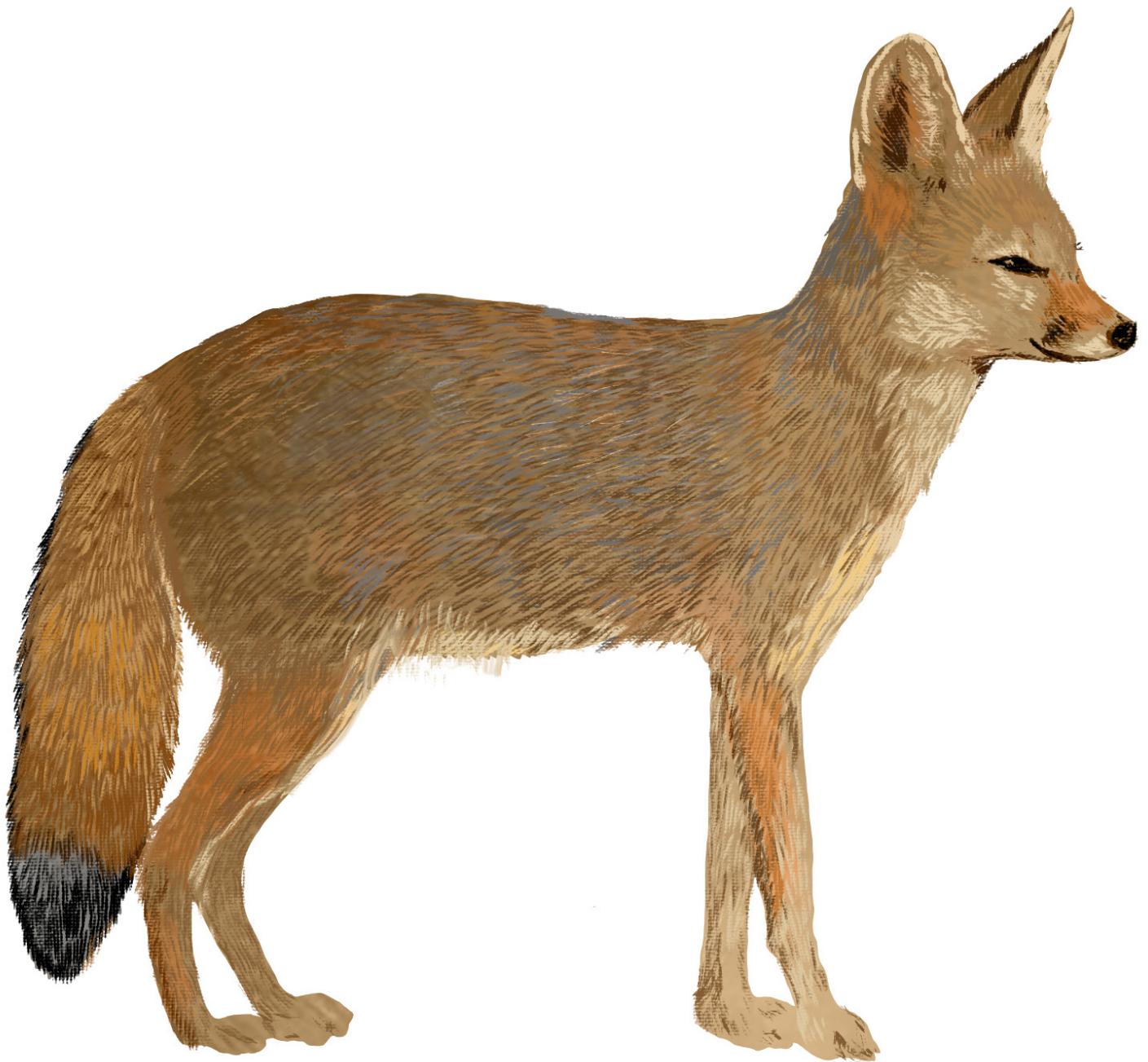


Building evidence for conservation globally

Journal of Threatened TAXA

Open Access

10.11609/jott.2024.16.9.25791-25950


www.threatenedtaxa.org

26 September 2024 (Online & Print)

16(9): 25791-25950

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay MolurWildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Deputy Chief Editor

Dr. Neelesh Dahanukar

Noida, Uttar Pradesh, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Editorial Board

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNASC, FNAPsyRamanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and
Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary
Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct
Professor, National Institute of Advanced Studies, Bangalore**Stephen D. Nash**Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences
Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA**Dr. Fred Pluthero**

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalia PO, Nilgiris, Tamil Nadu 643223, India

Dr. John FellowesHonorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of
Hong Kong, Pokfulam Road, Hong Kong**Prof. Dr. Mirco Solé**Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador
do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000)
Salobrinho, Ilhéus - Bahia - Brasil**Dr. Rajeev Raghavan**

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors

Mrs. Mira Bhojwani, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhura Stothra Bhashyam**, Hyderabad, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting

Mrs. Radhika, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India

Fundraising/Communications

Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2021–2023

Fungi

Dr. B. Shivaraju, Bengaluru, Karnataka, India

Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India

Dr. Vatsavaya S. Raju, Kakatiya University, Warangal, Andhra Pradesh, India

Dr. M. Krishnappa, Jnana Sahyadri, Kuvempu University, Shimoga, Karnataka, India

Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India

Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India

Dr. Kiran Ramchandra Ranadive, Annasaheb Magar Mahavidyalaya, Maharashtra, India

Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India

Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India

Dr. Shonil Bhagwat, Open University and University of Oxford, UK

Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India

Dr. Ferdinand Boero, Università del Salento, Lecce, Italy

Dr. Dale R. Calder, Royal Ontario Museum, Toronto, Ontario, Canada

Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines

Dr. F.B. Vincent Florens, University of Mauritius, Mauritius

Dr. Merlin Franco, Curtin University, Malaysia

Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India

Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India

Dr. Pankaj Kumar, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA

Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India

Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Vijayasanchari Raman, University of Mississippi, USA

Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantapur, India

Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India

Dr. Aparna Watve, Pune, Maharashtra, India

Dr. Qiang Liu, Kishuangbanna Tropical Botanical Garden, Yunnan, China

Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia

Dr. M.K. Vasudeva Rao, Shiv Ranjani Housing Society, Pune, Maharashtra, India

Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India

Dr. Mander Datar, Agharkar Research Institute, Pune, Maharashtra, India

Dr. M.K. Janarthanan, Goa University, Goa, India

Dr. K. Karthigeyan, Botanical Survey of India, India

Dr. Errol Vela, University of Montpellier, Montpellier, France

Dr. P. Lakshminarasimhan, Botanical Survey of India, Howrah, India

Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA

Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India

Dr. Analinda Manila-Fajard, University of the Philippines Los Baños, Laguna, Philippines

Dr. P.A. Sinu, Central University of Kerala, Kasaragod, Kerala, India

Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthani, India

Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India

Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA

Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India

Dr. A.G. Pandurangan, Thiruvananthapuram, Kerala, India

Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India

Dr. Kannan C.S. Warrier, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India

Dr. D.B. Bastawade, Maharashtra, India

Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India

Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India

Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa

Dr. Rory Dow, National Museum of Natural History Naturalis, The Netherlands

Dr. Brian Fisher, California Academy of Sciences, USA

Dr. Richard Gallon, Ilandudno, North Wales, LL30 1UP

Dr. Hemant V. Ghate, Modern College, Pune, India

Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh

Mr. Jatishwar Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.

Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK

Dr. George Mathew, Kerala Forest Research Institute, Peechi, India

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Bengal Fox *Vulpes bengalensis*—digital illustration. © Alagu Raj.

New records of termite species (Blattodea: Rhinotermitidae, Termitidae) from southern India

A.V. Anushya¹ & P.R. Swaran²

¹ Department of Zoology, Kannur University, Mananthavady Campus, Edavaka P.O, Wayanad District, Kerala 670645, India.

² Department of Zoology, Payyanur College, Edat P.O., Payyanur, Kerala 670327, India.

¹ anushyaanu92@gmail.com (corresponding author), ² swaranpr@gmail.com

Abstract: There are 133 species of termites so far recorded from southern India and 73 from Kerala. The present study from different habitats in northern Kerala recorded two species new to southern India and one species new to Kerala, taking the total number to 135 for southern India and 76 for Kerala. The newly reported species are *Heterotermes balwanti* Mathur & Chhotani, 1969, *Odontotermes profeae* Akhtar, 1975, and *Microcerotermes annandalei* Silvestri, 1923. *O. profeae* is a new record to the termite fauna of Western Ghats. *O. profeae* and *M. annandalei* are reported for the first time from southern India. *O. profeae* and *M. annandalei* belong to type II feeding group while *H. balwanti* confines to type I feeding group.

Keywords: *Heterotermes balwanti*, Kerala, *Microcerotermes annandalei*, new records, *Odontotermes profeae*, Western Ghats.

Editor: Jobin Mathew, CMS College, Kottayam, India.

Date of publication: 26 September 2024 (online & print)

Citation: Anushya, A.V. & P.R. Swaran (2024). New records of termite species (Blattodea: Rhinotermitidae, Termitidae) from southern India. *Journal of Threatened Taxa* 16(9): 25913-25919. <https://doi.org/10.11609/jott.8069.16.9.25913-25919>

Copyright: © Anushya & Swaran 2024. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: UGC junior/senior research Fellowship (UGC-JRF/SRF).

Competing interests: The authors declare no competing interests.

Author details: A.V. ANUSHYA, research scholar (UGC-JRF/SRF), Department of Zoology, Kannur University Campus, Mananthavady. Currently studying the ecology and taxonomy of termites in northern Malabar as part of PhD research. DR. P.R. SWARAN, associate professor, Department of Zoology, Payyanur College. Areas of specializations include entomology and ecology.

Author contributions: Anushya—field work and identification. Swaran—design of method and analysis.

Acknowledgements: Authors acknowledge the UGC, Government of India, for financial support, Kerala State Forest Department for collection permissions and zoology departments, Kannur University Campus Mananthavady and Payyanur College, for the facilities.

INTRODUCTION

Termites are a group of insects that are well known for causing significant harm to woodwork in buildings, agricultural and forest crops, timber and other products of cellulosic origin (Shanbhag & Sundararaj 2013). However, only 12.4% of the described species have been reported as pests (Krishna et al. 2013). Others have only a beneficial role as an integral part of the ecosystem, which is seldom recognized. Identifying the termite species and its feeding preferences in a given area are important considerations for effective and scientific pest management. Thus, taxonomic, ecological, and diversity studies of the pest and other species are equally relevant and a prerequisite to pest management studies.

There are over 3,000 species of termites that have been described, spanning 330 genera worldwide (Krishna et al. 2013). Only 295 species that belong to 52 genera under six families are known from India and 133 species that belong to 37 genera under five families from southern India, of which five genera and 60 species are endemic to southern India (Amina et al. 2013, 2016; Krishna et al. 2013; Rajmohana et al. 2019; Ranjith & Kalleeshwaraswami 2021; Joseph et al. 2023). Though taxonomic studies on termites from southern India started way back in 1779 (König 1779) and were enriched by extensive studies of Bose (1984), the scope remains wide open still as evidenced by new species records even in most recent studies like Joseph et al. (2023). The termite fauna of Kerala so far recorded is 73 species under 30 genera and three families, of which two genera and 12 species are endemic to Kerala (Amina et al. 2016, 2020a,b; Mathew & Ipe 2018; Ipe & Mathew 2019; Joseph et al. 2023).

Termites are classified into four feeding groups based on their gut content analysis. Lower termites, mainly the dead wood and grass feeders are included in group I; group II contains higher termites which feed on dead wood, leaf litter and micro epiphytes; group III comprises organic rich soil feeders and group IV includes true soil feeders (Donovan et al. 2001). To which feeding group a termite species belongs, is an indication of its role and importance in the ecosystem and its status as a pest. The present paper discusses part of a taxonomic and ecological study on termites of Northern part of Kerala with three new records of termite species from South India, of which one belongs to feeding group I and two belong to group II.

MATERIALS AND METHODS

Termite samples described in the present paper were collected from different habitats from northern Kerala as part of a detailed study on diversity and seasonality of termites. The specimens were collected using forceps and brush. Samples were preserved in vials containing 70% ethanol and labeled with habitat, collection locality, date and time. Taxonomic observations were made using stereo zoom microscope at 45x magnification. Identification up to species level was made by using Roonwal & Chhotani (1989) and Chhotani (1997). The photomicrographs and measurements were taken by using ZEISS Stemi 305 stereo zoom microscope with Axiocam 208 camera. One sample each of all the species reported are deposited in the National Zoological Collections of the Zoological Survey of India (ZSI), Western Ghats Regional Centre, Kozhikode, Kerala, India. The remaining specimens are kept at the Zoology Museum of Payyanur College, Edat, Kerala, India.

RESULT AND DISCUSSION

Following are the diagnosis of the two species of termites recorded for the first time from southern India and one from the state of Kerala.

Family: Rhinotermitidae

Sub-family: Heterotermitinae

1. *Heterotermes balwanti* Mathur & Chhotani, 1969

Material examined: ZSI/WGRC/I.R.-INV.26917, 23.xi.2019, one colony, India: Kerala, Kasargod, Mavilakadappuram, coastline habitat (12.1917°N & 75.1243°E), coll. A.V. Anushya. KU/PNRC/ZL/520, 21.i.2020, one colony, India: Kerala, Kasargod, Valiyaparamba, coastline habitat (12.1394°N & 75.1449°E), coll. A.V. Anushya.

Diagnosis: Soldier (Table 1 and Image 1) – Head capsule creamy white to yellowish-brown in colour and sub-rectangular in shape. Body is whitish and densely hairy. Fontanelle is minute and leading into a small, brownish tube; situated at base of median groove. Eyes and ocelli are absent. Antennae with 12–14 segments in which, segment 3 is longer than 4 (in the present collection, 2 soldiers had 12 segmented and 4 soldiers had 14 segmented antennae). Labrum triangular shaped with a long and pointed hyaline tip and with a pair of long hairs. Mandibles are dark brown, thin and sabre-shaped with weakly incurved apices. Postmentum is long and club-shaped, waist lying below the middle. Pronotum

Image 1. *Heterotermes balwanti* Mathur & Chhotani, 1969; Soldier, dorsal view. © Authors.

is flat, subreniform, anterior margin outcurved with median emargination and medially notched, posterior margin with a faint incuring. Worker – Head-capsule sub-squarish, a little broader than length to base of mandibles (length to base of mandibles 0.73–0.85 mm, maximum width 0.7–0.85 mm). Eyes and ocelli are absent. Fontanelle is indistinct. Antennae are 13–14 segmented. Pronotum is flat (length 0.25–0.33 mm, width 0.40–0.55 mm) (modified from Roonwal & Chhotani 1989).

Distribution: India—Odisha, Karnataka (Dharwar), Goa (Krishna et al. 2013), Kerala (Kasargod, present study).

Remarks: *H. balwanti* is listed as a major pest species in India (Krishna et al. 2013; Shanbhag & Sundararaj 2013). The species is endemic to India (Rajmohana et al. 2019) and is reported for the first time from Kerala. From the southern region of India, this species is earlier reported only from the state of Karnataka (Krishna et al. 2013; Ranjith & Kalleshwaraswami 2021). *H. balwanti* belongs to Type I feeding group and it mostly feeds on woodwork in buildings. The species is morphologically similar to *H. malabaricus*, but its smaller size and longer mandibles differs. It is mostly found in the plains of India (Maiti 2006). In the present study it was recorded from

coastal plains, feeding on dead wood within the mud tunnel on dried *Cocos nucifera* wood.

Family: Termitidae

Sub-family: Macrotermitinae

2. *Odontotermes profeae* Akhtar, 1975

Material examined: ZSI/WGRC/I.R.-INV.26918, 28.xii.2019, KU/PNRC/ZL/363, 29.xi.2019 two colonies, India: Kerala, Wayanad, Mananthavady, Grass land (11.7659°N & 75.9830°E), coll. K. Jyothi. KU/PNRC/ZL/451, 24.xii.2019, one colony, India: Kerala, Kasargod, Bedur, Coconut plantation (12.2757°N, 75.2949°E), coll. A.V. Anushya.

Diagnosis: Soldier (Table 2 and Image 2) – Head capsule brownish-yellow to yellowish-brown, subrectangular and sides weakly convex. Abdomen is whitish-yellow, pronotum brownish-yellow. Antennae uniformly coloured with 17-segments, segment 3 is shortest. Labrum triangular shaped; with pointed hyaline tip. Mandibles dark brown in colour and are long, stout and slightly incurved at the distal end. Left mandible with a large anteriorly directed tooth situated a little below middle, right mandible with a minute tooth like projection almost at the level of tooth on left mandible. Post-mentum is sub rectangular; sides almost parallel. Pronotum saddle shaped.

Image 2. *Odontotermes profeae* Akhtar, 1975; Soldier, dorsal view. © Authors.

Table 1. Measurements of soldiers of *Heterotermes balwanti*.

	Measurement of soldier from present study (n = 4)	Measurement of soldier as per (Roonwal & Chhotani 1989)	
	Characters	Soldier (mm)	Soldier (mm)
1	Total body length	3.4–4.2	3.3–4.0
2	Length of head to the base of mandible	1.00–1.15	1.00–1.10
3	Max. width of head	0.71–0.76	0.70–0.75
4	Width at base of mandibles	0.57	–
5	Head index (max. width/length)	0.66–0.71	–
6	Length of mandible	0.84	0.73–0.78
7	Head-mandibular length index (mandible length/head length)	0.73	0.68–0.78
8	Length of postmentum	0.74	0.70–0.88
9	Max. width of postmentum	0.30–0.35	0.30–0.35
10	Min. width of postmentum	0.16–0.19	0.15–0.18
11	Length of pronotum	0.33	0.30–0.35
12	Width of pronotum	0.52	0.50–0.55
13	No. of antennal segments	12–14	12–14

Worker (Image 3 & 4) – Head capsule yellow to brownish-yellow, post-clypeus and labrum paler than head capsule, antennae basally paler and darker distally, body creamy white to yellowish. Body densely and head moderately hairy. Total body length 4.43–5.20 mm. Head capsule sub-squarish, wider than long (length to base of mandible 1.37–1.45 mm and width 1.50–1.60 mm). Fontanelle is present. Antennae with 19 segments, 3rd segment is shortest. Post-clypeus swollen, divided by a longitudinal median groove into two halves (length 0.30 mm and width 0.60–0.65 mm). Mandibles each with a finger like apical teeth; left mandible with three marginal teeth and right mandible with two marginal teeth. Pronotum saddle shaped (length 0.33–0.60 mm, width 0.84–1.00 mm).

Distribution: Bangladesh; India—Manipur, Nagaland (Krishna et al. 2013), Kerala (Wayanad & Kasargod, present study).

Remarks: *O. profeae* is a fungus growing wood/litter feeder and belongs to Type II feeding group. Genus *Odontotermes* is the dominant representative of wood destroying termites (Shanbhag et al. 2013). The species is similar to both *O. mirganiensis* and *O. singhiti* in size and pointed tip of labrum, but differs in having a wider head. Earlier reports of the species from India were only from the eastern region (Verma 1984; Maiti et al. 2004). It is reported for the first time from Western Ghats and southern India. It was observed in the present study

Table 2. Measurements of soldiers of *Odontotermes profeae*.

	Measurement of soldier from present study (n = 4)	Measurement of soldier as per (Chhotani 1997)	
	Characters	Soldier (mm)	Soldier (mm)
	Total body length	7.30–7.43	–
1	Length of head to the base of mandible	2.04–2.29	1.96–2.39
2	Max. width of head	1.87–2.06	1.73–2.00
3	Width at base of mandibles	1.21–1.26	1.06–1.26
4	Head index (max. width/length)	0.89	0.837
5	Index (width at mandible-base/max. width)	0.612	0.681
6	Length of mandible	1.25–1.30	1.19–1.35
7	Head–Mandibular length index (mandible length/head length)	0.57	0.57
8	Tooth distance from tip of mandible	0.56	–
9	Tooth index (tooth distance/mandibular length)	0.45	–
10	Length of postmentum	1.27–1.30	1.28–1.58
11	Max. width of postmentum	0.65–0.74	0.64–0.80
12	Min. width of postmentum	0.55–0.60	–
13	Length of pronotum	0.63	0.60–0.77
14	Width of pronotum	1.24–1.30	1.25–1.33
15	No. of antennal segments	17	17

in grasslands and coconut plantations, where it fed on dead wood and was also collected from the soil.

Family: Termitidae

Sub-family: Termitinae

3. *Microcerotermes annandalei* Silvestri, 1923

Material examined: ZSI/WGRC/I.R.-INV.26919, KU/PNRC/ZL/264, 09.xi.2019, KU/PNRC/ZL/652, 29.ii.2020, three colonies, India: Kerala, Kannur, Puthur, Sacred groove (12.1967°N & 75.2177°E), coconut plantation (12.1979°N & 75.2204°E), coll. A.V. Anushya. KU/PNRC/ZL/122, 02.x.2019, one colony, India: Kerala, Kasargod, Valiyaparamba, coastline habitat (12.1394°N & 75.1449°E), coll. A.V. Anushya. KU/PNRC/ZL/678-679, 03.iii.2020, two colonies, India: Kerala, Kasargod, Bedur, coconut plantation (12.2757°N, 75.2949°E), coll. A.V. Anushya.

Diagnosis: Soldier (Table 3 and Image 5) – Head capsule yellow to brown, sub-rectangular, body creamy white to yellowish. Antennae uniformly pale brown in colour with 13 segments in which segment 3 is shortest. Labrum pale brown, sub-squarish with rounded anterior margin. Fontanelle is small, situated at anterior third of head. Mandibles dark reddish-brown and are short,

Image 3. *Odontotermes profeae* Akhtar, 1975; Worker, dorsal view. © Authors.

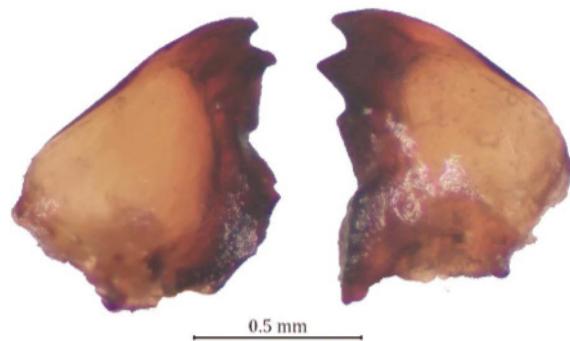


Image 4. *Odontotermes profeae* Akhtar, 1975; Worker, mandible. © Authors.

Image 5. *Microcerotermes annandalei* Silvestri, 1923; Soldier, dorsal view. © Authors.

thick, stout and apices strongly incurved. Mandibles coarsely serrated with a tooth like large serration at below middle. Post-mentum is club shaped with a long, slender waist. Pronotum is saddle shaped; anterior margin with deep notch and posterior margin with weak medial emargination. Worker – Head capsule is squarish (length to base of mandible 0.97–1.05 mm). Post-clypeus swollen, length is more than half of its width. Antennae with 13 segments, segment 3 is shortest. Fontanelle is indistinct. Pronotum saddle shaped (length 0.17–0.27 mm, width 0.50–0.57 mm) (modified from Chhotani 1997).

Distribution: Thailand, Myanmar, Malaysia, India—Bihar, Nagaland, Haryana, Odisha, Tripura, Rajasthan (Krishna et al. 2013), Kerala (Kasargod and Kannur, present study).

Remarks: *M. annandalei* is a wood feeder, belonging to Type II feeding group. It is listed as a minor pest species in India (Krishna et al. 2013; Shanbhag & Sundararaj 2013). The species is added to the list of wood destroying termites of Kerala. It is reported for the first time from Kerala as well as from the whole of southern India. It nests in wooden stumps and logs (Bose & Das 1982). Maiti et al. (2000) reported that the species is mostly found in the soil nest from eastern India. In the present study, it was mostly collected from mud tunnels on dead wood materials as well as live trees like *Areca catechu*.

Heterotermes is a genus that contains several species,

some of which are dangerous pests, across the tropical regions (Shanbhag & Sundararaj 2013). Only two species of *Heterotermes* were reported earlier from Kerala and the present record of *H. balwanti* makes it three. In the present study, the species was found feeding on dead wood and it is worth noting that it is already reported as a major pest elsewhere (Krishna et al. 2013; Shanbhag & Sundararaj 2013). *Odontotermes* is the largest and most widely distributed termite genus. With 18 species of wood-destroying termites, it is claimed to be the largest genus of wood destroying termites too (Shanbhag & Sundararaj 2013). Kerala has already been home to 16 species of *Odontotermes*, and this study finds one more (*O. profeae*) bringing the total to 17. The pest status of *O. profeae* has not yet been recorded; however, it was collected from dead wood and soil in the present study. *Microcerotermes* is also a widely distributed genus and one of the largest wood destroying termite (Roisin & Pesteels 2000; Shanbhag & Sundararaj 2013).

Table 3. Measurements of soldiers of *Microcerotermes annandalei*.

	Measurement of soldier from present study (n = 4)		Measurement of soldier as per (Chhotani 1997)
	Characters	Soldier (mm)	Soldier (mm)
1	Total body length	4.26–4.75	4.08–5.5
2	Length of head to the base of mandible	1.61–1.94	1.57–1.90
3	Max. width of head	0.92–1.19	0.91–1.09
4	Width at base of mandibles	0.62	–
5	Index (width at base of mandible/max. width)	0.66	–
6	Head index (width/length)	0.57–0.61	0.56–0.60
7	Length of mandible	0.89–1.05	0.90–1.18
8	Head–mandibular length index (mandible length/head length)	0.54–0.55	0.51–0.60
9	Length of postmentum	1.08	0.92–1.19
10	Max. width of postmentum	0.32	0.32–0.33
11	Min. width of postmentum	0.22	0.17–0.27
12	Length of pronotum	0.31	0.30–0.41
13	Width of pronotum	0.66	0.55–0.73
14	No. of antennal segments	13	13

So far, six species have been found in Kerala, (Krishna et al. 2013; Ranjith & Kalleshwaraswami 2021) and the current report makes it seven. The present species, *M. annandalei* is a wood feeding termite with minor pest status and was collected from the mud tunnels on both dead wood and live trees. Of the newly recorded species, *H. balwanti* belongs to feeding group I and the other two species (*O. profeae* & *M. annandalei*) belong to feeding group II.

CONCLUSION

The present study contributes three new species records to the termite fauna of Kerala, in which two species are new to southern India and one species is new to the Western Ghats. The present report updates termite diversity of southern India to 135 species and Kerala to 76 species. The new documentation also adds to the list of wood feeding termite species of Kerala.

REFERENCES

Akhtar, M.S. (1975). Taxonomy and zoogeography of the termites (Isoptera) of Bangladesh. Bulletin of the Department of Zoology, University of the Punjab 7: 1–199.

Amina, P., K. Rajmohana, C. Bijoy, C. Radhakrishnan & N. Saha (2013). First record of the Srilankan Processional Termite, *Hospitalitermes monoceros* (Konig) (Termitidae: Nasutitermitinae) from India. *Halteres* 4: 48–52.

Amina, P., K. Rajmohana, K.V. Bhavana & P.P. Rabeeha (2016). New records of Termite species from Kerala (Isoptera: Termitidae). *Journal of Threatened Taxa* 8(11): 9334–9338. <https://doi.org/10.11609/jott.3067.8.11.9334-9338>

Amina, P., K. Rajmohana, K.P. Dinesh, G. Asha, P.A. Sinu & J. Mathew (2020a). Two new species of an Indian endemic genus *Krishnacapritermes* Chhotani (Isoptera: Termitidae) from the Kerala part of the Western Ghats, India. *Oriental Insects* 54(4): 496–513. <https://doi.org/10.1080/00305316.2019.1683091>

Amina, P., K. Rajmohana & S.C. Aliyas (2020b). A new species and a new record of *Dicuspiditermes* Krishna (Blattodea: Isoptera: Termitidae) from the Kerala part of Western Ghats, India. *Oriental Insects* 55(5): 1–12. <https://doi.org/10.1080/00305316.2020.1844815>

Bose, G. (1984). Termite fauna of Southern India. *Records of the Zoological Survey of India* 49: 1–270.

Bose, G. & B.C. Das (1982). Termite Fauna of Orissa State, Eastern India. *Records of Zoological Survey of India* 80: 197–213.

Chhotani, O.B. (1997). *The Fauna of India and the Adjacent Countries: Isoptera (Termites): (Family: Termitidae) – Vol.2.* Zoological Survey of India, Calcutta, xx + 800 pp.

Donovan, S.E., P. Eggleton & D.E. Bignell (2001). Gut content analysis and a new feeding group classification of termites. *Ecological Entomology* 26: 356–366.

Joseph, E., P. Amina, S.B.S. Thomas, N. Jayan & J. Mathew (2023). A new species of termite, *Prorhinotermes cotym* (Blattodea: Isoptera: Rhinotermitidae: Prorhinotermitinae), from the Kerala part of the Western Ghats, India. *International Journal of Tropical Insect Science* 43(5): 1733–1740.

Ipe, C. & J. Mathew (2019). New species of termite *Ceylonitermes paulosus* sp. nov. (Blattodea: Isoptera: Termitidae: Nasutitermitinae) from Kerala, India. *Journal of Insect Biodiversity* 11(1): 24–30. <https://doi.org/10.12976/jib/2019.11.1.3>

König, J.G. (1779). Naturgeschichte der sogenannten weissen Ameise. *Beschaffungen Der Berlinischen Gesellschaft Naturforschender Freunde* 4: 1–28.

Krishna, K., D.A. Grimaldi, V. Krishna & M.S. Engel (2013). Treatise on the Isoptera of the world. Bulletin of the American Museum of Natural History no. 377. <http://digitallibrary.amnh.org/handle/2246/6430>

Maiti, P.K., N. Saha & P.H. Roy (2000). Insecta: Isoptera. State Fauna Series (Fauna of Tripura). *Zoological Survey of India* 7(2): 295–308.

Maiti, P.K., N. Saha & P.H. Roy (2004). Fauna of Manipur: Insecta: Isoptera. State Fauna Series. *Zoological Survey of India* 10(2): 153–164.

Maiti, P.K. (2006). A taxonomic monograph on the world species of termites of the family Rhinotermitidae (Isoptera: Insecta). *Memoirs of the Zoological Survey of India* 20(4): 1–272.

Mathew, J. & C. Ipe (2018). New species of termite *Pericapritermes travancorensis* sp. nov. (Isoptera: Termitidae: Termitinae) from India. *Journal of Threatened Taxa* 10(11): 12582–12588. <https://doi.org/10.11609/jott.3389.10.11.12582-12588>

Mathur, R.N. & O.B. Chhotani (1969). Two new termites of the genera *Coptotermes* Wasmann and *Heterotermes* Froggatt (Rhinotermitidae) from India. *Journal of the Timber Development Association of India* 15(4): 1–10.

Rajmohana, K., J. Basak, A. Poovoli, R. Sengupta, B. Baraik & K. Chandra (2019). *Taxonomy of Termites in India: A Beginner's Manual.* ENVIS Centre on Biodiversity (Fauna), Zoological Survey of India, Kolkata, 71 pp.

Ranjith, M. & C.M. Kalleshwaraswamy (2021). Termites (Blattodea: Isoptera) of southern India: current knowledge on distribution and systematic checklist. *Journal of Threatened Taxa* 13(6): 18598–18613. <https://doi.org/10.11609/jott.5781.13.6.18598-18613>

Roonwal, M.L. & O.B. Chhotani (1989). *The fauna of India and*

adjacent countries. *Isoptera (Termites). (Introduction and families Termopsidae, Hodotermitidae, Kalotermitidae, Rhinotermitidae, Stylotermitidae and Indotermitidae)*. Vol. 1. Zoological Survey of India, Calcutta, viii + 672 pp.

Roisin, Y. & J.M. Pasteels (2000). The genus *Microcerotermes* (Isoptera: Termitidae) in New Guinea and the Solomon Islands. *Invertebrate Taxonomy* 14(2): 137–174. <https://doi.org/10.1071/IT99005>

Shanbhag, R. & R. Sundararaj (2013). Host range, pest status and distribution of wood destroying termites of India. *Journal of Tropical Asian Entomology* 2(1): 12–27.

Shanbhag, R., R. Sundararaj & S.I. Ahmad (2013). Wood Destroying Termites (Insecta: Isoptera) of India and their Economic Importance. *Animal Diversity, Natural history and Conservation* 2: 69–102.

Silvestri, F. (1923). The fauna of an island in the Chilika Lake III. The termites of Barkuda Island. *Records of the Indian Museum* 25(2): 221–232.

Verma, S.C. (1984). On a collection of termites (Isoptera: Insecta) from Nagaland, north-east India. *Indian Journal of Forestry* 7(1): 81–82.

Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lionel Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kuri R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith W. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:

The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

OPEN ACCESS

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under [Creative Commons Attribution 4.0 International License](#) unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

www.threatenedtaxa.org

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

September 2024 | Vol. 16 | No. 9 | Pages: 25791–25950

Date of Publication: 26 September 2024 (Online & Print)

DOI: 10.11609/jott.2024.16.9.25791-25950

Articles

Feeding dynamics of sympatric large carnivores in an anthropogenic landscape of the Indian Terai

– Vivek Ranjan, Syed Ainul Hussain, Ruchi Badola, Gaurav Vashistha & Parag Madhukar Dhakate, Pp. 25791–25801

Avifaunal diversity assessment and conservation significance of Therhangal Bird Sanctuary, Ramanathapuram, Tamil Nadu: insights about breeding waterbirds

– H. Byju, H. Maitreyi, N. Raveendran & Reshma Vijayan, Pp. 25802–25815

Habitat heterogeneity and taxonomic diversity of fish fauna in estuaries: a study from southern Sri Lanka

– Kirivithanage Sandun Nalaka Bandara, Pp. 25816–25830

Successful establishment of a coral nursery for active reef restoration in Kavaratti Island, Lakshadweep archipelago

– C.A. Riyas, K.K. Idreesbabu, Rajeev Raghavan & S. Sureshkumar, Pp. 25831–25842

Taxonomic review of genus *Gazalina* Walker (Thaumetopoeinae: Notodontidae: Lepidoptera) from India

– Amritpal Singh Kaleka, Gagan Preet Kour Bali & Navkiran Kaur, Pp. 25843–25855

Diversity and distribution pattern of ebony trees *Diospyros* L. (Ebenaceae) in the forests of central Western Ghats, India

– H.S. Shashwathi & Y.L. Krishnamurthy, Pp. 25856–25871

Tree community structure of selected green patches of Guwahati, Assam, India with special reference to spatio-temporal changes in vegetation

– Maitreyee Goswami, Jijnyasha Bayan, Uma Dutta, Arup Kumar Hazarika & Kuladip Sarma, Pp. 25872–25881

Communications

First record of leucistic Sloth Bear *Melursus ursinus* Shaw, 1791 (Mammalia: Carnivora: Ursidae) in Panna Tiger Reserve, India

– Sankarshan Chaudhuri, Supratim Dutta & K. Ramesh, Pp. 25882–25887

Occurrence and distribution of Indian Pangolin *Manis crassicaudata* (Mammalia: Pholidota: Manidae) in the protected area network of Jammu Shiwaliks, India

– Ajaz Ansari & Neeraj Sharma, Pp. 25888–25893

The first report of an assassin bug of the genus *Ademula* McAtee & Malloch (Reduviidae: Emesinae) from India and its rediscovery from Sri Lanka

– H. Sankararaman, Tharindu Ranasinghe, Anubhav Agarwal, Amila Sumanapala & Hemant V. Ghate, Pp. 25894–25903

Preference and plasticity in selection of host for oviposition in Black Marsh Dart *Onychargia atrocyana* Selys, 1865 (Odonata: Zygoptera: Platycnemididae)

– Pathik K. Jana, Priyanka Halder Mallick & Tanmay Bhattacharya, Pp. 25904–25912

New records of termite species (Blattodea: Rhinotermitidae, Termitidae) from southern India

– A.V. Anushya & P.R. Swaran, Pp. 25913–25919

A study on the association between *Tridax* Daisy *Tridax procumbens* L. and butterflies at Shivaji University Campus, Maharashtra, India

– Aarati Nivasrao Patil & Sunil Madhukar Gaikwad, Pp. 25920–25930

Short Communications

Rare Honey Badger *Mellivora capensis* (Schreber, 1776) sighted in Tarai East Forest Division, Haldwani, Uttarakhand, India

– Prashant Kumar, Bhaskar C. Joshi, Anand Singh Bisht & Himanshu Bagri, Pp. 25931–25934

Additional documentation of the Slender Skimmer *Orthetrum sabina* (Drury, 1770) preying on the Pied Paddy Skimmer *Neurothemis tullia* (Drury, 1773) in Nepal

– Mahamad Sayab Miya & Apeksha Chhetri, Pp. 25935–25938

Notes

First photographic record of the Red Giant Gliding Squirrel *Petaurista petaurista* Pallas, 1766 (Mammalia: Rodentia: Sciuridae) from Sattal, Uttarakhand, India

– Hiranmoy Chetia, Jayant Gupta & Murali Krishna Chatakonda, Pp. 25939–25941

Red Pierrot *Talicada nyseus nyseus* (Guérin-Meneville, 1843): an addition to the butterfly fauna of Arunachal Pradesh, India

– Roshan Upadhyaya, Renu Gogoi, Ruksha Limbu, Manab Jyoti Kalita & Rezina Ahmed, Pp. 25942–25944

Ranunculus cantoniensis DC. (Ranunculaceae): an addition to the flora of West Bengal, India

– Jayantanath Sarkar, Srijan Mukhopadhyay & Biswajit Roy, Pp. 25945–25948

Book Review

Flowers of labour – Commelinaceae of India: Book review

– Rajeev Kumar Singh, Pp. 25949–25950

Publisher & Host

Threatened Taxa