New record of *Lucilia cuprina* (Wiedemann, 1830) (Diptera: Calliphoridae) from the Trans-Himalayan Region, cold arid desert of Kargil Ladakh, India

Mohd Hussain, Altaf Hussain Mir, Hidayatullah Tak & Nassreen Fatima Kacho

1 Department of Zoology, University of Ladakh, Ladakh 194103, India.
2, 3 Department of Zoology, Kashmir University, Srinagar, Jammu & Kashmir 190006, India.
4 KVK, SKUAST-K-1, Near District Hospital Kargil, Secretariat road, Kargil 194103, India.

akmha168@gmail.com (corresponding author), draltaf_786@yahoo.com, drhidayattak@yahoo.com, ftmkacho898@gmail.com

Abstract: *Lucilia* spp. commonly known as the green bottle fly, is cosmopolitan in distribution and well documented from different parts of the world. They have medical, forensic and veterinary importance. In the present study, *Lucilia cuprina* (Wiedemann 1830) is documented for the first time from the Trans-Himalayan region of Kargil Ladakh. It was found that this fly is fairly widespread in the study area. These flies show strong positive correlation with the temperature and weak positive correlation with the relative humidity. Therefore, fly abundance was recorded maximum in midsummer (July & August) and least in April & October; however, no fly activity was seen during winter months from November through March.

Keywords: Distribution, abundance, occurrence, green bottle fly, forensic importance.

One of the green bottle flies, *Lucilia cuprina*, is found all over the world. Being a synanthropic fly it is more common in human surroundings, around areas like slaughterhouses, meat stores, latrines, and garbage disposal sites. The adult female lays eggs on dead and decomposing organic matter wherein the larval stages are completed. The 3rd instar larvae stop feeding and pupate in the soil; however, adults are free-living (Falk 2016). This fly species has been found to be useful in forensic science, causes myiasis in humans and other vertebrates, and acts as a mechanical vector for a variety of pathogens such as nematodes, helminths, protozoans, fungus, bacteria, and viruses (Heath 1982; Stevens & Wall 1996; Fetene & Worku 2009; Akbarzadeh et al. 2015; Hasson 2017; Tomberlin et al. 2017).

This species is well documented from the Oriental Region of the Indian subcontinent, but no records of this fly are known from the Trans-Himalayan region and its adjoining areas including Himachal Pradesh and Jammu & Kashmir (Nandi 2002; Nandi & Sinha 2004; Bharti 2011). Here we report *L. cuprina* for the first time from the Trans-Himalayan region of Kargil Ladakh and report its distribution and seasonal abundance. The current study will be useful in examining the other aspects of this fly in the Trans-Himalayan area, including its potential use in medicine, forensics, and veterinary science.
Material and Methods

Kargil is a district under the administration of UT, Ladakh, India in Trans-Himalayan region, situated 30 to 35 degree N and 75 to 77 degree E, with an area of about 14,036 km². The survey was conducted for three consecutive years from April 2018 to March 2021. To ease the survey, based on geography, topography, and climatic condition, the study area was divided into eight main sites, viz.: Drass, Kargil town, Batalik, Chiktan, Wakha (Shargole), Saliskot, Sankoo, and Panikhar (Figure 1). The survey was carried out on a monthly basis by using plastic bottle traps baited with 100 g unwashed day old goat/sheep stomach (Hussain et al. 2022, 2022). On each visit, three traps were installed in all the above mentioned study sites at a distance of about 100 m for three hours extending from 1100 h to 1400 h, around places like slaughterhouses, local latrines, meat shops, and waste dumping areas. The survey was not conducted during the winter months (November to March) as the climatic conditions were not feasible and no fly activity was observed at average temperatures below 4°C. The trapped flies were killed using ethyl acetate/chloroform. Based on their morphology L. cuprina was sorted out, counted and identified up to species level by using available keys (Wallman 2001; Carvalho & Mello-Patiu 2008; Whitmore et al. 2020). The total number of flies captured from each site/visit were pooled and drawn against each month to access the seasonal abundance. Photographs were captured using Leica S9i stereo-zoom binocular microscope fitted with camera and edited with Adobe Photoshop 7.0. Data was analysed using software SPSS 16.0 and graphs were plotted using software Origin pro 8. Climatic data of the district Kargil was obtained from the Indian Meteorological Department, Meteorological Center, Rambagh, Srinagar, Jammu & Kashmir UT, India.

Figure 1. Map of study area Kargil Ladakh.
RESULTS AND DISCUSSIONS

Lucilla cuprina (Wiedemann, 1830)

Type**locality:** China. Type in the Leyden Museum

_Type species:** *Lucilia acutifolia*

_Material examined:** India: Ladakh: Kargil town, 4♀ : 1♂, 34.56°N, 76.13°E, 2,672 m, 11.vi.2018, M. Hussain; Drass, 2♀ : 1♂, 34.41°N, 75.77°E, 3,081 m, 18.vi.2018, M. Hussain; Batalik, 2♀, 34.66°N, 76.34°E, 2,814 m, 11.v.2018, M. Hussain; Chiktan, 3♀, 34.46°N, 76.52°E, 3,294 m, 18.vi.2018, M. Hussain; Wakha, 2♀, 34.37°N, 76.39°E, 3,371 m, 18.vi.2018, M. Hussain; Trespone, 1♀, 43.41°N, 76.03°E, 2,849 m, 16.vii.2018, M. Hussain; Sankoo, 3♀, 34.28°N, 75.96°E, 2,985 m, 16.vii.2018, M. Hussain; Panikhar, 1♀, 34.13°N, 75.95°E, 3,229 m, 16.vii.2018, M. Hussain.

Diagnosis

Body metallic green; gena white with black hairs; posterior slope of humeral callus with 0–4 hairs; notopleuron surface between last notopleuron seta and edge of notopleuron with 2–5 hairs; central occipital area below each inner vertical seta with one setula; ketatergite bar; wings hyaline; basicostae bright yellow; stem vein bar above; lower calypters bar above; frontoclypeal membrane dark brown; width of frontal stripe (frontal vitta) as wide as parafrontal plate; color of the fore femora dark metallic green (Image 2–9).

During the present study 1,176 flies were captured from April 2018 to March 2021, of which Kargil town represented a maximum of 202 (17.18%) followed by Chiktan 173 (14.71%), Sankoo 154 (13.1%), Batalik 138 (11.73%), Saliskot 137 (11.64%), Drass 135 (11.47%), Wakha 129 (10.1%), and Panikhar 108 (9.18%) which indicates that this species is widely distributed across the Trans-Himalayan region which coincides with the distributions of *L. sericata* (Hussain et al. 2022).

Being a cold blooded animal, the activity of *L. cuprina* is directly influenced by climatic factors like temperature, humidity, rainfall, and snowfall. Kargil, being a part of a cold climate desert, shows great variation in the seasonal temperature ranging from -35°C during midwinter to 40°C during midsummer (Behera et al. 2014). During the study it was recorded that this species showed a strong positive correlation with temperature (r = 0.868) and a weak positive correlation with relative humidity (r = 0.276). *Lucilia* spp. overwinters in both the larval and pupal stages (Wall et al. 2000; Rosati 2014). During the present study it was recorded that adult *L. cuprina* begin to appear in April with an average temperature of 13.95±1.4°C (Mean±SE), and reached its highest peak in August with an average temperature of 23.81±1.0°C (Mean±SE) and was not observed during winter months from November through March during which the ambient average temperature remained below 1.24±1.8°C to -6.12±2.3°C (Mean±SE) (Figure 2). It was found that this species was most abundant in August, which recorded 119.00±14.0 (Mean±SE) followed by July with 111.60±4.4 (Mean±SE) and the least (4.33±0.66; mean±SE) was recorded in the month of April. Statistical analysis (ANOVA, Duncan test) showed that there was no significant difference in the fly abundance in July and August; whereas, these two months showed significant difference in fly-abundance from rest of the months. These results corroborate with those of Brundage et al. (2011) and Hussain et al. (2022).

![Figure 2. Seasonal abundance of L. cuprina in Kargil Ladakh from April 2018 to March 2021.](image-url)
New record of Lucilia cuprina from Trans-Himalayan Region

Hussain et al.

New record of Lucilia cuprina from Trans-Himalayan Region

Hussain et al.

References

Falk, S. (2016). British blow flies (Calliphoridae) and woodlouse flies (Rhinophoridae). Draft Key to British Calliphoridae and Rhinophoridae 1–86.

Communications

Presence of medium and large sized terrestrial mammals highlights the conservation potential of Patharia Hill Reserve in Bangladesh

Diversity and abundance of aquatic birds in Koonthankulam village pond, Tamil Nadu, India

Plastral deossification zones in the Endangered Spiny Horse Turtle Hessemys spinosa (Testudines: Geoemydidae) on Borneo
– Siti Nor Bainturah & Indraneil Das, Pp. 23307–23314

Addition of new recordings of pit vipers (Squamata: Crotalinae) to Manipur, India

Addition to the Odonata fauna of Tripura, India
– Dhanm Datta, B.K. Agarwala & Joydeb Majumder, Pp. 23338–23343

Occurrence and distribution of two new libellulids (Odonata: Insecta) of the Kashmir Valley, India: Orthetrum sobina (Drury, 1770) and Palpopleura sexmaculata (Fabricius, 1787)
– Tahir Ganzar & Mehrree Khaale, Pp. 23338–23343

Rayed Thistle Fly Tephritis cometa Loew (Diptera: Tephritidae) a new record to India
– Rayees Ahmad, Tariq Ahmad & Barkat Hussain, Pp. 23344–23349

New state records of some Dermaptera De Geer, 1773 (Insecta) species in India
– Tanusri Das, Kochumackel George Emilyamma & Subhankar Kumar Sarkar, Pp. 23350–23358

Moth diversity of Guindy, Chennai, India and DNA barcoding of selected erebid moths
– Sreeramulu Bhuvvaragavan, Mani Meenakumari, Ramanathan Nivetha & Sundaram Janarthanan, Pp. 23359–23372

New record of the spingid moth Acherontia styx Westwood, its parasitoid Trichogramma achaea in Jasmine Jasminum sambac L., and its bioecology
– I. Merlin K. Davidson, Pp. 23373–23381

Identification and phylogenetic analysis of some termite species distributed across southern Haryana, India
– Bhanu Pratap, Shubhankar Mukherjee, Nidhi Kakkar & Sanjeev K. Gupta, Pp. 23382–23396

Survey of Black Band Disease-affected scleractinian corals via drone-based observations in Okinawa, Japan

Trace elements in Penaeus shrimp from two anthropized estuarine systems in Brazil
– Ana Paula Madeira Di Benedetto, Inácio Abreu Pestana & Cássia de Carvalho, Pp. 23403–23407

Aquatic Hemiptera inhabiting rice fields in Karaikal, Puducherry, India
– M. Kandibane & L. Gopianand, Pp. 23408–23415

Leaf defoliation and Tabernaemontana rotensis (Asterids: Gentianaceae) flower induction and fruit development
– Thomas E. Marler, Pp. 23416–23424

Short Communications

First record and DNA barcode of a scarab beetle, Adoretus kanarensis Arrow, 1917 (Coleoptera: Scarabaeidae: Rutelinae), from Maharashtra, India
– Pranil Jagdale, Sujata Magdum, Aparna Sureshchandra Kalawate, Swapnil Kajale & Yogesh Shouche, Pp. 23425–23430

New record of Lucilia cuprina (Wiedemann, 1830) (Diptera: Calliphoridae) from the Trans-Himalayan Region, cold arid desert of Kargil Ladakh, India
– Mohd Hussain, Altaf Hussain Mir, Hidayatullah Tak & Nissreen Fatima Kacho, Pp. 23431–23435

On the occurrence of Nitella myriochaeta A.Braun ex Kützing, 1857 ssp. acuminata D.Subramanian, 1999 (Charophyceae: Charales: Characeae), from eastern India
– Kailash Mondal & Jai Prakash Keshri, Pp. 23436–23440

Notes

Dark Clouds Ahead? Anecdotal evidence for an illegal live trade in Sunda Neofelis diardi and Indochinese N. nebulosa Clouded Leopards (Mammalia: Carnivora: Felidae)
– Anthony J. Giordano, Leah M. Winstead, Muhammad Ali Imron, Rustam, Jephte Sompud, Jayaraj Vijaya Kumar & Kurtis Jai-Chyi Pei, Pp. 23441–23445

Further photographic record of Asiatic Brush-tailed Porcupine Atherurus macrourus Linnaeus, 1758 (Mammalia: Rodentia: Hystricidae) from Manas National Park, Assam, India
– Urijit Bhatt, Bilal Habib & Salvador Lyngdoh, Pp. 23446–23448

Predation of the Nicobar Shrew Crocidura nicobarica by a Cattle Egret Bubulcus ibis

War prompts distress symptoms in Israeli Blind Snake
– Shahar Dubiner, Shai Meiri & Eran Levin, Pp. 23452–23454

Further distribution records of Varadia ambolensis (Stylommatophora: Helicarionoidea) from the state of Goa
– Nitin Sawant, Shubham Rane, Sagar Naik, Seema Vishwakarma & Mayur Gawas, Pp. 23455–23457

Eleocharis acutangula ssp. neotropica D.J.Rosen (Cyperaceae): a new record for southern Western Ghats, India

Book Review

Putting wetland science to practice: a review
– Review by Tiasha Adhya & Partha Dey, Pp. 23461–23462