (Samsung M 51, 64 MP camera) and processed in Adobe Photoshop (Version 24.0.1, 2022).

Preservation

Large and hard bodied insects were pinned and dried for 15 days. Dry preserved bugs were kept in wooden boxes provisioned with naphthalene balls to prevent any insect attack. For wet preservation, insects were kept in 70% ethanol along with few drops of glycerine (Mouhoubi et al. 2019). All the dried and wet preserved insects were labelled properly.

Statistical Analysis

Measurement of Diversity

Heteroptera diversity of the Cotton University was calculated using Shannon-Wiener diversity index (H)

Figure 1. Map of Cotton University Campus (Yumnam & Dey 2022).

(Shannon & Wiener 1949), Simpson's index (D) (Simpson 1949), Margalef's species richness (Margalef 1958), and Pielou's species evenness (Pielou 1966). Dominance status of various species were described on the basis of relative abundance following Engelmann's scale (Engelmann 1973).

RESULTS

During the collection period, July 2018 to July 2019, a total of 163 Heteroptera samples were recorded with 20 species under 10 families (Table 1, Images 1–20). Pentatomidae family was the most diverse in species (40%) in the university campus and three families, viz., Coreidae, Alydidae, and Plataspidae represented nearly

10% each of the Heteroptera diversity and the remaining families represented only 5% of the diversity (Table 1, Figure 2). Bugs like *Carbula scutellata*, *Megacopta cribraria*, and *Cochlochila bullita* were abundant as compared to other bugs which were either subdominant or recedent.

Bugs were observed and collected from both wild plants as well as some garden plants. Though the plants like *Ocimum sanctum* and *Lablab purpureus* were observed to harbour large number of individuals of a particular bug species but the bug diversity was more on either wild vegetation or on *Acalypha indica*, a herbaceous wild plant under the family Euphorbiaceae or on *Solanum* plant (Figure 3).

Both the Shannon-Wiener index (H) (0.90781) and Simpson index (D) (0.205635) clearly indicated good

Table 1. List of heteropteran insects from Cotton University Campus along with their host plant from where they were collected.

	Family	Name of the insect	Plant/ place of collection	Number of individuals	Relative abundance (%)	Dominance status
1.	Pentatomidae	<i>Carbula scutellata</i> Distant, 1887	<i>Acalypha indica</i>	27	16.56	Dominant
		<i>Plautia crossota</i> Dallas, 1851	-do-	6	3.68	Subdominant
		<i>Halyomorpha picus</i> Fabricius, 1794	<i>Solanum melongena</i>	5	3.07	Recedent
		<i>Tolumnia latipes</i> Dallas, 1851	<i>Acalypha indica</i>	2	1.23	Recedent
		<i>Eocanthecona furcellata</i> Wolff, 1811	<i>Solanum melongena</i>	1	0.61	Subrecedent
		<i>Piezodorus hybnerii</i> Gmelin, 1789	-do-	1	0.61	Subrecedent
		<i>Eysarcoris guttiger</i> Thunberg, 1783	<i>Acalypha indica</i>	9	5.52	Subdominant
		<i>Acrozangis antica</i> Vollenhoven, 1868	Found dead	1	0.61	Subrecedent
2.	Coreidae	<i>Cletus</i> sp. Stål, 1860	Wild vegetation	2	1.23	Recedent
		<i>Acanthocoris scabrator</i> Fabricius, 1803	-do-	3	1.84	Recedent
3.	Alydidae	<i>Riptortus pedestris</i> Fabricius, 1775	-do-	4	2.45	Recedent
		<i>Leptocoris acuta</i> Stål, 1825	-do-	4	2.45	Recedent
4.	Plataspidae	<i>Megacopta cribraria</i> Fabricius, 1789	<i>Lablab purpureus</i>	65	39.88	Eudominant
		<i>Brachyplatys subaeneus</i> Westwood, 1837	-do-	4	2.45	Recedent
5.	Urostylidae	<i>Urolabida histrionica</i> Westwood, 1837	<i>Ficus elastica</i>	1	0.61	Subrecedent
6.	Lygaeidae	<i>Graptostethus servus</i> Fabricius, 1787	Wild vegetation	5	3.07	Recedent
7.	Largidae	<i>Physopelta</i> sp. Amyot & Serville, 1843	Found dead	1	0.61	Subrecedent
8.	Scutelleridae	<i>Chrysocoris stollii</i> Wolff, 1801	<i>Solanum lycopersicum</i>	1	0.61	Subrecedent
9.	Dinidoridae	<i>Coridius nepalensis</i> Westwood, 1837	<i>Solanum melongena</i>	1	0.61	Subrecedent
10.	Tingidae	<i>Cochlochila bullata</i> Stål, 1873	<i>Ocimum sanctum</i>	20	12.27	Dominant

RA <1 = Subrecedent; RA = 1.1–3.1 = Recendent; RA = 3.2–10 = Subdominant; RA = 10.1–31.6 = Dominant; RA >31.7 = Eudominant. (Jana et al. 2009; Engelmann 1973).

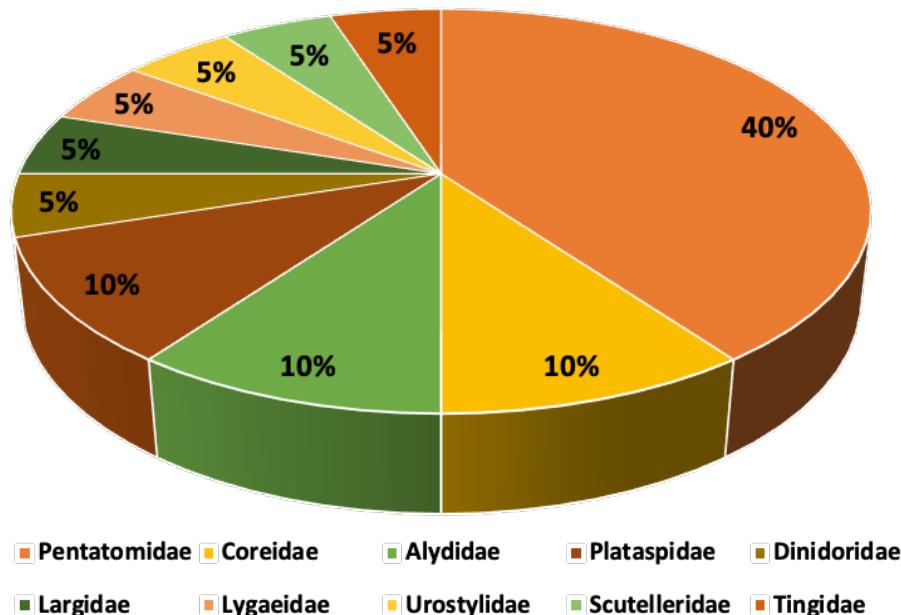


Figure 2. Percentage of bugs according to their number of species collected from a particular Heteroptera family from Cotton University Campus.



Image 1–20. Heteroptera Diversity of Cotton University Campus.

1—*Carbula scutellata* Distant, 1887 | 2—*Plautia crossota* Dallas, 1851 | 3—*Halyomorpha picus* Fabricius, 1794 | 4—*Tolumnia latipes* Dallas, 1851 | 5—*Eocanthecona furcellata* Wolff, 1811 | 6—*Piezodorus hybnerii* Gmelin, 1789 | 7—*Eysarcoris guttiger* Thunberg, 1783 | 8—*Acrozangis antica* Vollenhoven, 1868 | 9—*Cletus* sp. Stål, 1860 | 10—*Acanthocoris scabrador* Fabricius, 1803 | 11—*Riptortus pedestris* Fabricius, 1775 | 12—*Leptocoris acuta* Stål, 1825 | 13—*Megacopta cribraria* Fabricius, 1789 | 14—*Brachyplatys subaeneus* Westwood, 1837 | 15—*Urolabida histrionica* Westwood, 1837 | 16—*Graptostethus servus* Fabricius, 1787 | 17—*Physopelta* sp. Amyot & Serville, 1843 | 18—*Chrysocoris stollii* Wolff, 1801 | 19—*Coridius nepalensis* Westwood, 1837 | 20—*Cochlochila bullata* Stål, 1873. © Santana Saikia.

amount of Heteroptera diversity in the university campus. Margalef's richness was 8.58878 and Pielou's evenness index (0.697762) indicated moderate evenness in the distribution of the species.

DISCUSSION

Heteroptera are one of the most successful insects that almost occupy all the diverse array of habitat owing to their diverse feeding habits (Schuh & Slater 1995). In the present study, Heteroptera bugs were

sampled from different kinds of plants some wild and some home-grown garden vegetables. Availability of bugs on these diverse plants could be associated with their polyphagous nature (Panizzi & Grazia 2015) and host switching behaviour to sustain their population. Amongst the 10 different families of Heteroptera recorded from the university campus, Pentatomidae family exhibited most diverse species as compared to others that could be due to their choice of wider range of host plants and ability to thrive well on both cultivated and non-cultivated plants (Panizzi 1997). Presence of large number of Pentatomid bugs may also be because

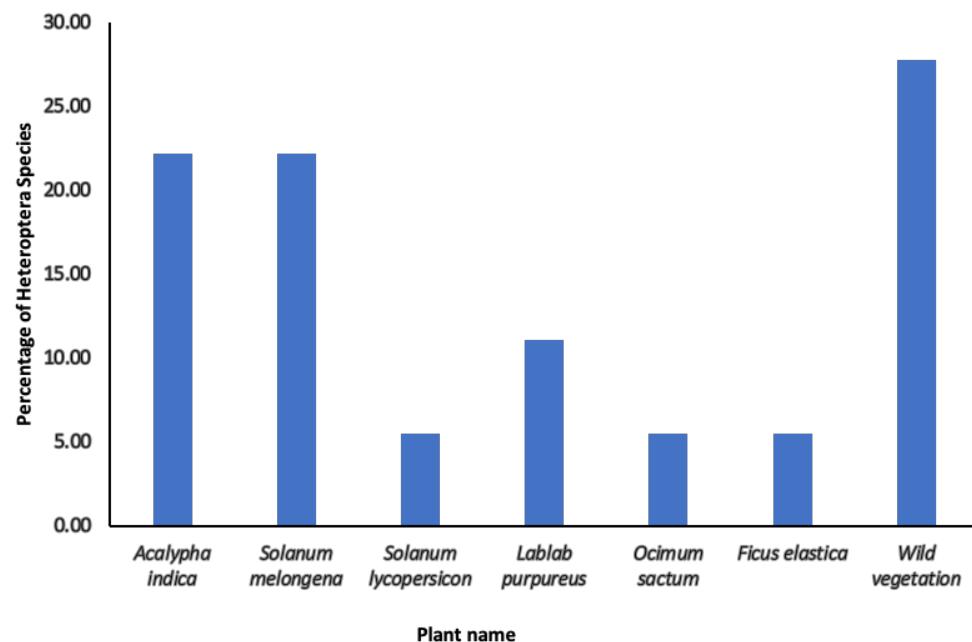


Figure 3. Percentage of different bug species collected from different plants from Cotton University Campus.

of the availability of their suitable host plants/alternate host plants/insect hosts in the university campus. The suborder Heteroptera has 91 different families recorded worldwide (Henry 2017) and among all, Miridae is the most diverse family, followed by Reduviidae, Pentatomidae, Lygaeidae (Schaefer 2013). But deviation from such findings in the present study where we did not find even a single species of Miridae and Reduviidae could be related to the absence of their host/hosts. Pentatomidae was the most diverse family in terms of eight recorded species followed by Coreidae, Alydidae, Plataspidae and so on. Abundance of *M. cibraria* and *C. bullita* in the present study as compared to other bugs was due to the availability of their primary host plant (Zhang et al. 2012; Kumar 2014) in the campus.

Despite the patchy distribution of vegetation in the campus, the diversity indices indicated good diversity in the university campus and the moderate evenness indicated by the Pielou's evenness index was due to the predominance of one species over the other in the region.

CONCLUSION

Insects contribute a lot to the ecosystem services like, source of food, biocontrol agent, and medicine. Their diversity and distributional knowledge therefore, would be of use to mankind in many ways. Study on

distribution status of Heteroptera is often neglected primarily due to two reasons; firstly, they are not as attractive as butterflies and secondly their invisible feeding damage to the food crops often goes unnoticed and hence their economic importance is not realised. Moreover, many of them are important as predator of agricultural pests and as vectors of plant pathogen, therefore knowledge of such heteropteran bugs will be helpful in designing pest management strategies. Besides this any studies pertaining to biodiversity like taxonomic identification or report of new species helps in enriching the knowledge of faunal diversity of that region and documenting the insect inventory. The present study was carried out in a small university campus for just one year and it revealed a good amount of Heteroptera diversity. Studies like this forms a base for further research on different aspects of Heteroptera and will lead us to better understanding of diverse group of insects existing in this region. This university, under development is experiencing a lot of changes in terms of land use as well as land cover, thereby having a direct influence on faunal distribution, especially insects. So, any change in the bug diversity in future will be an indication of the impact of anthropogenic activities on their existence and distribution.

REFERENCES

Azim, M.N. (2011). Taxonomic survey of stink bugs (Heteroptera: Pentatomidae) of India. *Halteres* 3: 1–10.

Distant, W.L. (1902). Fauna of the British India, Rhynchota Vol.-I (Heteroptera). Taylor and Francis, London, 490 pp.

Engelmann, H.D. (1973). Untersuchungen zur Erfassung predozoogener Komponenten im definierten. Okosystem. *Forschungen. Staatliches Museum für Naturkunde, Gorlitz* 575–584.

Fauvel, G. (1999). Diversity of Heteroptera in agroecosystems: role of sustainability and bioindication. *Agriculture, Ecosystems & Environment* 74: 275–303. [https://doi.org/10.1016/S0167-8809\(99\)00039-0](https://doi.org/10.1016/S0167-8809(99)00039-0)

Halder, J., D. Kushwaha & A.B. Rai (2020). Biology and feeding potential of *Eocanthecona furcellata* (Wolff) on its lesser-known prey, *Spilosoma obliqua* (Walker). *Journal of Biological Control* 34(2): 109–112. <https://doi.org/10.18311/jbc/2020/24829>

Henry, T.J. (2017). Biodiversity of Heteroptera, pp. 279–335. In: Footitt, R.G. & P.H. Adler (eds.). *Insect Biodiversity: Science and Society*. John Wiley & Sons Ltd., Oxford, United Kingdom, 867 pp. <https://doi.org/10.1002/9781118945568>

Jana, S., P.R. Pahari, T.K. Dutta & T. Bhattacharya (2009). Diversity and community structure of aquatic insects in a pond in Midnapore town, West Bengal, India. *Journal of Environmental Biology* 30(2): 283–287.

Kaur, H., S. Devinder & S. Vikas (2012). Faunal diversity of terrestrial Heteroptera (Insecta: Hemiptera) in Punjab, India. *Journal of Entomological Research* 36(2): 177–181.

Kruess, A. & T. Tscharntke (2000). Effects of habitat fragmentation on plant-insect communities, pp. 53–70. In: Ekbom, B., M.E. Irwin & Y. Robert (eds.). *Interchanges of Insects Between Agricultural and Surrounding Landscapes*. Springer, Dordrecht. 240 pp. https://doi.org/10.1007/978-94-017-1913-1_4

Kumar, A. (2014). The lace bug *Cochlochila bullita* (Stål), a destructive pest of *Ocimum sanctum* in Jharkhand, India. *Phytoparasitica* 42(3): 295–302. <https://doi.org/10.1007/s12600-013-0359-0>

Margalef, R. (1958). Temporal succession and spatial heterogeneity in phytoplankton, pp. 323–347. In: Buzzati-Traverso (ed.). *Perspectives in Marine Biology*, University of California Press, Berkeley, 648 pp. <https://doi.org/10.1525/9780520350281-024>

Mitchell, P.L. (2004). Heteroptera as vectors of plant pathogens. *Neotropical Entomology* 33: 519–45. <https://doi.org/10.1590/S1519-566X2004000500001>

Mouhoubi, D., R. Djennidi & M. Bounechada (2019). Contribution to the study of diversity, distribution, and abundance of insect fauna in salt wetlands of Setif region, Algeria. *International Journal of Zoology* 2019: 1–11. <https://doi.org/10.1155/2019/2128418>

Panizzi, A.R. (1997). Wild hosts of Pentatomids: ecological significance and role in their pest status on crops. *Annual Review of Entomology* 42: 99–122. <https://doi.org/10.1146/annurev.ento.42.1.99>

Panizzi, A.R. & J. Grazia (2015). Introduction to True Bugs (Heteroptera) of the Neotropics, pp. 3–20. In: Panizzi, A.R., J. Grazia (eds.). *True Bugs (Heteroptera) of the Neotropics*. Vol. 2. Entomology in Focus, Springer, Dordrecht, 901 pp. https://doi.org/10.1007/978-94-017-9861-7_1

Pielou, E.C. (1966). Species-diversity and pattern-diversity in the study of ecological succession. *Journal of Theoretical Biology* 10(2): 370–83. [https://doi.org/10.1016/0022-5193\(66\)90133-0](https://doi.org/10.1016/0022-5193(66)90133-0)

Rider, D.A., C.F. Schwertner, J. Vilimová, D. Rédei, P. Kment & D.B. Thomas (2018). Higher systematics of the Pentatomidae, pp. 25–204. In: McPherson, J.E. (ed.). *Invasive Stink Bugs and Related Species (Pentatomidae): Biology, Higher Systematics, Semiochemistry, and Management*. CRC Press, Boca Raton, 819 pp. <https://doi.org/10.1201/9781315371221>

Salini, S. & C.A. Viraktamath (2015). Genera of Pentatomidae (Hemiptera: Pentatomidae) from South India – an illustrated key to genera and checklist of species. *Zootaxa* 3924(1): 1–76. <https://doi.org/10.11646/zootaxa.3924.1.1>

Schaefer, C.W. & A.R. Panizzi (eds.) (2000). *Heteroptera of Economic Importance*. CRC press, FL, 856 pp. <https://doi.org/10.1201/9781420041859>

Schaefer, C.W. (2013). True Bugs and Their Relatives, diversity of 287–295. In: Scheiner, S.M. (ed.). *Encyclopedia of Biodiversity*. 2nd Edition. Academic Press, US, 5504 pp.

Schuh, R.T. & J.A. Slater (1995). Habitat and feeding types, pp 20–22. In: *True Bugs of the World (Hemiptera: Heteroptera): Classification and Natural History*. Cornell University press, Ithaca and London, 336 pp.

Shannon C.E. & W. Wiener (1949). The mathematical theory of communication. Urbana, University of Illinois Press, 177 pp.

Simpson, E.H. (1949). Measurement of diversity. *Nature* 163(4148): 688. <https://doi.org/10.1038/163688a0>

Yumnam, J.Y. & N. Dey (2022). Biomass and Carbon Stock of Trees Growing in Cotton University, Guwahati, Assam, India. *Proceedings of the National Academy of Sciences, India Section B: Biological* 92: 853–859. <https://doi.org/10.1007/s40011-022-01365-z>

Zhang, Y., J.L. Hanula & S. Horn (2012). The biology and preliminary host range of *Megacopta cribraria* (Heteroptera: Plataspidae) and its impact on kudzu growth. *Environmental Entomology* 41(1): 40–50.

Mr. Jatishwar Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Ala Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondh, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lionel Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rixonker, Goa University, Taleigao Plateau, Goa. India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Byju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayapal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraja, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Hellem Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bahar Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2020–2022

Due to paucity of space, the list of reviewers for 2020–2022 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Article

Use of remote sensing and GIS in assessing the impact of *Prosopis juliflora* proliferation on land use, land cover and diversity of native flora at Point Calimere Wildlife Sanctuary, India

– Sourav Gupta, Subhasish Arandhara, Selvarasu Sathishkumar & Nagarajan Baskaran, Pp. 24451–24462

Communications

Two *Ceratosporella* (Fungi: Ascomycota) species from oak leaf litter in Almora, Uttarakhand, India

– Manish Kumar Dubey, Ram Sanmukh Upadhyay & Ramesh Chandra Gupta, Pp. 24463–24468

The genus *Holigarna* Buch.-Ham. ex Roxb. (Anacardiaceae) in the central Western Ghats, Karnataka, India

– Kumbar Mudakappa Manjunath, H.S. Shashwathi, H.M. Rakshitha Jain & Y.L. Krishnamurthy, Pp. 24469–24484

Report of *Bathycoelia indica* Dallas, 1851 (Hemiptera: Heteroptera: Pentatomidae) as a pest of pomegranate *Punica granatum* L. cultivated in Maharashtra State

– P.S. Kudnar, Gaurang G. Gowande & Hemant V. Ghate, Pp. 24485–24495

First documentation of diversity of the Heteroptera of Cotton University Campus, Kamrup (Metropolitan), Assam, India

– Santana Saikia & Anjana Singha Naorem, Pp. 24496–24502

Checklist of hawkmoths (Lepidoptera: Bombycoidea: Sphingidae) in the Central Highlands of Vietnam

– Trang Q. Le & Lien V. Vu, Pp. 24503–24528

Observations on the courtship behaviour of Deocata Pipefish *Microphis deocata* (Hamilton, 1822) (Actinopterygii: Syngnathiformes: Syngnathidae) in an aquarium

– Anu Saikia, Jayanta Kumar Nath & Dandadhar Sarma, Pp. 24529–24534

Freshwater fish diversity and IUCN Red List status of glacial-fed (Bheri) and spring-fed (Babai) rivers in the wake of inter-basin water transfer

– Kumar Khatri, Bibhuti Ranjan Jha, Smriti Gurung & Udhav Raj Khadka, Pp. 24535–24549

Population status and habitat use of White-crested Kalij Pheasant *Lophura leucomelanos* hamiltoni (J.E. Gray, 1829) in the Limber Wildlife Sanctuary, Jammu & Kashmir, India

– Arif Nabi Lone, Bilal A. Bhat & Khursheed Ahmad, Pp. 24550–24556

Assessment of diversity, abundance, and seasonal variations of bird species in Bengaluru District, India during COVID-19 lockdown

– H. Hemanth, Rajalakshmi K.S. Vinanthi & Kuppusamy Alagesan Paari, Pp. 24557–24567

An annotated checklist of the birds in Loharghat Forest Range, Assam, India

– Taniya Talwar, Leons Mathew Abraham, Borojit Rabha & Mrigen Rabha, Pp. 24568–24583

Trade of skulls as novelty and aquarium objects are an additional threat to porcupines

– Jessica Chavez, Kuntayuni & Vincent Nijman, Pp. 24584–24588

Review

Fishes of Cocibolca, the great Central American lake

– Topiltzin Contreras-MacBeath, Byron Josue Rodríguez Pérez, Humberto Mejía-Mojica & Juan Manuel Rivas-González, Pp. 24589–24596

Short Communications

Twice blooming flowers of *Antigonon leptopus* Hook. & Arn. (Magnoliopsida: Caryophyllales: Polygonaceae), a key forage source for insects during wet season in habitats disturbed by humans

– P. Suvarna Raju, P. Srikanth & A.J. Solomon Raju, Pp. 24597–24600

Two new weevil species of the genus *Myllocerus* Schoenherr, 1823 (Coleoptera: Curculionidae: Entiminae) from India

– G. Mahendiran, M.M. Nagaraja & M. Sampathkumar, Pp. 24601–24606

Notes

Additional record of the Black Turmeric *Curcuma caesia* Roxb. (Zingiberales: Zingiberaceae) in Bhutan

– Karma Orong, Namgay Shacha, Kezang Tobgay & Rinchen Namgay, Pp. 24607–24610

A record of Chestnut-and-Black Royal *Tajuria yajna istrodea* De Nicéville, 1887 (Lepidoptera: Lycaenidae) from Arunachal Pradesh, India

– Ruksha Limbu, Ramandeep Achint, Renu Gogoi, Roshan Upadhyaya & Jyoti Gaur, Pp. 24611–24614

Publisher & Host