New distribution records of polyporoid fungi (Agaricomycetes: Basidiomycota) from India

Avneet Kaur1,2, Avneet Pal Singh2, Saroj Arora3, Ellu Ram4, Harpreet Kaur5,6 & Gurpaul Singh Dhingra6

1,2,4,5,6 Department of Botany, Punjabi University, Patiala, Punjab 147002, India.
3 Department of Botanical & Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
1 avneetmakkar95@gmail.com, 2 avneetbot@gmail.com (corresponding author), 3 sarojarora.gndu@gmail.com,
4 ellukashyap665@gmail.com, 5 harpreetkaur153@gmail.com 6 dhingragurpaul@gmail.com

Abstract: A descriptive account of four polypore species collected from Himachal Pradesh, Punjab, and Union Territory of Chandigarh has been provided. Among these, Fomes dahlii Henn., Ganoderma tsunodae (Yasuda ex Lloyd) Sacc., and Xanthoperenniporia maackiae (Bondartsev & Ljub.) B.K.Cui & Xing, Ji are described as new to India and Ganoderma tropicum (Jungh.) Bres., as new to Himachal Pradesh and Union Territory of Chandigarh.

Keywords: Basidiocarp, basidiospores, clamp connection, Himachal Pradesh, hyphal system, medicinal mushrooms, pileus, pore, Punjab, white rot.
INTRODUCTION

Polypores or polyporoid fungi represent an artificial assemblage of wood decaying fungi classified under various orders of Agaricomycetes of Basidiomycota (Kirk et al. 2008; Mycobank 2023). These fungi are characteristic in having annual to perennial, resupinate to effused-reflexed to pileate basidiocarps with gymnocarpic hymenium and poroid hymenophore. Polypores show remarkable variation with respect to micromorphological features such as hyphal system, ancillary structures, basidia and basidiospores. These fungi play vital role in the recycling of carbon due to their ability to degrade lingo-cellulosic substances of the wood. There are reports in literature about the use of fructifications of these fungi for curing many diseases (Dai et al. 2007; Song et al. 2008; Chen et al. 2016; Singh et al. 2016).

Keeping in mind the diverse vegetation and climatic conditions exhaustive fungal forays were conducted in the different parts of Himachal Pradesh, Punjab, and Union Territory of Chandigarh. During these forays some interesting polypore fructifications were collected. Based on details pertaining to macro and micro-morphological characters and comparison with published literature (Singh & Bakshi 1961; Singh 1966; Bakshi 1971; Ryvarden & Johansen 1980; Ding 1989; Roy & De 1996; Leelavathy & Ganesh 2000; Foroutan & Vaidya 2007; Bhosle et al. 2010; Ranadive et al. 2011; Sharma 2012; Ryvarden & Melo 2014; Ranadive & Jagtap 2016; Kaur et al. 2017; Brar et al. 2018; Manoharachary et al. 2022, Vinjusha & Kumar 2022, Index Fungorum 2023; Mycobank 2023) these were identified as *Fomes dahlii* Henn., *Ganoderma tropicum* (Jungh.) Bres., *G. tsunodae* (Yasuda ex Lloyd) Sacc. and *Xanthoperenniporia maackiae* (Bondartsev & Ljub.) B.K.Cui & Xing. It is pertinent to mention here that *Fomes dahlii*, *Ganoderma tsunodae* and *Xanthoperenniporia maackiae* are recorded as new to India and *Ganoderma tropicum* as new to Himachal Pradesh and Union Territory of Chandigarh.

MATERIAL AND METHODS

The polypore fructifications were collected during the fungal forays executed in various localities of Himachal Pradesh (28–30 July 2011, 20–23 August 2011, & 02–05 April 2016), Union Territory of Chandigarh (25–28 September 2019 & 07–10 October 2019), and Punjab (15–18 December 2018) (Image 1). The details pertaining to the type and nature of the fruiting body, colour, and appearance of abhymenial and hymenial surface and margins were noted down. The collected specimens were dried in an electric drier at temperature range of 40–45°C and preserved using 1,4-dichlorobenzene in zip lock bags.

For microscopic details, crush mount and free hand section preparations were made using 3%, 5%, & 10% KOH solutions, Congo red (1% in distilled water), Phloxine (1% in distilled water), Cotton blue (1% in lactophenol), Melzer’s reagent (0.5 g iodine + 1.5 g KI + 20 g chloral hydrate + 20 ml distilled water), and water. The outline of different microscopic structures was drawn using compound microscope at 100x, 400x, and 1000x with the help of camera lucida. The colour standards are cited as per Kornerup & Wanscher (1978). The identified specimens were submitted to the Herbarium, Department of Botany, Punjabi University, Patiala (PUN).

RESULTS

Fomes dahlii Henn., Aoshima,

Macroscopic characteristics: Fruiting body annual, pileate, pileus up to 16.5 × 13.2 × 1.8 cm, sub-stipitate, solitary, flabelliform; abhymenial surface laccate, concentrically zonate, rugose, greyish-brown to reddish-brown to dark brown when fresh, not changing much on drying; pilear crust very thin, covered with spore dust; hymenial surface poroid, whitish when fresh, greyish-white to yellowish-white on drying; pores suborbicular, 5–7 per mm; dissepiments up to 80 µm wide, entire; context homogenous, zonate, reddish-brown, up to 10 mm wide; tubes light brown, up to 8 mm in depth; stipe lateral, up to 5 cm long, and 4 cm wide, reddish-brown; margins acute, reddish-brown on both abhymenial and hymenial side, sterile up to 2.3 mm on hymenial side.

Microscopic characteristics: Hyphal system trimitic; generative hyphae hyaline, septate, with clamps, up to 4 µm in width, branched, thin-walled; skeleto-binding hyphae yellowish-brown to brown, asceptate, up to 6.2 µm in width, branched, thick-walled, with very narrow lumen; binding hyphae sub hyaline, asceptate, up to 3.4 µm in width, frequently branched, thick-walled, with wide lumen. Pilear crust irregular hymeniodeum; cuticular elements sub clavate, thick-walled, yellowish-brown to brown, 42.6–60 × 9.6–10.2 µm, sometimes lobate. Basidia clavate to sub clavate, 14.2–15.3 × 5.1–5.7 µm, with basal clamp, tetrasterigmate; sterigmata up to 3.4 µm long. Basidiospores ellipsoid to broadly ellipsoid, 9.0–13.6 × 6.2–9.6 µm, uniguttulate, truncate at non
New distribution records of polyporoid fungi from India

Kaur et al.

Macroscopic characteristics: Fruiting body annual, pileate, pileus up to 5.8 × 6 × 1 cm, stipitate, solitary, subreniform, sub-flabelliform; abhymenial surface weakly laccate, more or less non laccate towards the margins, faintly zonate, yellowish-brown to reddish-brown when fresh, brownish-orange to violet brown on drying; pilear crust very thin; hymenial surface poroid, whitish when fresh, greyish-white to pale grey on drying; pores round to angular, 4–6 per mm; dissepiments up to 90 µm wide, entire; context homogenous, zonate, brown, up to 6 mm wide; tubes light brown to brown, up to 3 mm in depth; stipe lateral, up to 3.2 cm long, and 2.2 cm wide, violet brown; margins obtuse, brownish orange on abhyemenial side and pale grey on hymenial side, sterile up to 3 mm on hymenial side.

Microscopic characteristics: Hyphal system trimitic; generative hyphae hyaline, septate, with clamps, up to 3.4 µm in width, branched, thin-walled; skeleto-binding hyphae yellowish-brown to brown, aseptate, up to 4.5 µm in width, branched, thick-walled, with very narrow lumen; binding hyphae subhyaline, aseptate, up to 3.1 µm in width, frequently branched, thick-walled, with wide lumen. Pilear crust regular hymenioderm; cuticular elements sub clavate, thick-walled, yellowish-brown to brown, 35.5–53 × 7.9–8.6 µm. Basidia not seen. Basidiospores ellipsoid, 7.3–9.6 × 4.5–6.8 µm, truncate at non apiculate end, bitunicate, exospore thin, subhyaline, smooth, endospore thick, brownish, echinulate, tunics connected by inter–wall pillars, inamyloid, acyanophilous.

Collections examined: India, Himachal Pradesh: Bilaspur, Bassi, on angiospermous stump, Harpreet 5283 (PUN), 30 July 2011; Union Territory of Chandigarh, Lake Reserve Forest, on angiospermous stump, Avneet 11172 (PUN), 08 October 2019.

Remarks: This species is characteristic in having weakly laccate fruiting body, regular hymenioderm and smaller basidiospores. It is also reported to cause white rot of hard woods (Ryvarden & Melo 2014). Previously, Vinjusha & Kumar (2022) described it from different localities of Kerala. However, it being described for the
Image 2. *Fomes dahlii* (a–d fruiting body showing): a—abhymenial surface (fresh) | b—hymenial surface (fresh) | c—abhymenial surface (dry) | d—hymenial surface (dry) | e—photomicrograph showing basidiospores | f—basidiospores | g—basidia | h—binding hyphae | i—skeletobinding hyphae | j—generative hyphae | k—cuticular elements.
Image 3. **Ganoderma tropicum** (a–d fruiting body showing): a—abhymenial surface (fresh) | b—hymenial surface (fresh) | c—abhymenial surface (dry) | d—hymenial surface (dry) | e—photomicrograph showing a basidiospore | f—basidiospores | g—basidiole | h—cuticular element | i—binding hyphae | j—skeletobinding hyphae | k—generative hyphae.
New distribution records of polyporoid fungi from India

Kaur et al.

Ganoderma tsunodae (Yasuda ex Lloyd) Sacc.,

Macroscopic characteristics: Fruiting body annual, pileate, pileus up to 10 × 7.5 × 4.5 cm, sessile, solitary, somewhat fleshy, ataplate; abhymenial surface non-laccate, pale yellow to light orange when fresh, not changing much on drying; hymenial surface poroid, greyish-brown to light brown when fresh, not changing much on drying; pores suborbicular, 3–4 per mm; dissepiments up to 100 µm wide, lacerate; context homogenous, yellowish-white, up to 3 mm wide; tubes greyish-brown, up to 1.4 mm in depth; margins obtuse, pale yellow on both abhymenial on hymenial side, sterile up to 1 mm on hymenial side.

Microscopic characteristics: Hyphal system trimitic; generative hyphae hyaline, septate, with clamps, up to 3.4 µm in width, branched, thin-walled; skeletal-binding hyphae yellowish-brown to brown, aseptate, up to 5 µm in width, branched, thick-walled, with very narrow lumen; binding hyphae sub hyaline, aseptate, up to 4 µm in width, frequently branched, thick-walled, with wide lumen. Pilear surface composed of agglutinated generative and skeletal hyphae. Basidia not seen. Basidiospores ovoid to broadly ellipsoid, 12.2–18.2 × 7.9–11.1 µm, uniguttulate, truncate at non apiculate end, thick-walled, subhyaline, smooth, dextrinoid, cyanophilous.

Collections examined: India, Himachal Pradesh: Kullu, Banjar, 3 km from Jalori towards Shoja, on coniferous log, Ellu 11175 (PUN), 04 April 2016; Punjab: Rupnagar, Forest Rest House, on Dalbergia sissoo Avneet and Avneet 11174 (PUN), 28 September 2019.

Remarks: This species is peculiar in having resupinate to effused-reflexed fructifications with dimitic hyphal system and smaller, truncate basidiospores. It was earlier placed in genus Perenniporia and has been reported to cause white rot (Ryvarden & Melo 2014). As per Mycobank (2023) this species is distributed in China and Russia.

DISCUSSION

Among polyporoid genera being described presently the genera Ganoderma and Fomes have received greater attention of the mycologists due to their medicinal importance (Lee 2005; Joseph et al. 2009). The genus Ganoderma has been documented with 58 taxa while Fomes sensu stricto has been reported with only two taxa across India (Ranadive et al. 2011; Sharma 2012; Ranadive & Jagtap 2016; Manoharachary et al. 2022; www.fungifromindia.com). As far as the genus Xanthoperenniporia is concerned, one of the species, i.e., X. tenuis has earlier been described under
New distribution records of polyporoid fungi from India

Kaur et al.

The review of literature indicated account of 27 taxa of genus *Ganoderma* and one taxon each of genus *Fomes* and *Xanthoperenniporia* from Himachal Pradesh, Punjab and Union Territory of Chandigarh. The present studies have added one species each to the list of Indian records of the genus *Ganoderma*, *Fomes*, and *Xanthoperenniporia* while *Ganoderma tropicum* has been described as new to Himachal Pradesh and Union Territory of Chandigarh.

REFERENCES

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

May 2023 | Vol. 15 | No. 5 | Pages: 23139–23282
Date of Publication: 26 May 2023 (Online & Print)
DOI: 10.11609/jott.2023.15.5.23139-23282

Articles

Impact of human activities on wild ungulates in Nagarjunsagar Srisailam Tiger Reserve, Andhra Pradesh, India – K. Ashok Kumar, Qamar Qureshi & Yadavendradev V. Jhala, Pp. 23147–23163

Effect of ecological factors on the grass dynamics at Point Calimere Wildlife Sanctuary, India – Selvarasu Sathishkumar, Subhasish Arandhara & Nagarajan Baskaran, Pp. 23190–23199

Communications

Current populations of *Colobus vellerosus* (Geoffroy, 1834) & *Cercopithecus lowei* (Thomas, 1923) and land-use, land cover changes in Boabeng-Fiema Monkey Sanctuary, Ghana – Edward Debrah Wiafe, Karen K. Akoku, Isaac Sarkodie & Maxwell Kwame Boakye, Pp. 23200–23209

Roadkill records of two civet species on National Highway 715 passing through Kaziranga-Karbi Anglong landscape complex, Assam, India – Somoyita Sur, Prasanta Kumar Saikia & Malabika Kakati Saikia, Pp. 23210–23215

Three new records of odonates (Insecta: Odonata) from Sindhudurg District, Maharashtra, India – Akshay Dalvi, Yogesh Koli & Rahul Thakur, Pp. 23227–23232

A first report of dung beetle *Garreta smaragdifer* (Walker, 1858) attending the faecal matter of Northern Plain Gray Langur *Semnopithecus entellus* (Dufresne, 1997) with range extension and a checklist of the genus Garreta Janssen, 1940 – Aparna Sureshchandra Kalawate & Muhamed Jafer Palot, Pp. 23233–23239

An evaluation of the wetland grass flora of Mizoram, India – S. Pathak, Pp. 23240–23247

Short Communication

Notes

Sighting of Lesser White-fronted Goose *Anser erythropus* (Linnaeus, 1758) (Aves: Anseriformes: Anatidae) in Hadinaru Kere, Mysuru, India – Basavaraju Shivakumar & Gopal Praphul, Pp. 23273–23275

Polychorous Puncture Vine *Tribulus terrestris* L. (Zygophyllaceae), a potential forage source for a guild of insect pollinators during the wet season – P. Suvarnra Raju & A.J. Solomon Raju, Pp. 23279–23282