

Building evidence for conservation globally

10.11609/jott.2024.16.8.25639-25790

www.threatenedtaxa.org

Journal of Threatened TAXA

26 August 2024 (Online & Print)

16(8): 25639-25790

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

Open Access

43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

EDITORS**Founder & Chief Editor****Dr. Sanjay Molur**Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India**Deputy Chief Editor****Dr. Neelesh Dahanukar**

Noida, Uttar Pradesh, India

Managing Editor**Mr. B. Ravichandran**, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India**Associate Editors****Dr. Mandar Paingankar**, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India**Dr. B.A. Daniel**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India**Editorial Board****Dr. Russel Mittermeier**

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinahalli PO, Nilgiris, Tamil Nadu 643223, India

Dr. Martin Fisher

Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhura Stothra Bhashyam**, Hyderabad, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2020–2022****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annasaheb Magar Mahavidyalaya, Maharashtra, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Mander Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Baños, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemanth V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Watercolour illustrations—Striped Tiger *Danaus genutia*, Common Silverline *Cigaritis vulcanus*, Tamil Lacewing *Cethosia mahratta*. © Mayur Nandikar.

Seasonal changes in waterbird assemblages in Chambal River at Mukundra Hills National Park, Rajasthan, India

Arun George¹ , Megha Sharma² , Kavin Duraisamy³ , P.C. Sreelekha Suresh⁴ , Bijo Joy⁵ , Govindan Veeraswami Gopi⁶ , S.A. Hussain⁷ & J.A. Johnson⁸

^{1,2,3,4,6,7,8} Post Box #18, Chandrabani, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India.

⁵ Conservator of Forest, Forest Department, Rajasthan 324010, India.

¹ arungeorgep96@gmail.com, ² meghakota111@gmail.com, ³ kavin@wii.gov.in, ⁴ sreelekhat@gmail.com,

⁵ joybijo@gmail.com, ⁶ gopigv@wii.gov.in, ⁷ ainul.hussain@gmail.com, ⁸ jaj@wii.gov.in (corresponding author)

Abstract: The seasonal pattern of species diversity and abundance of waterbirds of the Chambal River in the extent of Mukundra Hills National Park, Rajasthan, India was evaluated. The pre-monsoon (March–April 2021) and post-monsoon surveys (August–September 2021) were carried out using the direct count method with the help of a motorboat to monitor the population status of waterbirds. A total of 44 species of waterbirds belonging to 15 families and nine orders were identified, including 11 winter migratory species. Forty species of birds were recorded during pre-monsoon and 27 species during post-monsoon seasons. The species richness and relative abundance varied significantly between observed seasons ($\chi^2 = 532.77$, $df = 43$, $p < 0.05$). Breeding activities of three species were recorded, namely, Grey Heron, Black-crowned Night Heron, and the 'Near Threatened' Woolly-necked Stork. The present study reveals the status of waterbirds in the protected area of Mukundra Hills National Park.

Keywords: Avifauna, Central Asian Flyway, Herony, migratory birds, pre and post-monsoon, seasonal patterns, species richness.

Abbreviations: IUCN—International Union for Conservation of Nature | CAF—Central Asian Flyway.

Editor: H. Byju, Coimbatore, Tamil Nadu, India.

Date of publication: 26 August 2024 (online & print)

Citation: George, A., M. Sharma, K. Duraisamy, P.C.S. Suresh, B. Joy, G.V. Gopi, S.A. Hussain & J.A. Johnson (2024). Seasonal changes in waterbird assemblages in Chambal River at Mukundra Hills National Park, Rajasthan, India. *Journal of Threatened Taxa* 16(8): 25663–25674. <https://doi.org/10.11609/jott.7935.16.8.25663-25674>

Copyright: © George et al. 2024. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: Rajasthan Forests Department.

Competing interests: The authors declare no competing interests.

Author details: ARUN GEORGE (AG) completed his master's in Zoology from Calicut university, and engaged in research with a focus on ornithology. MEGHA SHARMA (MS) did her post-graduation in Wildlife Science and presently working as a Project Associate at Wildlife Institute of India with a focus on freshwater ecology and river conservation. KAVIN DURAISAMY (KD) completed his masters in Environmental Sciences with specialization in freshwater fish ecology, presently he is doing his PhD at Sathyabama Institute of Science and Technology, Chennai. P.C. SREELEKHA SURESH (PCSS) presently studying molecular techniques for biodiversity conservation in Senckenberg-Dresden, Germany. BIJO JOY (BJ) is a Forest Officer belongs to Rajasthan Forest Department. GOVINDAN VEERASWAMI GOPI (GVG) is a faculty at Wildlife Institute of India, largely working on Waterbirds and Wetland conservation. S.A. HUSSAIN (SAH) is a leading Wetland Ecologist, currently working on River Conservation Programmes of India. J.A. JOHNSON (JAJ) is a faculty at Wildlife Institute of India, largely working on River Ecology and Wetland Conservation.

Author contributions: AG and KD contributed to data collection, scientific analysis, and manuscript writing. MS and PCSS contributed to data collection. BJ provided financial support and local logistic for conducting field work. The entire work was designed, supervised by JAJ, GVG and SAH, they also involved in critical analysis of all findings.

Acknowledgements: We are thankful to the chief conservator of forests and wildlife warden, Rajasthan for providing necessary permissions to carry out this work. We also express our sincere thanks to the chief conservator of forests (Wildlife) Kota and the field director, Mukundra Hills Tiger Reserve for providing all support to complete this study. We would like to show our gratitude to the director, dean, and registrar of, Wildlife Institute of India (WII) for their encouragement and administrative support. The financial support received from the Rajasthan Forests Department is greatly acknowledged. Finally, we would like to acknowledge and pay respectful thanks to the front-line forest staff Mr. Prakash Choudhry, Mrs. Bulbul Kanwar, fishermen and field assistants for their reliable support during this study. The contribution of these people has made this project possible and successful.

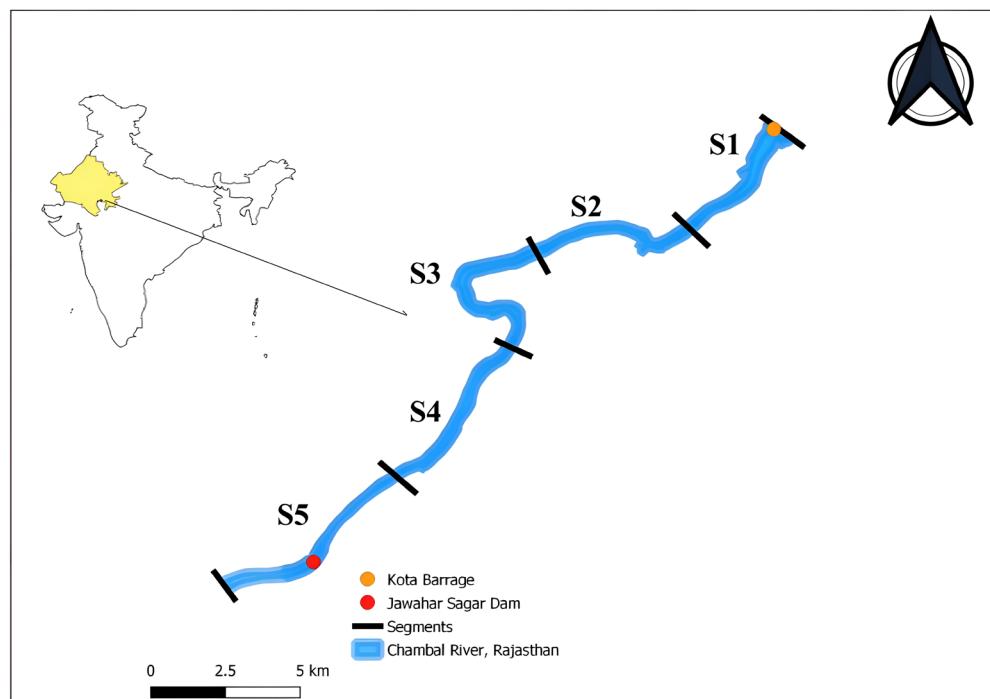
भारतीय वन्यजीव संस्थान
Wildlife Institute of India

INTRODUCTION

The biodiversity assessment is a crucial component of conservation and is most often used to evaluate the importance of indigenous biodiversity values at one site compared with others (Usher 1986). The diversity of significant megafauna in a particular habitat is also widely used for assessing a riverine ecosystem. It includes major vertebrates like fishes, reptiles, waterbirds, and aquatic mammals. Freshwater fishes and waterbirds are by far the best-studied groups of freshwater habitats; sometimes, they are used as an indicator of ecosystem health (Revenga et al. 2005). Wetland ecosystems are generally considered to be one of the most productive as well as fragile ecosystems. The waterbirds are considered significant biological indicators of the health of these ecosystems. Globally, 871 species of waterbirds have been identified so far (Gopi & Hussain 2014).

Wetland biodiversity strongly depends on the quality, quantity, and local water cycle (van der Valk 2006). The hydroperiod may substantially impact species sorting and assemblage; thus, local variation in the hydrological pattern may constitute an important predictor of species composition (Urban 2004; Brönmark & Hansson 2005). The abundance and diversity of wetland birds show a strong relationship with seasons, the maximum turnover of bird density, diversity, and species richness observed in migratory seasons (Nagarajan & Thiyagesan 1996; Khan 2010; Pandiyan et al. 2010).

India covers a wide range of wetland habitats known to support the occurrence of over 240 species of waterbirds, except for 33 vagrant waterbirds (Gopi & Hussain 2014). Of the 243 species, 114 are migratory, and among them, two are summer visitors, four are local visitors, and 108 are winter visitors. Forty-four species of waterbirds are threatened as per the IUCN Red List 2014 (Gopi & Hussain 2014). Regarding Indian states, around 485 species of birds have been reported in Rajasthan (eBird 2021). Some of the studies on waterbirds in different parts of India are Kumar et al. (2007), Khan (2010), Mazumdar (2019), and Kar & Debata (2019). However, the information on seasonal variation in waterbird assemblage in riverine habitats is inadequate from wetlands of semi-arid regions. Systematic studies on the diversity and abundance of the waterbirds of the Chambal River in Mukundra Hills National Park are lacking. In order to evaluate one of the important rivers in a semi-arid region, the present study was undertaken to assess the seasonal status of waterbird assemblages in the Chambal River between Kota Barrage and Jawahar Sagar Dam, Rajasthan, India.


Study Area

The study area encompassed a total stretch of 30 km of the Chambal River upstream from Kota Barrage to Jawahar Sagar Dam, a part of Mukundra Hills National Park (25.176° – 25.037° N and 75.825° – 75.678° E; Figure 1). The most extended and only perennial river of Rajasthan state, the Chambal River originates from the southern slopes of Madhya Pradesh and flows through Rajasthan in the northeast direction covering a total distance of 960 km before joining to Yamuna River in Uttar Pradesh. Nearly 24% of the river course falls within Rajasthan and sprays over seven districts, mainly over southeastern districts embracing Kota, Baran, Jhalawar, and Bundi, called the 'Hadoti region'. The study site of Mukundra Hills National Park is an evenly topped and virtually parallel hill with a narrow central elevation. It has a subtropical climate with a wide array of temperatures (7 – 43° C) and rainfall (4–225 mm) throughout the year (IMD 2021). The vegetation consists of a ravine thorn forest, a subtype of the northern tropical forests (Champion & Seth 1968). The gorges of Chambal River, with an average width of 220 m and an elevation of about 850 m, are life ground to various bird species, including waterbirds, vultures, and other raptors.

MATERIALS AND METHODS

The study was carried out during the months of March–April and August–September 2021, largely classified into pre-monsoon and post-monsoon seasons, respectively. To understand the spatial status of waterbird assemblages, the total study stretch was divided into five equal segments of 5 km in length (Figure 1). Each segment was surveyed twice in a season and waterbird counts were made by direct count method with the help of a slow-moving motorboat (with an average speed of 5 kmph) (Weller 1999). During the survey, we observed birds on either side of the river banks/ riparian strips using binoculars (Hawke Nature Trek 8 × 42 mm & Nikon 8 × 40). To maximize the detection, surveys were conducted during the hours of peak activity of birds, i.e., 0630–1030 h and 1500–1730 h. Waterbirds were identified upto species level using standard field guides (Ali & Ripley 1987; Grimmett et al. 2016).

The residential/ migratory status of waterbirds was extracted from available literature (Ali & Ripley 1987; Grimmett et al. 2016). The checklist of Indian birds to obtain common and scientific names of waterbirds was followed (Praveen et al. 2021). We assigned the global conservation status of recorded waterbirds based

Figure 1. Study area of Chambal River between Kota barrage and Jawahar Sagar Dam, Rajasthan (S1 to S5—denotes the sampling segments one to five).

on the IUCN Red List assessments (IUCN 2021). The Shannon diversity index (H), dominance index (D), and evenness index were calculated to evaluate the diversity trend between studied seasons. We also performed a chi-square test (χ^2) to evaluate species richness and abundance variances between the seasons. Based on the abundance of different species, a hierarchical clustering using a single linkage algorithm and Bray–Curtis similarity index was prepared to find the rescaled (dis)similarity in species richness between studied river segments. All statistical analyses were done using the software PAST version 4.03 (Hammer et al. 2001). Relative species abundance (RA) of families was calculated using the following formula as per Torre-Cuadros et al. (2007).

$$RA = Ni / Nt \times 100$$

Ni is the number of species in a family and Nt is the total number of species.

RESULTS

The present study recorded a total of 44 species of waterbirds belonging to 15 families and nine orders. The checklist of waterbirds recorded in the study area is presented in Table 1. Among the species, the order Pelecaniformes was well noticed and represented by two families and 14 species (Table 1). Similarly, the

family Ardeidae belonging to the Pelecaniformes order was the most dominating family, with a maximum of twelve species. In each, only one species represented families like Anhingidae, Ciconiidae, Podicipedidae, and Recurvirostridae.

The highest overall species richness was observed during the pre-monsoon season ($S = 44$), with a high number at river segment one (32 species). At the same time, low species richness was observed during the post-monsoon season, where only 27 species were recorded (Table 2). The species richness of waterbirds varied considerably between the seasons. Orders Pelecaniformes and Charadriiformes were encountered more in pre-monsoon with 12 and 10 species, respectively. The post-monsoon also shows the same trend with nine species in Pelecaniformes and six species in Charadriiformes (Figure 3). The total number of individuals of waterbirds observed in pre-monsoon (Number of Individuals $N = 1233$) was much higher than the post-monsoon ($N = 336$) ($\chi^2 = 532.77$, $df = 43$, $p < 0.05$). The Shannon index was highest in segment one during post-monsoon ($H = 2.44$) and least in segment five ($H = 1.62$). The segment-wise information on waterbird assemblages covering pre-monsoon and post-monsoon seasons is given in Table 2.

In the pre-monsoon, segment-wise waterbird abundance ranged from 61 to 594 individuals (Table 2),

Table 1. Checklist of waterbirds recorded in Chambal River between Kota barrage and Jawahar Sagar Dam, Rajasthan.

Common name	Zoological name	IUCN Red List status	Residential status	Feeding guild	Relative abundance (%)						
					Pre-monsoon	Post-monsoon	Overall				
Order: Coraciiformes											
Family: Alcedinidae											
Common Kingfisher	<i>Alcedo atthis</i> (Linnaeus, 1758)	LC	R	CA	1.54	-	1.21				
Pied Kingfisher	<i>Ceryle rudis</i> (Linnaeus, 1758)	LC	R	CA	0.16	-	0.13				
Stork-billed Kingfisher	<i>Pelargopsis capensis</i> (Linnaeus, 1766)	LC	R	CA	0.08	0.6	0.19				
White-throated Kingfisher	<i>Halcyon smyrnensis</i> (Linnaeus, 1758)	LC	R	CA	4.06	19.05	7.27				
Order: Anseriformes											
Family: Anatidae											
Garganey	<i>Spatula querquedula</i> (Linnaeus, 1758)	LC	WM	OM	0.32	5.06	1.34				
Lesser Whistling Duck	<i>Dendrocygna javanica</i> (Horsfield, 1821)	LC	R	HE	-	1.49	0.32				
Ruddy Shelduck	<i>Tadorna ferruginea</i> (Pallas, 1764)	LC	WM	OM	0.16	-	0.13				
Indian Spot-billed Duck	<i>Anas poecilorhyncha</i> (Forster, 1781)	LC	R	HE	0.16	-	0.13				
Tufted Duck	<i>Aythya fuligula</i> (Linnaeus, 1758)	LC	WM	OM	0.08	-	0.06				
Order: Suliformes											
Family: Anhingidae											
Oriental Darter	<i>Anhinga melanogaster</i> (Pennant, 1769)	NT	R	PI	0.32	0.3	0.32				
Family: Phalacrocoracidae											
Great Cormorant	<i>Phalacrocorax carbo</i> (Linnaeus, 1758)	LC	R	PI	0.65	-	0.51				
Indian Cormorant	<i>Phalacrocorax fuscicollis</i> (Stephens, 1826)	LC	R	PI	22.3	0.89	17.72				
Little Cormorant	<i>Microcarbo niger</i> (Vieillot, 1817)	LC	R	PI	23.28	6.85	19.76				
Order: Pelecaniformes											
Family: Ardeidae											
Intermediate Egret	<i>Ardea intermedia</i> (Wagler, 1829)	LC	R	CA	0.08	-	0.06				
Indian Pond Heron	<i>Ardeola grayii</i> (Sykes, 1832)	LC	R	CA	2.51	3.27	2.68				
Black-crowned Night Heron	<i>Nycticorax nycticorax</i> (Linnaeus, 1758)	LC	R	CA	1.3	3.27	1.72				
Cattle Egret	<i>Bubulcus ibis</i> (Linnaeus, 1758)	LC	R	CA	3	0.3	2.42				
Great Egret	<i>Ardea alba</i> (Linnaeus, 1758)	LC	R	CA	1.05	0.6	0.96				
Grey Heron	<i>Ardea cinerea</i> (Linnaeus, 1758)	LC	R	CA	8.19	11.9	8.99				
Little Egret	<i>Egretta garzetta</i> (Linnaeus, 1766)	LC	R	CA	1.22	-	0.96				
Purple Heron	<i>Ardea purpurea</i> (Linnaeus, 1766)	LC	R	CA	1.62	2.38	1.78				
Striated Heron	<i>Butorides striata</i> (Linnaeus, 1758)	LC	R	CA	0.32	-	0.25				
Black Bittern	<i>Ixobrychus flavicollis</i> (Latham, 1790)	LC	R	CA	-	0.3	0.06				
Cinnamon Bittern	<i>Ixobrychus cinnamomeus</i> (J.F. Gmelin, 1789)	LC	R	CA	-	0.3	0.06				
Yellow Bittern	<i>Ixobrychus sinensis</i> (Gmelin, 1789)	LC	R	CA	0.16	0.3	0.19				
Family: Threskiornithidae											
Black-headed Ibis	<i>Threskiornis melanocephalus</i> (Latham, 1790)	NT	R	CA	0.65	-	0.51				
Red-naped Ibis	<i>Pseudibis papillosa</i> (Temminck, 1824)	LC	R	CA	0.08	-	0.06				
Order: Charadriiformes											
Family: Charadriidae											
Red-wattled Lapwing	<i>Vanellus indicus</i> (Boddaert, 1783)	LC	R	IN	12.08	3.87	10.33				

Common name	Zoological name	IUCN Red List status	Residential status	Feeding guild	Relative abundance (%)		
					Pre-monsoon	Post-monsoon	Overall
Family: Jacanidae							
Bronze-winged Jacana	<i>Metopidius indicus</i> (Latham, 1790)	LC	R	HE	1.05	0.6	0.96
Family: Laridae							
River Tern	<i>Sterna aurantia</i> (Gray, 1831)	NT	R	PI	3.57	19.94	7.07
Whiskered Tern	<i>Chlidonias hybrida</i> (Pallas, 1811)	LC	R	CA	0.89	1.79	1.08
Lesser Black-backed Gull	<i>Larus fuscus</i> (Linnaeus, 1758)	LC	WM	CA	0.32	-	0.25
Pallas's Gull	<i>Ichthyaetus ichthyaetus</i> (Pallas, 1773)	LC	WM	PI	0.16	-	0.13
Family: Scolopacidae							
Common Sandpiper	<i>Actitis hypoleucos</i> (Linnaeus, 1758)	LC	WM	IN	0.08	2.68	0.64
Green Sandpiper	<i>Tringa ochropus</i> (Linnaeus, 1758)	LC	WM	IN	0.32	-	0.25
Wood Sandpiper	<i>Tringa glareola</i> (Linnaeus, 1758)	LC	WM	IN	0.32	-	0.25
Family: Recurvirostridae							
Black-winged Stilt	<i>Himantopus himantopus</i> (Linnaeus, 1758)	LC	WM	CA	2.27	0.3	1.85
Order: Gruiiformes							
Family: Rallidae							
Common Moorhen	<i>Gallinula chloropus</i> (Linnaeus, 1758)	LC	R	OM	0.24	-	0.19
White-breasted Waterhen	<i>Amaurornis phoenicurus</i> (Pennant, 1769)	LC	R	OM	3.81	3.87	3.82
Baillon's Crake	<i>Zapornia pusilla</i> (Pallas, 1776)	LC	WM	IN	0.16	-	0.13
Order: Passeriformes							
Family: Motacillidae							
Grey Wagtail	<i>Motacilla cinerea</i> (Tunstall, 1771)	LC	WM	IN	-	0.3	0.06
White-browed Wagtail	<i>Motacilla maderaspatensis</i> (Gmelin, 1789)	LC	R	IN	1.05	2.98	1.47
Order: Ciconiiformes							
Family: Ciconiidae							
Woolly-necked Stork	<i>Ciconia episcopus</i> (Boddaert, 1783)	VU	R	CA	0.24	6.55	1.59
Order: Podicipediformes							
Family: Podicipedidae							
Little Grebe	<i>Tachybaptus ruficollis</i> (Pallas, 1764)	LC	R	IN	0.08	0.3	0.13

NT—Near Threatened | VU—Vulnerable | LC—Least Concern | R—Resident | WM—Winter Migrant | CA—Carnivore | IN—Insectivore | OM—Omnivore | PI—Piscivore | HE—Herbivore.

with an average of $246.6 \leq 1.60$ ($\leq z$ value). In the case of post-monsoon, waterbird abundance was reduced to 336 individuals with an average of $67.2 \leq 1.69$ ($\leq z$ value). Similarly, the bird species composition also varied between the seasons. Darters and Cormorants were most abundant during pre-monsoon and constituted about 50% of the total pre-monsoon population (Figure 2). Next, egrets, herons, and bitterns populations dominated in the waterbird assemblage; they occupied 22.87% of the population ($N = 188$). In the post-monsoon season, Egrets, Herons, Kingfishers, Terns and Gulls were almost equal in abundance (Figure 2). Little Cormorant

Microcarbo niger and Indian Cormorant *Phalacrocorax fuscicollis* were dominant in overall abundance with 19.76% and 17.72%, respectively. Among the 44 species observed, 33 were residents, and 11 were winter migrants (Table 1). Most of the winter migrants belong to the order Charadriiformes, including species such as the Common Sandpiper *Actitis hypoleucos*, Green Sandpiper *Tringa ochropus*, Wood Sandpiper *Tringa glareola*, and Pallas's Gull *Ichthyaetus ichthyaetus*. Four out of the 44 species recorded in the study area are globally threatened (Table 1). Among these, three species are listed as Near-threatened (NT) and one

Table 2. Season wise diversity of waterbirds recorded in Chambal River between Kota barrage and Jawahar Sagar Dam, Rajasthan.

Segment	Season	Species richness (D)	Abundance (N)	Shannon index (H)	Dominance (D)	Evenness (J)
S1	Pre-monsoon	32	594	2.15	0.24	0.26
	Post-monsoon	19	100	2.44	0.12	0.60
S2	Pre-monsoon	16	237	2.02	0.20	0.47
	Post-monsoon	14	62	2.23	0.13	0.72
S3	Pre-monsoon	13	156	1.84	0.23	0.48
	Post-monsoon	11	56	1.96	0.18	0.64
S4	Pre-monsoon	11	185	1.85	0.18	0.58
	Post-monsoon	12	71	1.96	0.18	0.59
S5	Pre-monsoon	15	61	2.15	0.18	0.57
	Post-monsoon	9	46	1.62	0.28	0.56
Overall	Pre-monsoon	40	1233	2.52	0.13	0.31
	Post-monsoon	27	336	2.56	0.11	0.49

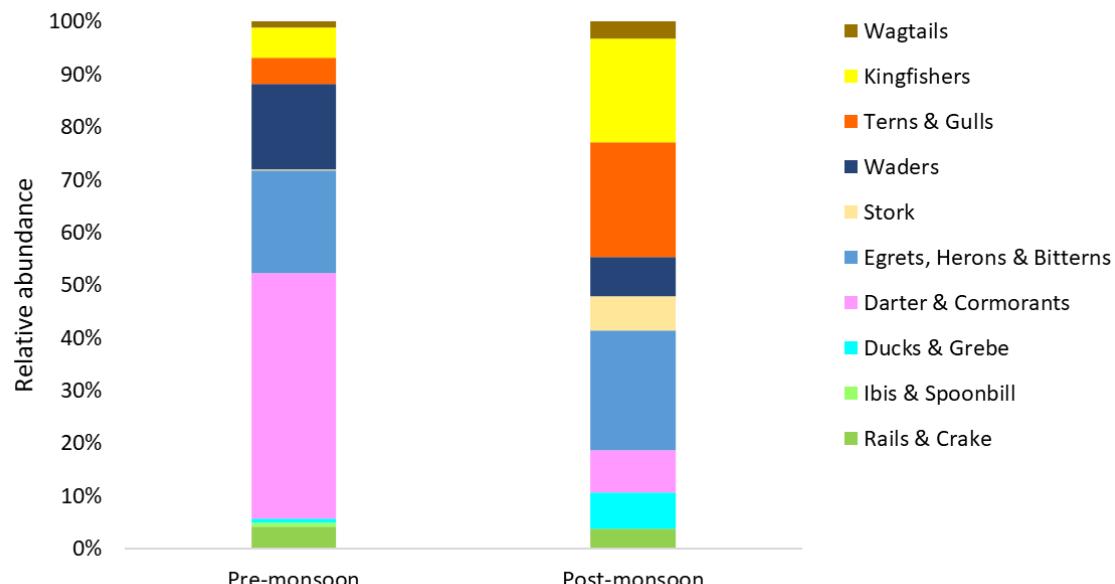


Figure 2. Seasonal variation in the composition of waterbirds in Chambal River between Kota barrage and Jawahar Sagar Dam, Rajasthan.

species as Vulnerable (VU) according to the IUCN Red List assessments (IUCN 2021).

The dendrogram analysis results showed differences in species composition between segments (Figure 4). The dendrogram produced three distinct clusters: one containing segment one, another containing segment five, and a third combining segments two, three, and four. There was a distinct variation in species composition between clusters one and two, indicating that segments two, three, and four had different species compositions. High dissimilarities in species assemblages between segments one and five led to their segregation into

separate clusters. Segments three and four, showing the highest similarity in species composition, were grouped together in a single cluster (Figure 4).

DISCUSSION

It is a well-known fact that the Chambal River serves as one of the best over-wintering sites for migratory birds (Nair & Krishna 2013). Our surveys revealed that the Chambal River gorge provides a potential nesting site for three important waterbirds, including the

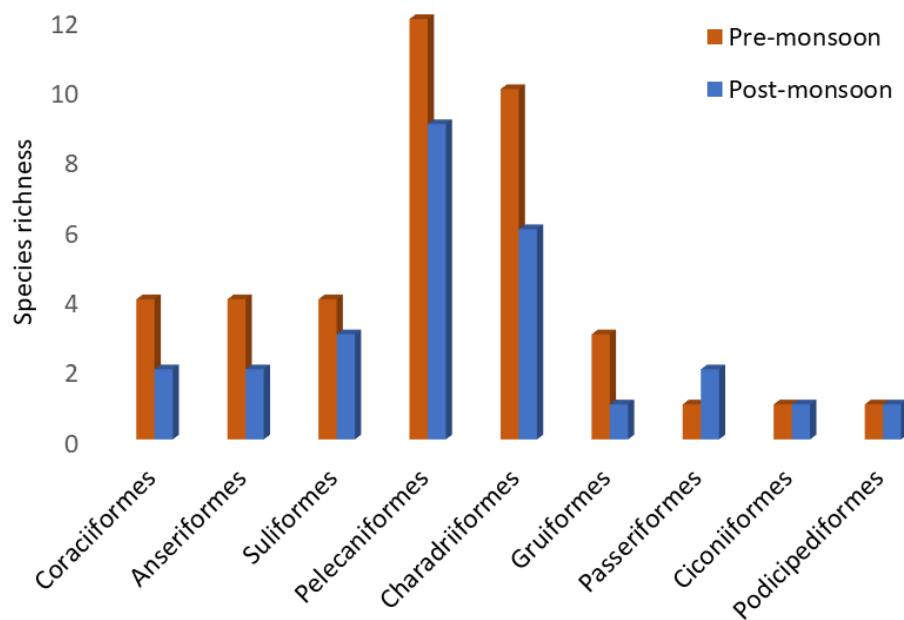


Figure 3. Occurrence of order-wise species richness of waterbirds in the study area.

Figure 4: Dendrogram showing dissimilarity in waterbird species richness and composition between studied river segments in the Chambal River between Kota barrage and Jawagar Sagar Dam, Rajasthan.

threatened Woolly-necked Stork *Ciconia episcopus*. Grey Heron *Ardea cinerea* and Black-crowned Night Heron *Nycticorax nycticorax* are the other two species observed with the nests.

It was observed that resident species dominate the bird community, similar to that of earlier studies reported from different parts of India (Verma 2008;

Nair & Krishna 2013; Kar & Debata 2019). In the present study, 33 resident waterbirds, constituting about 75% of the total recorded species from the study area were recorded. The remaining 25% were winter migrants. Generally, food availability, water levels, and habitat diversity are the essential factors determining the abundance and distribution of waterbirds (Saygili et

Image 1. Purple Heron. © Arun George.

Image 2. Baillon's Crake. © Arun George.

Image 3. Black-winged Stilt. © Arun George.

Image 4. River Tern. © Arun George.

Image 5. Great Cormorant. © Arun George.

Image 6. Common Moorhen. © Arun George.

al. 2011). Earlier studies have found that the Chambal River inhabits highly diverse fish fauna (Sivakumar & Choudhury 2008; Meshram 2010; Nair & Krishna 2013), which may be one of the reasons for the congregation of residents as well as wintering waterbirds.

The species richness, diversity, and abundance of waterbirds in the study area varied seasonally, and it

may be due to the movement pattern of long-distance migrants during winter and local migrants during summer. The Central Asian Flyway (CAF) is one of nine global waterbird flyways, where India serves as a destination for nearly 71% of the CAF's migratory waterbirds (Kumar 2019). Maintaining the health of Indian wetlands is thus critical for the survival of waterbird populations along

Image 7. Bronze-winged Jacana. © Arun George.

Image 8. Grey Heron. © Arun George.

Image 9. Great Egret. © Arun George.

Image 10. Indian Cormorant. © Arun George.

Image 11. White-browed Wagtail. © Arun George.

Image 12. Little Egret. © Arun George.

the Flyway. In India, the arrival of waterbirds occurs in October, and departure takes place in March (Kar & Debata 2019). Thus, the high species richness and abundance of the waterbirds encountered during pre-monsoon account for migrant waterbirds in the study area. Though the survey season was at the temporal end

of winter, few winter migratory species were observed during the surveys. Most wetlands usually dry during high temperatures, and resident waterbirds typically move to appropriate permanent water habitats (Balachandran et al. 2009). This might be the reason for the increase in the abundance of darters and cormorants in pre-monsoon.

Image 13. Lesser Whistling Duck. © Arun George.

Image 14. White-throated Kingfisher. © Arun George.

Image 15. Cinnamon Bittern. © Arun George.

Image 16. Red-wattled Lapwing. © Arun George.

Image 17. Black-crowned Night Heron. © Arun George.

Image 18. Indian Pond Heron. © Arun George.

The increase in local abundance of some resident birds, which possibly have migrated from nearby dried-up wetlands, was observed by Kar & Debata (2019). During the post-season, resident waterbirds are much more widely distributed due to the availability of wetland habitats and food resources (Kar & Debata 2019). Thus,

this might be the reason for the lowest species richness encountered in the study area in post-monsoon.

About 65.58% of the total waterbird species in the present study, as reported in earlier studies were recorded. Previous long-term studies by Verma (2008) reported 61 species, from the entire Rajasthan state. Vyas

Image 19. Common Sandpiper. © Arun George.

Image 20. Red-naped Ibis. © Arun George.

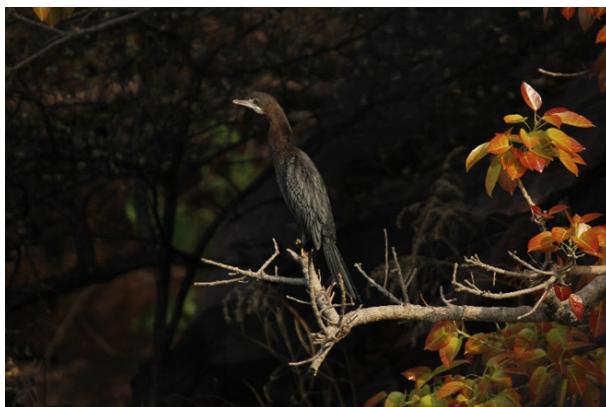


Image 21. Little Cormorant. © Arun George.

Image 22. Striated Heron. © Arun George.

Image 23. Woolly-necked Stork. © Arun George.

Image 24. Black Bittern. © Arun George.

(2006) studied the heronries of the Kota district alone and recorded 829 nests. Cattle Egrets and Cormorants were the most abundant species in his heronry study. Apart from these, we also witnessed the breeding activities of Grey Heron *Ardea cinerea*, Black-crowned Night Heron *Nycticorax nycticorax*, and Woolly-necked Stork *Ciconia*

episcopus in the study area. A total of 36 nests of Herons and five nests of Storks were observed in the Chambal River at Mukundra Hills National Park. Compared to an earlier study by Vyas (2006), the breeding activities of the Woolly-necked Stork, Grey Heron, and Night Heron are new additions to the heronries information

of the Kota district, Rajasthan. A recent study by Koli et al. (2019) observed the nesting association of Black-headed Ibis with some other waterbirds, whereas it was observed that the nesting activity of Herons and Stork was independent of each other.

From the study, it can be inferred that the Chambal River stretch flowing through the Mukundra Hills National Park is a potential congregation site for resident waterbirds in pre-monsoon. Moreover, the area supported the breeding of some resident waterbirds, including the 'Near Threatened' Woolly-necked Stork *Ciconia episcopus*. In the present study, we also recorded some of the migratory waterbirds. Though the study area falls under the well-protected stretch of the Chambal River, some levels of human disturbance were observed in the study area, such as illegal fishing and noise pollution from residents, which may potentially disturb the residing and migrant waterbirds. In addition, abandoned fishing nets and lines threaten the Chambal River bird community, specifically diving waterbirds. Thus, sensitizing the local community towards conserving waterbirds and their habitat is essential for the long-term conservation of waterbirds in the Chambal River.

REFERENCES

Aarif, K.M. & P.K. Prasadan (2014). Conservation issues of KVCR, the wintering ground and stop-over site of migrant shorebirds in southwest coast of India. *Biosystamatica* 8: 51–57.

Ali, S. & S.D. Ripley (1987). *Compact Handbook of the Birds of India and Pakistan Together with those of Bangladesh, Nepal, Bhutan and Sri Lanka*. Oxford University Press, Delhi, 737 pp.

Balachandran, S., P. Sathiyaselvam & S. Panda (2009). *Bird atlas of Chilika (1st edition)*. Bombay Natural History Society publication, Mumbai, 326 pp.

Bronmark, C. & L. Hansson (2005). *The Biology of Lakes and Ponds (2nd ed)*. Oxford University Press, New York, 285 pp.

Champion, H.G. & S.K. Seth (1968). *A Revised Survey of the Forest Types of India*. Manager of Publication, New Delhi, 404 pp.

eBird (2021). eBird: An online database of bird distribution and abundance [web application]. <https://www.ebird.org>. Electronic version Accessed on 12 June 2021.

Gopi, G.V. & S.A. Hussain (Eds.) (2014). *Waterbirds of India: ENVIS Bulletin on Wildlife and Protected Areas, vol 16*. Wildlife Institute of India, Dehradun, India, 368 pp.

Grimmett, R., C. Inskip & T. Inskip (2016). *Birds of the Indian Subcontinent: India, Pakistan, Sri Lanka, Nepal, Bhutan, Bangladesh and the Maldives*. Bloomsbury Publishing, London, 448 pp.

Hammer, Ø., D.A.T. Harper & P.D. Ryan (2001). PAST: Paleontological statistics software package for education and data analysis. *Paleaeontologica Electronica* 4: 1–9.

IMD (2021). Weather reports of Indian Meteorological Department, Ministry of Earth Sciences. <https://mausam.imd.gov.in/>. Electronic version Accessed on 27 January 2023.

Kar, T. & S. Debata (2019). Assemblage of waterbird species in an anthropogenic zone along the Mahanadi River of Odisha, eastern India: Implications for management. *Proceedings of the Zoological Society* 72(4): 355–363. <https://doi.org/10.1007/s12595-018-0276-9>

Khan, T.N. (2010). Temporal changes to the abundance and community structure of migratory waterbirds in Santragachhi Lake, West Bengal, and their relationship with water hyacinth cover. *Current Science* 99(11): 1570–1577.

Kumar, J.N., H. Soni & R.N. Kumar (2007). Patterns of seasonal abundance and diversity in the waterbird community of Nal Lake Bird Sanctuary, Gujarat, India. *Bird Populations* 8: 1–20.

Kumar, R. (2019). Wetlands and waterbirds in Central Asian Flyway: An overview of status, management and conservation priorities for India. *Journal of Governance* 18: 111–121.

Koli, V.K., S. Chaudhary & K.G. Sundar (2019). Roosting ecology of Black-headed Ibis (*Threskiornis melanocephalus*) in urban and rural areas of southern Rajasthan, India. *Waterbirds* 42(1): 51–60.

Mazumdar, S. (2019). Composition of avian communities in a human-modified wetland Okhla bird sanctuary, India: with notes on conservation initiatives. *Proceedings of the Zoological Society* 72(4): 319–333. <https://doi.org/10.1007/s12595-017-0239-6>

Meshram, P.K. (2010). Diversity of some fauna in National Chambal Sanctuary in Madhya Pradesh, India. *Biodiversitas* 11(4): 211–215.

Nagarajan, R. & K. Thiyyagesan (1996). Waterbirds and substrate quality of the Pichavaram wetlands, southern India. *Ibis* 138(4): 710–721.

Nair, T. & Y.C. Krishna (2013). Vertebrate fauna of the Chambal River basin, with emphasis on the National Chambal Sanctuary, India. *Journal of Threatened Taxa* 5(2): 3620–3641. <https://doi.org/10.11609/JOTT.03238.3620-41>

Pandian, J., S. Asokan & R. Nagarajan (2010). Habitat utilization and assemblage patterns of migratory shorebirds at stop-over sites in Southern India. *Stilt* 58: 36–44.

Praveen J., R. Jayapal, T. Inskip, D. Warakagoda, P.M. Thompson, R.C. Anderson & A. Pittie (2021). Checklist of the birds of the Indian subcontinent (v5.0). <https://www.indianbirds.in/indian-subcontinent/> Accessed on 29 March 2021.

Revenga, C., I. Campbell, R. Abell, P. De Villiers & M. Bryer (2005). Prospects for monitoring freshwater ecosystems towards the 2010 targets. *Philosophical Transactions of the Royal Society B: Biological Sciences* 360(1454): 397–413. <https://doi.org/10.1098/rstb.2004.1595>

Sandilyan, S., K. Thiyyagesan, R. Nagarajan & J. Vencatesan (2010). Salinity rises in Indian mangroves—a looming danger for coastal biodiversity. *Current Science* 98(6): 754–756.

Saygili, F., N. Yiğit & S. Bulut (2011). The spatial and temporal distributions of waterbirds in Lakes Akşehir-Eber and Lake Köyceğiz in western Anatolia, Turkey—a comparative analysis. *Turkish Journal of Zoology* 35(4): 467–480. <https://doi.org/10.3906/zoo-0911-99>

Sivakumar, K. & B.C. Choudhury (2008). Chambal River, Rajasthan: Importance of water flow and minimum water level in conservation of all trophic levels in different habitats and biodiversity. *Journal of Landscape Architecture* 19: 52–57.

Torre-Cuadros, M.D.L.A.L., S. Herrando-Perez & K.R. Young (2007). Diversity and structure patterns for tropical montane and premontane forests of central Peru, with an assessment of the use of higher-taxon surrogacy. *Biodiversity and Conservation* 16: 2965–2988. <https://doi.org/10.1007/s10531-007-9155-9>

Urban, M.C. (2004). Disturbance heterogeneity determines freshwater metacommunity structure. *Ecology* 85: 2971–2978. <https://doi.org/10.1890/03-0631>

Usher, M.B. (Ed) (1986). Wildlife conservation evaluation. Chapman and Hall, London, 394 pp.

Van der Valk, A.G. (2006). *The Biology of Freshwater Wetlands*. Oxford University Press, Oxford, 173 pp.

Verma, A. (2008). Occurrence and abundance of waterbirds at Bundh Barea reservoir, Bharatpur, north-western India. *Indian Birds* 4: 150–153.

Vyas, R. (2006). Spatial and temporal distribution of nests in a heronry. *Zoos' Print Journal* 21(8): 2339–2342. <https://doi.org/10.11609/JOTT.ZPJ.1452.2339-42>

Weller, M.W. (1999). Wetland birds: habitat resources and conservation implications. Cambridge University Press. <https://doi.org/10.1017/CBO9780511541919>

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dubai, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org

Articles

The past and current distribution of the lesser-known Indian endemic Madras Hedgehog *Paraechinus nudiventris* (Mammalia: Eulipotyphla: Erinaceidae)

– R. Brawn Kumar & Willam T. Bean, Pp. 25639–25650

Declining trends of over-summering shorebird populations along the southeastern coasts of Tamil Nadu, India

– H. Byju, H. Maitreyi, N. Raveendran & S. Ravichandran, Pp. 25651–25662

Seasonal changes in waterbird assemblages in Chambal River at Mukundra Hills National Park, Rajasthan, India

– Arun George, Megha Sharma, Kavin Duraisamy, P.C. Sreelekha Suresh, Bijo Joy, Govindan Veeraswami Gopi, S.A. Hussain & J.A. Johnson, Pp. 25663–25674

An updated checklist of the skippers (Lepidoptera: Hesperiidae) of Bhutan

– Karma Wangdi, Piet van der Poel & K.C. Sajan, Pp. 25675–25688

Conservation imperatives for swallowtail butterflies (Lepidoptera: Papilionidae): a case study in the north bank landscape of river Brahmaputra, Bodoland Territorial Region, India

– Kushal Choudhury, Pp. 25689–25699

The present state of leech fauna (Annelida: Hirudinea) in Dal Lake, Jammu & Kashmir, India

– Niyaz Ali Khan, Zahoor Ahmad Mir & Yahya Bakhtiyar, Pp. 25700–25711

First report of five monogonont rotifers from Jammu, J&K UT, India, with remarks on their distribution

– Nidhi Sharma, Sarjeet Kour & Aayushi Dogra, Pp. 25712–25719

Diversity of vascular epiphytes on preferred shade trees in tea gardens of sub-Himalayan tracts in West Bengal, India

– Roshni Chowdhury & M. Chowdhury, Pp. 25720–25729

Communications

Identification and chemical composition analysis of salt licks used by Sumatran Elephants *Elephas maximus sumatranus* in Tangkahan, Indonesia

– Kaniwa Berliani, Pindi Patana, Wahdi Azmi, Novita Sari Mastiur Manullang & Cynthia Gozali, Pp. 25730–25736

Occurrence of a female melanistic leopard *Panthera pardus delacouri* (Linnaeus, 1758) (Mammalia: Carnivora: Felidae) in Ulu Sat Permanent Forest Reserve, Machang, Kelantan, Peninsular Malaysia from camera traps reconnaissance survey 2023

– Wan Hafizin Idzni Wan Mohammad Hizam, Muhammad Hamirul Shah Ab Razak, Hazizi Husain, Aainaa Amir & Kamarul Hambali, Pp. 25737–25741

Diversity and distribution of large centipedes (Chilopoda: Scolopendromorpha) in Nui Chua National Park, Vietnam

– Son X. Le, Thinh T. Do, Thuc H. Nguyen & Binh T.T. Tran, Pp. 25742–25747

Diversity of butterfly habitats in and around Udanti-Sitanadi Tiger Reserve, Chhattisgarh, India

– H.N. Tandan, Gulshan Kumar Sahu, Kavita Das, Gulab Chand, Ravi Naidu & Ramanand Agrawal, Pp. 25748–25757

A short-term impact of enriched CO₂ [eCO₂] on select growth performance of *Spodoptera littoralis* (Boisd.) (Lepidoptera: Noctuidae) and its host plant *Gossypium barbadense* L. (Malvaceae)

– A.A. Abu ElEla Shahenda & Wael M. ElSayed, Pp. 25758–25764

Diversity and distribution of springtails (Collembola) from Jharkhand, India

– Koushik Kumar Roy, Guru Pada Mandal & Kusumendra Kumar Suman, Pp. 25765–25773

Short Communications

Lindernia tamilnadensis (Linderniaceae) from Indo-Gangetic plains: no more endemic to the Deccan

– Umama Khan, Revan Yogesh Chaudhari, Bhupendra Singh Adhikari, Syed Ainul Hussain & Ruchi Badola, Pp. 25774–25778

Discovery of a new *Myristica* swamp in the northern Western Ghats of India

– Pravin Desai, Vishal Sadekar & Shital Desai, Pp. 25779–25786

Note

Ophioglossum jaykrishnae S.M.Patil et al. (Pteridophyta: Polypodiophyta: Ophioglossaceae): a new distribution record from Kanha National Park, Madhya Pradesh, India

– Tarun Nayi, Mayur Bhagwat, Sanjay Saini, Soham Haldikar, Ishtayaque Patel, Shivaji Chavan, Nudrat Zawar Sayed & Sunil Kumar Singh, Pp. 25787–25790

Publisher & Host

Threatened Taxa