10.11609/jott.2023.15.3.22771-22926 www.threatenedtaxa.org

> 26 March 2023 (Online & Print) 15(3): 22771-22926 ISSN 0974-7907 (Online) ISSN 0974-7893 (Print)

Open Access

ISSN 0974-7907 (Online); ISSN 0974-7893 (Print)

Publisher

Wildlife Information Liaison Development Society www.wild.zooreach.org Host Zoo Outreach Organization www.zooreach.org

43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India Ph: +91 9385339863 | www.threatenedtaxa.org Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), 43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Deputy Chief Editor

Dr. Neelesh Dahanukar Noida, Uttar Pradesh, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA Ms. Priyanka Iyer, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India Dr. B.A. Daniel, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Editorial Board

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNASc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. Martin Fisher

Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

Cover: Green Bee-eater with colour pencils and watercolor wash by Elakshi Mahika Molur.

English Editors

Mrs. Mira Bhojwani, Pune, India Dr. Fred Pluthero, Toronto, Canada Mr. P. Ilangovan, Chennai, India Ms. Sindhura Stothra Bhashyam, Hyderabad, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting

Mrs. Radhika, ZOO, Coimbatore, India Mrs. Geetha, ZOO, Coimbatore India Fundraising/Communications Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2019–2021

Fungi

- Dr. B. Shivaraju, Bengaluru, Karnataka, India
- Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India
- Dr. Vatsavaya S. Raju, Kakatiay University, Warangal, Andhra Pradesh, India
- Dr. M. Krishnappa, Jnana Sahyadri, Kuvempu University, Shimoga, Karnataka, India
- Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India

Plants

- Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
- Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India
- Dr. Shonil Bhagwat, Open University and University of Oxford, UK
- Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India
- Dr. Ferdinando Boero, Università del Salento, Lecce, Italy
- Dr. Dale R. Calder, Royal Ontaro Museum, Toronto, Ontario, Canada
- Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines
- Dr. F.B. Vincent Florens, University of Mauritius, Mauritius
- Dr. Merlin Franco, Curtin University, Malaysia
- Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India
- Dr. Pankaj Kumar, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA.
- Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India
- Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India
- Dr. Vijayasankar Raman, University of Mississippi, USA
- Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantpur, India
- Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India
- Dr. Aparna Watve, Pune, Maharashtra, India
- Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China
- Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
- Dr. M.K. Vasudeva Rao, Shiv Ranjani Housing Society, Pune, Maharashtra, India
- Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India
- Dr. Mandar Datar, Agharkar Research Institute, Pune, Maharashtra, India
- Dr. M.K. Janarthanam, Goa University, Goa, India
- Dr. K. Karthigeyan, Botanical Survey of India, India
- Dr. Errol Vela, University of Montpellier, Montpellier, France Dr. P. Lakshminarasimhan, Botanical Survey of India, Howrah, India
- Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA
- Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India
- Dr. Analinda Manila-Fajard, University of the Philippines Los Banos, Laguna, Philippines
- Dr. P.A. Sinu, Central University of Kerala, Kasaragod, Kerala, India
- Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India
- Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India
- Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA
- Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India
- Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
- Dr. Kannan C.S. Warrier, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

- Dr. R.K. Avasthi, Rohtak University, Haryana, India
- Dr. D.B. Bastawade, Maharashtra, India
- Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India
- Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India
- Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa Dr. Rory Dow, National Museum of natural History Naturalis, The Netherlands
- Dr. Brian Fisher, California Academy of Sciences, USA
- Dr. Richard Gallon, llandudno, North Wales, LL30 1UP
- Dr. Hemant V. Ghate, Modern College, Pune, India
- Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh
- Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
- Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK

For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various	continued on the back inside cover
For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scope For Article Submission Guidelines, visit https://threatenedtaxa.org/index.php/JoTT/about/submissions	

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 March 2023 | 15(3): 22771-22790

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) https://doi.org/10.11609/jott.8138.15.3.22771-22790

#8138 | Received 10 August 2022 | Final received 23 February 2023 | Finally accepted 14 March 2023

Documenting butterflies with the help of citizen science in Darjeeling-Sikkim Himalaya, India

Aditya Pradhan¹, Rohit George², Sailendra Dewan³

^{1,2}Ashoka Trust for Research in Ecology and the Environment, Regional Office Eastern Himalaya Northeast India, NH 10, Tadong, East Sikkim, Sikkim 737102, India.

³ Department of Zoology, Sikkim University, 5th Mile, Tadong, East Sikkim, Sikkim 737102, India.

¹aditya.pradhan@atree.org (corresponding author), ²rohit.george@atree.org, ³dewansailendra1992@gmail.com

Abstract: The availability of information on the distribution and occurrence of different species in a landscape is crucial to developing an informed conservation and management plan, however such information in the Himalaya is often limited. Citizen science, which builds on the knowledge and interest of communities to contribute to science, can be a solution to this problem. In this study, we used butterflies as a model taxon in the Darjeeling-Sikkim Himalaya which shows how citizen science can aid in documenting biodiversity. The study employed both citizen science, and researcher-survey approaches to collect data, and the collective effort resulted in 407 species, which is the highest by any study carried out in the region. Results show that citizen science can be helpful as a supplementary tool for data collection in biodiversity documentation projects, and can aid in adding to the diversity and distribution records of species, including those that are unique, rare, seasonal, and nationally protected. Citizen science projects to find means to recruit a larger pool of contributors, and citizen science outreach can be key to their success.

Keywords: Biodiversity documentation, community participation, data collection, outreach.

Editor: Pankaj Sekhsaria, Kalpavriksh Environmental Action Group, Pune, India.

Date of publication: 26 March 2023 (online & print)

Citation: Pradhan, A., R. George & S. Dewan (2023). Documenting butterflies with the help of citizen science in Darjeeling-Sikkim Himalaya, India. *Journal of Threatened Taxa* 15(3): 22771–22790. https://doi.org/10.11609/jott.8138.15.3.22771-22790

Copyright: © Pradhan et al. 2023. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding This paper is an outcome of the project funded by the Ministry of Environment, Forest and Climate Change, Government of India, through G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Uttarakhand under the National Mission on Himalayan Studies [grant number: NMHS-2017/MG-01/477]. However, the funding agency had no role in study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the article for publication.

Competing interests: The authors declare no competing interests.

Author details: ADITYA PRADHAN, senior researcher at Ashoka Trust for Research in Ecology and the Environment (ATREE), eastern Himalaya-northeastern India. He is currently enrolled as a PhD candidate in the Department of Zoology, University of Calcutta. He is very passionate about biodiversity of Eastern Himalaya, and especially the Darjeeling-Sikkim Himalaya. He has worked on various topics related to biodiversity conservation and assessment in the socio-ecological landscapes of Darjeeling Sikkim Himalaya, ranging from herpetofauna to ecosystem services for the last five years. He is currently working on woodpecker communities in the differently-managed forests of Darjeeling Himalaya. ROHIT GEORGE is a data manager and project coordinator at ATREE-Eastern Himalaya and also promotes citizen science in northeastern India. With over 12 years in biodiversity documentation, he also develops tools for visualising CS data and using it for environmental education and awareness in the region. SAILENDRA DEWAN, his research interest is exploring the effect of elevation and landscape heterogeneity in shaping the community assemblages of terrestrial insect fauna in the Eastern Himalaya. He is currently working as a guest faculty in the Department of Zoology, Sikkim University.

Author Contribution AP—conceptualization, methodology analysis, organize CS events, data collection & curation, writing original draft; RG—conceptualization, methodology, organize CS events, data collection & curation, formal analysis, writing & review & editing; SD—data collection, review & editing.

Acknowledgements: We acknowledge the support and encouragement from Dr. Bhoj Kumar Acharya (associate professor, Department of Zoology, Sikkim University), Dr. Sarala Khaling (regional director, ATREE Regional Office Eastern Himalaya-Northeast India), Dr. Sunita Pradhan (visiting fellow, ATREE), Dr. Basundhara Chettri (assistant professor, Department of Zoology, Sikkim University), Mr. Vikram Pradhan (research associate at ATREE), Dr. V.J. Jins (research associate at Department of Zoology, Sikkim University), Mr. Vikram Pradhan (research associate at ATREE), Dr. V.J. Jins (research associate at Department of Zoology, Sikkim University), and Arun Subba (Database Assistant, ATREE) who helped in making this work successful at various stages of the study. We are grateful for the cooperation and help received from the members of Panchayat (Village Council), Gaon Samaj (Village Committee), other local institutions, and community members. Lastly, we are extremely grateful to all the participants who contributed as citizen scientists during the course of the project, this publication would not have been possible without them.

OPEN ACCESS

(cc)

 $(\mathbf{\hat{H}})$

INTRODUCTION

Citizen Science (CS), which is an approach of involving the public in scientific research, has long been used to supplement collection of data required to answer research questions (Spear et al. 2017), or to document rare events in nature (Greenwood 2007). In recent years there has been an increase in the trend of using CS as a tool in research, documentation, and monitoring (Feldman et al. 2021), with a number of projects using this approach to create awareness, and as a means to engage with the local communities. This has been facilitated by the availability and development of userfriendly applications on smartphones (Land-Zandstra et al. 2016), improved internet facilities, affordable rates for internet access, and most importantly the growing popularity and the scope of CS activity (Curtis 2014). In addition, funding opportunities to implement CS related outreach activities may also have positively influenced this sharp rise (Johnson et al. 2014). The biggest advantage of using CS as a data collection tool is the assumption that vast amount of data can be collected by this approach, as the citizen scientists that this approach targets are mostly local communities who have yearlong access to areas not feasible for researchers to frequently survey or monitor due to limited time & financial constraints (Dickinson et al. 2010).

Participants of CS projects can consist of volunteers from all age-groups, different walks of life, and can be involved in a variety of roles at different stages of the study (Tulloch et al. 2013; Theobald et al. 2015). CS projects can be used in almost every field of research, ranging from marine science (van der Velde et al. 2017), to geography (Trojan et al. 2019), and from astronomy (Odenwald 2018) to biology (Greenwood 2007). This wide range of usability of CS and engagement of enthusiastic citizen scientists has enabled data collection over long periods, and covering larger gradients (Poisson et al. 2020). The use of CS in biodiversity documentation and monitoring is an example of one such long term CS engagement, and this has been dominated by projects involving a few taxa (like birds, butterflies, moths, and dragonflies), probably due to their aesthetic appeal which interests a lot of citizens to participate and contribute (Callaghan et al. 2021). However, despite the interest and the willingness of the citizens to participate and contribute in these projects, a major challenge that hinders the progress of CS projects is the difficulty to incorporate CS data into a research framework (Tulloch et al. 2013) due to the questionable issues associated with the data in terms of accuracy and precision, spatial, temporal resolution, robustness, and access (Hyder et al. 2015). Yet studies have shown that data collected through CS can be crucial for both the scientific community and decision makers (Paul et al. 2014).

Another challenge associated with CS projects is that not everyone is motivated to contribute to these CS projects due to lack of interest or material incentives (Land-Zandstra et al. 2016). The only benefit that the participants of these CS projects have is the opportunity to contribute to the world of science, public information and conservation (Silvertown 2009). Thus, CS projects that require large sample sizes must assess and understand the shared interest and unique motivations that drive their target citizen scientists to participate (Rotman et al. 2012; Wright et al. 2015), and also find means to incite motivation in them to participate (Schulwitz et al. 2021). This is where CS outreach comes into play. CS outreach brings in interested people under one platform and enables them to potentially participate in data collection (Silvertown 2009; Schulwitz et al. 2021). However, effectiveness of CS outreach needs to be tested rigorously in different fields of research, in different localities, and in studies involving different groups of participating volunteers.

As part of a project, "Key ecosystem services and biodiversity components in socio-ecological landscapes of Darjeeling-Sikkim Himalaya: deriving management & policy inputs and developing mountain biodiversity information system", an online Mountain Biodiversity Database and Information System or MBDIS (www. mbdis.in) was developed. A large part of the data in MBDIS came from CS activities implemented by the project. MBDIS was developed to be a comprehensive and interactive web-based database of biodiversity found in the Darjeeling-Sikkim Himalaya, so that students, academicians, researchers and practitioners working on biodiversity of the region could benefit from the information available here. A major component of MBDIS was to train and muster the participation of local community members to contribute photographic observations of biodiversity on already existing webbased citizen science portals. Targeted to involve local community members and nature enthusiasts from the region as citizen scientists, the project aimed at engaging them to generate new point records of biodiversity from the region, so as to create a baseline data that is accessible to anyone working on or interested to learn about the biodiversity of Darjeeling-Sikkim Himalaya.

The CS approach as a tool to collect biodiversity information is still a relatively new concept in the Himalaya, but has the potential to be an important tool

in biodiversity documentation (Devictor et al. 2010), as a large swathe of land falls outside the protected area regime in human-modified and -dominated landscapes where the communities are an important source of information. The Himalaya is one of the richest places on earth in terms of species diversity, however these landscapes are still poorly explored, and are vulnerable to increasing anthropogenic pressures, land-use change, and climate change. Thus, developing informed conservation and management plans require distribution and ecological information on species (Tobler et al. 2008), which is relatively scarce in the Himalaya.

The concept of CS is gaining rapid popularity in India and it is estimated that more than 25 CS projects in ecology are operational in India (Sharma 2019). Today in India, there are numerous web-based citizen science projects where the citizens can make their amateur contributions, for example India Biodiversity Portal, eBird India, and iNaturalist, where citizens can contribute their precious observations in the form of photographs or checklists. Thus, in recent years, there have been a number of scientific publications based on use and outputs of CS from India. These publications range from assessments of some CS projects (for example, Vettakaven et al. 2016; Datta et al. 2018), trends based on CS data (for example, Arjun & Roshnath 2018; State of India's Birds 2020), to new species descriptions and discoveries (for example, Kulkarni & Joseph 2015; Jaiswara et al. 2022). Similarly, distribution and locality record available on web-based CS platforms are cited and resulted in scientific publications (for example, The Biodiversity Atlas - India projects have resulted in more than 20 publications). Thus, highlighting the potential and importance of data gathered by citizen scientists in India.

Here, we present how CS can help in biodiversity documentation by adding to the data collected by the researchers. We also explore the effectiveness of CS outreach activities in mustering the participation of local communities and nature enthusiasts in such projects. The study uses butterfly observations as a proxy for this purpose, the reasons being: (1) butterflies are one of the most popular taxa among the local communities, (2) butterflies can be easily photographed by the local communities using camera phones, and thus can be uploaded into citizen science portals, (3) butterflies are one of the most diverse taxa in the Darjeeling-Sikkim Himalaya with 691 species (Haribal 1992; Kamrakar et al. 2021). Therefore, this paper also aims to add to the limited literature on distribution, diversity, and status of butterflies in the Darjeeling-Sikkim Himalaya.

METHODS AND MATERIALS

Study area

The study was conducted in multiple sites across the Darjeeling-Sikkim Himalaya that fall outside the protected areas (Figure 1), which are characterized by traditional agricultural systems, historical tea plantations, and residential areas, interspersed by differently-managed forests. The landscape is an integral part of the Eastern Himalayan region of the Himalaya Biodiversity hotspot, and comprises the two hill districts (Darjeeling & Kalimpong) of West Bengal, and the Himalayan state of Sikkim in India. The region is also an important transboundary landscape sharing its boundary with Nepal, Bhutan, and China. The elevation here ranges 250–>5000 m, and is traversed by three important river systems, Teesta, Rangeet and Balasan.

Data collection

Data collected during the study included GPS location, date, identity of the observer, photograph of the observation, and/or the species identity of the butterfly observed. These were collected by two different approaches: CS, and researcher surveys. Overall data were collected until 15 February 2021, while researcher survey data were collected between October 2018 and September 2021. Later, for comparative analysis, CS data was filtered to match the survey-location and time period of the researcher survey data.

Citizen Science Approach

In the initial stages of the study, information on different local institutions (like village council, clubs, committees, and local NGOs) actively working in the region were collected to identify key informants and organize inception cum awareness workshops in different villages (n = 22), prior to data collection. These workshops were organized as community consultations with a purpose to discuss the key components of the study, and also to seek coordination and partnership with interested groups and local institutions (as done by Pradhan & Khaling 2023). These partners were then approached in the later part of the project to organize CS outreach events in the landscape. CS outreach activities conducted during the study (n = 15) included CS workshops (n = 9), butterfly walks (n = 4), and butterfly documentation events (n = 2), and these were carried out in multiple locations across the study area (Figure 1).

CS outreach activities were used to muster the participation of local community members during data collection. Here, CS outreach refers to the workshops,

Figure 1. Map showing the location of the study area in India where research surveys, butterfly walks, and workshops were carried out. The map is divided into 5X5 km grids, and shows the number of observations made from each grid during the study period including those observations that have not been identified to the species level.

butterfly-walks, and online documentation events (discussed in following paragraphs), that were organized with an aim to reach out to interested local community members in different localities across the landscape. Data collected using the CS approach included all observations uploaded on iNaturalist (www.inaturalist. org) (identified up to species level) from within the study area. In all these activities, the local communities were neither forced, nor paid in any way to contribute to the documentation process. Hence, the participation mustered by the project was fully dependent on personal interest of the local community.

CS workshops: These were conducted in nine spatially different villages across the study area (Figure 1), targeting school students, teachers and community members, with an objective to train them on how to photograph biodiversity and contribute their observations to iNaturalist, which is an online citizen science platform. Each of these workshops had a theory session, which was followed by a hands-on session, where participants were taken for a short field visit, where they were assisted with registration, and other technicalities associated with uploading photographic observations they recorded in the field.

Butterfly walks: These were organized in four different villages across the study area (Figure 1), with an aim to muster participation of the local community members in documenting butterflies in their respective villages. During this event, participants were taken to a field location, where they were assisted by members of the research team on how to photograph butterflies, and how to upload their observations on iNaturalist. Each of these events lasted for 3–4 hours in the field.

Butterfly documentation events: These events were

organized during the Big Butterfly Month (a national butterfly documentation event in India held during the month of September) of 2020 and 2021, where the local communities across the study area were supplied with written and video instructions on how to photographically document butterflies and contribute them to iNaturalist. The butterfly documentation events were carried out through online medium due to COVID-19 related lockdown and safety restrictions that were in place during this period in India. These events were carried out across the entire landscape, and information about them were spread through local contacts of the project team, and through social media.

Researcher survey approach

Two researchers of the project team conducted surveys to document butterflies in different sites across the study area (Figure 1). All species of butterflies encountered by the researchers in these locations were recorded along with their GPS coordinates. Additionally, butterflies were photographed whenever possible to aid in confirmation of species identities. Butterflies were identified using field guides (Kehimkar 2016), and webbased resources (www.ifoundbutterflies.org). To avoid confusion and double counts of the same species while data curation and analyses, taxonomic nomenclature used by iNaturalist was followed during the study.

Data Analysis

All the observations of butterflies from the Darjeeling-Sikkim Himalaya currently available on iNaturalist (accessed on 15 February 2023) were downloaded (n=5026) and those that have been identified to species level (n = 3,746) were filtered out. Since the two researchers conducting opportunistic surveys for this study are also active on this CS platform, observations added (n = 564) by them were removed from the final dataset, leaving only those records contributed by the local communities (n = 3,182). Among these, 101 were added before our project began (in October 2018), 1,291 during the project period, and 1,790 records after the project period (after September 2021)

To create the researcher survey dataset (data collected by the researchers), the researchers directly submitted their data as excel sheets on MBDIS. The dataset contained a checklist of species recorded in spatially different sites, and was also accompanied by polygons of sampling locations in each study site.

A point-in- polygon analysis was performed in QGIS to find out how many of the CS records from the study area fell within the study site polygons (with a 500 m buffer). This was used to compare the datasets created from the CS approach and researcher survey approach. 294 CS observations were determined to fall within the study site polygons.

A circular polygon of 1-km radius was prepared around the workshop and butterfly walk locations, and CS records within these polygons were taken to evaluate the extent to which local communities participated in the outreach events. Similarly, to determine the level of engagement resulting from the butterfly documentation events, observations from the study area that were added on iNaturalist during the online documentation events in September of 2020 & 2021 were tabulated.

To understand the distribution of observations across the study area, and the level of engagement of individual citizen scientists, the study area was divided into grids measuring 5x5km, and the number of observations made in each grid, as well as the number of grids covered by individual participants were enumerated.

RESULTS

CS and Researcher data

By a combined effort of CS and researcher surveys, 331 species of butterflies across six families were recorded from the socio-ecological landscapes of Darjeeling-Sikkim Himalaya (407 species, including those contributed outside the study period) (Table 1). Localities in the landscape from where these species were recorded can be seen in Figure 1.

Eighty-six species of the total recorded species of butterflies are protected in India, among which 12 species are protected under schedule I and 74 species are protected under schedule II under Wildlife Protection Act 1972 (Amended through Wild Life (Protection) Amendment Act, 2022). Of the protected species, 66 species (38 within the study period) were recorded by the citizen scientists, while only 27 were recorded by the researchers.

The CS approach documented 1,717 observations resulting in 260 species belonging to six families within the study period, which increases to 4,307 observations (357 species) when we include records before and after the project period (Table 1). During the current study, the most common species observed and submitted by the citizen scientists from the study area was the Indian Tortoiseshell *Aglais caschmirensis*, which was observed 54 times by 37 participants, Popinjay *Stibochiona nicea* observed 31 times by 21 participants, Red Lacewing Butterfly *Cethosia biblis*, 28 times by 15 participants,

Table 1. Checklist of all the butterfly species recorded during the current study from Darjeeling-Sikkim Himalaya, India.

	Species	Common name	Family	WPAA (2022)	CS dataset	RS dataset
1	Abisara chela	Spot Judy	Riodinidae	-	#	-
2	Abisara echerius	Plum Judy	Riodinidae	-	*	-
3	Abisara fylla	Dark Judy	Riodinidae	-	*, PS, BW, WS, OE	*
4	Abisara neophron	Tailed Judy	Riodinidae	-	*, OE	*
5	Abrota ganga	Sergeant-major	Nymphalidae	-	#	-
6	Acraea issoria	Yellow Coster	Nymphalidae	-	*, PS, BW, WS, OE	*
7	Acraea terpsicore	Tawny Coster	Lycaenidae	-	#	-
8	Acupicta delicatum	Dark Tinsel	Lycaenidae	Schedule II	#	-
9	Acytolepis lilacea	Lilac Hedge Blue	Lycaenidae	Schedule II	-	*
10	Acytolepis puspa	Common Hedge Blue	Lycaenidae	-	*, PS, BW, WS	*
11	Aeromachus jhora	Grey Scrub Hopper	Hesperiidae	-	-	*
12	Aeromachus pygmaeus	Pygmy Scrub Hopper	Hesperiidae	-	-	*
13	Aeromachus stigmata	Veined Scrub Hopper	Hesperiidae	-	#	-
14	Aglais caschmirensis	Indian Tortoiseshell	Nymphalidae	-	*, PS, BW, WS, OE	*
15	Aglais ladakensis	Ladakh Tortoiseshell	Nymphalidae	-	-	*
16	Ampittia dioscorides	Indian Bushopper	Hesperiidae	-	#	*
17	Ancistroides nigrita	Chocolate Demon	Hesperiidae	-	*	-
18	Anthene emolus	Common Ciliate Blue	Lycaenidae	-	#	-
19	Appias albina	Common Albatross	Pieridae	Schedule II	-	*
20	Appias indra	Plain Puffin	Pieridae	Schedule II	#	-
21	Appias lalage	Spot Puffin	Pieridae	-	#	*
22	Appias libythea	Striped Albatross	Pieridae		*, BW, OE	*
23	Appias lyncida	Chocolate Albatross	Pieridae	Schedule II	*, PS, OE	*
24	Appias wardii	Lesser Albatross	Pieridae		-	*
25	Argynnis childreni	Large Silverstripe	Nymphalidae	-	*, PS, BW, OE	*
26	Argynnis hyperbius	Tropical Fritillary	Nymphalidae	-	*, PS, BW, WS, OE	*
27	Arhopala amantes	Large Oakblue	Lycaenidae	-	*	-
28	Arhopala bazalus	Powdered Oakblue	Lycaenidae	-	#	-
29	Arhopala centaurus	Centaur Oakblue	Lycaenidae	-	*. PS. BW. OE	-
30	Arhopala fulla	Spotless Oakblue	Lycaenidae	-	*	-
31	Arhopala khamti	Luster Oakblue	Lycaenidae	-	-	*
32	Ariadne merione	Common Castor	Nymphalidae	-	*. PS. BW. OF	*
33	Arnetta atkinsoni	Black-tufted Bob	Hesperiidae	-	-	*
34	Artipe ervx	Green Flash	Lycaenidae	Schedule II	#	-
35	Athyma cama	Orange Staff Sergeant	Nymphalidae	-	* PS BW OF	*
36	Athyma iina	Bhutan Sergeant	Nymphalidae	Schedule II	#	*
37	Athyma nefte	Colour Sergeant	Nymphalidae	-	*	
38	Athyma ongling	Himalayan Sergeant	Nymphalidae	-	* PS BW OF	
30	Athyma orientalis	Flongated Sergeant	Nymphalidae		* BW OF	
40	Athyma nerius	Common Sergeant	Nymphalidae		#	*
	Athyma ranga	Himalayan Blackyein Sergeant	Nymphalidae	Schedule II	# DC D/W	
41	Athuma colononhora	Staff Sorgoant	Nymphalidae	Schedule II	* DS DIM OF	*
42	Autyma selenophora		ivympnalidae	-	", PS, BW, UE	- T
43	Athyma zeroca	Small Starr Sergeant	ivymphalidae	-	#	-
44	Atrophaneura varuna	Sylhet Common Batwing	Papilionidae	-	*	-

	Species	Common name	Family	WPAA (2022)	CS dataset	RS dataset
45	Aulocera padma	Great Satyr	Nymphalidae	-	#	-
46	Auzakia danava	Commodore	Nymphalidae	Schedule II	*, PS, BW, OE	-
47	Baoris farri	Paintbrush Swift	Hesperiidae	-	#	-
48	Baoris pagana	Figure-of-eight Swift	Hesperiidae	-	*	*
49	Bibasis amara	Small Green Awlet	Hesperiidae	-	#	-
50	Bibasis gomata	Pale Green Awlet	Hesperiidae	-	*	-
51	Bibasis harisa	Orange Awlet	Hesperiidae	-	#, PS, BW	-
52	Bibasis jaina	Common Orange Awlet	Hesperiidae	-	#	-
53	Bibasis vasutana	Green Awlet	Hesperiidae	-	*, OE	-
54	Borbo bevani	Lesser Rice Swift	Hesperiidae	-	-	*
55	Borbo cinnara	Rice Swift	Hesperiidae	-	*, PS, WS, OE	-
56	Byasa dasarada	Great Windmill	Papilionidae	-	*, OE	*
57	Byasa latreillei	Rose Windmill	Papilionidae	-	-	*
58	Byasa plutonius	Pink-spotted Windmill	Papilionidae	Schedule I	#	-
59	Byasa polyeuctes	Common Windmill	Papilionidae	-	*, PS, OE	*
60	Caleta elna	Elbowed Pierrot	Lycaenidae	-	*, PS, BW, OE	*
61	Callerebia hyagriva	Brown Argus	Nymphalidae	Schedule II	#	-
62	Caltoris philippina	Philippine Swift	Hesperiidae		#	-
63	Capila lidderdali	Ringed Dawnfly	Hesperiidae	-	*	-
64	Capila zennara	Pale Striped Dawnfly	Hesperiidae	-	-	*
65	Castalius rosimon	Common Pierrot	Lycaenidae	-	*	*
66	Catapaecilma major	Common Tinsel	Lycaenidae	Schedule II	#	*
67	Catochrysops panormus	Silver Forget-me-not	Lycaenidae	-	-	*
68	Catochrysops strabo	Forget-me-not	Lycaenidae	-	#	*
69	Catopsilia pomona	Lemon Emigrant	Pieridae	-	*, OE	*
70	Catopsilia pyranthe	Mottled Emigrant	Pieridae	-	*	*
71	Celaenorrhinus badia	Scarce Banded Flat	Hesperiidae	-	-	*
72	Celaenorrhinus leucocera	Common Spotted Flat	Hesperiidae	-	*, PS, OE	*
73	Celaenorrhinus munda	Himalayan spotted flat	Hesperiidae	-	*	*
74	Celaenorrhinus pulomaya	Multi-spotted Flat	Hesperiidae	-	*	*
75	Celaenorrhinus putra	Restricted Spotted Flat	Hesperiidae	-	#, PS, BW	-
76	Celastrina argiolus	Hill Hedge Blue	Lycaenidae	-	*	*
77	Celastrina lavendularis	Plain Hedge Blue	Lycaenidae	-	*	-
78	Cephrenes trichopepla	Yellow Palm Dart	Hesperiidae	-	*	-
79	Cepora nadina	Lesser Gull	Pieridae	Schedule II	*, PS, OE	*
80	Cepora nerissa	Common Gull	Pieridae	Schedule II	*, PS	*
81	Cethosia biblis	Red Lacewing	Nymphalidae	Schedule II	*, PS, BW, WS, OE	*
82	Cethosia cyane	Leopard Lacewing	Nymphalidae	-	*, PS, BW, OE	*
83	Charaxes arja	Pallid Nawab	Nymphalidae	-	-	*
84	Charaxes bernardus	Tawny Rajah	Nymphalidae	Schedule II	#	-
85	Charaxes dolon	Stately Nawab	Nymphalidae	Schedule II	-	*
86	Charaxes marmax	Yellow Rajah	Nymphalidae	Schedule II	#	-
87	Cheritra freja	Common Imperial	Lycaenidae	-	*, PS, BW	-
88	Chersonesia risa	Common Maplet	Nymphalidae	-	*, PS, BW, OE	*
89	Chilades lajus	Lime Blue	Lycaenidae	-	#	-
90	Chitoria sordida	sordid emperor	Nymphalidae	Schedule II	#	-

	Species	Common name	Family	WPAA (2022)	CS dataset	RS dataset
91	Choaspes benjaminii	Indian Awlking	Hesperiidae	-	*	-
92	Chonala masoni	Chumbi Wall	Nymphalidae	-	-	*
93	Cigaritis lohita	Long-banded Silverline	Lycaenidae	Schedule II	*, OE	*
94	Cigaritis syama	Club Silverline	Lycaenidae	-	#	-
95	Cirrochroa aoris	Large Yeoman	Nymphalidae	-	*, PS, BW, WS, OE	*
96	Cirrochroa surya	Little Yeoman	Nymphalidae	-	*	-
97	Cirrochroa tyche	Common Yeoman	Nymphalidae	-	*, OE	*
98	Coladenia agni	Conjoin-spotted Pied Flat	Hesperiidae	-	#	-
99	Colias croceus	Clouded Yellow	Pieridae	-	-	*
100	Colias fieldii	Dark Clouded Yellow	Pieridae	-	*	-
101	Colias stoliczkana	Orange Clouded Yellow	Pieridae	-	*	-
102	Ctenoptilum vasava	Tawny Angle	Hesperiidae	-	#	-
103	Cupido argiades	Tailed Cupid	Lycaenidae	-	#	-
104	Curetis acuta	Angled Sunbeam	Lycaenidae	-	*, PS, BW, OE	-
105	Curetis bulis	Bright Sunbeam	Lycaenidae	-	*	*
106	Cyrestis thyodamas	Common Map	Nymphalidae	-	*, PS, BW, OE	*
107	Danaus chrysippus	Plain Tiger	Nymphalidae	-	*	*
108	Danaus genutia	Striped Tiger	Nymphalidae	-	*, OE	*
109	Delias acalis	Red Breast Jezebel	Pieridae	-	#	*
110	Delias agostina	Yellow Jezebel	Pieridae	-	*	*
111	Delias belladonna	Hill Jezebel	Pieridae	-	*, PS, BW, OE	*
112	Delias descombesi	Red-spot Jezebel	Pieridae	-	*, PS, WS, OE	*
113	Delias hyparete	Painted Jezebel	Pieridae	-	*, OE	-
114	Delias pasithoe	Red-based Jezebel	Pieridae	-	*, PS, BW, WS, OE	*
115	Dercas verhuelli	Tailed Sulphur	Pieridae	-	-	*
116	Deudorix epijarbas	Cornelian	Lycaenidae	Schedule I	#	-
117	Discophora sondaica	Common Duffer	Nymphalidae	Schedule I	*, BW	-
118	Dodona adonira	Striped Punch	Riodinidae	Schedule II	#	-
119	Dodona dipoea	Lesser Punch	Riodinidae	Schedule II	*, OE	*
120	Dodona egeon	Orange Punch	Riodinidae	Schedule II	*	*
121	Dodona eugenes	Tailed Punch	Riodinidae	-	*, PS, OE	-
122	Dodona ouida	Darjeeling Mixed Punch	Riodinidae	-	*	*
123	Doleschallia bisaltide	Autumn Leaf	Nymphalidae	Schedule II	*, PS, BW, OE	*
124	Elymnias hypermnestra	Common Palmfly	Nymphalidae	-	*	-
125	Elymnias malelas	Spotted Palmfly	Nymphalidae	Schedule II	*, PS, BW, OE	*
126	Elymnias patna	Blue-striped Palmfly	Nymphalidae	-	*	*
127	Elymnias vasudeva	Jezebel Palmfly	Nymphalidae	Schedule II	#	-
128	Enispe euthymius	Red Caliph	Nymphalidae	-	*	-
129	Ethope himachala	Dusky Diadem	Nymphalidae	-	*, OE	-
130	Euchrysops cnejus	Gram Blue	Lycaenidae	Schedule II	#	-
131	Euploea algea	Long-branded Blue Crow Butterfly	Nymphalidae	-	-	*
132	Euploea core	Common Crow	Nymphalidae	-	*, PS, OE	*
133	Euploea klugii	King Crow	Nymphalidae	-	#	*
134	Euploea midamus	Blue-spotted Crow	Nymphalidae	Schedule II	#	-
135	Euploea mulciber	Striped Blue Crow	Nymphalidae	-	*, PS, BW, WS, OE	*
136	Euploea sylvester	Double-branded Crow	Nymphalidae	-	-	*

Pradhan et al.

	Species	Common name	Family	WPAA (2022)	CS dataset	RS dataset
137	Eurema andersoni	One-spot Grass Yellow	Pieridae	-	*, BW, OE	-
138	Eurema blanda	Three-spotted Grass Yellow	Pieridae	-	*, PS, BW, WS, OE	*
139	Eurema brigitta	Small Grass Yellow	Pieridae	-	*, BW, OE	*
140	Eurema hecabe	Common Grass Yellow	Pieridae	-	*, PS, BW, OE	*
141	Eurema laeta	Spotless Grass Yellow	Pieridae	-	*, WS	*
142	Eurema simulatrix	Changeable Grass yellow	Pieridae	-	-	*
143	Euripus nyctelius	Courtesan	Nymphalidae	Schedule II	*, PS, BW, OE	-
144	Euthalia aconthea	Common Baron	Nymphalidae	-	*, PS, OE	*
145	Euthalia alpheda	Streaked Baron	Nymphalidae	-	*	-
146	Euthalia durga	Blue Duke	Nymphalidae	-	*, PS, BW, OE	*
147	Euthalia lubentina	Gaudy Baron	Nymphalidae	-	#	-
148	Euthalia monina	Powdered Baron	Nymphalidae	-	*	*
149	Euthalia nara	Bronze Duke	Nymphalidae	Schedule II	*, OE	*
150	Euthalia phemius	White-edged Blue Baron	Nymphalidae	-	*, PS, BW, OE	*
151	Euthalia sahadeva	Green Duke	Nymphalidae	-	*, OE	*
152	Euthalia telchinia	Blue Baron	Nymphalidae	Schedule I	*, PS, BW, OE	*
153	Flos areste	Tailless Plushblue	Lycaenidae	Schedule II	#	-
154	Flos fulgida	Shining Plushblue	Lycaenidae	-	*	-
155	Gandaca harina	Tree Yellow	Pieridae	-	*	*
156	Gangara thyrsis	Giant Redeye	Hesperiidae	-	*	-
157	Gerosis phisara	White-banded Flat	Hesperiidae	-	-	*
158	Gerosis sinica	White Yellow-breasted Flat	Hesperiidae	-	#	-
159	Graphium agamemnon	Tailed Jay	Papilionidae	-	*, PS, BW, OE	-
160	Graphium antiphates	Five-bar Swordtail	Papilionidae	-	*	-
161	Graphium doson	Common Jay	Papilionidae	-	#	-
162	Graphium eurous	Six-bar Swordtail	Papilionidae	-	*	-
163	Graphium eurypylus	Great Jay	Papilionidae	Schedule II	#	-
164	Graphium macareus	Lesser Zebra	Papilionidae	-	-	*
165	Graphium sarpedon	Common Bluebottle	Papilionidae	Schedule II	*, PS, BW, OE	*
166	Graphium xenocles	Great Zebra	Papilionidae	-	*, OE	-
167	Halpe porus	Moore's Ace	Hesperiidae	-	#	-
168	Halpe zema	Dark Banded Ace	Hesperiidae	-	*, PS, BW, OE	-
169	Hasora badra	Common Awl	Hesperiidae	-	#	-
170	Hebomoia glaucippe	Great Orange Tip	Pieridae	-	*, PS, OE	*
171	Heliophorus brahma	Golden Sapphire	Lycaenidae	-	*, PS, BW, WS, OE	*
172	Heliophorus epicles	Purple Sapphire	Lycaenidae	-	*, PS, BW, OE	*
173	Heliophorus ila	Restricted Purple Sapphire	Lycaenidae	-	*, PS, BW, OE	-
174	Heliophorus indicus	Dark Sapphire	Lycaenidae	-	#	*
175	Heliophorus moorei	Azure Sapphire	Lycaenidae	-	*, OE	*
176	Heliophorus tamu	Powdery Green Sapphire	Lycaenidae	-	*	*
177	Hestina persimilis	Siren	Nymphalidae	Schedule II	#	-
178	Hestinalis nama	Circe	Nymphalidae	-	*, PS, BW, OE	*
179	Horaga onyx	Common Onyx	Lycaenidae	Schedule II	#	-
180	Hypolimnas bolina	Great Eggfly	Nymphalidae	-	*, PS, BW, OE	*
181	Hypolycaena erylus	Common Tit	Lycaenidae	-	*	*
182	Hypolycaena kina	Blue Tit	Lycaenidae	-	*, PS, OE	-

	Species	Common name	Family	WPAA (2022)	CS dataset	RS dataset
183	Hypolycaena othona	Orchid Tit	Lycaenidae	Schedule I	*	-
184	lambrix salsala	Chestnut Bob	Hesperiidae	-	*, PS, OE	*
185	Ideopsis vulgaris	Glassy Blue Tiger	Nymphalidae	-	-	*
186	Issoria gemmata	Gem Silverspot	Nymphalidae	-	-	*
187	Issoria issaea	Himalayan Queen Fritillary	Nymphalidae	-	*	-
188	Issoria lathonia	Queen of Spain Fritillary	Nymphalidae	Schedule II	-	*
189	lxias marianne	White Orange Tip	Pieridae	-	#	*
190	lxias pyrene	Yellow Orange Tip	Pieridae	-	*, PS	*
191	Jamides alecto	Metallic Caerulean	Lycaenidae	-	*, PS, BW, OE	*
192	Jamides bochus	Dark Cerulean	Lycaenidae	-	*	-
193	Jamides caerulea	Royal Cerulean	Lycaenidae	Schedule II	-	*
194	Jamides celeno	Common Caerulean	Lycaenidae	-	*, WS, OE	*
195	Jamides elpis	Glistening Cerulean	Lycaenidae	-	-	*
196	Jamides pura	White Cerulean	Lycaenidae	Schedule II	-	*
197	Junonia almana	Peacock Pansy	Nymphalidae	-	#	*
198	Junonia atlites	Grey Pansy	Nymphalidae	-	#	*
199	Junonia iphita	Chocolate Pansy	Nymphalidae	-	*, PS, BW, WS, OE	*
200	Junonia lemonias	Lemon Pansy	Nymphalidae	-	*, PS, BW, OE	*
201	Junonia orithya	Blue Pansy	Nymphalidae	-	*	*
202	Kallima inachus	Orange Oakleaf	Nymphalidae	-	*, PS, BW, WS, OE	*
203	Kaniska canace	Blue Admiral	Nymphalidae	-	*, PS, OE	-
204	Lampides boeticus	Pea Blue	Lycaenidae	Schedule II	*, PS	*
205	Lasippa tiga	Malayan Lascar	Nymphalidae	-	*	-
206	Lebadea martha	Knight	Nymphalidae	-	*	-
207	Leptosia nina	Psyche	Pieridae	-	*, PS, BW, OE	*
208	Leptotes plinius	Zebra Blue	Lycaenidae	-	*, PS, BW, OE	*
209	Lestranicus transpectus	White-banded Hedge Blue	Lycaenidae	-	#	-
210	Lethe chandica	Angled Red Forester	Nymphalidae	-	*, PS, BW, OE	-
211	Lethe confusa	Banded Treebrown	Nymphalidae	-	*, PS, BW, WS, OE	*
212	Lethe dakwania	White-wedged Woodbrown	Nymphalidae	-	*	-
213	Lethe dura	Scarce Lilacfork	Nymphalidae	Schedule I	* <i>,</i> WS	*
214	Lethe goalpara	Large Goldenfork	Nymphalidae	-	#	-
215	Lethe isana	Common Forester	Nymphalidae	Schedule II	*	*
216	Lethe kansa	Bamboo Forester	Nymphalidae	-	*, PS, BW, OE	*
217	Lethe latiaris	Pale Forester	Nymphalidae	Schedule II	#	*
218	Lethe maitrya	Barred Woodbrown	Nymphalidae	-	*	*
219	Lethe mekara	Red Forester	Nymphalidae	-	#	-
220	Lethe nicetella	Small Woodbrown	Nymphalidae	Schedule II	*	-
221	Lethe portlandia	Southern Pearly-eye	Nymphalidae	-	*	-
222	Lethe serbonis	Brown Forester	Nymphalidae	Schedule II	*	*
223	Lethe sidonis	Common Woodbrown	Nymphalidae	-	*, PS, OE	*
224	Lethe sinorix	Tailed Red Forester	Nymphalidae	Schedule II	*	*
225	Lethe sura	Lilacfork	Nymphalidae	-	#	*
226	Lethe verma	Straight-banded Treebrown	Nymphalidae	-	*, PS, BW, WS, OE	*
227	Libythea myrrha	Club Beak	Nymphalidae	-	-	*
228	Loxura atymnus	Yamfly	Lycaenidae	-	*, OE	-

Pradhan et al.

	Species	Common name	Family	WPAA (2022)	CS dataset	RS dataset
229	Luthrodes pandava	Plains Cupid	Lycaenidae	-	#	-
230	Matapa aria	Common Redeye	Hesperiidae	-	*	*
231	Meandrusa lachinus	Brown Gorgon	Papilionidae	Schedule II	*, PS	-
232	Megisba malaya	Malayan	Lycaenidae	Schedule II	*, OE	-
233	Melanitis leda	Common Evening Brown	Nymphalidae	-	*, PS, BW, OE	*
234	Melanitis phedima	Dark Evening Brown	Nymphalidae	-	*, PS, BW, OE	*
235	Melanitis zitenius	Great Evening Brown	Nymphalidae	Schedule II	*, PS, BW	*
236	Mimathyma ambica	Indian Purple Emperor	Nymphalidae	-	#	*
237	Mimathyma chevana	Sergeant Emperor	Nymphalidae	Schedule II	-	*
238	Moduza procris	Commander	Nymphalidae	-	*, PS	-
239	Mooreana trichoneura	Yellow Flat	Hesperiidae	-	*, PS, BW, OE	-
240	Mycalesis anaxias	White-bar Bushbrown	Nymphalidae	Schedule II	*, PS, BW, OE	*
241	Mycalesis francisca	Lilacine Bushbrown	Nymphalidae	-	*, OE	*
242	Mycalesis intermedia	Intermediate Bushbrown	Nymphalidae	-	-	*
243	Mycalesis mineus	Dark-branded Bushbrown	Nymphalidae	-	*, PS, BW, OE	*
244	Mycalesis perseus	Dingy Bushbrown	Nymphalidae	-	*, PS, BW, OE	*
245	Mycalesis visala	Long Brand Bushbrown	Nymphalidae	-	*, OE	*
246	Nacaduba kurava	Transparent 6-line Blue	Lycaenidae	-	-	*
247	Nacaduba pactolus	Large Four Lineblue	Lycaenidae	Schedule II	-	*
248	Neocheritra fabronia	Pale Grand Imperial	Lycaenidae	Schedule II	#	-
249	Neope armandii	Yellow Labyrinth	Nymphalidae	-	#	-
250	Neope bhadra	Tailed Labyrinth	Nymphalidae	-	*	*
251	Neope pulaha	Veined Labyrinth	Nymphalidae	Schedule II	*	-
252	Neope yama	Dusky Labyrinth	Nymphalidae	Schedule II	#	-
253	Neorina hilda	Yellow Owl	Nymphalidae	Schedule II	*, PS, OE	-
254	Neptis ananta	Yellow Sailer	Nymphalidae	-	*, PS, OE	-
255	Neptis clinia	Southern Sullied Sailer	Nymphalidae	-	#	*
256	Neptis hylas	Common Sailer	Nymphalidae	-	*, PS, BW, OE	*
257	Neptis mahendra	Himalayan Sailer	Nymphalidae	-	-	*
258	Neptis miah	Small Yellow Sailer	Nymphalidae	-	-	*
259	Neptis nashona	Less Rich Sailer	Nymphalidae	Schedule II	*, PS, BW	-
260	Neptis nata	Sullied Brown Sailer	Nymphalidae	-	*, PS, WS	-
261	Neptis pseudovikasi	False Dingy Sailer	Nymphalidae	-	#	-
262	Neptis sankara	Broad-banded Sailer	Nymphalidae	Schedule II	-	*
263	Neptis sappho	Pallas' Sailer	Nymphalidae	-	*, PS, WS, OE	*
264	Neptis soma	Cream-spotted Sailor	Nymphalidae	Schedule II	*, PS, BW, OE	*
265	Niphanda cymbia	Small Pointed Pierrot	Lycaenidae	Schedule II	#	-
266	Notocrypta curvifascia	Restricted Demon	Hesperiidae	-	*, PS, BW, OE	*
267	Notocrypta feisthamelii	Spotted Demon	Hesperiidae	-	*, OE	*
268	Notocrypta paralysos	Common Banded Demon	Hesperiidae	-	*	-
269	Odontoptilum angulata	Chestnut Angle	Hesperiidae	-	*	-
270	Oriens gola	Common Dartlet	Hesperiidae	-	*, OE	*
271	Oriens goloides	Smaller Dartlet	Hesperiidae	-	#	-
272	Orinoma damaris	Tigerbrown	Nymphalidae	-	*, OE	*
273	Orsotriaena medus	Medus Brown	Nymphalidae	-	*, PS, WS, OE	*
274	Orthomiella pontis	Straightwing Blue	Lycaenidae	Schedule II	#, PS	-

	Species	Common name	Family	WPAA (2022)	CS dataset	RS dataset
275	Pachliopta aristolochiae	Common Rose Swallowtail	Papilionidae	-	*, PS, OE	*
276	Pachliopta hector	Crimson Rose Swallowtail	Papilionidae	-	#	-
277	Pantoporia hordonia	Common Lascar	Nymphalidae	-	*, PS, OE	*
278	Pantoporia sandaka	Extra Lascar	Nymphalidae	-	#	-
279	Papilio agestor	Tawny Mime Swallowtail	Papilionidae	-	#	-
280	Papilio alcmenor	Redbreast Swallowtail	Papilionidae	-	*, BW, OE	-
281	Papilio arcturus	Blue Peacock Swallowtail	Papilionidae	-	*, PS, OE	*
282	Papilio bianor	Common Peacock	Papilionidae	-	*, BW, OE	*
283	Papilio bootes	Tailed Redbreast	Papilionidae	Schedule II	-	*
284	Papilio castor	Common Raven	Papilionidae	-	#	-
285	Papilio clytia	Common Mime Swallowtail	Papilionidae	Schedule II	*, PS, OE	-
286	Papilio demoleus	Lime Swallowtail	Papilionidae	-	#	-
287	Papilio helenus	Red Helen Swallowtail	Papilionidae	-	*, PS, BW, OE	*
288	Papilio krishna	Krishna peacock	Papilionidae	Schedule I	*, PS, BW, OE	*
289	Papilio machaon	Old World Swallowtail	Papilionidae	-	-	*
290	Papilio memnon	Great Mormon Swallowtail	Papilionidae	-	*, PS, BW, OE	*
291	Papilio nephelus	Yellow Helen	Papilionidae	-	*, PS, BW, WS, OE	*
292	Papilio paris	Paris Peacock Swallowtail	Papilionidae	-	*, PS, BW, OE	*
293	Papilio polytes	Common Mormon Swallowtail	Papilionidae	-	*, PS, BW, OE	*
294	Papilio protenor	Spangle Swallowtail	Papilionidae	-	*, PS, OE	*
295	Papilio slateri	Blue Striped Mime Swallowtail	Papilionidae	Schedule II	*	-
296	Parantica aglea	Glassy Tiger	Nymphalidae	-	*, PS, BW, WS, OE	*
297	Parantica melaneus	Chocolate Tiger	Nymphalidae	-	*, OE	*
298	Parantica pedonga	Pedong Tiger	Nymphalidae	-	*	-
299	Parantica sita	Chestnut Tiger	Nymphalidae	-	*, PS, OE	*
300	Parasarpa dudu	White Commodore	Nymphalidae	Schedule II	*, PS, BW, OE	-
301	Parasarpa zayla	Bicolor Commodore	Nymphalidae	-	*, PS, OE	*
302	Pareronia avatar	Pale Wanderer	Pieridae	Schedule II	#	-
303	Parnara bada	Oriental Straight Swift	Hesperiidae	-	*, PS, OE	-
304	Parnassius hardwickii	Common Blue Apollo	Papilionidae	-	*	*
305	Pedesta masuriensis	Mussoorie Bush Bob	Hesperiidae	-	*	-
306	Pedesta pandita	Brown Bush Bob	Hesperiidae	-	*	*
307	Pelopidas agna	Little Branded Swift	Hesperiidae	-	#	-
308	Pelopidas assamensis	Great Swift	Hesperiidae	-	*	-
309	Pelopidas conjuncta	Conjoined Swift	Hesperiidae	-	-	*
310	Pelopidas mathias	Small Branded Swift	Hesperiidae	-	* <i>,</i> BW, OE	-
311	Petrelaea dana	Dingy Lineblue	Lycaenidae	-	*	-
312	Phalanta alcippe	Small Leopard	Nymphalidae	Schedule II	*	-
313	Phalanta phalantha	Common Leopard	Nymphalidae	-	-	*
314	Pieris brassicae	Large White	Pieridae	-	*	*
315	Pieris canidia	Indian Cabbage White	Pieridae	-	*, PS, BW, WS, OE	*
316	Pieris melete	Asian Green-veined White	Pieridae	-	-	*
317	Pieris rapae	Cabbage White	Pieridae	-	-	*
318	Polytremis discreta	Himalayan Swift	Hesperiidae	Schedule IV	#	-
319	Polytremis eltola	Yellow-spot Swift	Hesperiidae	-	*, BW, OE	*
320	Polyura athamas	Common Nawab	Nymphalidae	Schedule II	*, OE	*

	Species	Common name	Family	WPAA (2022)	CS dataset	RS dataset
321	Polyura bharata	Indian Nawab	Nymphalidae	-	*	-
322	Polyura eudamippus	Great Nawab	Nymphalidae	-	*, PS, BW	-
323	Pontia edusa	Eastern Bath White	Pieridae	-	*	-
324	Poritia hewitsoni	Common Gem	Lycaenidae	Schedule II	*, PS, BW	-
325	Potanthus confucius	Chinese Dart	Hesperiidae	-	*	-
326	Potanthus omaha	Lesser Dart	Hesperiidae	-	*, PS, BW	-
327	Potanthus trachala	Detached Dart	Hesperiidae	-	-	*
328	Prioneris thestylis	Spotted sawtooth	Pieridae	-	*, PS	*
329	Prosotas aluta	Banded Lineblue	Lycaenidae	Schedule II	-	*
330	Prosotas bhutea	Bhutya Lineblue	Lycaenidae	-	#	*
331	Prosotas dubiosa	Tailless Line Blue	Lycaenidae	-	*, PS, BW, WS, OE	*
332	Prosotas nora	Common Line Blue	Lycaenidae	-	*, PS, OE	*
333	Prosotas pia	Margined Lineblue	Lycaenidae	-	-	*
334	Pseudergolis wedah	Tabby	Nymphalidae	-	*, PS, BW, OE	*
335	Pseudoborbo bevani	Bevan's Swift	Hesperiidae	-	*, OE	-
336	Pseudocoladenia dan	Fulvous Pied Flat	Hesperiidae	-	*, PS, BW, OE	*
337	Pseudozizeeria maha	Himalayan Pale Grass Blue	Lycaenidae	-	*, PS, BW, OE	*
338	Rachana jalindra	Banded Royal	Hesperiidae	-	-	*
339	Rapala manea	Slate Flash	Lycaenidae	-	*, PS, OE	-
340	Rapala nissa	Common Flash	Lycaenidae	-	*	*
341	Rapala pheretima	Copper Flash	Lycaenidae	-	*, PS	-
342	Rapala rectivitta	Shot Flash	Lycaenidae	Schedule II	*	-
343	Rapala tara	Assam Flash	Lycaenidae	-	#	-
344	Remelana jangala	Chocolate Royal	Lycaenidae	Schedule II	#	-
345	Rhaphicera moorei	Small Tawny wall	Nymphalidae	-	*	-
346	Rhaphicera satricus	Large Tawny wall	Nymphalidae	-	#, PS	*
347	Rohana parisatis	Black Prince	Nymphalidae	-	*, PS, BW, OE	*
348	Sarangesa dasahara	Common Small Flat	Hesperiidae	-	*, PS, BW, OE	*
349	Sephisa chandra	Eastern Courtier	Nymphalidae	Schedule I	*, PS, BW, OE	-
350	Seseria sambara	Notched Seseria	Hesperiidae	-	*, OE	-
351	Sinthusa nasaka	Narrow Spark	Lycaenidae	Schedule II	#	-
352	Spalgis epius	Apefly	Lycaenidae	-	#, PS	-
353	Spialia galba	Indian Skipper	Hesperiidae	-	#	-
354	Spindasis zhengweilie	Contguous Silverline	Lycaenidae	-	-	*
355	Stibochiona nicea	Popinjay	Nymphalidae	-	*, PS, BW, WS, OE	*
356	Stichophthalma camadeva	Northern Jungle Queen	Nymphalidae	-	*	*
357	Suastus gremius	Indian Palm Bob	Hesperiidae	-	#	-
358	Sumalia daraxa	Green Commodore	Nymphalidae	-	*, PS, BW, OE	*
359	Surendra quercetorum	Common Acacia Blue	Lycaenidae	-	*, PS, BW, OE	*
360	Surendra vivarna	Acacia Blue	Lycaenidae	-	*	-
361	Symbrenthia brabira	Yellow Jester	Nymphalidae	-	#	-
362	Symbrenthia hypselis	Himalayan jester	Nymphalidae	-	*, PS, BW, WS, OE	*
363	Symbrenthia lilaea	Common Jester	Nymphalidae	-	*, PS, BW, WS, OE	*
364	Symbrenthia niphanda	Bluetail Jester	Nymphalidae	Schedule II	*, PS, WS, OE	-
365	Symbrenthia silana	Scarce Jester	Nymphalidae	Schedule I	*	-
366	Tagiades gana	Suffused Snow Flat	Hesperiidae	-	#	-

	Species	Common name	Family	WPAA (2022)	CS dataset	RS dataset
367	Tagiades litigiosa	Water Snow Flat	Hesperiidae	-	*, PS, OE	*
368	Tagiades menaka	Dark-edged Snow Flat	Hesperiidae	-	*, PS, BW, WS, OE	*
369	Tagiades parra	Straight Snow Flat	Hesperiidae	-	*	-
370	Tajuria diaeus	Straightline Royal	Lycaenidae	Schedule II	*	-
371	Tajuria maculata	Spotted Royal	Lycaenidae	-	*	-
372	Talicada nyseus	Red Pierrot	Lycaenidae	-	*	-
373	Tanaecia julii	Common Earl	Nymphalidae	-	*, PS, BW, WS, OE	*
374	Tanaecia lepidea	Grey Count	Nymphalidae	Schedule II	*, PS, WS, OE	*
375	Taraka hamada	Forest Pierrot	Lycaenidae	-	*, PS, WS	*
376	Tarucus ananda	Dark Pierrot	Lycaenidae	-	#	-
377	Teinopalpus imperialis	Kaiser-i-Hind	Papilionidae	Schedule II	*	-
378	Telicota ancilla	Dark Palm Dart	Hesperiidae	-	#	-
379	Telicota bambusae	Dark Palm Dart	Hesperiidae	-	*, PS, OE	*
380	Telinga malsara	White-line Bushbrown	Nymphalidae	-	*, PS, BW	*
381	Thaumantis diores	Jungle Glory	Nymphalidae	-	*, OE	-
382	Ticherra acte	Blue Imperial	Lycaenidae	-	*, PS, BW, OE	*
383	Tirumala limniace	Blue Tiger Crow	Nymphalidae	-	#	*
384	Tirumala septentrionis	Dark Blue Tiger	Nymphalidae	-	*, PS, BW, OE	*
385	Troides helena	Common Birdwing	Papilionidae	-	*, BW, OE	*
386	Udara dilecta	Pale Hedge Blue	Lycaenidae	-	*, PS, OE	*
387	Udaspes folus	Grass Demon	Hesperiidae	-	*	*
388	Vagrans egista	Vagrant	Nymphalidae	-	#	-
389	Vanessa atalanta	Red Admiral	Nymphalidae	-	-	*
390	Vanessa cardui	Painted Lady	Nymphalidae	-	*, PS, OE	*
391	Vanessa indica	Indian Red Admiral	Nymphalidae	-	*, PS, BW, WS, OE	*
392	Vindula erota	Cruiser	Nymphalidae	-	*, OE	*
393	Ypthima asterope	Common Three Rings	Nymphalidae	-	-	*
394	Ypthima avanta	Jewel Five-ring	Nymphalidae	-	#	-
395	Ypthima baldus	Common Five-ring	Nymphalidae	-	*, PS, BW, WS, OE	*
396	Ypthima horsfieldii	Malayan Five-ring	Nymphalidae	-	#	-
397	Ypthima huebneri	Common Four-ring	Nymphalidae	-	*, PS, WS, OE	-
398	Ypthima inica	Lesser Three-ring	Nymphalidae	-	#	-
399	Ypthima newara	Newar Three Ring	Nymphalidae	-	*, PS, BW, OE	*
400	Ypthima nikaea	Mooreâs Fivering	Nymphalidae	-	*	-
401	Ypthima parasakra	Dubious Five-ring	Nymphalidae	-	*, PS, OE	-
402	Ypthima sakra	Himalayan Five-ring	Nymphalidae	-	*, PS, OE	*
403	Zeltus amasa	Fluffy Tit	Lycaenidae	-	*, PS, BW, OE	*
404	Zemeros flegyas	Punchinello	Riodinidae	-	*, PS, BW, WS, OE	*
405	Zipaetis scylax	Dark Catseye	Nymphalidae	-	#	-
406	Zizeeria karsandra	Dark Grass Blue	Lycaenidae	-	#	*
407	Zizina otis	Lesser Grass Blue	Lycaenidae	-	#	*

CS—Citizen Science | RS—Researcher Survey | WPAA (2022)—Wildlife (Protection) Amendment Act (2022) | ---unrecorded or unlisted | *-recorded during the project period | #--recorded outside project period | PS--recorded from a project site | BW--recorded after butterfly walks | WS--recorded after workshop | OE-- recorded during the online documentation event.

Figure 2. Bar graph showing the total no. of observations (including those that have not been identified to species level) and the corresponding no. of citizen science participants making the observations during the course of the study in Darjeeling-Sikkim Himalaya.

Figure 3. Bar graph showing the number of spatial locations from where the observations were made by each participant during the current study in Darjeeling-Sikkim Himalaya.

Straight-banded Treebrown *Lethe verma*, 28 times by 22 participants and Punchinello *Zemeros flegyas*, 28 times by 22 participants. Similarly, the researcher survey approach was able to document 233 of the 265 species belonging to six families across the study area, during the study period. Again, Indian Tortoiseshell was the most common species which was observed in all sites surveyed by the researchers.

Among the 331 species that were recorded during the study period, the CS dataset was found to have recorded 107 species that were unique from the researcher dataset, while 71 unique species were recorded by the researcher survey. This may be due to the limited

number of sites that the researchers could survey within the study period, while CS data were collected from a larger spatial area. A point in polygon analysis was performed to compare the two datasets collected from the same study sites (with a 500 m buffer) and from within the same time period. The results showed 427 observations made by 33 CS participants, which amounted to 131 species, with 32 species unique from the researcher data.

CS outreach and participation

One-hundred-and-seventy community members participated as citizen scientists in the butterfly

Pradhan et al. 🛛 🕷

Figure 4. Bar graph showing the number of observations of butterflies contributed by citizen scientists to iNaturalist before and after the study period (blue) and during the study period (green) in Darjeeling-Sikkim Himalaya, assessed after every six months.

documentation project on iNaturalist during the course of the current study. Forty participants contributed to the database more than 10 times (Figure 2), with the highest record of 178 submissions from the same participant (out of which 120 have been identified to species level, till date). A majority of the citizen scientists in the current study, contributed their observations from a limited number of spatial locations. Yet, a few participants appeared to record and submit observations from multiple locations, with four participants submitting their observations from more than 11 spatial locations (Figure 3).

Three-hundred-and-eighty community members participated in nine CS workshops, while the four butterfly walks and two online documentation events had participation of 63 and 81 community members, respectively. The workshops and walks yielded 84 and 492 observations respectively, while 1,187 observations were made during the online documentation events.

The CS outreach during the study in Darjeeling-Sikkim Himalaya resulted in 62.26% (amounting to 181 species) of all CS observations made from the study area during the study period, with 15.11% (92 species) of these being recorded from sites after at least one CS outreach event was organized, while 47.14% of observations (175 species) were contributed during the butterfly documentation events (Table 1 & 2). Results also show that the number of observations of butterflies contributed to iNaturalist from Darjeeling-Sikkim Himalaya sharply increased during the study period, and is still increasing even after the life of the project (Figure 4). Since the end of the project, 144 users have Table 2. Summary of the data contributed following citizen science outreach events in terms of observations contributed, species recorded, and participants, with respect to the overall data collected by citizen science approach during the study in Darjeeling-Sikkim Himalaya.

CS data collected	Observations	Species	Participants
Before the study period	106	67	7
During the study period	1,717	268	170
During the study period from the researcher study sites	427	131	33
From workshop locations after the event	80	50	20
From butterfly walk locations after the event	315	121	24
During online documentation events	912	236	74
After the study period	2,484	287	144

contributed butterfly observations from the region, of which 127 users joined iNaturalist after the end of the project.

DISCUSSION

The use of citizen science approaches in biodiversity documentation is gaining pace in both rural and urban settings across the globe, with the most effective programs targeting to engage local communities (Pandya 2012). However, the reliability of the CS datasets is still a topic of discussion among the scientific community (Chatzigeorgiou et al. 2016). The current study, which

incorporates both researcher and CS datasets, presents how CS approach in biodiversity documentation adds to the data collected by the researchers.

Usefulness of CS in documenting butterflies across Darjeeling-Sikkim Himalaya

The current study was conducted in one of the global biodiversity hotspots and uses one of the most diverse taxa here, the butterflies, for this purpose. Butterflies are one of the most diverse taxa in the Himalaya, and Darjeeling-Sikkim Himalaya, where the study was carried out, is a hotspot for butterfly diversity, harboring 46% of all butterflies found in India (Sharma et al. 2020). There have been numerous studies to document the diversity of butterflies in these landscapes across both protected & non-protected areas, however no single study has been able to report even close to 50% of its butterfly diversity, the main challenges being the topographical, temporal, logistical and financial constraints to carry out surveys at a larger scale. This is where CS is very useful. The current study used the traditional researcher survey approach (where the number of researchers carrying out surveys, and number of sites that could be covered by them were limited due to logistical and financial constraints), and the CS approach (where the main challenge was to reach out to, and recruit as many potential citizen scientists as possible). Thus, with a mixed approach, the study was able to document approximately 48% (331 species) of total reported butterfly diversity from the region, which is higher than that reported by any other study conducted in the Darjeeling-Sikkim Himalaya till date, with the previous highest being 43% (268 species) recorded by Sharma et al. (2020). CS alone contributed 43% of the total, while also recording 107 species that were unique from the researcher dataset. The high number of unique, rare, seasonal, and nationally protected butterflies observed by the citizen scientists in the current study, suggests that CS can be an important tool when conducting distribution studies in data deficient corners of the world, as supported by Amano et al. (2016). This is also in line with other studies that suggest CS can effectively supplement data collection in a documentation project of a large scale (Spear et al. 2017). However, the result is contrary to belief that professional surveys report more endangered species and species of special interest for research (Galvan et al. 2021), and may be due to the limited number of professionals used in the current study. The study also reiterates the fact that CS as the only data collection tool (without the use of professionals) may not be able to fully deliver the desired outcomes in a biodiversity

documentation project (Pernat et al. 2021).

The use of CS data (in breeding ecology of birds, monitoring migration of birds, bird counts, etc.,) has resulted in a number of publications in recent years (Donnelly et al. 2014; Arjun & Roshnath 2018; State of India's Birds 2020), thus providing evidence on the usefulness of CS data in scientific studies. However, these publications have often been criticized by the scientific community for using CS data due to issues associated with their value and quality. Some of the major challenges of incorporating CS in large projects include lack of organized structure, haphazard coverage, repeat counts, and lack of coordination (Rahmani et al. 2003). Yet, a number of studies have advocated that these challenges can be resolved with better research design, adequate training of citizen scientists, and ground truthing (Bird et al. 2014). Thus, in light of these debates happening across the scientific community, this study adds to the limited literature that supports the theory that large-scale long-term monitoring of biodiversity can be answered through the CS approach. This is especially true when the collection of data from a large area by researchers alone, requires vast amounts of budget, time and effort (Dickinson et al. 2010). However, success of these CS-based projects will depend on the extent of volunteer engagement and training, also called CS outreach (Mason & Arathi 2019).

CS outreach and participation

The current study used outreach materials, theory sessions, field-based training, and online events, as a part of CS outreach activities to overcome the challenges of recruiting citizen scientists across a large spatial area. Here, CS outreach activities conducted prior to data collection was found to be an important step in mustering the participation of target citizen scientists, which in this study were the local community members. Similar observations were made by Feldman et al. (2018). CS outreach has been found to be effective in reaching out to, and generating interest among the potential participants, and is thus useful in mustering local participation (example van der Velde et al. 2017). Among the CS outreach activities used in the current study, butterfly walks (which involved fieldbased training) were found to be the most effective in mustering local participation. Similar activities have been reported to be successful by other studies (example Matteson et al. 2012). Additionally, online butterfly documentation events which were supplemented with pinpoint instructions, were found to be an effective outreach event capable of reaching out to a larger

number of participants across a larger spatial area, and they hugely contributed to the final CS dataset. Online documentation events have also been found to be hugely successful in acquiring large amounts of data elsewhere (Moskowitz & Haramaty 2013), however these have been associated with the highest number of dropouts, meaning the citizen scientists who participate in these events eventually stop contributing once the event period is over (Aristeidou et al. 2021). This suggests that such events are not helpful in ensuring long term participation in science.

The outreach activities carried out during the study was able to create awareness among the local community members on the importance of biodiversity documentation, while also providing a platform for them to contribute to science. The impact made by the study, and the willingness of the participants to participate in such CS projects, can be observed from the fact that the number of observations uploaded on iNaturalist from the landscape sharply increased during the study period, and is still increasing even after the life of the project. However, despite the observable success of the CS outreach in terms of the number of observations, it was found that a large portion of data were contributed by precious few participants, while the majority contributed only a few records. This result exhibits a long tail distribution, as has been reported by other similar CS projects (Segal et al. 2015). Also, a select few participants were found to be contributing data records from multiple locations, while an average participant would only contribute data from a small area, suggesting that a participant is more interested in documenting biodiversity from locality that is easily accessible to the participant. This may also be due to the differences in levels of skill sets and motivation (West et al. 2021). These further suggests the need to reach out to a larger pool of citizen scientists from different corners of the landscape when planning a similar biodiversity documentation project in future, in order to find these precious few who can champion the documentation process, further emphasizing that reaching out to the right audience makes an immense difference to the success of a CS project.

Conservation implications

Developing informed conservation and management plans require distribution and ecological information on species (Tobler et al. 2008), which in the Himalayas are limited. The current study shows how CS can contribute to adding important locality records of rare and lesser known butterflies species, which would remain undocumented without local participation. Thus, CS which effectively accentuates the potential of local communities as knowledge partners, can be a solution to this challenge of limited information on biodiversity. However, this requires good planning, execution, and need for an efficient CS outreach program, has been suggested here. CS outreach, apart from being a means to recruit citizen scientists as data contributors, also has an immense potential in creating awareness, and can be effective in bridging the gap between humans and nature. The role of knowledge-building programs that promote CS, is important in creating positive influence on attitudes and behavior towards biodiversity has also been recently highlighted from the same landscape (Pradhan & Yonle 2022). This further adds to the importance of CS in conservation.

Study perspectives

The study presents how citizen participation in a biodiversity documentation project can aid in adding to the diversity and distribution records of different species, including those that are unique, rare, seasonal, and nationally protected. In the current study, the participation of the citizens was purely interest-based and depended on the participant's interest to learn and record biodiversity from his/her locality. Through this study, the participants gained knowledge and awareness on the local biodiversity, and were provided with a platform where he/she could contribute important biodiversity data. Some of the citizen scientists whose participation was acquired during the study period are still actively contributing to the platform, which shows that they would participate and contribute again. Thus, provided that similar future projects manage to reach out to interested sections of the community, the citizens would be willing to participate in such projects in the future.

Although the goal of the study was to muster as many CS participants as possible from the study area, the current study could only muster limited participation of local communities due to logistical, financial, and time constraints. Also, limited internet connectivity and lack of camera phones with a number of interested participants, hindered the community participation. Hence, if similar studies are carried out in future, CS outreach events that encourage the participation of local communities and help reach out to interested participants, should be organized in multiple locations, and in different seasons. These outreach activities can also be planned in such a way that different events target different potential groups, like students,

teachers, farmers, nature guides, etc. This would help in maximizing the number of participants, and thus will maximize the number of observations from within the study area. Similarly, gathering basic information about a participant like, gender, age, occupation, education, etc., would give meaningful insights into the attitude, behavior, and motivation of the participating citizens.

CONCLUSION

CS can be an important tool to fill the spatial gaps in global biodiversity information, and thus can have a crucial role in the data deficient and poorly explored parts of the Himalaya, a global biodiversity hotspot. The study found that conducting CS outreach activities at the field-level prior to data collection, and online events that have the potential to reach out to a larger pool of citizen scientists is beneficial for the overall success of a CS project. The results of the current study show that the CS approach can be a useful supplemental tool in collecting distribution data, as citizen scientists (local communities in this study) have yearlong access to sampling sites. Thus, the study advises other biodiversity documentation projects in data deficient areas to try and accommodate the CS approach in data collection. Finally, MBDIS that aims to incorporate both CS and researcher data in the Darjeeling-Sikkim Himalaya can have immense potential to bring together both the scientific as well as nature enthusiasts of the region under one platform, thus creating an opportunity for the local communities to contribute and learn about the biodiversity of the region.

REFERENCES

- Amano, T., J.D. Lamming & W.J. Sutherland (2016). Spatial gaps in global biodiversity information and the role of citizen science. *Bioscience* 66(5): 393–400. https://doi.org/10.1093/biosci/biw022
- Aristeidou, M., C. Herodotou, H.L. Ballard, A.N. Young, A.E. Miller, L. Higgins & R.F. Johnson (2021). Exploring the participation of young citizen scientists in scientific research: The case of iNaturalist. *PloS ONE* 16(1): e0245682. https://doi.org/10.1371/journal. pone.0245682
- Arjun, C.P. & R. Roshnath (2018). Status of Greater Flamingos Phoenicopterus roseus in Kerala. Indian BIRDS14(2): 43–45.
- Bird, T., A. Bates, J. Lefcheck, N. Hill, R. Thomson, G. Edgar, R. Stuart-Smith, S. Wotherspoon, M. Krkosek, J. Stuart-Smith, G. Pecl, N. Barrett & S. Frusher (2014). Statistical solutions for error and bias in global citizen science datasets. *Biological Conservation* 173: 144– 154. https://doi.org/10.1016/j.biocon.2013.07.037
- Callaghan, C.T., A.G. Poore, M. Hofmann, C.J. Roberts & H.M. Pereira (2021). Large-bodied birds are over-represented in unstructured citizen science data. *Scientific reports* 11(1): 1–11. https://doi. org/10.1038/s41598-021-98584-7

- Chatzigeorgiou, G., S. Faulwetter, T. Dailianis, V.S. Smith, P. Koulouri, C. Dounas & C. Arvanitidis (2016). Testing the robustness of Citizen Science projects: Evaluating the results of pilot project COMBER. *Biodiversity Data Journal* 4: e10859. https://doi. org/10.3897%2FBDJ.4.e10859
- Curtis, V. (2014). Online citizen science games: Opportunities for the biological sciences. *Applied & Translational Genomics* 3(4): 90–94. https://doi.org/10.1016/j.atg.2014.07.001
- Datta, A., R. Naniwadekar, M. Rao, R. Sreenivasan & V. Hiresavi (2018). Hornbill Watch: A citizen science initiative for Indian hornbills. *Indian BIRDS* 14(3): 65–70.
- Devictor, V., R.J. Whittaker & C. Beltrame (2010). Beyond scarcity: citizen science programmes as useful tools for conservation biogeography. *Diversity and Distributions* 16(3): 354–362. https:// doi.org/10.1111/j.1472-4642.2009.00615.x
- Dickinson, J., B. Zuckerberg & D. Bonter (2010). Citizen Science as an ecological research tool: challenges and benefits. *Annual Review* of Ecology, Evolution, and Systematics 41(1): 149–172. https://doi. org/10.1146/annurev-ecolsys-102209-144636
- Donnelly, A., O. Crowe, E. Regan, S. Begley & A. Caffarra (2014). The role of citizen science in monitoring biodiversity in Ireland. International Journal of Biometeorology 58(6): 1237–1249. https:// doi.org/10.1007/s00484-013-0717-0
- Feldman, M.J., L. Imbeau, P. Marchand, M.J. Mazerolle, M. Darveau & N.J. Fenton (2021). Trends and gaps in the use of citizen science derived data as input for species distribution models: a quantitative review. *PloS ONE* 16(3): e0234587. https://doi.org/10.1371/journal. pone.0234587
- Feldman, R.E., I. Žemaitė & A.J. Miller-Rushing (2018). How training citizen scientists affects the accuracy and precision of phenological data. *International Journal of Biometeorology* 62(8): 1421–1435. https://doi.org/10.1007/s00484-018-1540-4
- Galván, S., R. Barrientos & S. Varela (2021). No bird database is perfect: citizen science and professional datasets contain different and complementary biodiversity information. *Ardeola* 69(1): 97–114. https://doi.org/10.13157/arla.69.1.2022.ra6
- Greenwood, J.J. (2007). Citizens, science and bird conservation. *Journal* of Ornithology 148(1): 77–124. https://doi.org/10.1007/s10336-007-0239-9
- Haribal, M. (1992). The Butterflies of Sikkim Himalaya and Their Natural History. Natraj Publishers, Dehradun, 217 pp.
- Hyder, K., B. Townhill, L. Anderson, J. Delany & J. Pinnegar (2015). Can citizen science contribute to the evidence-base that underpins marine policy? *Marine Policy* 59: 112–120. https://doi.org/10.1016/j. marpol.2015.04.022
- Jaiswara, R., S. Sreebin, M. Monaal & T. Robillard (2022). A new species of *Indigryllus* (Orthoptera, Gryllidae, Eneopterinae, Xenogryllini) from Kerala, India, with first data on acoustics and natural habitat. *Zootaxa* 5205(6): 532–546. https://doi.org/10.11646/zootaxa.5205.6.2
- Johnson, M., C. Hannah, L. Acton, R. Popovici, K. Karanth & E. Weinthal (2014). Network environmentalism: Citizen scientists as agents for environmental advocacy. *Global Environmental Change* 29: 235–245. https://doi.org/10.1016/j.gloenvcha.2014.10.006
- Karmakar, T., S.W. Lepcha, D.N. Basu & K. Kunte (2021). A new species of *Zographetus* Watson, 1893 (Lepidoptera: Hesperiidae) from Sikkim, eastern Himalaya, India. *Zootaxa* 5072(4): 373–379.
- Kehimkar, I. (2016). Butterflies of India. Bombay Natural History Society, Mumbai, 516 pp.
- Kulkarni, S. & S. Joseph (2015). First record of genus Siler Simon, 1889 (Araneae: Salticidae) from India. *Journal of Threatened Taxa 7*(10): 7701–7703. https://doi.org/10.11609/JoTT.o4266.7701-3
- Land-Zandstra, A.M., J.L. Devilee, F. Snik, F. Buurmeijer & J.M. van den Broek (2016). Citizen science on a smartphone: Participants' motivations and learning. *Public Understanding of Science* 25(1): 45–60. https://doi.org/10.1177/09636625156024
- Mason, L. & S. Arathi (2019). Assessing the efficacy of citizen scientists monitoring native bees in urban areas. *Global Ecology and Conservation* 17: e00561. https://doi.org/10.1016/j.gecco.2019. e00561

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 March 2023 | 15(3): 22771-22790

- Moskowitz, D. & L. Haramaty (2013). National Moth Week-a new global citizen science project focused on moths. *Terrestrial Arthropod Reviews* 6(3): 185–200.
- Odenwald, S. (2018). A citation study of citizen science projects in space science and astronomy. *Citizen Science: Theory and Practice* 3(2): 5. https://doi.org/10.5334/cstp.152
- Pandya, R.E. (2012). A framework for engaging diverse communities in citizen science in the US. Frontiers in Ecology and the Environment 10(6): 314–317. https://doi.org/10.1890/120007
- Paul, K., M. Quinn, M. Huijser, J. Graham & L. Broberg (2014). An evaluation of a citizen science data collection program for recording wildlife observations along a highway. *Journal of Environmental Management* 139:180–187. https://doi.org/10.1016/j.jenvman.2014.02.018
- Pernat, N., H. Kampen, J.M. Jeschke & D. Werner (2021). Citizen science versus professional data collection: Comparison of approaches to mosquito monitoring in Germany. *Journal of Applied Ecology* 58(2): 214–223. https://doi.org/10.1111/1365-2664.13767
- Poisson, A.C., I.M. McCullough, K.S. Cheruvelil, K.C. Elliott, J.A. Latimore & P.A. Soranno (2020). Quantifying the contribution of citizen science to broad-scale ecological databases. *Frontiers in Ecology and the Environment* 18(1): 19–26. https://doi.org/10.1002/ fee.2128
- Pradhan, A. & R. Yonle (2021). Socio-ecological assessment of squamate reptiles in a human-modified ecosystem of Darjeeling, Eastern Himalaya. *Human Dimensions of Wildlife* 1–17. https://doi. org/10.1080/10871209.2021.1905114
- Pradhan, A. & S. Khaling (2023). Community priorities, values, and perceptions associated with ecosystem services provided by the socio-ecological landscapes of Darjeeling-Sikkim Himalaya. *Regional Environmental Change 23*(1): 36. https://doi.org/10.1007/s10113-023-02028-z
- Rahmani, A., S. Laad & Z. Islam (2003). Status of the AWC in India and future development. Newsletter of the Asian Waterbird Census, 4–5.
- Rotman, D., J. Preece, J. Hammock, K. Procita, D. Hansen, C. Parr, D. Lewis & D. Jacobs (2012). Dynamic changes in motivation in collaborative citizen-science projects, pp. 217–226. In: Proceedings of the ACM 2012 conference on computer supported cooperative work.
- Schulwitz, S.E., G.C. Hill, V. Fry & C.J. McClure (2021). Evaluating citizen science outreach: A case-study with The Peregrine Fund's American Kestrel Partnership. *PloS ONE* 16(3): e0248948. https:// doi.org/10.1371/journal.pone.0248948
- Segal, A., Y.A. Gal, R.J. Simpson, V. Homsy, M. Hartswood, K.R. Page & M. Jirotka (2015). Improving productivity in citizen science through controlled intervention. Proceedings of the 24th International Conference on World Wide Web, 331–337 pp.
- Sharma D.C. (2019). Citizen science growing in India: Study. Down to

Earth. https://www.downtoearth.org.in/news/science-technology/ citizen-science-growing-in-india-study-66375. Electronic version accessed on 15 April 2022.

- Sharma, K., B.K. Acharya, G. Sharma, D. Valente, M.R. Pasimeni, I. Petrosillo & T. Selvan. (2020). Land use effect on butterfly alpha and beta diversity in the Eastern Himalaya, India. *Ecological Indicators* 110: 105605. https://doi.org/10.1016/j.ecolind.2019.105605
- Silvertown, J. (2009). A new dawn for citizen science. *Trends in Ecology & Evolution* 24(9): 467–471. https://doi.org/10.1016/j. tree.2009.03.017
- State of India's Birds. (2020). State of India's Birds: Range, trends and conservation status. The State of India's Birds Partnership, 50 pp.
- Spear, D.M., G.B. Pauly & K. Kaiser. (2017). Citizen science as a tool for augmenting museum collection data from urban areas. *Frontiers in Ecology and Evolution* 5: 86. https://doi.org/10.3389/ fevo.2017.00086
- Theobald, E.J., A.K. Ettinger, H.K. Burgess, L.B. DeBey, N.R. Schmidt, H.E. Froehlich, C. Wagner, J.H.R. Lambers, J. Tewksbury, M.A. Harsch & J.K. Parrish (2015). Global change and local solutions: Tapping the unrealized potential of citizen science for biodiversity research. *Biological Conservation* 181: 236–244. https://doi. org/10.1016/j.biocon.2014.10.021
- Tobler M.W., S.E. Carrillo-Percastegui, R.L. Pitman, R. Mares & G. Powell (2008). An evaluation of camera traps for inventorying large-and medium-sized terrestrial rainforest mammals. *Animal Conservation* 11(3): 169–178. https://doi.org/10.1111/j.1469-1795.2008.00169.x
- Trojan J., S. Schade, R. Lemmens & B. Frantál (2019). Citizen science as a new approach in geography and beyond: Review and reflections. *Moravian Geographical Reports* 27(4): 254–264. https://doi. org/10.2478/mgr-2019-0020
- Tulloch, A.T., H. Possingham, L. Joseph, J. Szabo & T. Martin (2013). Realising the full potential of citizen science monitoring programs. *Biological Conservation* 165: 128–138. https://doi.org/10.1016/j. biocon.2013.05.025
- van der Velde, T., D.A. Milton, T.J. Lawson, C. Wilcox, M. Lansdell, G. Davis, G. Perkeins & B.D. Hardesty (2017). Comparison of marine debris data collected by researchers and citizen scientists: Is citizen science data worth the effort? *Biological conservation* 208: 127–138. https://doi.org/10.1016/j.biocon.2016.05.025
- Vattakaven, T., R.M. George, D. Balabsubramanian, M. Rejou-Mechain, G. Muthusankar, B.R. Ramesh & R. Prabhakar (2016). India Biodiversity Portal: an integrated, interactive and participatory biodiversity informatics platform. *Biodiversity Data Journal* 4: e10279. https://doi.org/10.3897/BDJ.4.e10279
- West, S.E., R.M. Pateman & A. Dyke (2021). Variations in the motivations of environmental citizen scientists. *Citizen Science: Theory and Practice* 6(1): 1–18. https://doi.org/10.5334/cstp.370
- Wright, D.R., L.G. Underhill, M. Keene & A.T. Knight (2015). Understanding the motivations and satisfactions of volunteers to improve the effectiveness of citizen science programs. *Society & Natural Resources* 28(9): 1013–1029. https://doi.org/10.1080/089 41920.2015.1054976

Dr. George Mathew, Kerala Forest Research Institute, Peechi, India

- Dr. John Noyes, Natural History Museum, London, UK Dr. Albert G. Orr, Griffith University, Nathan, Australia
- Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
- Dr. Nancy van der Poorten, Toronto, Canada Dr. Kareen Schnabel, NIWA, Wellington, New Zealand
- Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
- Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
- Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
- Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
- Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
- Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
- Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
- Dr. M. Nithyanandan, Environmental Department, La Ala Al Kuwait Real Estate. Co. K.S.C.,
- Kuwait
- Dr. Himender Bharti, Punjabi University, Punjab, India
- Mr. Purnendu Roy, London, UK
- Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
- Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
- Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
- Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
- Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
- Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
- Dr. James M. Carpenter, American Museum of Natural History, New York, USA
- Dr. David M. Claborn, Missouri State University, Springfield, USA
- Dr. Kareen Schnabel, Marine Biologist, Wellington, New Zealand
- Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
- Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
- Dr. Heo Chong Chin, Universiti Teknologi MARA (UITM), Selangor, Malaysia
- Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
- Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
- Dr. Priyadarsanan Dharma Rajan, ATREE, Bengaluru, India
- Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
- Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
- Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany. Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
- Dr. Keith V. Wolfe, Antioch, California, USA

Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA

- Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budeiovice, Czech Republic
- Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
- Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
- Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
- Dr. Priyadarsanan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

- Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
- Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
- Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
- Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
- Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
- Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
- Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
- Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
- Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
- Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
- Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

cal Records.

NAAS rating (India) 5.64

- Dr. Gernot Vogel, Heidelberg, Germany
- Dr. Raju Vyas, Vadodara, Gujarat, India

Dr. Pritpal S. Soorae, Environment Agency, Abu Dubai, UAE.

- Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
- Prof. Chandrashekher U. Rivonker, Goa University, Taleigao Plateau, Goa. India Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek,

National Academy of Agricultural Sciences, NewJour, OCLC WorldCat,

SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoologi-

Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Birds

- Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
- Mr. H. Byju, Coimbatore, Tamil Nadu, India
- Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
- Dr. J.W. Duckworth, IUCN SSC, Bath, UK
- Dr. Rajah Jayapal, SACON, Coimbatore, Tamil Nadu, India
- Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
- Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
- Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India Mr. J. Praveen, Bengaluru, India
- Dr. C. Srinivasulu, Osmania University, Hyderabad, India
- Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
- Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
- Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
- Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
- Dr. Carol Inskipp, Bishop Auckland Co., Durham, UK
- Dr. Tim Inskipp, Bishop Auckland Co., Durham, UK Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
- Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
- Dr. Simon Dowell, Science Director, Chester Zoo, UK Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro,
- Quinta de Prados, Vila Real, Portugal
- Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
- Dr. M. Zafar-ul Islam, Prince Saud Al Faisal Wildlife Research Center, Taif, Saudi Arabia

Mammals

- Dr. Giovanni Amori, CNR Institute of Ecosystem Studies, Rome, Italy
- Dr. Anwaruddin Chowdhury, Guwahati, India
- Dr. David Mallon, Zoological Society of London, UK
- Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India Dr. Angie Appel, Wild Cat Network, Germany
- Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
- Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
- Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA

Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India

Dr. Justus Joshua, Green Future Foundation, Tiruchirapalli, Tamil Nadu, India

Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA

Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraja, Indonesia

Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular) Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)

Dr. Rayanna Hellem Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa

Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India

Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA

Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India Prof. Karan Bahadur Shah, Budhanilakantha Municipality, Kathmandu, Nepal

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)

Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)

Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)

Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New

Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka Dr. Bahar Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Due to pausity of space, the list of reviewers for 2018-2020 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political

boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:

c/o Wildlife Information Liaison Development Society,

43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore,

Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India

Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe

Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.

Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India

Dr. Dan Challender, University of Kent, Canterbury, UK

- Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
- Dr. Mewa Singh, Mysore University, Mysore, India Dr. Paul Racey, University of Exeter, Devon, UK

Dr. Paul Bates, Harison Institute, Kent, UK

Altobello", Rome, Italy

Other Disciplines

Delhi, India

Reviewers 2019-2021

The Managing Editor, JoTT,

Tamil Nadu 641006, India ravi@threatenedtaxa.org

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

March 2023 | Vol. 15 | No. 3 | Pages: 22771–22926 Date of Publication: 26 March 2023 (Online & Print) DOI: 10.11609/jott.2023.15.3.22771-22926

www.threatenedtaxa.org

Article

Documenting butterflies with the help of citizen science in Darjeeling-Sikkim Himalaya, India

- Aditya Pradhan, Rohit George & Sailendra Dewan, Pp. 22771-22790

Communications

Determinants of diet selection by Blackbuck Antilope cervicapra at Point Calimere, southern India: quality also matters

Selvarasu Sathishkumar, Subhasish Arandhara & Nagarajan Baskaran,
Pp. 22791–22802

An update on the conservation status of Tibetan Argali Ovis ammon hodgsoni (Mammalia: Bovidae) in India

– Munib Khanyari, Rigzen Dorjay, Sherab Lobzang, Karma Sonam & Kulbhushansingh Ramesh Suryawanshi, Pp. 22803–22812

An annotated checklist of the avifauna of Karangadu mangrove forest, Ramanathapuram, Tamil Nadu, with notes on the site's importance for waterbird conservation

- H. Byju, N. Raveendran, S. Ravichandran & R. Kishore, Pp. 22813–22822

Habitats and nesting habits of Streaked Weaver *Ploceus manyar* in select wetlands in the northern districts of Tamil Nadu, India – M. Pandian, Pp. 22823–22833

Genetic evidence on the occurrence of *Channa harcourtbutleri* (Annandale, 1918) in Eastern Ghats, India: first report from mainland India – Boni Amin Laskar, Harikumar Adimalla , Shantanu Kundu, Deepa Jaiswal & Kailash Chandra, Pp. 22834–22840

Redefining *Pallisentis ophiocephali* (Thapar, 1930) Baylis, 1933 from two freshwater fishes of Channidae family of Hooghly District, West Bengal, India

- Prabir Banerjee & Biplob Kumar Modak, Pp. 22841-22849

A new termite species of the genus *Bulbitermes* (Blattodea: Isoptera: Termitidae) from Meghalaya, India

- Khirod Sankar Das & Sudipta Choudhury, Pp. 22850-22858

First report of the beetle *Henosepilachna nana* (Kapur, 1950) (Coleoptera: Coccinellidae) from Maharashtra with special reference to molecular phylogeny and host plants

- Priyanka B. Patil & Sunil M. Gaikwad, Pp. 22859-22865

Assessment of population, habitat, and threats to *Cycas pectinata* Buch.-Ham. (Cycadaceae), a vulnerable cycad in Bhutan – Sonam Tobgay, Tenjur Wangdi, Karma Wangchuck, Jamyang Dolkar &

Tshering Nidup, Pp. 22866–22873

Ecological niche modeling to find potential habitats of Vanda thwaitesii, a notified endangered orchid of Western Ghats, India – S. William Decruse, Pp. 22874–22882

Occurrence of opportunistic invasive macroalgal genus *Caulerpa* and *Halimeda opuntia* in coral reefs of Gulf of Mannar

 Chatragadda Ramesh, Koushik Sadhukhan, T. Shunmugaraj & M.V. Ramana Murthy, Pp. 22883–22888

Short Communications

Diversity of bees in two crops in an agroforestry ecosystem in Kangsabati South Forest Division, Purulia, West Bengal, India – Pallabi Das & V.P. Uniyal, Pp. 22889–22893

An extended distribution and rediscovery of *Rhynchosia suaveolens* (L.f.) DC. (Fabaceae) for Maharashtra, India

– Ajay K. Mishra, Vedhika Gupta, Ajay V. Rajurkar, Pankaj A. Dhole & Vijay V. Wagh, Pp. 22894–22899

Notes

New distribution records of two uncommon microhylid frogs, Melanobatrachus indicus Beddome, 1878 and Mysticellus franki Garg & Biju, 2019 from Nelliyampathy, Kerala, India – Madhura Agashe, Avrajjal Ghosh, K. Dilshad, Maitreya Sil & Aniruddha Datta-Roy, Pp. 22900–22904

First record of Brilliant Flash *Rapala melida nicevillei* (Swinhoe, 1911 (Lepidoptera: Lycaenidae: Theclinae) to Meghalaya, India – Suman Bhowmik, Atanu Bose, Jayant Ghanshyam Bhoir, Atanu Bora, Suraj Das, Shyamal Kumar Laha & Ngangom Aomoa, Pp. 22905–22907

A note on the occurrence of *Cremnochonchus conicus* (Blanford, 1870) in Mumbai, India

- Naman Kaji & Shubham Yadav, Pp. 22908-22910

Jasminum angustifolium (L.) Willd. var. angustifolium (Oleaceae): a new distribution record for West Bengal, India – Keya Modak & Monoranjan Chowdhury, Pp. 22911–22915

Cyrtosia falconeri (Hook.f.) Aver. (Orchidaceae): an addition to the flora of Jammu & Kashmir, India

– Mushtaq Ahmed & Manjul Dhiman, Pp. 22916–22919

New distribution record of *Roridomyces* cf. *phyllostachydis* (Agaricales: Mycenaceae), a bioluminescent fungus from Namdapha National Park, Arunachal Pradesh, India

– Arijit Dutta, Sourav Gupta, Jayanta K. Roy & M. Firoz Ahmed, Pp. 22920–22923

Photographic evidence of bioluminescent mushroom *Mycena chlorophos* (Mycenaceae) from Goa, India

– Swanand R. Patil, Mirjoy M. Mathew, Abhijeet V. Patil, Ramesh N. Zarmekar, Pankaj R. Lad & Grenville Dcosta, Pp. 22924–22926

Publisher & Host

