

Building evidence for conservation globally

10.11609/jott.2023.15.1.22355-22558

www.threatenedtaxa.org

26 January 2023 (Online & Print)

15(1): 22355-22558

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Open Access

Journal of Threatened TAXA

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641035, India

Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Ph: +91 9385339863 | www.threatenedtaxa.orgEmail: sanjay@threatenedtaxa.org**EDITORS****Founder & Chief Editor****Dr. Sanjay Molur**Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641035, India**Deputy Chief Editor****Dr. Neelesh Dahanukar**

Noida, Uttar Pradesh, India

Managing Editor**Mr. B. Ravichandran**, WILD/ZOO, Coimbatore, India**Associate Editors****Dr. Mandar Paingankar**, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India**Dr. B.A. Daniel**, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India**Editorial Board****Dr. Russel Mittermeier**

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNASc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinahalli PO, Nilgiris, Tamil Nadu 643223, India

Dr. Martin Fisher

Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhura Stothra Bhashyam**, Hyderabad, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2019–2021****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinando Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Kadoorie Farm and Botanic Garden Corporation, Hong Kong S.A.R., China**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantpur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjani Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasimhan**, Botanical Survey of India, Howrah, India**Dr. Larry R. Nobile**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Baños, Laguna, Philippines**Dr. P.A. Sinu**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawde**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, Bangladesh**Mr. Jatishwor Singh Irungbam**, Biology Centre CAS, Branišovská, Czech Republic.**Dr. Ian J. Kitching**, Natural History Museum, Cromwell Road, UKFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Whale Shark *Rhincodon typus* and Reef - made with poster colours. © P. Kritika.

Asiatic Black Bear *Ursus thibetanus* attacks in Kashmir Valley, India

Aaliya Mir¹ , Shanmugavelu Swaminathan² , Rashid Y. Naqash³ , Thomas Sharp⁴
& Attur Shanmugam Arun⁵

¹ Wildlife SOS, D-210 Defence Colony, New Delhi 110024, India.

^{2,5} Wildlife SOS, Bannerghatta Bear Rescue and Rehab Centre, Bangalore, Karnataka 560083, India.

³ Department of Wildlife Protection, Near Hotel Lalit Grand, Boulevard Road, Srinagar, Jammu & Kashmir, India.

^{1,4} Wildlife SOS, 406 East 300 South, No. 302, Salt Lake City, Utah 84111, USA.

¹ aaliya@wildlifesos.org, ² swaminathan@wildlifesos.org, ³ hangulnaqash@yahoo.com,

⁴ thomas@wildlifesos.org (corresponding author), ⁵ arun@wildlifesos.org

Abstract: Asiatic Black Bear attacks are reported rarely throughout the majority of their global range; however, this has not been the case in the Kashmir Valley where over the past 20–30 years attacks have been relatively common. There are several causes for the high number of attacks, though the foremost reason likely stems from the conversion of natural habitat to orchards and agricultural fields. Asiatic Black Bears actively crop raid orchards and agricultural areas putting them into close proximity to humans. The Jammu & Kashmir Wildlife Protection Department has collected data on 2,357 Asiatic Black Bear attacks in the Kashmir Valley between 2000 and 2020. A total of 2,243 (95.2%) resulted in injury and 114 (4.8%) resulted in death. The majority of injuries were reported as minor (57.4%, n=1126), 42.4% (n=832) as grievous, and 1.2% (n=21) caused permanent disability. The highest proportion of attacks occurred from July through November, coinciding with the harvesting season, and the least occurred from December through March, coinciding with when most Asiatic Black Bears are hibernating. Victims of bear attacks were most often working in farms or orchards, and were mostly between the ages of 31–40 years old. Most attacks occurred in the morning hours when people first entered the orchards or agricultural fields to work. The frequency of attacks has declined since 2016, which could be attributed to retaliation killings, better management by the wildlife department, and the engagement of NGO's with local people to create bear awareness and teach safety measures.

Keywords: Bear attacks, bear awareness, crop-raiding, hibernation, Jammu & Kashmir, retaliation-killing, victims, wildlife-conflict, Wildlife Protection Department.

Editor: Priya Davidar, Sigure Nature Trust, Nilgiris, India.

Date of publication: 26 January 2023 (online & print)

Citation: Mir, A., S. Swaminathan, R.Y. Naqash, T. Sharp & A.S. Arun (2023). Asiatic Black Bear *Ursus thibetanus* attacks in Kashmir Valley, India. *Journal of Threatened Taxa* 15(1): 22355–22363. <https://doi.org/10.11609/jott.8018.15.1.22355-22363>

Copyright: © Mir et al. 2023. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: Wildlife SOS.

Competing interests: The authors declare no competing interests.

Author details: AALIYA MIR, project manager and education officer, works to mitigate human-wildlife interactions through research, education and wildlife rescue. She works on Asiatic Black Bears, Brown Bears, Levantine Vipers, and other species. She encourages the younger generation to view wildlife in a positive light and become guardians of their natural heritage. SHANMUGAVELU SWAMINATHAN, head, wildlife biologist, is involved as a key researcher of the Sloth Bear ecology and the denning project which was initiated by Wildlife SOS in 2014 in the state of Karnataka. The project focused on an in-depth research study of the ecology, denning pattern, and Human-Sloth Bear interactions in the state. He is a member of the IUCN SSC Bear Specialist Group (BSG) for Sloth Bears. RASHID NAQASH, head of unit, is a post graduate in the Wildlife Sciences. He has the distinction of working in all three regions of Jammu & Kashmir. His work focuses on the protection, propagation, and management of the varied wildlife in and outside of protected areas in the region. THOMAS ROBERT SHARP, The director of conservation and research also serves as the co-chair of the IUCN's Sloth Bear Expert Team which falls under Bear Specialty Group (BSG). He has been studying Asian bear species for the last 15 years and continues to study the ecology of bears as well as other megafauna. DR ATTUR SHANMUGAM ARUN, director – research & veterinary operations, is involved in various rescue & rehabilitation of treated, displaced, and injured wildlife. He completed his PhD in Biotechnology and carried out research on metagenomic profiling of gut microbes of Sloth Bears and Indian Leopards. He is a member of the IUCN SSC Bear Specialist Group (BSG) for Sloth Bears.

Author contributions: Aaliya Mir—1) project leader, 2) project coordination, 3) writing and analysis. Shanmugavelu Swaminathan—1) writing and analysis. 2) insights to bear activity Raashid Y. Naqash—1) data collection, 2) analysis and insights, Thomas Robert Sharp—1) writing and analysis, 2) background research on Asiatic Black Bear attacks 3) arrangement of manuscript to JoTT. Attur Shanmugam Arun—1) writing and analysis.

Acknowledgements: The authors would like to express our sincere thanks to Suresh Kumar Gupta, chief wildlife warden, J&K for giving us permission to analyze the human-bear conflict data of the Kashmir Region. Special thanks are also due to Mr. Rouf Zargar, wildlife warden, South Division, Mr. Intesar Suhail, wildlife warden, Shopian Division, Mr. Mohammad Maqbool Baba, wildlife warden, North Division, Ms. Ifshan Dewan, wildlife warden, Wetland Division, and Mr. Altaf Ahmed, wildlife warden, Central Division for their support and guidance. We would also like to thank the co-founders of Wildlife SOS, Kartick Satyanarayana and Geeta Seshamani without whom this manuscript would not be possible. Finally, we would like to thank Dr. Shabir Mir for his help and support throughout the process of our work.

INTRODUCTION

Asiatic Black Bears *Ursus thibetanus* though generally cryptic and shy, are involved in crop raiding and to a lesser extent attacks on humans (Chauhan 2003; Ali et al. 2018; Jamtsho & Wangchuck 2018; Image 1). Attacks are rare throughout much of their global range which encompasses 18 different countries (Garshelis & Steinmetz 2020), however, this is not the case in India's Kashmir Valley where they are relatively common (Chauhan 2003; Choudhury et al. 2008; Tak et al. 2009; Rasool et al. 2010). Bear attacks in the Kashmir Valley have increased in the last 20–30 years, possibly due to (1) expansion of agricultural practices such as fruit and nut orchards (that are particularly attractive to bears), (2) the lack of fire-arms among farmers, (3) the India-Pakistan border fencing blocking predator movement, continued human encroachment into wild habitat, and (4) a new generation of people not familiar with coexisting with large predators (Choudhury et al. 2008). Installations by security forces may also fragment the habitat and divert the bears into human dominated areas causing human-bear conflicts.

The Asiatic Black Bear is listed as 'Vulnerable' on the International Union for Conservation of Nature (IUCN) Red List of Threatened Species due to habitat loss and the commercial trade for live bears and bear parts (Garshelis & Steinmetz 2020). They are also listed as an Appendix I species under CITES and a Schedule I species in India under the Wildlife Protection Act, 1972. There are few published accounts, or long-term data collections, of Asiatic Black Bear attacks. The majority of scientific literature on the topic are from locations with a relatively healthy number of black bears, namely India, Bhutan, and Japan. Often these accounts are listed alongside crop raiding and livestock depredation (Chauhan 2003; Charoo et al. 2011; Sanwal & Lone 2012; Ali et al. 2018; Zahoor et al. 2020). There is still a great deal that is not understood about Asiatic Black Bear attacks. However, most reported attacks are due to surprise encounters that occur in either the woods or in agricultural areas (Tak et al. 2009; Rasool et al. 2010; Akiyama et al. 2017; Penjor & Dorji 2020). As would be expected, the vast majority of attacks appear to be defensive, however, there have been a few accounts that appear to be more predatory (Yamazaki 2017).

Over the past 20 years, the Kashmir Valley has become a hotspot of Human-Asiatic Black Bear conflicts. This paper chronicles the number of Asiatic Black Bear attacks that occurred in the Kashmir Valley between the years of 2000 and 2020. It also looks at the trends and

Image 1. Wild Asiatic Black Bear *Ursus thibetanus* in the Kashmir Valley © Mradul Pathak.

attempts to discern the causes.

Study Area

The Kashmir Valley is roughly 15,500 km² in size (about 140 km by 32 km) and is located between 32° & 34°N and 74° & 75°E (Figure 1). The average elevation is roughly 1,850 m. The valley is partially surrounded to the north by the Himalayan and Pir Panjal ranges, which have an average elevation of roughly 3,050 m. The climate is mild with precipitation occurring throughout the year, though spring is the wettest season. Summer is usually mild and fairly dry, but the relative humidity is generally high and the nights are cool. July is the warmest month with temperatures averaging around 24.4°C, and January is the coldest with average temperatures around 2.7°C. The biggest river in the valley is the Jhelum. Oak-Rhododendron forests (Image 2), cover the valleys and Blue Pine *Pinus excelsa* covers the slopes.

METHODS

Asiatic Black Bear attack data was collected by the Jammu & Kashmir Wildlife Protection Department, Kashmir Region, which was established in 1978 and is equivalent to the wildlife wing of the state forest departments in other states. There are five divisions, namely the Central, South, North, Wetland and Shopian, which maintain data on human-bear conflicts for the purpose of paying compensation for bear attacks. These efforts were intensified and payment augmented after

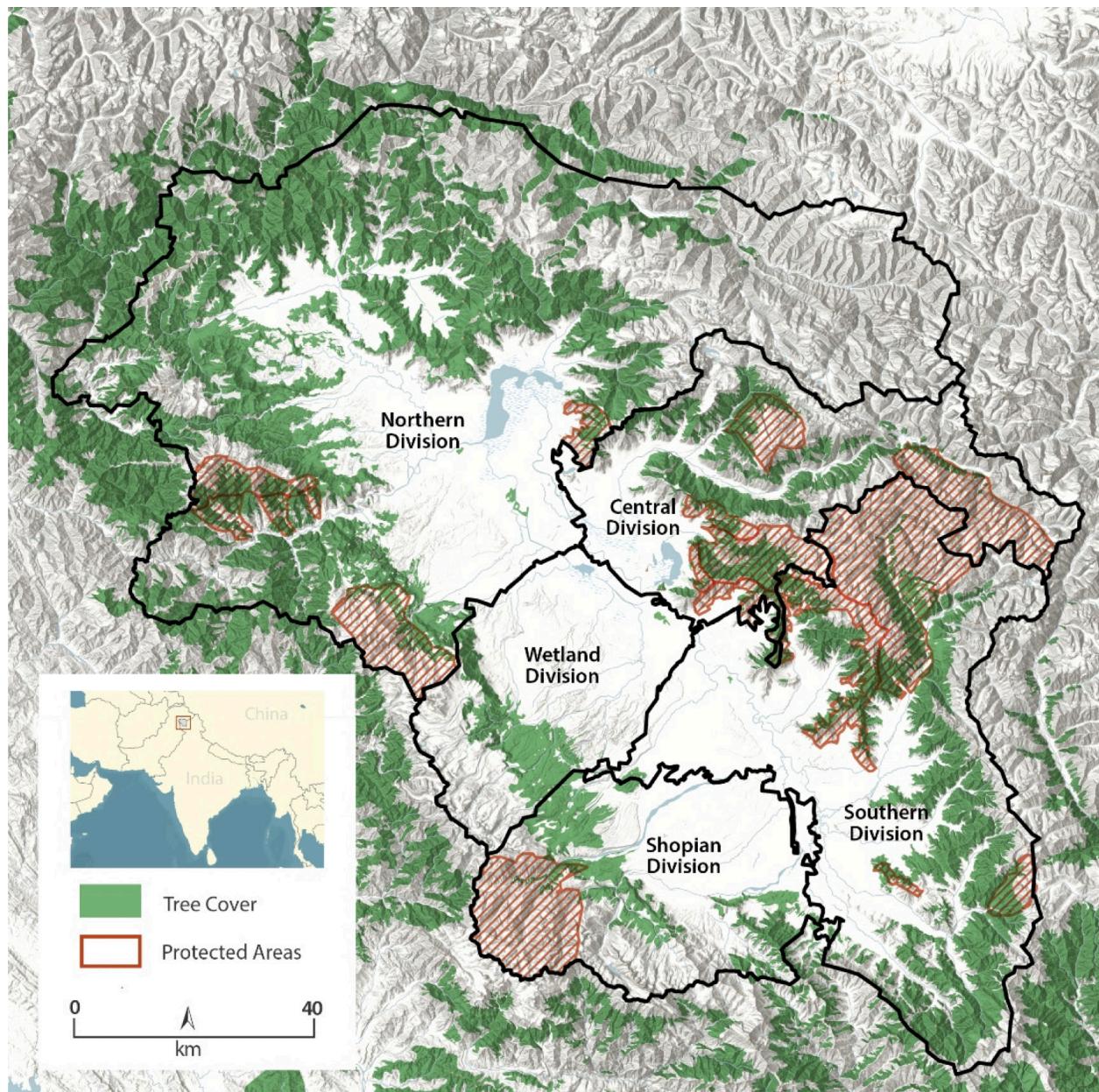


Figure 1. Wildlife divisions in the Kashmir region responsible for handling human-wildlife conflicts including Asiatic Black Bear attacks.

2013. We used this data to assess bear attack patterns over time. Ex gratia rates prior to and after 2014 are given in Table 1. The processing of a case starts with the filing of a police and medical report which is produced to the block level officer of the wildlife department who subsequently forwards it to the higher offices which includes the range officer, wildlife warden, regional wildlife warden, and finally to the chief wildlife warden. The ex gratia application goes through a lot of scrutiny during processing.

RESULTS

Attacks and Deaths by Year

A total of 2,357 bear attacks were reported in the Kashmir Valley between 2000 and 2020, of which 2,243 (95.2%) resulted in injury and 114 (4.8%) in death (Table 2). The Wildlife Protection Department did not have the resources prior to 2006 to collect detailed bear attack data, and therefore bear attacks prior to 2006 are likely underrepresented in the data set. The maximum number of reported attacks in a single year was 282 in 2010 and included 10 deaths. The number of reported

Table 1. Ex gratia paid (in INR) to victims of Asiatic Black Bear attacks prior and post 2014.

Years	Minor injuries	Grievous injuries	Permanent incapacitation	Death
Prior to 2014	5000	Up to 33,000	50,000	100,000
2014-2020	15000	Up to 100,000	Up to 300,000	300,000

* Department of Forest, Ecology and Environment 2014

Table 2. Asiatic Black Bear attacks resulting in injury or death between 2006 and 2020 in Kashmir Valley, India.

Year	Number of recorded attacks	% of recorded attacks from the total number of attacks recorded from 2006–2020	Number of recorded deaths	% of recorded attacks that resulted in death the same year
2006	87	3.7	7	8.0
2007	93	4.0	8	8.6
2008	155	6.6	7	4.5
2009	182	7.8	8	4.4
2010	282	12.1	10	3.5
2011	275	11.8	13	4.7
2012	226	9.7	7	3.1
2013	256	10.9	12	4.7
2014	185	7.9	5	2.7
2015	205	8.8.	5	2.4
2016	135	5.8	6	4.4
2017	71	3.0	5	7.0
2018	63	2.7	5	7.9
2019	66	2.8	7	10.6
2020	49	2.1	4	8.2

attacks and deaths started diminishing in 2016, and by 2020 the number of attacks was down to 49 with four deaths (Figure 2).

Differences Between Districts

The majority of attacks occurred in the South and North divisions. These two divisions are the largest and have the most forest coverage. Additionally, these divisions are undergoing rapid deforestation and urbanization. The Wetland and Shopian divisions used to be part of the North and South divisions, respectively. The Wetland Division does not consist of much prime bear habitat and this results in fewer attacks. The Central Division, which includes Dachigam National Park, has excellent bear habitat. However, the wildlife department in this division is well funded and equipped to deal with human-wildlife interactions and therefore are able to keep bear attacks in check despite the large bear population.

Injuries

The exact type of injuries sustained by the victims were not readily available, however, we were able to classify the injuries in three categories based on reports and the amount of ex gratia paid. The three categories are minor, grievous, and permanent disability. Injuries were considered minor if the victim was treated at a local hospital and did not need to stay in the hospital for more than a day for the treatment (Image 3). Injuries were considered grievous if the victim needed to be referred for special treatment, usually to a specialty hospital, where they can undergo specialized procedures and stay for an extended period (Image 4). Finally, permanent disability when the victims were permanently incapacitated. Overall, the majority of injuries were reported as minor (57.4%, n=1126), 42.4% (n=832) as Grievous, and 1.2% (n=21) resulted in permanent disability.

Attacks by Month

A total of 1,449 attacks were documented by month (Figure 3). August (n=309, 21.3% of the total attacks)

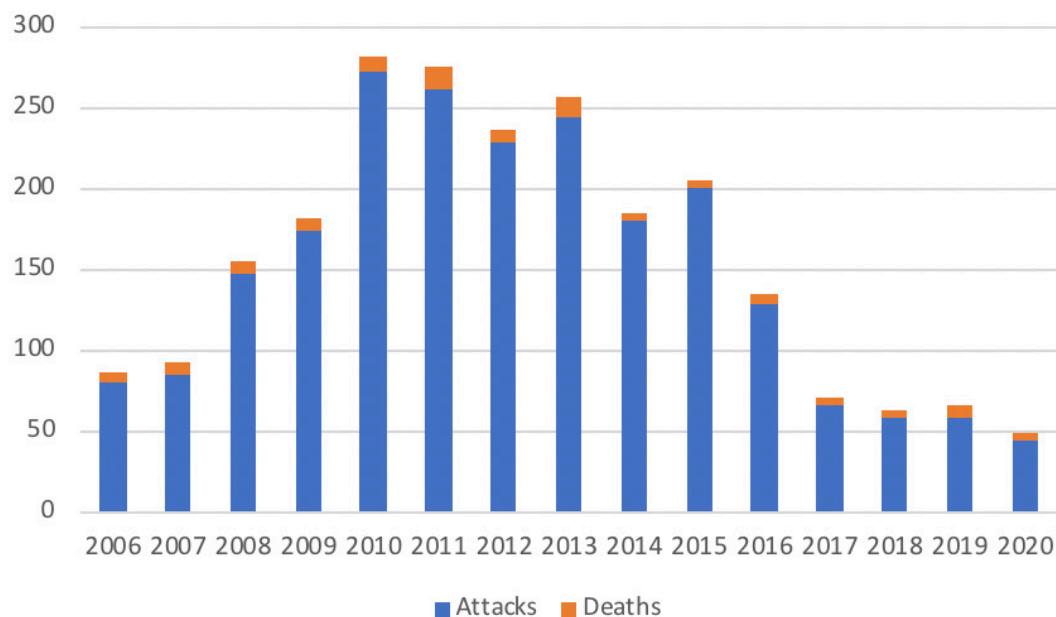


Figure 2. Asiatic Black Bear attacks resulting in injury or death between 2006 and 2020 in and around the Kashmir Valley, India.

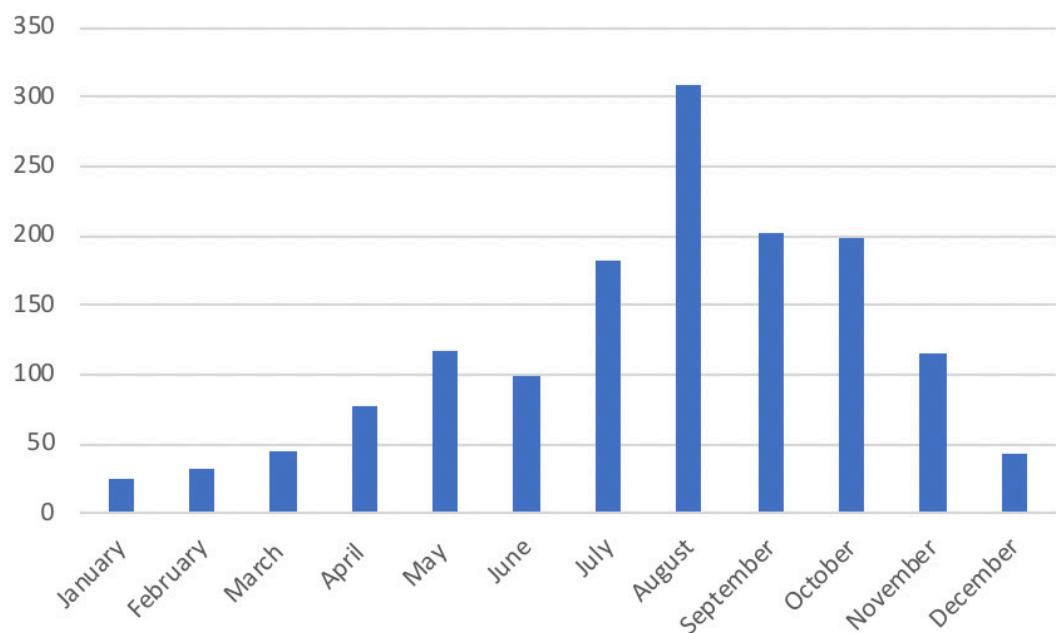


Figure 3. Asiatic Black Bear attacks by month from 2000-2020 in Kashmir, India.

had the most attacks, followed by September (n=203, 14%), October (n=198, 13.7%), and July (n=182, 12.6%). The least number of attacks took place in the month of January (n=26, 1.8%), February (n=32, 2.2%), December (n=44, 3.0%), and March (n=45, 3.1%).

Attacks by Time of Day

A total of 410 attacks were documented by the time

of day in which they occurred (Figure 4). The highest number of attacks occurred between the hours of 0901–1000 h (n=75, 18%), and 218 attacks (53%) took place between 0801–1200 h.

Age of People Attacked

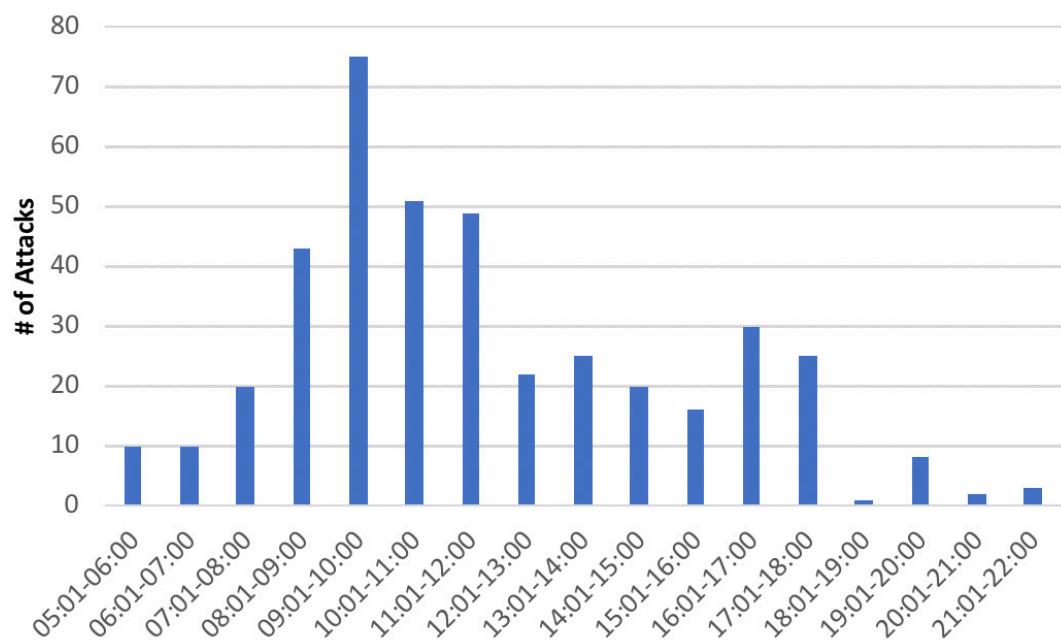
A total of 482 attacks were documented by the age of the victims (Figure 5); 226 of the victims (47%) were

Image 2. Asiatic Black Bear habitat in Kashmir Valley © Mradul Pathak

Image 3. Minor injury due to Asiatic Black Bear. © Wildlife SOS

Image 4. Grievous injury due to Asiatic Black Bear. © Wildlife SOS

between 31 and 50 years of age.


Activity of People Attacked

The activity of 277 people attacked in the Shopian Division between 2010 and 2019 was documented. People working in, or walking to, fields or orchards made

up 176 (63.5%) of the attacks. The second largest group of people attacked were made up of shepherds & herders, and accounted for 33 (11.9%) attacks. People walking to areas not necessarily related to fields or orchards (n=23, 8.3%) and people near & around their homes (n=22, 7.9%) also made up relatively high percentages, though

Table 3. Asiatic Black Bear attacks by month from 2000–2020 in Kashmir, India.

January	February	March	April	May	June	July	August	September	October	November	December
26 (1.8%)	32 (2.2%)	45 (3.1%)	78 (5.4%)	118 (8.1%)	99 (6.8%)	182 (12.6%)	309 (21.3%)	203 (14.0%)	198 (13.7%)	115 (7.9%)	44 (3.0%)

Figure 4. Asiatic Black Bear attacks by time of day from 2000–2020 in Kashmir, India.

many of these people were working in their vegetable gardens. Other activities made up the remainder of the attacks (n=23, 8.3%).

DISCUSSION

General Patterns in Kashmir Valley

There is no data to suggest that the Asiatic Black Bear subspecies, *U. t. laniger* that occurs in northern India, is any more aggressive than other subspecies (Matt Hunt, co-chair IUCN Asiatic Black Bear Expert Team, pers. comm. August 8 2021). It is therefore more likely that the increased number of attacks are related to: 1) bears being in close proximity to humans, 2) a relatively high density of bears in the area, and finally, 3) how humans react to the presence of bears. Along these lines, it is important to note that in orchards, the bears not only eat the fruit and nuts but also potentially do extensive damage to the trees, such as breaking off productive branches. Because of this the bears are often actively chased and shooed away from the orchards. This aggressive interactions between humans and bears

could be a contributing factor for the high rate of attacks in the region.

Reasons for the Decreases in Bear Attacks

The decrease in bear attacks since 2016 is likely due to 3 main reasons: 1) a number of bears have been killed in retaliation, 2) proactive work by the wildlife department, and 3) bear awareness programmes conducted by non-governmental organisations (NGOs). The total number of bears killed remains unknown, however, some of these killings have been documented, including incidents when bears have been tied and the tree set on fire. Other bear killings go unnoticed, such as, when bears are secretly poisoned or shot. To date there have been no prosecutions for killing bears.

The wildlife department was able to be much more proactive starting in 2016. The political scenario in Kashmir has been very fragile in recent times, particularly from 2010–2016. Once the wildlife department was up and running, it was still poorly equipped and dealing with frequent closures in the valley. Even communication was hampered as mobile phone connectivity was not steady. These issues paralyzed normal life and resulted in fewer

Figure 5. Asiatic Black Bear attacks by age of the victim from 2000–2020 in Kashmir, India.

reports of wildlife-human conflicts. Because of this, people often took affairs into their own hands. Since 2016, the wildlife department has had greater man power & the necessary equipment including cages, tranquilizing guns, and vehicles as well as mobile connectivity, to deal with wildlife issues. Presently 42 control rooms work 24 hours a day, seven days a week, to attend to the wildlife distress calls. The number of rescue calls to the wildlife department as well as to other NGOs, including Wildlife SOS, has increased, which has led to a more professional handling of human-wildlife conflicts and has reduced the number of bear encounters and injuries to people.

Bear awareness & safety programs are also believed to have played an important role in reducing human-bear conflicts by educating people. These programs are largely being coordinated by NGOs in the region and stress awareness, especially when entering or conducting activities around orchards.

Asiatic Black Bear Attack Overview

The causes and mitigation strategies for Asiatic Black Bear attacks are not well understood, especially in comparison to attacks by other bear species, namely, Grizzly Bears *Ursus arctos*, American Black Bears *Ursus americanus*, Sloth Bears *Melursus ursinus*, and even Polar Bears *Ursus maritimus*. This may be partly due to Asiatic Black Bear attacks being relatively rare. Existing studies tend to agree that the vast majority of Asiatic Black Bear attacks are defensive, most often occurring due to a surprise encounter (Thakur et al. 2007; Tak

et al. 2009; Rasool et al. 2010; Akiyama et al. 2017). This certainly appears to be the case in Kashmir, India, however, predatory attacks on humans by Asiatic Black Bears have been reported in Japan (Yamazaki 2017; Oshima et al. 2018). This is perhaps not surprising as Asiatic Black Bears are omnivorous and have been reported throughout parts of their range to actively hunt, kill, and eat primates, ungulates, and wild boar (Neas & Hoffman 1987; Hwang 2003; Gursky-Doyen & Nekaris 2007). Predatory attacks on humans appear to be exceptionally rare.

Behavioral approaches to safety in Asiatic Black Bear country should primarily focus on avoiding bear encounters and secondarily surviving defensive attacks with the fewest number of injuries. Making noise while moving into an area that bears may occur, giving the bear a chance to leave the area before the human and bear find themselves at close quarters, is a proven method to avoid attacks by Grizzly & Sloth Bears (Ordiz et al. 2013; Ratnayake 2014; Sahlén et al. 2015; Sharp et al. 2020). This method would likely be effective in avoiding surprise encounters with Asiatic Black Bears as well.

There are advisories on what to do in case of a defensive attack by a bear. Herrero (2002) advocated falling to the ground and balling up while covering the head and face with your arms for surviving a defensive grizzly bear attack. Asiatic Black Bears, like Grizzly & Sloth Bears, focus on the head and face during an attack (Thakur et al. 2007; Rasool et al. 2010). Falling to the ground and covering up allows attack victims to protect

themselves from injury while allowing the Asiatic Black Bear to run off which they almost always do after overpowering a person.

CONCLUSION

The number of Asiatic Black Bear attacks in Kashmir have decreased notably since 2016, probably due to bears being removed from the area as well as government and non-government agencies working to lessen the number of negative encounters. The number of annual attacks should be monitored and tracked to detect future changes. Further studies are required to more fully and accurately understand the best methods to avoid and survive Asiatic Black Bear attacks. It is likely that certain behavioral strategies that work for avoiding or minimizing attacks from other bear species, namely Brown Bears & American Black Bears, will also work for the Asiatic Black Bear. However, this cannot be known with certainty without further research.

REFERENCES

Akiyama, G., H. Kuwahara, R. Asahi, R. Tosa & H. Yokota (2017). Prompt procedures have a great impact on the consequences of Asiatic Black Bear mauling. *Journal of Nippon Medical School* 84(6): 294–300.

Ali, A., M. Waseem, M. Teng, S. Ali, M. Ishaq, A. Haseeb, A. Aryal & Z. Zhou (2018). Human-Asiatic Black Bear (*Ursus thibetanus*) interactions in the Kaghan Valley, Pakistan. *Ethology Ecology and Evolution* 30(5): 399–415. <https://doi.org/10.1080/03949370.2017.1423113>

Charoo, S.A., L.K. Sharma & S. Sathyakumar (2011). Asiatic Black Bear-human interactions around Dachigam National Park, Kashmir, India. *Ursus* 22(2): 106–113.

Chauhan, N.P.S. (2003). Human casualties and livestock depredation by black and brown bears in the Indian Himalaya, 1989–98. *Ursus* 14(1): 84–8.

Choudhury, S., M. Ali, T. Mubashir, S.N. Ahmad, M.N. Sofi, I. Mughal, U.K. Sarma, A.K. Srivastava & R. Kaul (2008). Predator Alert - Attacks on humans by leopards and Asiatic Black Bear in the Kashmir valley - Analysis of case studies and spatial patterns of elevated conflict. *Wildlife Trust of India*, 76 pp.

Department of Forest, Ecology and Environment (2014). Payment of ex-gratia relief for deaths/injuries caused to the human life on account of man-animal conflict cases. Government of Jammu and Kashmir, Department of Forest, Ecology and Environment, Secretariat of Srinagar. Government Order No. 244 - FST of 2014

Garschelis, D.L. & R. Steinmetz (2020). *Ursus thibetanus*. IUCN Red List of Threatened Species. Downloaded on January 22, 2022. <https://doi.org/10.2305/IUCN.UK.2008.RLTS.T22824A9391633.en>

Gursky-Doyen, S. & K.A.I. Nekaris (2007). Primate anti-predator strategies. Springer Science & Business Media, 404 pp.

Herrero, S. (2002). Bear attacks: their causes and avoidance. Revised edition. Lyons Press, Guilford, Connecticut, USA, 282 pp.

Hwang, M.H. (2003). Ecology of the Asiatic Black Bear and people-bear interactions in Yushan National Park, Taiwan. Ph.D. Thesis, University of Minnesota, 78 pp.

Jamtsho, Y. & S. Wangchuk (2018). Assessing patterns of human-Asiatic Black Bear interaction in and around Wangchuck Centennial National Park, Bhutan. *Global Ecology and Conservation* 8: 183–189.

Neas, J.F. & R.S. Hoffmann (1987). "Burdocas taxicolor". *Mammalian Species* 277: 1–7. <https://doi.org/10.2307/3503907>

Ordiz, A., O-G. Støen, S. Sæbø, V. Sahlén, B.E. Pedersen, J. Kindberg & J.E. Swenson (2013). Lasting behavioural responses of brown bears to experimental human encounters. *Journal of Applied Ecology* 50: 306–314.

Oshima, T., M. Ohtani & S. Mimasaka (2018). Injury patterns of fatal bear attacks in Japan: A description of seven cases. *Forensic Science International* 286: 14–19.

Penjor, D. & T. Dorji (2020). Circumstances of human conflicts with bears and patterns of bear maul injuries in Bhutan: Review of records 2015–2019. *PLoS One* 15(8): 1–12. <https://doi.org/10.1371/journal.pone.0237812>

Rasool, A., A.H. Wani, M.A. Darzi, M.I. Zaroo, S. Iqbal, S.A. Bashir, S. Rashid & R.A. Lone (2010). Incidence and pattern of bear maul injuries in Kashmir. *Injury-International Journal of the Care of the Injured* 41: 116–119.

Ratnayake, S., F.T. Van Manen, R. Pieris & V.S. Pragash (2014). Challenges of large carnivore conservation: sloth bear attacks in Sri Lanka. *Human Ecology* 42(3): 467–479.

Sahlén V, A. Ordiz, J.E. Swenson & O.-G. Støen (2015) Behavioural differences between single Scandinavian brown bears (*Ursus arctos*) and females with dependent young when experimentally approached by humans. *PLoS ONE* 10(4): 16. <https://doi.org/10.1371/journal.pone.0121576>

Sanwal, C.S. & R.A. Lone (2012). An assessment of the Asiatic Black Bear human conflicts in Kupwara District, Jammu & Kashmir, India. *Indian Forester* 138(10): 881–886.

Sharp, T., S. Swaminathan, A.S. Arun, T. Smith, K. Satyanarayan, & G. Seshamani (2020). Sloth bear attacks on the Deccan Plateau of Karnataka, India. *Ursus* 31: 11. <https://doi.org/10.2192/URSUS-D-18-00027.3>

Tak, S.R., D.G. Nabi, M.A. Halwai & B.A. Mir (2009). Injuries from bear (*Ursus thibetanus*) attacks in Kashmir. *Turkish Journal of Trauma & Emergency Surgery* 15: 130–134.

Thakur, J.S., C. Mohan & D.R. Sharma (2007). Himalayan black bear mauling: offense or defense? *American Journal of Otolaryngology* 28(4): 247–250.

Yamazaki, K. (2017). Consecutive fatal attacks by Asiatic Black Bear on humans in Northern Japan. *International Bear News* 26: 16–17.

Zahoor, B., A. Ahmad, R.A. Aziz & M.S. Awan (2020). Damages done by black bear (*Ursus thibetanus*) in Moji Game Reserve and its surroundings, Leepa Valley, Azad Jammu and Kashmir (Pakistan). *Pakistan Journal of Zoology* 53(1): 217–225. <https://doi.org/10.17582/journal.pjz/20170317130336>

Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lionel Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarsanan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarsanan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dubai, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rivonker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. M. Zafar-ul Islam, Prince Saud Al Faisal Wildlife Research Center, Taif, Saudi Arabia

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2019–2021

Due to paucity of space, the list of reviewers for 2018–2020 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore,
Tamil Nadu 641035, India
ravi@threatenedtaxa.org

OPEN ACCESS

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under [Creative Commons Attribution 4.0 International License](#) unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

www.threatenedtaxa.org

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

January 2023 | Vol. 15 | No. 1 | Pages: 22355–22558

Date of Publication: 26 January 2023 (Online & Print)

DOI: 10.11609/jott.2023.15.1.22355-22558

Communications

Asiatic Black Bear *Ursus thibetanus* attacks in Kashmir Valley, India

– Aaliya Mir, Shanmugavelu Swaminathan, Rashid Y. Naqash, Thomas Sharp & Attur Shanmugam Arun, Pp. 22355–22363

Food habits of the Red Fox *Vulpes vulpes* (Mammalia: Carnivora: Canidae) in Dachigam National Park of the Kashmir Himalaya, India

– Kulsum Ahmad Bhat, Bilal A. Bhat, Bashir A. Ganai, Aamir Majeed, Naziya Khurshid & Muniza Manzoor, Pp. 22364–22370

Status distribution and factors affecting the habitat selection by Sambar Deer *Rusa unicolor* in Pench Tiger Reserve, Madhya Pradesh, India

– Abdul Haleem & Orus Ilyas, Pp. 22371–22380

Assessing illegal trade networks of two species of pangolins through a questionnaire survey in Nepal

– Nikita Phuyal, Bipana Maiya Sadadev, Reeta Khulal, Rashmi Bhatt, Santosh Bajagain, Nirjala Raut & Bijaya Dhami, Pp. 22381–22391

First occurrence record of Indian Roundleaf Bat *Hipposideros lankadiva* in Rajasthan, India

– Dharmendra Khandal, Dau Lal Bohra & Shyamkant S. Talmale, Pp. 22392–22398

Food availability and food selectivity of Sri Lanka Grey Hornbill *Ocyceros gingalensis* Shaw, 1811 in Mihintale Sanctuary, Sri Lanka

– Iresha Wijerathne, Pavithra Panduwawala & Sriyani Wickramasinghe, Pp. 22399–22409

Conservation significance of Changaram wetlands - a key wintering site for migratory shorebirds and other waterbirds in the western coast of Kerala, India

– Jasmine Anand, H. Byju, Aymen Nefla, S. Abhijith, Omer R Reshi & K.M. Aarif, Pp. 22410–22418

Long-term monitoring of pelicans in National Chambal Sanctuary, India

– Lala A.K. Singh & Rishikesh Sharma, Pp. 22419–22429

A checklist of avifauna of Mangalore University, Karnataka, India

– K. Maxim Rodrigues, K. Vineeth Kumar, Vivek Hasyagar, M.C. Prashantha Krishna & Deepak Naik, Pp. 22430–22439

Biology of *Bhutanitis ludlowi* Gabriel, 1942 (Lepidoptera: Papilionidae) Bumdeling Wildlife Sanctuary, Bhutan

– Tshering Dendup, Namgay Shacha, Karma Tempa & Tez Bdr Ghalley, Pp. 22440–22447

Biodiversity of butterflies (Lepidoptera: Rhopalocera) in the protected landscape of Nandhour, Uttarakhand, India

– Hem Chandra, Manoj Kumar Arya & Aman Verma, Pp. 22448–22470

A comparison of four sampling techniques for assessing species richness of adult odonates at riverbanks

– Apeksha Darshetkar, Ankur Patwardhan & Pankaj Koparde, Pp. 22471–22478

Floristic diversity of native wild ornamental plants of Aravalli Hill Range: a case study from district Rewari, Haryana, India

– Pradeep Bansal, Amrender Singh Rao, Surender Singh Yadav, M.S. Bhandoria & S.S. Dash, Pp. 22479–22493

Flowering and fruiting of Tape Seagrass *Enhalus acoroides* (L.f.) Royle from the Andaman Islands: observations from inflorescence buds to dehiscent fruits

– Swapnali Gole, Sivakumar Kuppusamy, Himansu Das & Jeyaraj Antony Johnson, Pp. 22494–22500

Short Communications

Status of Swamp Deer *Rucervus duvaucelii duvaucelii* (G. Cuvier, 1823) in grassland-wetland habitats in Dudhwa Tiger Reserve, India

– Sankarshan Rastogi, Ashish Bista, Sanjay Kumar Pathak, Pranav Chanchani & Mudit Gupta, Pp. 22501–22504

First photographic evidence of Indian Pangolin *Manis crassicaudata* Geoffroy, 1803 (Mammalia: Pholidota: Manidae), in Colonel Sher Jung National Park, Himachal Pradesh, India

– Nidhi Singh, Urjit Bhatt, Saurav Chaudhary & Salvador Lyngdoh, Pp. 22505–22509

The Marine Otter *Lontra felina* (Molina, 1782) (Mammalia: Carnivora: Mustelidae) along the marine protected areas in Peru

– José Pizarro-Neyra, Pp. 22510–22514

First record of the genus *Acropyga* Roger, 1862 (Hymenoptera: Formicidae: Formicinae) in Kerala, India

– Merin Elizabeth George & Gopalan Prasad, Pp. 22515–22521

First report of a coreid bug *Aurelianus yunnanensis* Xiong, 1987 (Hemiptera: Heteroptera: Coreidae) from India

– Hemant V. Ghate, Pratik Pansare & Rahul Lodh, Pp. 22522–22527

First record of the long-horned beetle *Niphona fuscatrix* (Fabricius, 1792) (Coleoptera: Cerambycidae: Lamiinae) from the Western Ghats, India

– Yogesh K. Mane, Priyanka B. Patil & Sunil M. Gaikwad, Pp. 22528–22532

Incidence of *Clinostomum complanatum* (Trematoda: Clinostomidae) in *Trichogaster fasciata* (Actinopterygii: Osphronemidae), the first report from Deepor Beel, Assam, India

– Bobita Bordoloi & Arup Kumar Hazarika, Pp. 22533–22537

Sauromatum horsfieldii (Araceae): a new addition to the flora of Manipur, northeastern India

– Kazuhrii Eshuo & Adani Lokho, Pp. 22538–22542

Rhynchosstiellia menadensis (Sande Lac.) E.B. Bartram and *R. scabriseta* (Schwagr.) Broth.: two new records of mosses (Brachytheciaceae: Bryophyta) for peninsular India

– V.K. Rajilesh, C.N. Manju & R. Prakashkumar, Pp. 22543–22547

Notes

Installation of hot boxes for conservation in the last nursery roost of Greater Horseshoe Bats *Rhinolophus ferrumequinum* in Austria

– Lukas Zangl, Alexander Gutstein, Wolfgang Paill, Edmund Weiss & Peter Sackl, Pp. 22548–22550

New prey record of giant ladybird beetle *Anisolemnia dilatata* (Fabricius) (Coccinellidae: Coleoptera) feeding on Som Plant Aphid *Aiceona* sp.

– Suprakash Pal, Biwash Gurung, Ponnusamy Natarajan & Partha Sarathi Medda, Pp. 22551–22555

Book Review

Book Review - Under the Feet of Living Things

Editors — Aparajita Datta, Rohan Arthur & T.R. Shankar Raman

– Review by Melito Prinson Pinto, Pp. 22556–22558

Publisher & Host

