

Building evidence for conservation globally

Journal of Threatened TAXA

10.11609/jott.2023.15.6.23283-23462

www.threatenedtaxa.org

26 June 2023 (Online & Print)

15(6): 23283-23462

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Open Access

43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS**Founder & Chief Editor****Dr. Sanjay Molur**Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India**Deputy Chief Editor****Dr. Neelesh Dahanukar**

Noida, Uttar Pradesh, India

Managing Editor**Mr. B. Ravichandran**, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India**Associate Editors****Dr. Mandar Paingankar**, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India**Dr. B.A. Daniel**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India**Editorial Board****Dr. Russel Mittermeier**

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinahalli PO, Nilgiris, Tamil Nadu 643223, India

Dr. Martin Fisher

Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhura Stothra Bhashyam**, Hyderabad, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2020–2022****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinando Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantpur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjani Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasimhan**, Botanical Survey of India, Howrah, India**Dr. Larry R. Nobile**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Baños, Laguna, Philippines**Dr. P.A. Sinu**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, Bangladesh**Mr. Jatishwar Singh Irungbam**, Biology Centre CAS, Branišovská, Czech Republic.For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Marine invertebrates - made with acrylic paint. © P. Kritika.

Trace elements in *Penaeus* shrimp from two anthropized estuarine systems in Brazil

Ana Paula Madeira Di Beneditto¹ , Inácio Abreu Pestana² & Cássia de Carvalho³

^{1,2} Universidade Estadual do Norte Fluminense Darcy Ribeiro, Laboratório de Ciências Ambientais, Av. Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil.

³ Programa de Pós-Graduação em Zoologia do Museu Nacional, Universidade Federal do Rio de Janeiro, Av. Pau-Brasil 211, Rio de Janeiro, RJ, 21949-900, Brazil.

¹anapaula@uenf.br (corresponding author), ²inacio@uenf.br, ³carvalho.c89@gmail.com

Abstract: This study measured concentrations of trace elements (Al, As, Cd, Cu, Fe, Mn, Ni, and Pb) in the muscle of pink shrimps (genus *Penaeus*) from two anthropized estuarine systems in Brazil: Guanabara Bay (GB) and Sepetiba Bay (SB). Concentrations were highest in the less anthropized SB site, where shrimps showed higher assimilation rates that can be explained by their higher trophic position compared to shrimps from GB. These results reinforce the role of food sources as the main route of trace elements for the aquatic animals.

Keywords: Coastal systems, metals, metalloid, pink shrimps, stable isotope.

Portuguese abstract: Este estudo verificou que a concentração de elementos traço (Al, As, Cd, Cu, Fe, Mn, Ni e Pb) no músculo de camarões-rosa (gênero *Penaeus*) é variável entre dois sistemas estuarinos antropizados no Brasil (Baía de Guanabara - BG e Baía de Sepetiba - BS), sendo maior no local menos antropizado (BS). As regressões entre as concentrações de elemento traço e os valores de $\delta^{15}\text{N}$ mostraram maiores taxas de assimilação nos camarões da BS, o que pode ser explicado pela sua posição trófica mais elevada em relação aos camarões da BG. Os resultados reforçam o papel das fontes alimentares como a principal rota de elementos traço para os animais aquáticos.

Editor: V. Deepak Samuel, National Centre For Sustainable Coastal Management, Chennai, India.

Date of publication: 26 June 2023 (online & print)

Citation: Di Beneditto, A.P.M., I.A. Pestana & C. de Carvalho (2023). Trace elements in *Penaeus* shrimp from two anthropized estuarine systems in Brazil. *Journal of Threatened Taxa* 15(6): 23403-23407. <https://doi.org/10.11609/jott.8313.15.6.23403-23407>

Copyright: © Di Beneditto et al. 2023. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: This research was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant no. 302.598/2021-9) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (grant no. E-26/200.797/2021 and E-26/200.586/2022).

Competing interests: The authors declare no competing interests.

Author details: DI BENEDITTO, A.P.M.: PhD in Biosciences and Biotechnology; professor at Universidade Estadual do Norte Fluminense Darcy Ribeiro; and specialist in conservation of marina fauna. PESTANA, I.A.: PhD in ecology and natural resources; researcher at Universidade Estadual do Norte Fluminense Darcy Ribeiro; specialist in biogeochemistry and statistic modelling. DE CARVALHO, C.: PhD in Zoology; researcher at PROJETO GUAIAMUM (Bioecology and ethnoknowledge for the conservation of the crab *Cardisoma guanhumi*) sponsored by Fundo Brasileiro para a Biodiversidade; specialist in crustacean ecology.

Author contributions: Di Beneditto, A.P.M.: project administration, funding acquisition, conceptualization, investigation, writing - original draft, writing - review & editing. Pestana, I.A.: formal analysis, writing - review & editing. de Carvalho, C.: shrimps sampling, writing - review & editing.

Acknowledgements: We are indebted to fishers from GB and SB for access to pink shrimps' individuals, to B.C.V. Oliveira for trace elements analysis, and to M.G. Almeida for nitrogen stable isotope analysis.

INTRODUCTION

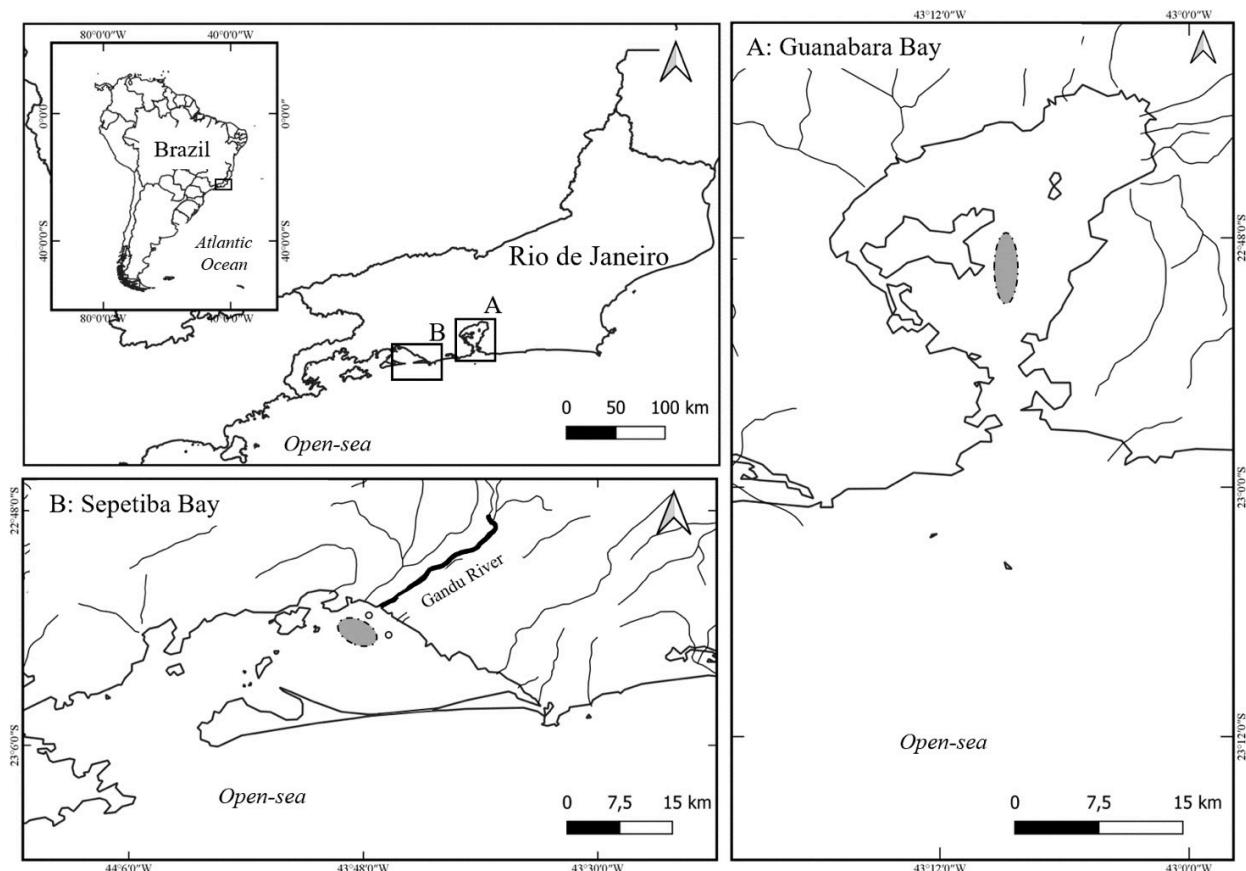
Trace elements such as metals and metalloids can accumulate in all compartments of aquatic environments (Brown & Depledge 1998), where their concentrations reflect both natural levels and anthropogenic contamination. When they enter human food chains, elements such as Cd, Hg, and Pb can cause neurological and kidney damage (WHO 2019), while As (metalloid) is linked to several types of cancers (Palma-Lara et al. 2020). Shrimps and other crustaceans accumulate trace elements from water, sediment, and food sources at levels beyond those necessary for nutrition and metabolism (Rainbow 2002; Boudet et al. 2019). Food is the main route of trace elements for both invertebrates and vertebrates (Rainbow 2002; Di Benedutto et al. 2021; Kehrig et al. 2022).

The pink shrimps *Penaeus brasiliensis* Latreille, 1817 and *P. paulensis* Perez Farfante, 1967 are sympatric in the southwestern Atlantic, where juveniles inhabit estuaries while adults live in marine waters (Neto 2011). Carvalho et al. (2021) investigated the stomach contents and the niche breadth of juvenile pink shrimps in two anthropized estuarine systems located in Sepetiba Bay and Guanabara Bay, southeastern Brazil ($\sim 23^{\circ}\text{S}$) (Figure 1). These areas are proximal coastal nurseries and fishing sites for both species. Niche analysis revealed pink shrimps from Guanabara Bay occupied a lower trophic position and showed greater trophic diversity in comparison to pink shrimps from Sepetiba Bay (Carvalho et al. 2021). The authors verified that interspecific differences in feeding preferences are negligible within the same estuarine system.

Based on findings of Carvalho et al. (2021) and the premise that food sources are the main route of trace elements for the animals, we made two predictions: i) the concentration of trace elements in shrimps *Penaeus* is variable between the two estuarine systems, following the spatial difference of the trophic niche, and ii) pink shrimps from Sepetiba Bay have higher trace element concentrations, since their trophic position is higher than in Guanabara Bay.

METHODS

Since *P. brasiliensis* and *P. paulensis* have similar feeding habits and niches in estuarine systems, we grouped them as *Penaeus* shrimps. Juvenile pink shrimps were sampled through fisheries inside Guanabara Bay ($n = 80$ individuals) and Sepetiba Bay ($n = 67$ individuals);


herein referred as GB and SB, respectively (Figure 1). The samplings were done in 2021–2022. In GB, shrimps were caught in a fishing site in the central portion of the bay (8 km^2 , 12–15 m deep), 10 km from the bay entrance (Figure 1). In SB, the fishing site included an area of approximately 6 km^2 and 10 m deep, 20 km from the bay entrance and 3 km from its northeastern shore, in front of the Guandu River mouth (Figure 1).

GB is more anthropized than SB. It comprises 384 km^2 with a drainage basin of $4,080 \text{ km}^2$ (55 small-river inputs). In surrounding areas, there are almost 12 million inhabitants, 6,000 industries and intensive inputs of domestic sewage and industrial effluents (Cordeiro et al. 2021). The SB comprises 450 km^2 with a drainage basin of $2,065 \text{ km}^2$. The SB surrounding areas have 400 industries, mainly chemical and metallurgic plants, and a population of approximately 2.0 million (Costa et al. 2011).

After sampling, shrimps were stored in transparent clean plastic bags and kept in cold storage during transportation. In the laboratory, the abdominal muscle (edible portion) of each shrimp was removed, stored in a dry sterile bottle, frozen (-20°C), freeze-dried and homogenized to a fine powder using a mortar and pestle.

The trace elements considered in this study are Al, As, Cd, Cu, Fe, Mn, Ni, and Pb, which were determined using ICP-OES (Inductively Coupled Plasma Optical Emission Spectrometry) 720 ES (Varian Liberty Series II). Briefly, freeze-dried muscle (0.5 g) was solubilized in 10 mL of 65% HNO_3 and heated in a digester block. The samples were resuspended in 5 mL of 0.5% HNO_3 at 60°C , filtered and brought to a final volume of 20 mL with 0.5% HNO_3 . An analytical control solution was prepared to check for contamination. A reference material (*DORM-4* fish protein, National Research Council of Canada) was analyzed to test the precision and accuracy, and the recovery values were above 95%. The coefficients of variation among analytical replicates were $< 10\%$. The concentrations were determined in mg kg^{-1} of dry weight.

We used the ratio of nitrogen stable isotope ($\delta^{15}\text{N}$) to evaluate the trophic position of the pink shrimps. Dry muscle sample (0.4 mg) of each shrimp was analysed using an organic elemental analyzer (Flash 2000, Thermo Scientific) coupled to a mass spectrometer (Delta V Advantage Isotope Ratio Mass Spectrometer, Thermo Scientific) through the ConFlo-VI interface (Model BR30140, Thermo Scientific). The reference value for nitrogen was the atmospheric nitrogen. Samples were analyzed using analytical blanks and urea analytical standards (IVA Analysentechnik-330802174). Analytical control and reproducibility were done for every 10 samples using a certified isotopic standard (Elemental

Figure 1. Guanabara Bay (A) and Sepetiba (B) Bay, southeastern Brazil, and the fishing sites of the pink shrimps inside the bays (gray ellipse areas). Extract from Di Benedetto et al. (2021).

Microanalysis Protein Standard OAS) and based on triplicates for every 10 samples ($\pm 0.3\%$ for $\delta^{15}\text{N}$). The isotopic result was presented as parts per thousand (‰).

RESULTS AND DISCUSSION

The concentrations of Al, As, Cd, Cu, Fe, Mn, Ni, and Pb, and the values of $\delta^{15}\text{N}$ in the muscle of the pink shrimps were greater in SB than GB (Table 1). This finding was statistically supported by the ANOVA results (R Core Team 2022) for most elements (Table 1). ANVISA (2021) and FAO/WHO (1991) have established the maximum tolerable limits of some trace elements (e.g., As, Cd, Cr, Cu, Hg and Pb) for food products. In this study, the trace elements determined in the pink shrimps were below these limits.

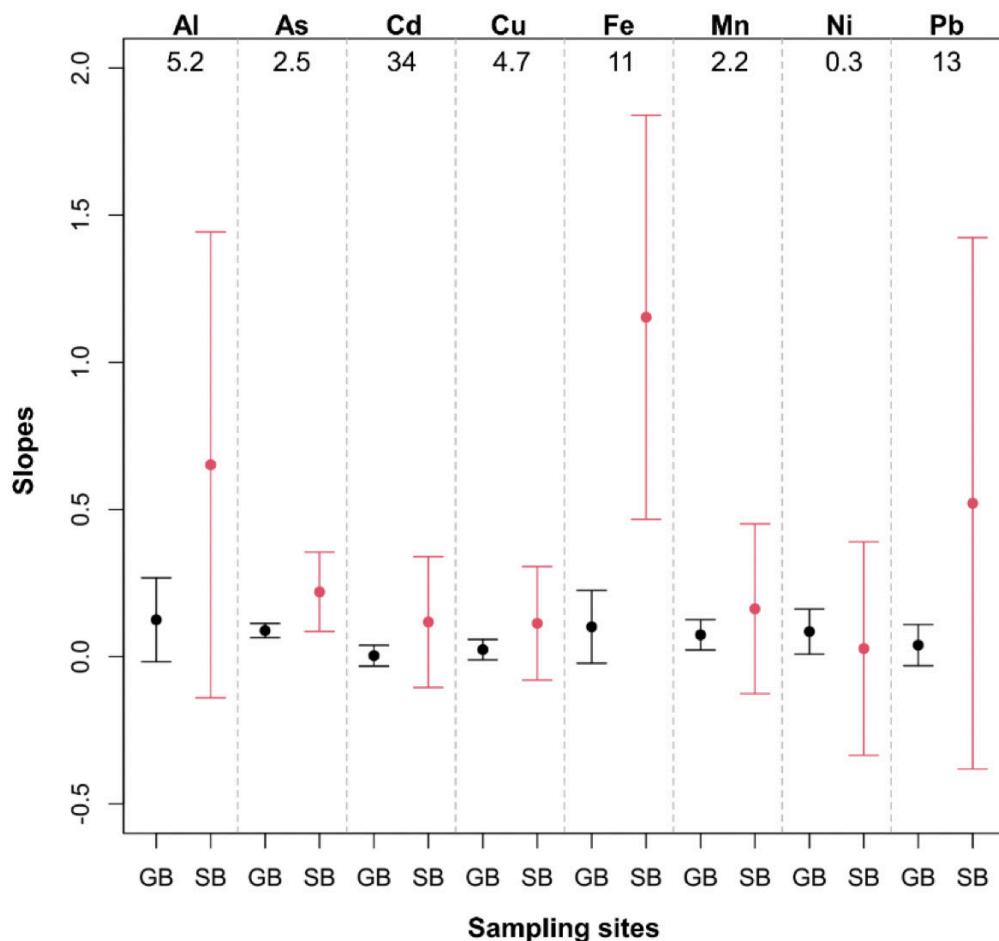

The difference in $\delta^{15}\text{N}$ values reinforces the findings of Carvalho et al. (2021): pink shrimps from SB are in higher trophic position than GB ($p < 0.001$). The isotopic difference between the pink shrimps from the two estuarine systems was 4.7%, which is high enough

Table 1. Median \pm interquartile range values of Al, As, Cd, Cu, Fe, Mn, Ni, and Pb (mg·kg⁻¹ dry weight), and $\delta^{15}\text{N}$ (‰) in the muscle of pink shrimps from two anthropized estuarine systems in Brazil. Lowercase letters a and b indicate ANOVA differences at $p < 0.05$.

Estuarine system Elements	Guanabara Bay (GB)	Sepetiba Bay (SB)
Al	16.8 ± 25.5^b	42.2 ± 47.3^a
As	3.1 ± 2.1^b	5.1 ± 3.6^a
Cd	0.02 ± 0.01^a	0.02 ± 0.01^a
Cu	8.5 ± 4.8^a	9.6 ± 6.2^a
Fe	10.8 ± 16.9^b	35.8 ± 31.4^a
Mn	0.8 ± 1.0^b	1.5 ± 1.3^a
Ni	0.1 ± 0.2^b	0.2 ± 0.3^a
Pb	0.1 ± 0.04^a	0.1 ± 0.1^a
$\delta^{15}\text{N}$	7.5 ± 6.6^b	12.2 ± 0.9^a

to distinguish different trophic levels between them. According to Post (2002), differences in $\delta^{15}\text{N}$ values ranged from 2 to 5% indicate different trophic levels.

Regressions between trace element concentrations

Figure 2. Slopes obtained from regressions between trace elements concentrations and $\delta^{15}\text{N}$ values in pink shrimps from two anthropized estuarine systems in Brazil. The symbols (black circle to Guanabara Bay - GB, and red circle to Sepetiba Bay - SB) and bars represent each slope and its 95% confidence interval, respectively. Numbers below the trace elements are the slope ratio between the estuarine systems (SB/GB).

and $\delta^{15}\text{N}$ values were adjusted (R Core Team 2022) to verify the assimilation rate of each element according to the trophic position (i.e., their slopes). Mathematical transformations were done whenever necessary to meet the regression assumptions (normality, linearity, homoscedasticity) using a maximum likelihood function (Venables & Ripley 2002). The absence of overlapping in the 95% confidence intervals of the slopes can be interpreted as a significant difference between the two estuarine systems ($p < 0.05$). Meanwhile, the high variance in the regressions associated with SB, as showed by the confidence intervals (Figure 2), made it difficult to detect significant differences (except for Fe). Since this is a statistical problem and not a conceptual one, the data interpretation was based on the magnitude of difference in slopes (numbers at the top of Figure 2). The slope ratios between the estuarine systems (SB/GB) were greater than 1 (except for Ni), revealing a greater assimilation rate of the elements in SB. Considering all elements, the

average assimilation rate was 9.2 ± 11.0 times greater in SB compared to GB (Figure 2). The results confirmed the two-hypothesis: the concentration of trace elements is variable between the pink shrimps, following the spatial difference of their trophic niches; and pink shrimps from SB have higher trace element concentrations than in GB due to their higher trophic position.

Trace elements have different availability in the environment and different physiological pathways in the consumers (Boudet et al. 2019; Kolarova & Napiórkowski 2021), which may explain different concentrations in the pink shrimps between and within estuaries. The level of anthropization is higher in GB than SB (Costa et al. 2011; Cordeiro et al. 2021); thus, it could be expected that both the trace element concentrations and assimilation rates are higher in the pink shrimps from GB. However, the trophic position drove the assimilation rates, reinforcing the role of food sources as the main route of trace elements to the aquatic animals (Rainbow 2002; Di

Beneditto et al. 2012; Kehrig et al. 2022).

Carvalho et al. (2021) recommended attention to monitoring the pink shrimps from SB due to their smaller trophic breadth and lower $\delta^{15}\text{N}$ range, which may increase their sensitivity to changing habitat. The data on trace elements in the shrimps' muscle reinforce this recommendation, once their exposure to trace elements, including hazardous elements, can increase in a changing habitat.

REFERENCES

ANVISA (2021). Estabelece os limites máximos tolerados (LMT) de contaminantes em alimentos. Diário Oficial [da] República Federativa do Brasil. Agência Nacional de Vigilância Sanitária. <https://www.in.gov.br/en/web/dou/-/instrucao-normativa-in-n-88-de-26-de-marco-de-2021-311655598> Accessed 23 November 2021.

Boudet, L.C., J. Mendieta, M.B. Romero, A.D. Carricavur, P. Polizzi & J.E. Marcovecchio (2019). Strategies for cadmium detoxification in the white shrimp *Palaeomon argentinus* from clean and polluted field locations. *Chemosphere* 236: 124–224. <https://doi.org/10.1016/j.chemosphere.2019.06.194>

Brown, M.T. & M.H. Depledge (1998). Determinants of trace metal concentrations in marine organisms, pp. 185–217. In: Langston, W.J. & M.J. Bebianno (eds.). *Metal Metabolism in Aquatic Environments*. Chapman and Hall, London, 800 pp.

Carvalho, C., L.R. Monteiro, K.A. Keunecke, H.P. Lavrado & A.P.M. Di Benedutto (2021). Trophic assessment and isotopic niches of the sympatric penaeids species *Penaeus brasiliensis* and *P. paulensis* in SW Atlantic estuarine systems. *Marine Biology Research* 17(7–8): 658–668. <https://doi.org/10.1080/17451000.2021.2011320>

Cordeiro, R.C., F.F. Monteiro, R.E. Santelli, L.S. Moreira, A.G. Figueiredo, E.D. Bidone, R.S. Pereira, L.C. Anjos & M.F.G. Meniconi (2021). Environmental and anthropic variabilities at Guanabara Bay (Brazil): A comparative perspective of metal depositions in different time scales during the last 5,500 yrs. *Chemosphere* 267: 128895. <https://doi.org/10.1016/j.chemosphere.2020.128895>

Costa, L.C., A.P. Ferreira & E.B. Neves (2011). Aplicação do sistema de projeção de poluição industrial (modelo IPPS) na bacia hidrográfica da baía de Sepetiba (Rio de Janeiro, Brasil): estudo de caso. *Cadernos de Saúde Coletiva* 19: 66–73.

Di Benedutto, A.P.M., V.T. Bittar, P.B. Camargo, C.E. Rezende & H.A. Kehrig (2012). Mercury and nitrogen isotope in a marine species from a tropical coastal food web. *Archives of Environmental Contamination and Toxicology* 62: 264–271. <https://doi.org/10.1007/s00244-011-9701-z>

Di Benedutto, A.P.M., I.A. Pestana, B.C.V. Oliveira, C.E. Rezende & C. Carvalho (2021). Titanium in commercial shrimp from anthropized tropical bays and estimated quantities of TiO_2 . *Revista Ibero Americana de Ciências Ambientais* 12: 144–156. <https://doi.org/10.6008/CBPC2179-6858.2021.010.0013>

Neto, J.D. (2011). Proposta de Plano Nacional de Gestão para o uso sustentável de camarões marinhos do Brasil. Série Plano de Gestão Recursos Pesqueiros, Brasília, Brasil, 242 pp.

FAO/WHO - Food and Agriculture Organization of the United Nations/ World Health Organization (1991). Report of the Nineteenth Session of the Joint FAO/WHO Codex Alimentarius Commission. <https://www.fao.org/3/t0490e/T0490E01.htm> Electronic version accessed 20 October 2022.

Kehrig, H.A., R.A. Hauser-Davis, M.C. Muelbert, M.G. Almeida, A.P.M. Di Benedutto & C.E. Rezende (2022). Mercury and stable carbon and nitrogen isotopes in the natal fur of two Antarctic pinniped species. *Chemosphere* 288: 132500. <https://doi.org/10.1016/j.chemosphere.2021.132500>

Kolarova, N. & P. Napiórkowski (2021). Trace elements in aquatic environment. Origin, distribution, assessment and toxicity effect for the aquatic biota. *Ecohydrology & Hydrobiology* 21: 655–668. <https://doi.org/10.1016/j.ecohyd.2021.02.002>

Palma-Lara, I., Martínez-Castillo, M., Quintana-Pérez, J.C., Arellano-Mendoza, M.G., Tamay-Cach, F., Valenzuela-Limón, O.L., García-Montalvo, E.A. & Hernández-Zavala, A. (2020). Arsenic exposure: a public health problem leading to several cancers. *Regulatory Toxicology and Pharmacology* 110: 104539. <https://doi.org/10.1016/j.yrtph.2019.104539>

Post, D.M. (2002). Using stable isotopes to estimate trophic position: models, methods, and assumptions. *Ecology* 83: 703–718. [https://doi.org/10.1890/0012-9658\(2002\)083\[0703:USITET\]2.0.CO;2](https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2)

R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. <https://www.r-project.org/>

Rainbow, P.S. (2002). Trace metal concentrations in aquatic invertebrates: why and so what? *Environmental Pollution* 120(3): 497–507. [https://doi.org/10.1016/S0269-7491\(02\)00238-5](https://doi.org/10.1016/S0269-7491(02)00238-5)

Venables, W.N. & B.D. Ripley (2002). *Modern Applied Statistics with S*. Springer, New York, 497 pp.

WHO - World Health Organization (2019). Food safety fact sheet. <https://www.who.int/news-room/fact-sheets/detail/foodsafety>. Electronic version accessed 20 October 2022.

Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Ala Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lionel Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rixonker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeem, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2020–2022

Due to paucity of space, the list of reviewers for 2018–2020 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org

Communications

Presence of medium and large sized terrestrial mammals highlights the conservation potential of Patharia Hill Reserve in Bangladesh

– M. Aminur Rahman, Ai Suzuki, M. Sunam Uddin, M. Motalib, M. Rezaul Karim Chowdhury, Ameer Hamza & M. Abdul Aziz, Pp. 23283–23296

Diversity and abundance of aquatic birds in Koonthankulam village pond, Tamil Nadu, India

– Selvam Muralikrishnan, Esakkimuthu Shanmugam, Natarajan Arun Nagendran & Duraisamy Pandiaraja, Pp. 23297–23306

Plastral deossification zones in the Endangered Spiny Hill Turtle *Heosemys spinosa* (Testudines: Geoemydidae) on Borneo

– Siti Nor Baizurah & Indraneil Das, Pp. 23307–23314

Addition of four new records of pit vipers (Squamata: Crotalinae) to Manipur, India

– Premjit Singh Elangbam, Lal Biakzuala, Parag Shinde, Ht. Decemson, Mathipi Vabeiryureilai & Hmar Tlawmte Lalremsanga, Pp. 23315–23326

Addition to the Odonata fauna of Tripura, India

– Dhiman Datta, B.K. Agarwala & Joydeb Majumder, Pp. 23327–23337

Occurrence and distribution of two new libellulids (Odonata: Insecta) of the Kashmir Valley, India: *Orthetrum sabina* (Drury, 1770) and *Palpopleura sexmaculata* (Fabricius, 1787)

– Tahir Gazanfar & Mehreen Khaleel, Pp. 23338–23343

Rayed Thistle Fly *Tephritis cometa* Loew (Diptera: Tephritidae) a new record to India

– Rayees Ahmad, Tariq Ahmad & Barkat Hussain, Pp. 23344–23349

New state records of some Dermaptera De Geer, 1773 (Insecta) species in India

– Tanusri Das, Kochumackel George Emiliyamma & Subhankar Kumar Sarkar, Pp. 23350–23358

Moth diversity of Guindy, Chennai, India and DNA barcoding of selected erebid moths

– Seeramulu Bhavaragavan, Mani Meenakumari, Ramanathan Nivetha & Sundaram Janarthanan, Pp. 23359–23372

New record of the sphingid moth *Acherontia styx* Westwood, its parasitoid *Trichogramma achaearae* in *Jasmine Jasminum sambac* L., and its bioecology

– I. Merlin K. Davidson, Pp. 23373–23381

Identification and phylogenetic analysis of various termite species distributed across southern Haryana, India

– Bhanupriya, Shubhankar Mukherjee, Nidhi Kakkar & Sanjeev K. Gupta, Pp. 23382–23396

Survey of Black Band Disease-affected scleractinian corals via drone-based observations in Okinawa, Japan

– Rocktim Ramen Das, Parviz Tavakoli-Kolour, Sanaz Hazraty-Kari & James Davis Reimer, Pp. 23397–23402

Trace elements in *Penaeus* shrimp from two anthropized estuarine systems in Brazil

– Ana Paula Madeira Di Beneditto, Inácio Abreu Pestana & Cássia de Carvalho, Pp. 23403–23407

Aquatic Hemiptera inhabiting rice fields in Karaikal, Puducherry, India

– M. Kandibane & L. Gopianand, Pp. 23408–23415

Leaf defoliation and *Tabernaemontana rotensis* (Asterids: Gentianales: Apocynaceae) flower induction and fruit development

– Thomas E. Marler, Pp. 23416–23424

Short Communications

First record and DNA barcode of a scarab beetle, *Adoretus kanarensis* Arrow, 1917 (Coleoptera: Scarabaeidae: Rutelinae), from Maharashtra, India

– Pranil Jagdale, Sujata Magdum, Aparna Sureshchandra Kalawate, Swapnil Kajale & Yogesh Shouche, Pp. 23425–23430

New record of *Lucilia cuprina* (Wiedemann, 1830) (Diptera: Calliphoridae) from the Trans-Himalayan Region, cold arid desert of Kargil Ladakh, India

– Mohd Hussain, Altaf Hussain Mir, Hidayatullah Tak & Nassreen Fatima Kacho, Pp. 23431–23435

On the occurrence of *Nitella myriotricha* A.Braun ex Kützing, 1857 ssp. *acuminata* D.Subramanian, 1999 (Charophyceae: Charales: Characeae), from eastern India

– Kailash Mondal & Jai Prakash Keshri, Pp. 23436–23440

Notes

Dark Clouds Ahead? Anecdotal evidence for an illegal live trade in Sunda *Neofelis diardi* and Indochinese *N. nebulosa* Clouded Leopards (Mammalia: Carnivora: Felidae)

– Anthony J. Giordano, Leah M. Winstead, Muhammad Ali Imron, Rustam, Jephte Sompud, Jayaraj Vijaya Kumaran & Kurtis Jai-Chyi Pei, Pp. 23441–23445

Further photographic record of Asiatic Brush-tailed Porcupine *Atherurus macrourus* Linnaeus, 1758 (Mammalia: Rodentia: Hystricidae) from Manas National Park, Assam, India

– Urjit Bhatt, Bilal Habib & Salvador Lyngdoh, Pp. 23446–23448

Predation of the Nicobar Shrew *Crocidura nicobarica* by a Cattle Egret *Bubulcus ibis*

– G. Gokulakrishnan, C.S. Vishnu & Manokaran Kamalakkannan, Pp. 23449–23451

War prompts distress symptoms in Israeli Blind Snake

– Shahar Dubiner, Shai Meiri & Eran Levin, Pp. 23452–23454

Further distribution records of *Varadia ambolensis* (Stylommatophora: Helicarionoidea) from the state of Goa

– Nitin Sawant, Shubham Rane, Sagar Naik, Seema Vishwakarma & Mayur Gawas, Pp. 23455–23457

Eleocharis acutangula ssp. *neotropica* D.J.Rosen (Cyperaceae): a new record for southern Western Ghats, India

– Kavya K. Nair & A.R. Viji, Pp. 23458–23460

Book Review

Putting wetland science to practice: a review

– Review by Tiasa Adhya & Partha Dey, Pp. 23461–23462

Publisher & Host

