

Building evidence for conservation globally
**Journal of
Threatened
TAXA**

Open Access

10.11609/jott.2022.14.11.22039-22206

www.threatenedtaxa.org

26 November 2022 (Online & Print)

14(11): 22039-22206

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641035, IndiaPh: +91 9385339863 | www.threatenedtaxa.org

Email: sanjay@threatenedtaxa.org

EDITORS**Founder & Chief Editor****Dr. Sanjay Molur**Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),
12 Thiruvannamalai Nagar, Saravanampatti, Coimbatore, Tamil Nadu 641035, India**Deputy Chief Editor****Dr. Neelesh Dahanukar**

Noida, Uttar Pradesh, India

Managing Editor**Mr. B. Ravichandran**, WILD/ZOO, Coimbatore, India**Associate Editors****Dr. Mandar Paingankar**, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India**Dr. B.A. Daniel**, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India**Editorial Board****Dr. Russel Mittermeier**

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinahalli PO, Nilgiris, Tamil Nadu 643223, India

Dr. Martin Fisher

Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2019–2021****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinando Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Kadoorie Farm and Botanic Garden Corporation, Hong Kong S.A.R., China**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantpur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjani Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasimhan**, Botanical Survey of India, Howrah, India**Dr. Larry R. Nobile**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Baños, Laguna, Philippines**Dr. P.A. Sinu**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. Navendra Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of Natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, Bangladesh**Mr. Jatishwar Singh Irungbam**, Biology Centre CAS, Branišovská, Czech Republic.**Dr. Ian J. Kitching**, Natural History Museum, Cromwell Road, UKFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Mugger Crocodile basking on the banks of Savitri River at Mahad in Maharashtra, India. © Utkarsha M. Chavan.

Population trends of Mugger Crocodile and human-crocodile interactions along the Savitri River at Mahad, Maharashtra, India

Utkarsha Manish Chavan¹ & Manoj Ramakant Borkar²

¹ Department of Zoology, Hazarimal Somani College, Chowpatty, Mumbai, Maharashtra 400007, India.

² Biodiversity Research Cell, Department of Zoology, Carmel College of Arts, Science & Commerce for Women, Nuvem, Goa 403604, India.

¹ utkarsha6829@gmail.com, ² borkar.manoj@rediffmail.com (corresponding author)

Abstract: In this paper, we report monitoring of a resident population of Mugger Crocodile *Crocodylus palustris* (Lesson, 1831) along a stretch of 3.5 km of the river Savitri on the outskirts of Mahad town of Raigad District in Maharashtra, on monthly basis from 2014 to 2021. This river is increasingly becoming a sink of anthropogenic wastes emerging from adjacent settlements impacting its habitat value, and puts the reptile side by side with humans and human-wastes that could be a cause of rising incidents of crocodile mortality in the recent times here, as also reported from elsewhere. Savitri River has been a fishing ground for local indigenous communities, who also use the river bank for washing clothes and utensils, and for swimming. Such proximity between people and crocodiles creates a potential for negative interaction. This long term study monitored the Mugger population trends for the last eight years at four transect stretches along the river. Counts are suggestive of a healthy viable population of Mugger in this river currently, but a future conflict situation cannot be ruled out. Being generalist feeders, Muggers can sustain themselves on fish, and scavenge on dumped carrion and other anthropogenic organic wastes. With the exception of a few sporadic incidents of aggression by the Muggers at this location, no human casualties have been reported thus far, however, this does not rule out fatal reciprocal interactions in future and hence a few practical mitigation measures have been suggested.

Keywords: Encounter frequency, indigenous community, negative human-mugger interaction, relative density, size-classes, spill over.

Marathi abstract: या शोधनिवारत, आमी महाराष्ट्रातील रायगड जिल्ह्यातील महाड शहराच्या सीमेवरील सावित्री नदीच्या ३.५ किमी. च्या पट्ट्यात अधिवास असलेल्या क्रोकोडायलस पॅलुस्ट्रिस (लेसन, १८३१) मगरीच्या संख्या निरीक्षणाचा २०१४ ते २०२१ हा कालावधीसाठीचा मासिक अहवाल सादर करीत आहोत ही नदी, काठावरील मानवीय वाढाहीमधून सतत बाहेर पडणाऱ्या मानववर्गीय घनकचरा व सांडपाण्याने प्रदूषित होत आहे आणि तिच्या परिस्थितीकीच्या मूल्यावर प्रतिकुल परिणाम झाला आहे, त्या मुळे इथर्या मगरी मुरुभायाच्या सांप्रिध्यात तसेच मानवनिर्मित प्रदूषक घटकांच्या संपर्कात येतात, आणि हेच येथील मगरीच्या मूल्याच्या वाढत्या घटनांचे कारण असू शकते. सावित्री नदी व तिचा काठ हे इथे वासव्यास असलेल्या उपेक्षित काठाठोडी समुदायांसाठी मासेमारीचे ठिकाण आहे, जे नदीचा वापर कपडे-भांडी धूण्यासाठी आणि पोहण्यासाठी करतात. अलीकडील काळात लोक आणि मगरी यांच्यातील अशा समीपतेमुळे मानव-वयप्राणी संरेष्ट होण्याची शक्यता निर्माण होते आहे. या दीर्घकालीन संशोधनानंतरीत मगरील आठ वर्षात नदीच्या पात्रात तसेच काठावरील चार निरीक्षण पट्ट्यात मगरीची सांख्यिक गणना केली गेली. सध्या या नदीत मगरीची संख्या व्यवहर्य आणि शाश्वत आहे असे सूचित होते, परंतु भविष्यात संघर्षाची परिस्थिती नाकारता येत नाही. अमुकच वैशिष्ट्यपूर्ण आहाराची गरज नसल्या मुळे मगरी नदीच्या प्रातोतील मारेये, तसेच इथे टाकलेल्या मानवनिर्मित सैंद्रिय पोषक घटकांचे भक्षण करून आपली पोषणपूर्णी करतात. इथत्या अवघ्या काही आक्रमक मगरीच्या तुरळक घटनांचा अपवाद वगळता, मानवी जीववानीच्या घटनांची इथे अजून तरी नोंद झाली नाही. तपापि, भविष्य काळात मगर व माणूस ह्या दोन प्रजातीं मधील परस्पर घातक संबंध नाकारता येणार नाही, आणि म्हणून त्यावर काही व्यावहारिक संरेष्ट-शमन उपाय सुचवते गेले आहेत.

Editor: Perran Ross, University of Florida, Gainesville, USA.

Date of publication: 26 November 2022 (online & print)

Citation: Chavan, U.M. & M.R. Borkar (2022). Population trends of Mugger Crocodile and human-crocodile interactions along the Savitri River at Mahad, Maharashtra, India. *Journal of Threatened Taxa* 14(11): 22118-22132. <https://doi.org/10.11609/jott.7934.14.11.22118-22132>

Copyright: © Chavan & Borkar 2022. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: Self-funded.

Competing interests: The authors declare no competing interests.

Author contributions: UTKARSHA MANISH CHAVAN is an asst. professor of Zoology at Bharatiya Vidya Bhavan's Hazarimal Somani College, Chowpatty, Mumbai, India; and has participated in field studies on wildlife of Australia and India. She has also volunteered at The Madras Crocodile Bank Trust and Centre for Herpetology, TN. MANOJ RAMAKANT BORKAR has made seminal contribution to Goa's faunal diversity inventories. His research on the conservation status of Mugger Crocodile in Goa was recognized by the Crocodile Specialist Group of the IUCN. Presently he is a senior faculty at the Department of Zoology at Carmel College for Women, Goa.

Author contributions: UMC has planned and conducted field studies, photo-documentation, and data collation, assisted in analysis and literature survey. MRB has conceptualized the study, supervised field work, analyzed and interpreted the collated data, and written and revised the manuscript.

Acknowledgements: UMC gratefully acknowledges sustained field assistance by Khushboo Chavan, Umesh Awadootha, Riyazuddin Shaikh, Sana Khan, Aawesh Khan, and Mubin Khalfe. Assistance in graphical data presentation is attributed to Manish Chavan, Pratiksha Sail, and Sudhir Metkar.

INTRODUCTION

From the global count of 27 crocodilian species (Hekkala et al. 2011; Shirley et al. 2013, 2018; Murray et al. 2019; Stevenson 2019), India is a home to three. Among the three Indian crocodilian species, Mugger or Marsh Crocodile *Crocodylus palustris* Lesson, 1831 is the one with a wide distribution across the Indian peninsula, either as isolated populations or communal aggregations in estuarine and riverine ecosystems (Deraniyagala 1939; Whitaker & Whitaker 1989; Da Silva & Lenin 2010). It is distinguished by its morphology, morphometry, and ethology from the other two species, viz., Salt Water Crocodile *Crocodylus porosus* Schneider, 1801 residing along the shoreline of eastern India and the Gharial *Gavialis gangeticus* Gmelin, 1789 restricted to northern part of the Indian subcontinent. Once common in its range from eastern Iran to Bangladesh and down south to Sri Lanka; the Mugger populations declined drastically due to hunting for meat and hide trade, besides nest predation and poaching. Additionally, changes in land-use and other incompatible encroachments led to shrinking and loss of crocodile habitats in the country. From 1975 to 1982, the species recovery efforts through in situ and ex situ interventions by Government of India under UNDP/FAO direction and thereafter conservation action by NGOs and private individuals have helped the Mugger to recover across its Indian range (De Vos 1984). Interestingly, many former habitats having been repopulated, spillovers have begun leading to conflict situations (Distefano 2008; Pooley 2016). Also, the international (CITES-I listed, IUCN Vulnerable category) and country legislation (IWPA Schedule-I) having accorded a protected status to the reptile, have paid rich dividends to crocodile conservation in India. The expanding demography of a populous country like India has been a major driver of crocodilian habitat degradation, and also brings people in dangerously close proximity to these opportunist predators residing in rivers, tanks, dams and irrigation ponds (Wolch 1996; Kochery 2018).

Though temperamentally *Crocodylus palustris* is believed to be more tolerant of people than its salt water counterpart, and that it is supposedly not a frequent man-eater (Daniel 2002; Sidaleau & Britton 2012), is no guarantee of safety to people who share the habitat with this reptile. CrocBITE reports that between 2008 and 2013, 110 people were attacked by Muggers, out of which approximately one-third of those attacks were fatal for the victims (CrocBITE: Worldwide Crocodilian Attack Database). These numbers though not very

large, provide evidence of the potential hazard and conflict. In shared habitats potential negative Human-Crocodile interactions emerge inevitably. Literature on Human-Crocodile Conflict reveals conflict situations across the Mugger habitats in Indian states of Goa, Maharashtra, Madhya Pradesh and Gujarat (Borkar et al. 1993; Whitaker 2008; Rao & Gurjwar 2013; Upadhyay & Sahu 2013; Vasava et al. 2015). Identifying such conflict locations and mitigating a potential conflict is a key to sustained in situ conservation of this species in India (Distefano 2008; Das & Jana 2017).

Despite the perceived threat from crocodiles, until recently it was held that these reptiles are top predators and keystone species, and perform an important role in maintaining the structural and functional integrity of freshwater ecosystems (Thorbjarnarson 1992; Ross 1998; Leslie & Spotila 2001; Glen et al. 2007). In absence of evidence-based justification, these attributions have been questioned recently (Somaveera et al. 2020). Data presented in this paper is a part of long term monitoring of Muggers of Savitri River, which flows through Mahad in Raigad District of Maharashtra in India. Since the objective of this study was to measure Mugger abundance over time, their encounter frequency has been considered.

Besides analyzing the population trends; potential human-crocodile interaction interface at four fixed stretches along the riparian habitat were examined and mitigation measures suggested with a view to change the potential negative interactions into coexistence.

METHODOLOGY AND FIELD PROTOCOLS:

Environmental setting of the river Savitri

Savitri River originates on the crest of Western Ghats in Mahabaleshwar hills and flows towards the west through Raigad District and eventually meets Arabian Sea at Harihareshwar in Maharashtra State, India. Where the river takes a sudden turn towards Mahad is a tidal zone. Out of the total 2,899 km² of water catchment area of Savitri basin, about 2,513 km² area is in Raigad District. The Savitri River basin lithologically belongs to Deccan Trap formation of upper Cretaceous to lower Eocene. The climate of the basin is typical of west coast and characterized with plentiful and regular seasonal rainfall, oppressive weather in summer and high humidity throughout the year. The Savitri basin bears deciduous and evergreen type natural vegetation.

Initial survey

Before the commencement of the long term survey, a pilot survey was conducted at day time during low tide

to determine river conditions such as access to a boat ramp, location of barriers, water depth; all with a view to streamline the nocturnal spotlight survey without compromising on safety. Given that crocodile densities vary within river stretches (Fukuda et al. 2007, 2011), four separate survey stretches with different start and finish points were fixed. During a given survey the adjacent sample stretches were surveyed on consecutive nights, to reduce the possibility of crocodiles moving between sections.

Survey planning

The start and end points of each of the four survey sections have been fixed between the months and over the years, because crocodile abundance and distribution along a river varies over time and space (Fukuda et al. 2007). To minimize the influence of seasonal changes in temperature and water level that affect crocodile behaviour (Webb 1991), repeated surveys over years were conducted every month, ideally within the same week period, however the exact date and time of a survey was decided on the basis of the tide. All crocodile population enumeration surveys were carried out during ebbing at night.

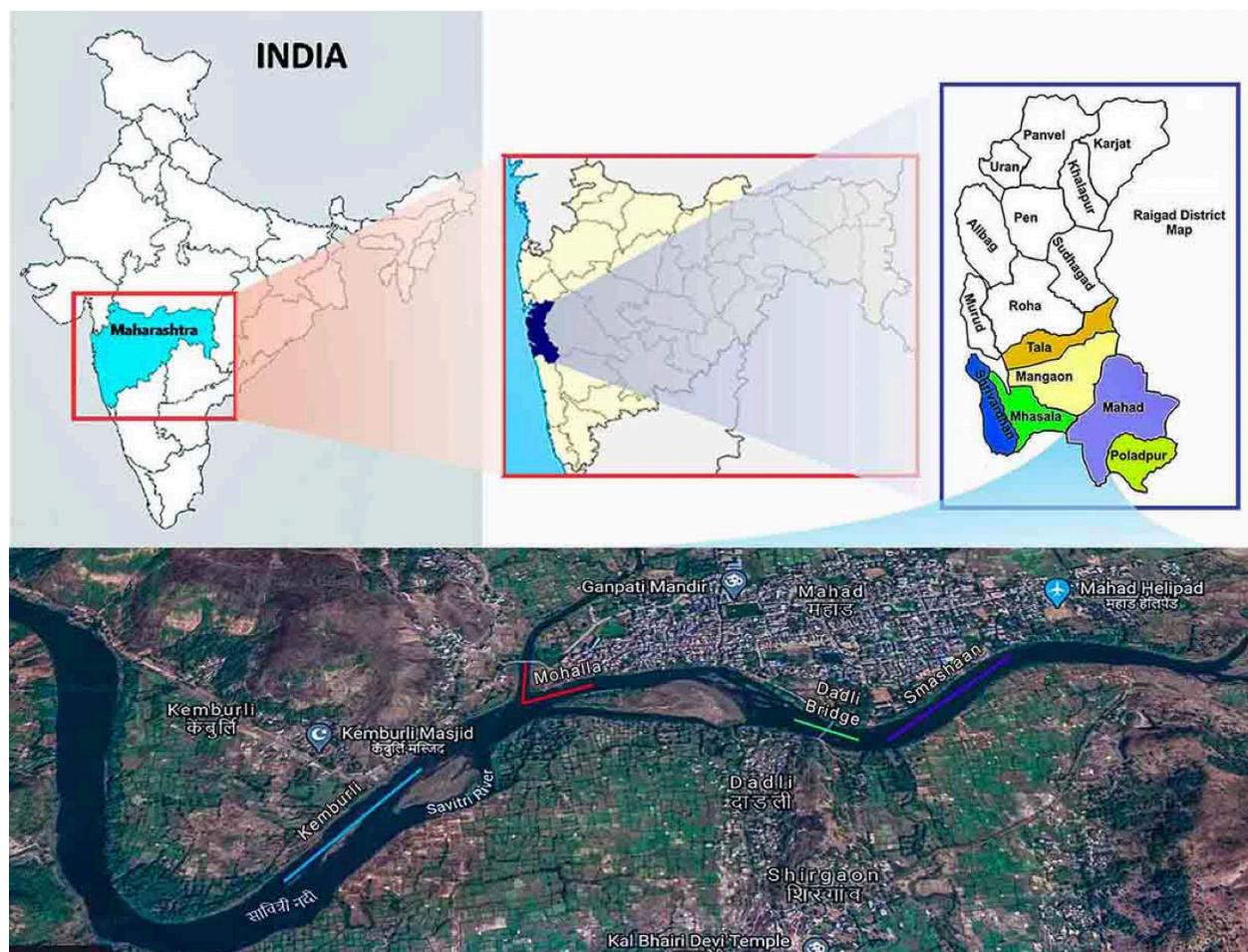
Due consideration was given to the fact that during winter, crocodiles choose to stay in relatively warm waters and can be easily spotted; while in summer they preferred to bask on banks or rest in the bank vegetation and hence making sighting difficult. Surveys always proceeded from down-streams to up-streams and the average speed of boat cruising in the river was 8–10 km per hour. Fixed tasks were assigned to boat driver, spotter and data recorder during every survey.

Crocodile Spotting

The spotter scanned water surface, water edges, banks and vegetation by shining a torch held near eye level standing at the advancing end of the boat. The light was shone in a zigzag manner from one bank of the river to the other to catch the eye-shine of a crocodile.

The study area is a stretch of the river flowing on the outskirts of Mahad city limits. The observation area starts from Kemburli to Smashaan, a distance of 3581m which is divided into four sampling transects totaling 3.248 km; namely Kemburli, Mohalla, Dadli, and Smashaan (Image 1). Each of these transects differed in their habitat attributes and topography as tabulated (See Table 1 & Image 3)

The data presented here has accrued from monthly reconnaissance visits from 2014 to 2021, along a 3.5 km stretch of river Savitri at four fixed transects, viz.,


Kemburli along Mumbai–Goa Highway (18.0661°N; 73.4138°E), Mohalla near Gandhari River bridge (18.0725°N; 73.4188°E), Dadli on both sides of Dadli Bridge (18.0697°N; 73.4311°E), and Smashaan including Vaikuntha Bhumi near Prabhat colony (18.0669°N; 73.4411°E) (Image 1). Population estimates were based on nocturnal flash count or spot light survey (Fukuda et al. 2012) carried out on monthly basis in identified fixed sampling transects along the river. Since the objective of this study was to monitor the population of Muggers over time, Index of Relative Abundance was calculated based on frequency of sightings. Foot surveys were conducted for studying crocodile behavior and habitat attributes.

At all times observations were made from optimal distances for safety of field crew as well as to avoid breaching the Mugger's basking territory on the river banks, as also in water. Observations were recorded from 0700 to 2100 h. The sizes of Muggers were approximated visually by the same team of observers, based on the reported constant ratio of head length to total length (1:7), and that it changes little across size classes in many crocodilians species including the Mugger (Verdade 2000; Wu et al. 2006; Whitaker & Whitaker 2008; Mobaraki et al. 2021). This value in inches was converted into feet with one inch equaling one foot and was found to be matching with total body length. Only in the months of April 2020 and 2021 the count included hatchlings (up to 0.3 m) at Smashaan; rest at all times the number is of juveniles (<1 m), sub-adults (1–2 m), and adults (>2 m). Species-specific indirect evidences included documentation of fecal pellets, tunnels, tracks or trails and shell fragments of hatched eggs. Regular interactions with locals were held and their narratives recorded. Photo-documentation was accomplished with Digital and DSLR cameras (Nikon P 900 – Digital and Canon 1200 D–DSLR).

OBSERVATIONS AND DISCUSSION

A. Mugger population dynamics in Savitri River, Mahad

The Crocodilian species inhabiting the Savitri River was confirmed to be the Mugger based on presence of the quintessential row of four post-occipital scutes preceding the nuchal scutes (see Image 2B); and also its biometry was found commensurate with the species recorded data. The Mugger population of this habitat was observed and monitored over a linear distance of about 3,581 m of river Savitri meandering along the

Image 1. Geographic locations of the four transect stretches along the river Savitri of Mahad in Raigad District of Maharashtra, India.
 Kemburli, Mohalla, Dadli, Smashaan

outskirts of Mahad town; the four transect stretches being Kemburli, Mohalla, Dadli and Smashaan. The first observation site is close to Goa–Mumbai Highway, whereas the last observation station is a Hindu crematorium ground of adjacent residential area. The Mugger encounter frequency dominance across the four sample transects was Smashaan >Kemburli >Dadli >Mohalla (Figure 2A,B), with maximum counts recorded at Smashaan. Such preponderance at Smashaan may be attributed to this site meeting requirements of basking grounds as also with the right slope for easy movements in and out of waters.

The general age class hierarchy of Muggers in this river at all four sites was adults >sub-adults >juveniles. The average annual percentage of different size-classes representing different age groups in the Muggers encountered at the four transects during the entire study period has been tabulated (Figure 1).

The counts have been based on sightings, numbers generally peaking during the summer months; except at

Mohalla where more sightings were recorded towards the end of monsoons. The lesser counts were obtained during high water levels and monsoons; and in the latter case could be because of clouded skies when these reptiles withdraw from regular basking sites to backwaters with abundant fish resources, a view that has been corroborated by Smith (1979). The enumeration shows a progressive trend between 2014 till the end of 2021, with highest count of 155 individuals inclusive of hatchlings recorded at Smashaan in April 2020 (Figure 2A).

The preferential residence and basking in Smashaan area leading to higher counts could be attributed to greater fish stocks in the productive waters as can be seen from the basket catch of the fisher folks here, more foraging opportunities on these banks due to anthropogenic organic wastes, and optimal basking sites here. Such a possibility has been corroborated previously by Singh (1993). Despite being a severely disturbed site, that Smashaan is preferentially occupied

Table 1. Sample transects and their habitat attributes.

Sampling transect of the river	Linear distance (in m)	Latitude & Longitude	Depth of water in dry season in feet	Slope of the bank (land to river)	Bank zone character	Predominant flora in riparian bench
Kemburli	1134.81	18.066°N; 73.4138°E	05-25 feet	-35° to -80°	Muddy shoreline interspersed with gravel	<i>Typha angustifolia</i> , <i>Ficus benghalensis</i> , <i>Ficus glomerata</i> , <i>Ficus religiosa</i> , <i>Abelmoschus manihot</i> , <i>Celosia argentea</i> , <i>Alternanthera sessilis</i> , <i>Amaranthus spinosus</i>
Mohalla	771.48	18.0725°N; 73.4188°E	15-25 feet for Savitri and 10-15 feet for Gandhari	-13° to -15°	City side Muddy and opposite side Gravelly	<i>Cassia fistula</i> , <i>Ricinus communis</i> , <i>Amaranthus spinosus</i> , <i>Alternanthera sessilis</i>
Dadli	446.07	18.0697°N; 73.4311°E	35-45 feet	-17° to -22°	Muddy	<i>Cleome viscosa</i> , <i>Clitoria annua</i> , <i>Clitoria ternatea</i> , <i>Colocasia sp.</i> , <i>Cyathoclone purpurea</i> , <i>Datura sp.</i> , <i>Ipomoea campanulata</i> , <i>Ipomoea hederifolia</i> , <i>Malachra capitata</i> , <i>Parthenium hysterophorus</i> , <i>Urena lobata</i>
Smashaan	896.45	18.0669°N; 73.4411°E	5-20 feet	-37° to -42°	Muddy with boulders along shore line	<i>Ficus benghalensis</i> , <i>Ficus glomerata</i> , <i>Ficus religiosa</i> , <i>Morinda pubescens</i> , <i>Morinda tomentosa</i> , <i>Mucuna pruriens</i> , <i>Floria vitifolia</i>

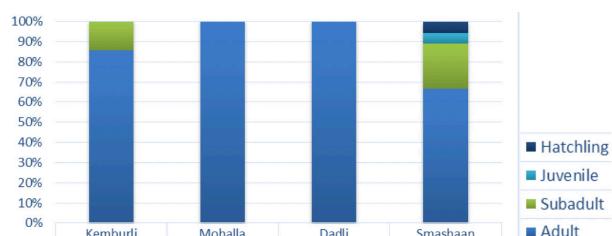


Figure 1. Average annual percentage of various size-classes in Mugger population at each of the four transects (Kemburli, Mohalla, Dadli and Smashaan) in river Savitri from 2014 to 2021. The measurements are in meters which include hatchlings (up to 0.3 m), juveniles (<1 m), sub-adults (1–2 m), and adults (>2 m).

by Mugger is not unusual, given that it is a ‘disturbance adapted’ species and can thrive very well despite all adverse influences on its habitat (Choudhary et al. 2018).

Discussions with locals suggest that Muggers have been thriving in this river since 1998, when a breeding pair from a private custody of a hobbyist was released at Smashaan area of the river Savitri (Salunkhe Yashwant pers. comm. 2014).

Population size of a species in a defined area provides the information needed to measure ecological change (Thompson 2002) and offers insights about the conservation status of the species (Lettink & Armstrong

2003). A time-series data as accrued here provides insight into the conservation future of this species. Based on the long term data (2014–2021) the population trajectory inferred from encounter frequency and relative density recorded at the four sample transects in this investigation indicate no risk to this viable Mugger population here at present; though a few stochastic oscillations are evident towards April 2020, attributable to a wide range of natural and anthropogenic factors operating here. Nonetheless, these overall trends in relative abundance have a conservation context, since they have been based on four data sets over a period of eight years infusing precision and eliminating potential biases (Holmes 2001; Holmes et al. 2007; Connors et al. 2014). From the view point of conservation future of this Mugger population it is crucial to take into account the age group structure of this population. The average annual percentage of various size-classes in the population over a period of eight years indicate that the number of adults is more as compared to that of sub-adults and juveniles. Such a trend implies a likely ‘recruitment deficit’ and a probable decline of this population in near future.

Given the deteriorating habitat conditions, there is a possibility that individuals of this population could spill-over into adjacent settlement areas in near future. Crocodilian populations are not randomly distributed

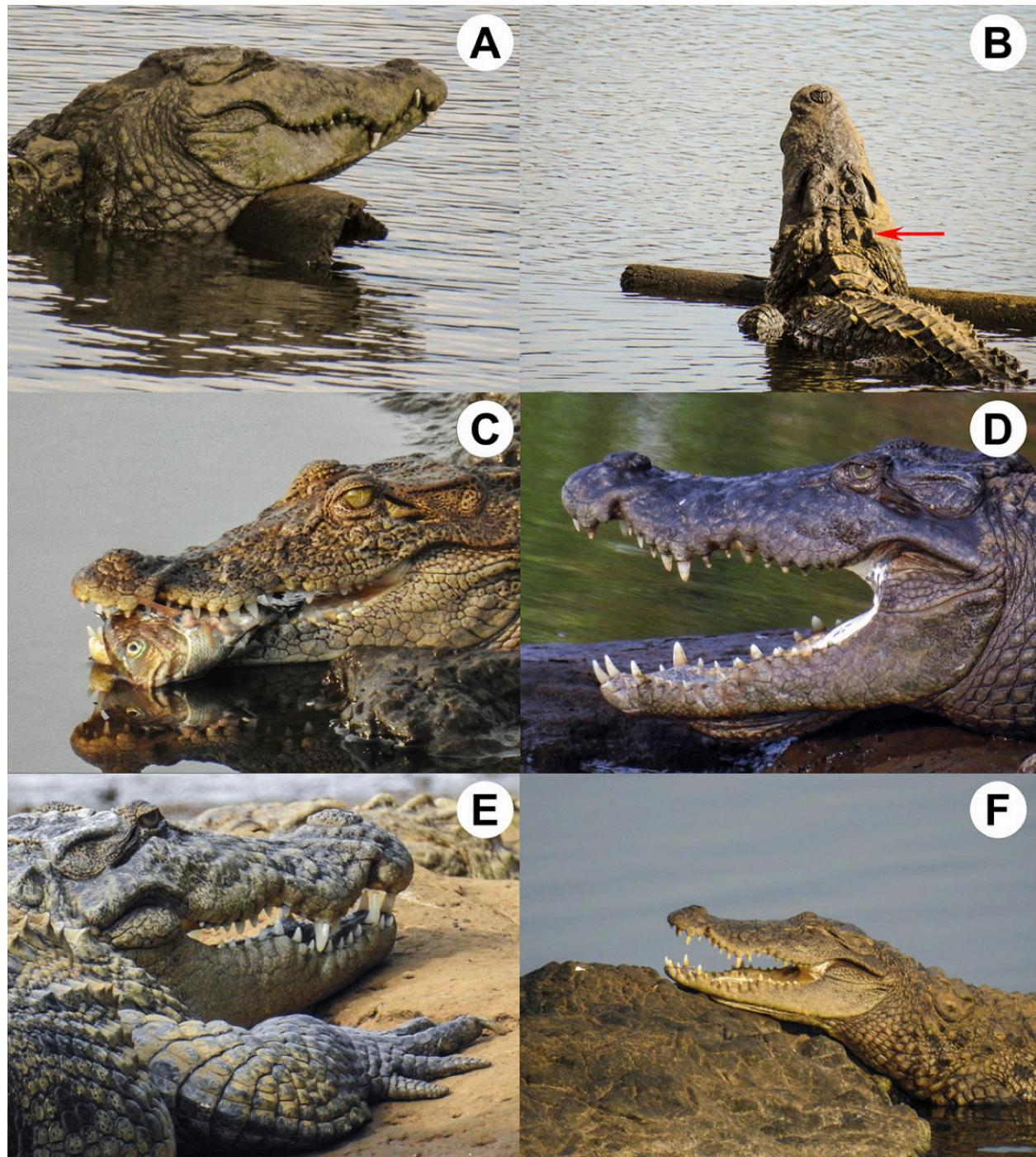


Image 2 (A–F). Mugger Crocodiles *Crocodylus palustris* Lesson, 1831 in the river Savitri at Mahad. Note the snout character (A–C), dentition (D–F) and post-occipital scutes (B) of diagnostic value in specific taxonomy. © Utkarsha M. Chavan.

because they have a tendency to cluster together over smaller areas as observed in this study. Therefore, striving for theoretical distributions in crocodile populations as a means of describing dispersion may not be appropriate (Balaguera-Reina et al. 2018).

Also, a bias in the population size estimation is that

the mean number of animals seen in a survey series will always be below the actual number of individuals present if there is no way to identify each individual (Southwood & Henderson 2003).

B. Muggers and indigenous communities of Mahad:

Modern approach of wildlife management consider people as integral in the habitat of wild animals, and further that such communities which share territory with wildlife influence their spatial use of the habitat, as well as overall eco-dynamics. Further, it is accepted that the attitudes of such communities determine the present status as well as conservation future of this wildlife (Patel et al. 2014; Mir et al. 2015; Hariohay et al. 2018).

The river resources like water and fish are shared by the crocodiles, people and their livestock that makes this riverine ecosystem vulnerable to anthropogenic stressors, and also point to Human-wildlife competition (Image 4). The river Savitri at Mahad is not only a crocodilian habitat but also offers subsistence fishing to the indigenous 'Katkari' or 'Kathodi' communities, who go into the waters for fishing and clam collection regardless of Muggers floating around them (Image 4A–C).

The Katkari community regularly fish in Mugger-infested waters of Savitri (Image 4A–C) raising chances of human-crocodile interaction. Major anthropogenic activities here are water extraction, bathing and washing (Image 4D), livestock grazing on the river bank (Image 4E), sewage water discharged in river (Image 4F), open air defecation along the banks (Image 4G), and cremation wastes' run-off (Image 4H), dumping of animal carcasses (Image 4I), burning of urban wastes dumps along the river bank (Image 4J). Carcass of a juvenile Mugger (Image 4K) and Mugger basking near gunny bag full of waste were also observed during our surveys (Image 4L).

The Mugger population here seems to have been conditioned to human presence, as long as their private space is not violated; and there is admirable level of tolerance between people and the crocodiles. The native community here seems to be at ease with the crocodiles floating dangerously close to them in their precarious fishing grounds in the river, perhaps due to a keen understanding of the reptile's behaviour and know how not to elicit their aggression. As 'river people' elsewhere in southeastern Asia, they associate the crocodilian habitats with good fish stocks and their relationship with the reptile is a mix of vigilance and veneration (Gonzales et al. 2013; Bucol et al. 2014). Such unusual closeness of humans to the potentially dangerous reptile has also been reported of the indigenous people of Philippines, for whom the crocodile is a totemic species (Mangansakan 2008). The fishing communities of Mahad, do not have any pagan rituals unlike the

'Manne Thapnee' or crocodile worship practiced by the *Gawdas* of Goa who live along the Cumbarjua canal, a Mugger habitat of Goa (Borkar & Mallya 1992), or the Mogri tribals of Gujarat (Fisher & Shah 1971).

C. Ecological Integrity and impact on Mugger habitat in Savitri at Mahad

To ensure conservation future of crocodiles, their habitat integrity is a prerequisite (Vyas & Vasava 2019). Present investigation also has laid emphasis on identifying the drivers of crocodilian habitat deterioration and loss. The river front is regularly subject to erosion and accretion due to seasonal changes in hydrodynamics. In some stretches the Muggers excavate tunnels as heat shelters, rest and nest (De Silva 2016).

Regrettably, the civic authorities have been using this stretch of the river as a sink of urban wastes, dumping huge quantity of unsorted wastes posing threat to the health of this riverine ecosystem. Often during the night-counts, Muggers were seen navigating their way through heaps of litter. Already the river banks at multiple destinations are smothered with mounds of wastes which deprive the Muggers of their basking sites. Though the Mugger is a 'disturbance-adapted' species and can thrive very well despite all adverse influences on their habitat (Choudhary et al. 2018); loss of basking sites can result in abandoning the territory by the reptile (Venugopal & Prasad 2003) further heightening the possibility of a mutually negative interaction between humans and the reptile. Also, these litter dumps are often burnt in the open causing air pollution and the residue ends up in the water, contaminating it (Image 4J).

Sewage from adjacent settlement is also being released in the river (Image 4F) presumably impacting the water quality and altering its hydrochemistry that could be detrimental both to this apex predator as also its aquatic prey-base. In fact on a few occasions dead Mugger juveniles and adults have been found floating in the waters or stranded on the banks (Image 4K & 5C). In absence of any wildlife forensic facility in Mahad, however, the cause of mortality cannot be conclusively established. At Smashaan particularly during the monsoons; the human cremation wastes including ash often drain into the waters (Image 4H). Also, the locals dump the carcasses of livestock (Image 4I) into the river adding to the load of oxygen demanding organic wastes. Regular use of river banks for open air defecation by the impoverished local communities in absence of sanitary facilities adds human wastes to this water body where people also fish (Image 4G).

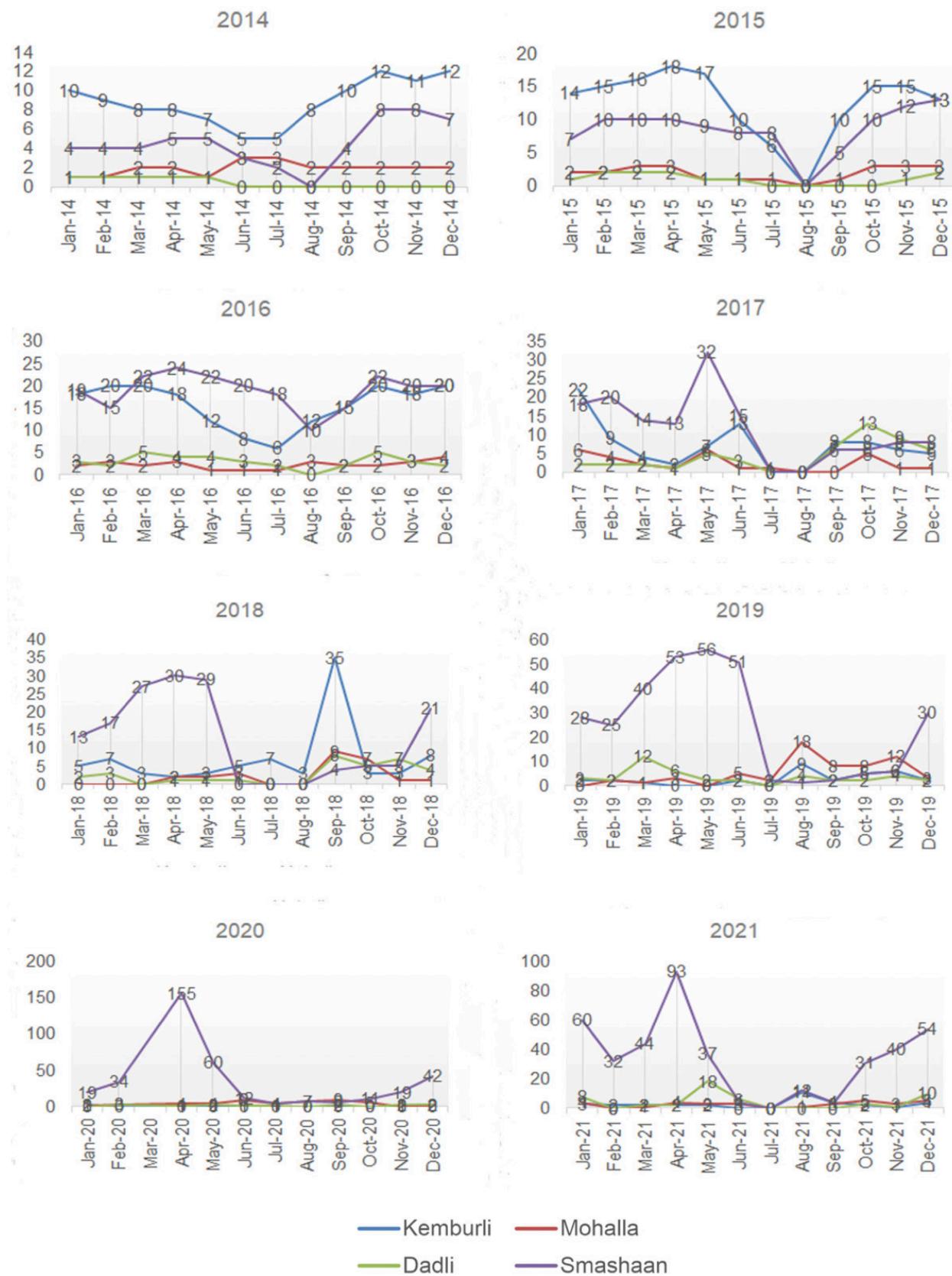
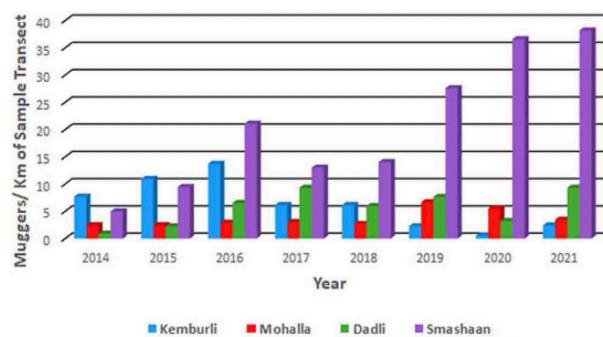


Figure 2A. Encounter frequency of Muggers at four sample transects of river Savitri, Maharashtra, India, from 2014 to 2021.

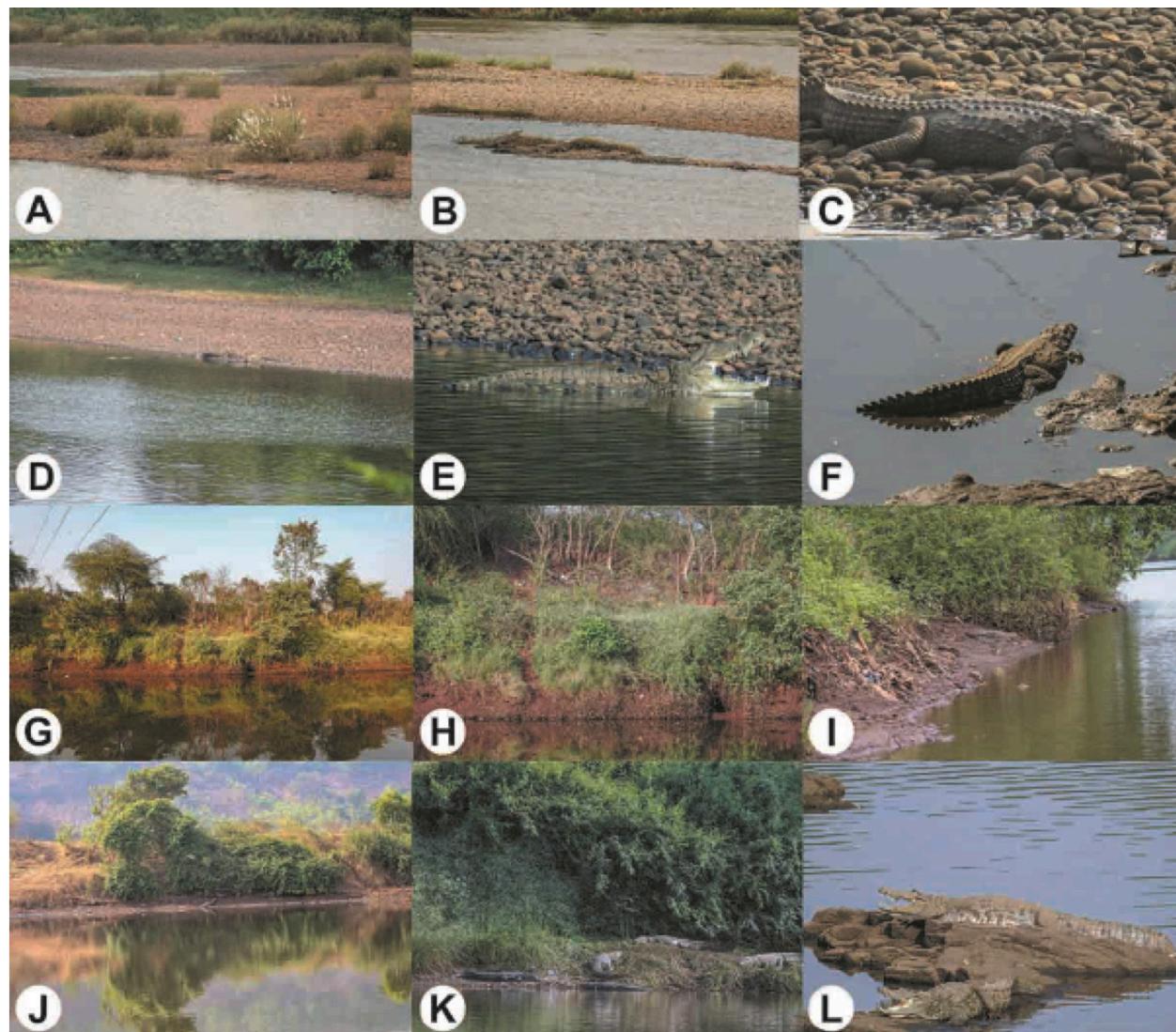

Table 2. Quantification of impacts on Savitri River banks at four locations [- Nil, + Low, ++ Moderate, +++High].

Station		Anthropogenic Impact				
		Garbage Dumping	Boating/ Movement of People	Fishing	Washing, Bathing etc.	Carcass Dumping
1	Kemburli	++	+++	+++	-	+
2	Mohalla	++	+++	+++	+	++
3	Dadli	-	+++	+++	++	++
4	Smashaan	+++	+++	+++	+++	+++

From the foregoing observations it is clear that the quality of crocodilian habitat along the Savitri River is precarious. Quantification of impacts at the four locations along the river front has been tabulated (Table 2). It is an established tenet in Conservation Biology that habitat protection is a prerequisite for conservation of biological diversity and protecting the habitat is a pre-emptive approach to species conservation that can negate the drivers of extinction (National Research Council (US) 1995). The view that loss of habitat is a major factor in species extinctions is also corroborated by Groombridge (1992).

The pragmatic approach shall be to find potential ways to reduce or prevent negative interaction for the better well-being of both people and crocodiles. Such a view has been corroborated by Linnell et al. (2011). Recent works on human wildlife conflict includes a paradigm of coexistence (König et al. 2020), where humans and wildlife co-adapt to live in shared landscapes, and their interactions are sought to be governed by systems that guarantee long-term wildlife population persistence, social legitimacy, and tolerable levels of risk (Carter & Linnell 2016).

In the recent past there has been some debate and discomfort among wildlife biologists on the use of the term “Conflict” and it is suggested that the term is provocative, human-centric and places the burden of blame on the wildlife (Davidar 2018). Hill (2021) opines that rise or exacerbation of ‘human-wildlife conflicts’ is only a reflection of changing dimensions of human-wildlife interaction that are complex and nuanced. Implicit in this opinion is the understanding that human wildlife interactions need not strictly fall into discrete categories as conflict or coexistence, and that such dichotomous perception though easy to understand is oversimplified and even inaccurate. Further, Frank (2016) argues that ‘conflict-coexistence continuum’ has no fixed points but socio-cultural and geographical variables that change with time and circumstances. In this paper we consciously and rationally choose to


Figure 2B. Mean annual relative density of Mugger at the four linear transects of Savitri River, Mahad, Maharashtra between 2014 and 2021.

use the term ‘negative Human Wildlife interaction’ to denote all such interactions that may have implications of damage and loss of life to both the sides.

D. Human-Mugger interface at Mahad:

When people and wildlife share habitat and compete for resources therein, their encounters may become reciprocally negative due to spatial overlaps, at worst leading to loss of livelihoods and life. Human-wildlife interaction, is not just a humanitarian issue but also a conservation concern that must be addressed rationally. Incremental episodes of Negative Human Wildlife Interactions (NHWI) have been variously attributed to expanding human settlements and increasing human activities in and near wildlife habitats, recovery of depleted populations of wildlife, and spill-over of a few wild species populations besides large scale environmental changes (Treves 2009).

Perusal of available records and discussions with the locals here revealed that until 2016, no attacks on humans were recorded, barring a few stray incidents when a Mugger caught the leg of a fisherman but immediately released it, perhaps due to lack of predatory drive at the time of incident. Though this caused only superficial injuries to the fisherman, this episode unleashed fear

Image 3. Mugger habitats at 1—Kemburli (A–C) | 2—Mohalla (D–F) | 3—Dadli (G–I) and | 4—Smashaan (J–L) in the riparian stretches of River Savitri at Mahad, Maharashtra. Note the differences in vegetation, bank slope and surface character at the four locations. © Utkarsha M. Chavan.

among the people whose livelihoods were linked with waters of Savitri, though the indigenous people continue to fish in those waters in company of Muggers (Image 4A,B,C). Perhaps, the rich aquatic resources in river are excellent food source for both humans and crocodiles (Image 2C). Negative Human-Crocodile interactions (NHCI) have been reported from different parts of the country (Deutsch & Coleman 2000; Whitaker 2007, 2008; Rao & Gurjwar 2013; Upadhyay & Sahu 2013; Vasava et al. 2015; Vyas & Stevenson 2017).

Mugger attacks on humans have been recorded and attributed to several reasons. The known triggers include provocation and fishing (Whitaker & Srinivasan 2020), however, Muggers have also been living in harmony with people as in three districts of Gujarat;

namely Kheda, Anand & Charotar (Vyas 2013) implying conditioning through long term exposure to humans.

It must be emphasized, however, that Mugger Crocodile is responsible for the third highest number of fatal attacks on humans after *C. niloticus* and *C. porosus* (CrocBITE: Worldwide Crocodilian Attack Database), though it never eats its human victim, implying that the basis of such extreme aggression is either defending the territory or protecting the nest or hatchlings; rather than predatory (Sidaleau & Britton 2012).

That dead remains of humans and other animals disposed in river water can also invite crocodile attacks has been suggested (Stevenson et al. 2014). A stray incident has been reported from Dasgaon, a place 7 km away from Mahad, where a person was attacked by

Image 4. Spectrum of anthropogenic stressors on Mugger habitat along the river Savitri at Mahad, Maharashtra, India. © Utkarsha M. Chavan

Mugger during rainy season apparently in defense of its hatchlings. Similar aggression by Muggers has been recorded by Whitaker (2007) from the banks of Krishna River in Maharashtra. Incidentally in the present study, it has been recorded that passersby and onlookers often throw stones for sheer fun and to see basking crocodiles in motion.

E. Negative Human-Mugger Interactions (NHMI) along the river Savitri, Mahad, Maharashtra India.

The rich aquatic resources in mangrove areas, estuaries, and rivers are excellent food source for both humans and crocodiles, making this livelihood option of local communities a reason for potential conflict.

An important objective of this research was to identify a hostile human-Mugger interface if any and mitigate it. Though such episodes entail reciprocal damage both to the wildlife and people, the former is usually branded culpable. This antagonism between humans and wildlife is globally recognized and merits attention from the perspectives of conservation, management and livelihood of local communities (Messmer 2000; Dickman 2010; Bowen-Jones 2012). Across the world unresolved NHWI have been the cause of declining community support for conservation (Hill et al. 2002). Also, retaliatory killing of wildlife is fallout of this threat perception by local community (Inskip & Zimmermann 2009; Mateo-Tomas et al. 2012). Studies have also

Image 5. Negative human-crocodile interaction interface: A—Mugger stranded on roof top of a house during floods | B—Strayed Mugger vulnerable to road kill an adult | C—Mugger killed by entanglement in fishing net. © Mubin Khalfe

shown that there is a correlation between degree of conflict and decline of wildlife (Woodroffe et al. 2005; Michalski et al. 2006). NHWI also has an economic angle in that it takes a toll on life and livelihoods (Rao et al. 2002; Gillingham & Lee 2003; Sahoo & Mohnot 2004). Crop raiding by herbivores and livestock depredation by carnivores inflict significant monetary losses (Mackenzie & Ahabyona 2012; Brara 2013; Schon 2013). Lamarque et al. (2009) have also shown the diminishing financial and human resources implications of NHWI in countries affected by it.

In this study of crocodiles of Savitri River at Mahad; as of now the conflict interface is very subtle, and more than the people the reptile is at the receiving end. Until now there have been no reports of loss of human lives and livestock, despite a close proximity with the crocodiles (Image 4A–C,E). There is an imminent threat to the quality of this Mugger habitat due to incremental anthropogenic pressure. The greatest threat to the integrity of their habitat is from the land-based garbage, sewage, dumping of carcasses, and loss of basking sites

due to human presence and activities (Image 4). The human-Mugger negative interaction interface gets further expanded due to straying of Muggers in human settlements during monsoons. Also during floods that occur intermittently following heavy rainfall here, residential areas get inundated and Muggers have been seen stranded on roof tops of houses (Image 5A) as also stray on roads (Image 5B). Occasionally the adults get entangled in fishing nets and die (Image 5C).

F. NHMI Mitigation and conservation management.

Notwithstanding this hostile interaction potential of the Mugger, these reptiles play a critical role in aquatic ecosystems as indicators of ecological health, ecosystem engineers, apex predators, keystone species, and as facilitators of nutrient and energy transfer across ecosystems (Somaweera et al. 2020). While conventional tourism has reached a saturation point, crocodiles can offer alternative resources for ecotourism promoting sustainable livelihood options for local communities. Borkar et al. (1993) have shown the ecotourism potential

of Mugger in the backwaters of Cumbarjua canal in the adjacent state of Goa, and in Maharashtra State as well there are a few success stories of crocodile safaris at Maldoli creek, Chiplun. Incidentally a similar venture is also in the offing at Powai Lake in suburban Mumbai, for which Maharashtra Tourism Development Corporation (MTDC) has begun the process.

From the view point of disallowing escalation in the negative interactions here, it is important to raise awareness and build capacity of the local community and other stakeholders. Based on several years of field studies here, it is confirmed that the Smashaan area is a potential NHMI interface, though human fatalities haven't been recorded here as yet.

Currently, there is a single signage put up by the Mahad Forest Range Office declaring this area as 'crocodile infested', which also is now rusted and defaced. The forest department must establish a surveillance post here as a deterrence to anti-conservation activity. The facility could have basic rescue equipment as also staff trained in conducting rescue and autopsy. A suitable site here could also serve as an interpretation facility for visitor education.

As for the use of the river waters and banks by local indigenous communities, micro-mapping of such vulnerable areas for NHMI along river Savitri could be a valuable mitigation approach. After identifying such spots, 'Crocodile Excluding Enclosures' could be constructed using indigenous material for safety of people who share the habitat with the reptile. Such approach has been effectively tried in Sri Lanka (Uluwaduge et al. 2018). Poverty alleviation and community development initiatives could help lessen the dependence of locals on this river and consequently move them away from conflict.

Much of the conflict stems from spatial overlap and competition for resources, besides ignorance and fear, and impact of human activity on the habitat.

Areas with significant presence and activity of crocodiles must be mapped and notified by the local civic administration with sign boards in local language along the river banks. Local NGOs like SEESCAP and Srishtiutkarsha that regularly organize awareness programs at Mahad must be engaged by the forest division to sensitize locals towards avoiding risky behaviour and unwarranted machismo towards the reptile. The indigenous communities must be taken into confidence and their livelihood dependence on the river should be compensated with safer and viable alternatives. Sanitation and basic amenities like clean water must be guaranteed under the existing schemes

of the government for socioeconomically disadvantaged population that share the crocodile habitat. Mahad municipality must strictly ban dumping of garbage in the riparian zone in stretches of the river like Smashaan where the reptile has a territory, as also regulate the discharge of raw sewage. The forest department must invoke provisions of the Indian Wildlife Protection Act, 1972 to initiate punitive action. In event of a situation of conflict, a quick response team must be available with the necessary paraphernalia for rescue.

CONCLUSION

The data presented here is accrued from a long-term monitoring programme and has documented presence of a viable Mugger population in river Savitri at Mahad. The Mugger habitat here in some locations is under discrete anthropogenic pressures and there are visible signs of habitat deterioration that could cause a likely spillover in years to come accentuating the negative human-Mugger interaction potential. Currently the reptilian population trends suggest stability, but the present age group distribution raises questions on the optimal recruitment and a likely decline in the population in the coming years. Timely interventions shall be a win-win situation for both, Mugger and people. The state and the community must synergize their efforts to secure conservation future of the crocodile here while encouraging and incentivizing the community involvement.

REFERENCES

Balaguera-Reina, S.A., M.D. Venegas-Anaya, B. Rivera-Rivera, D.A.M. Ramirez & L.D. Densmore III (2018). How to estimate population size in crocodylians? Population ecology of American crocodiles in Coiba Island as study case. *Ecosphere* 9(10): e02474. <https://doi.org/10.1002/ecs2.2474>

Borkar, M.R. & M. Mallya (1992). Ecotheological basis of crocodile conservation in Goa. *Biology Education* 9(4): 297–298.

Borkar, M.R., M.K. Mallya, S. Christopher & S. Phatak (1993). Final Technical Report on 'The status of the Mugger Crocodile (*Crocodylus palustris*, Lesson) in the Cumbarjua canal of Goa'. Report submitted to the World wide Fund for Nature India (WWF)–Goa Division, 98 pp.

Bowen-Jones, E. (2012). Tackling human-wildlife conflict: a prerequisite for linking conservation and poverty alleviation. Poverty and Conservation Learning Group Discussion Paper No 6, International Institute for Environment and Development.

Brara, S. (2013). Invaded by simians. *The Hindu* (11 May 2013), pp. 1–2.

Bucol, A.A., R.I. Manalo, A.C. Alcala, P.S. Aspilla, V.P. Mercado, W.T. Belo & S.S. Chan (2014). Do crocodiles benefit local fishery productivity in the Philippines? In: Crocodile Specialist Group. World Crocodile Conference. Proceedings of the 23rd working meeting of the IUCN-SSC Crocodile Specialist Group, Louisiana, USA: International Union for Conservation of Nature, 306–316pp.

Carter, N.H. & J.D.C. Linnell (2016). Co-adaptation is key to coexisting with large carnivores. *Trends in Ecology & Evolution* 31: 575–578.

Choudhary, S., B.C. Choudhury & V.G. Govindhan (2018). Spatio-temporal partitioning between two sympatric crocodilians (*Gavialis gangeticus* & *Crocodylus palustris*) in Katarniaghata Wildlife Sanctuary, India. *Aquatic Conservation* 28(5): 1067–1076.

Connors, B.M., A.B. Cooper, R.M. Peterman & N.K. Dulvy (2014). The false classification of extinction risk in noisy environments. *Proceedings of the Royal Society B: Biological Sciences* 281(1787): 20132935.

CrocBITE, Worldwide Crocodilian Attack Database: About human-crocodile conflict. Charles Darwin University, Northern Territory, Australia.

Daniel, J.C. (2002). *The book of Indian Reptiles and Amphibians*. Bombay Natural History Society, Oxford, 252 pp.

Das, C.S. & R. Jana (2017). Human-crocodile conflict in the Indian Sundarban: an analysis of spatio-temporal incidences in relation to people's livelihood. *Oryx* 52(4): 661–668.

Da Silva, A. & J. Lenin (2010). Mugger Crocodile *Crocodylus palustris*. *Crocodiles, Status Survey and Conservation Action Plan*, Third Edition, pp. 94–98; ed. by S.C. Manolis and C. Stevenson. Crocodile Specialist Group: Darwin.

Davida, P. (2018). The term human-wildlife conflict creates more problems than it resolves: better labels should be considered. *Journal of Threatened Taxa* 10(8): 12082–12085. <http://doi.org/10.11609/jott.4319.10.8.12082-12085>

Deraniyagala, P.E.P. (1939). *The Tetrapod Reptiles of Ceylon; Testudinates and Crocodilians* – Vol. 1. National Museums of Sri Lanka, Colombo, 412 pp.

De Silva, A. (2016). Crocodiles: Our Living Dinosaurs. *Loris, Journal of Wildlife and Nature Protection Society of Sri Lanka*. 27(5&6): 22–27.

Deutsch, M. & P. Coleman (eds.) (2000). *The Handbook of Conflict Resolution: Theory and Practice*. Jossey-Bass, San Francisco, 960 pp.

De Vos, A. (1984). Crocodile conservation in India. *Biological Conservation* 29(1984): 183–189.

Dickman, A.J. (2010). Complexities of conflict: the importance of considering social factors for effectively resolving human-wildlife conflict. *Animal Conservation* 13: 458–466.

Distefano, E. (2008). Human wildlife conflict - Worldwide collection of Case studies. *Analysis of Management strategies and good practices*. SARD Initiative Report FAO Rome, 29 pp.

Fisher, E. & H. Shah (1971). Mogra Dev, tribal crocodile gods: wooden crocodile images of Chodhri, Gamit, and Vasava tribes, South Gujarat (India). Gujarat Vidyapeeth, Ahmadabad, 43 pp.

Frank, B. (2016). Human-wildlife conflicts and the need to include tolerance and coexistence: an introductory comment. *Society & Natural Resources* 29: 738–743. <https://doi.org/10.1080/08941920.2015.1103388>

Fukuda, Y., P. Whitehead & G. Boggs (2007). Broad scale environmental influences on the abundance of saltwater crocodiles (*Crocodylus porosus*) in Australia. *Wildlife Research* 34: 167–176.

Fukuda, Y., G. Webb, C. Manolis, R. Delaney, M. Letnic, G. Lindner & P. Whitehead (2011). Recovery of saltwater crocodiles following unregulated hunting in tidal rivers of the Northern Territory, Australia. *Journal of Wildlife Management* 75: 1253–1266.

Fukuda, Y., W. Saalfeld, G. Webb, C. Manolis & R. Risk (2012). Standardised method of spotlight surveys for crocodiles in the tidal rivers of the Northern Territory, Australia. *Northern Territory Naturalist* 24: 14–32.

Gillingham, S. & P.C. Lee (2003). People and protected areas: a study of local perceptions of wildlife crop-damage conflict in an area bordering the Selous Game Reserve, Tanzania. *Oryx* 37: 316–325.

Glen, A.S., C.R. Dickman, M.E. Soulé & B.G. Mackey (2007). Evaluating the role of the dingo as a trophic regulator in Australian ecosystems, *Austral Ecology* 32: 492–501.

Gonzales, M., R.I. Manalo, V.L.B. Alibo, V.P. Mercado, W.T. Belo & D.C. Barlis (2013). Manobo-Crocodile Co-Existence in Agusan Marsh, Philippines: A Cultural Legacy of Mutual Benefit, pp. 83–89. In: World Crocodile Conference, Proceeding of the 22nd Working Meeting of the IUCN-SSC Crocodile Specialist Group, IUCN: Gland, Switzerland, 438 pp.

Groombridge, B. (ed.) (1992). Global Biodiversity: Status of the Earth's Living Resources. Compiled by the *World Conservation Monitoring Centre*. Chapman & Hall, London, 594 pp.

Hariohay, K.M., R.D. Fyumagwa, J. Kideghecho & E. Røskraft (2018). Awareness and attitudes of local people toward wildlife conservation in the Rungwa Game Reserve in Central Tanzania. *Human Dimensions of Wildlife* 23: 1–12. <https://doi.org/10.1080/10871209.2018.149486>

Hekkala, E., M.H. Shirley, G. Amato, J.D. Austin, S. Charter, J. Thorbjarnarson, K.A. Vliet, M.L. Houck, R. Desalle & M.J. Blum (2011). An ancient icon reveals new mysteries: mummy DNA resurrects a cryptic species within the Nile crocodile. *Molecular Ecology* 20(20): 4199–4215. <https://doi.org/10.1111/j.1365-294X.2011.05245.x>

Hill, C.M. (2021). Conflict Is Integral to Human-Wildlife Coexistence. *Frontiers in Conservation Science* 2(734314): 1–4. <https://doi.org/10.3389/fcosc.2021.734314>

Hill, C., F.V. Osborn & A.J. Plumptre (2002). Human-wildlife conflict: identifying the problem and possible solution. *Albertine Rift Technical Report Series*, Vol. 1, Wildlife Conservation Society.

Holmes, E.E. (2001). Estimating risks in declining populations with poor data. *Proceedings of the National Academy of Sciences* 98(9): 5072–5077.

Holmes, E.E., J.L. Sabo, S.V. Viscido & W.F. Fagan (2007). A statistical approach to quasi-extinction forecasting. *Ecology Letters* 10(12): 1182–1198.

Inskip, C. & A. Zimmermann (2009). Human-felid conflict: a review of patterns and priorities worldwide. *Oryx* 43: 18–34.

Kochery, K. (2018). Crocodilia Urbanis: Co-existing with urban wildlife. Case study of River Vishwamitri, Vadodara, India. MSc thesis in Landscape Architecture submitted to Wageningen University and Research, 112 pp.

König, H.J., C. Kiffner, S. Kramer-Schadt, C. Fürst, O. Keulung & A.T. Ford (2020). Human-wildlife coexistence in a changing world. Special section: challenges of and solutions to human-wildlife conflicts in agricultural landscapes. *Conservation Biology* 34(4): 786–94.

Lamarque, F., J. Anderson, R. Fergusson, M. Lagrange, Y. Osei-Owusu & L. Bakker (2009). Human wildlife conflict in Africa - Causes, consequences and management strategies. FAO Forestry Paper 157, FAO, Rome.

Linnell J., J. Thomassen & K. Jones (2011). Wildlife-human interactions: from conflict to coexistence in sustainable landscapes. NINA Special Report 45. Norwegian Institute for Nature Research, Norway, 12 pp.

Leslie, A.J. & J.R. Spotila (2001). Alien plant threatens Nile crocodile (*Crocodylus niloticus*) breeding in Lake St. Lucia, South Africa. *Biological Conservation* 98: 347–355.

Lettink, M. & D.P. Armstrong (2003). An introduction to using mark-recapture analysis for monitoring threatened species, pp. 5–32. In: Department of Conservation (eds.). *Using mark-recapture analysis for monitoring threatened species: introduction and case study*. Department of Conservation Technical Series 28, New Zealand.

Mackenzie, C.A. & P. Ahabyona (2012). Elephants in the garden: financial and social costs of crop raiding. *Ecological Economics* 75: 72–82.

Mangansakan, D.G. (2008). Crocodile Symbolism in Maguindanao Culture. *National Museum Papers* 14 (Special Issue): 133–139.

Mateo-Tomás, P., P.P. Olea, I.S. Sanchez-Barbudo & R. Mateo (2012). Alleviating human-wildlife conflicts: identifying the causes and mapping the risk of illegal poisoning of wild fauna. *Journal of Applied Ecology* 49(2012): 376–385.

Messmer, T.A. (2000). The emergence of human-wildlife conflict management: turning challenges into opportunities. *International Biodeterioration & Biodegradation* 45(2000): 97–102.

Michalski, F., R.L.P. Boullosa, A. Faria & C.A. Peres (2006). Human-wildlife conflicts in a fragmented Amazonian forest landscape: determinants of large felid depredation on livestock. *Animal Conservation* 9(2006): 179–188.

Mir, Z.R., A. Noor, B. Habib & G.G. Veeraswami (2015). Attitudes of Local People toward Wildlife Conservation: A Case Study from the Kashmir Valley. *Mountain Research and Development* 35(4): 392–400.

Mobaraki, A., E. Abtn, M. Erfani & C. Stevenson (2021). Total length and head length relationship in Mugger Crocodiles *Crocodylus palustris* in Iran. *Journal of Threatened Taxa* 13(8): 19162–19164. <https://doi.org/10.11609/jott.6272.13.8.19162-19164>

Murray, C.M., P. Russo, A. Zorrilla & C.D. McMahan (2019). Divergent morphology among populations of the New Guinea Crocodile, *Crocodylus novaeguineae* (Schmidt, 1928): diagnosis of an independent lineage and description of a new species. *Copeia* 107(3): 517–523.

National Research Council (1995). *Science and the Endangered Species Act.* Washington, DC: The National Academies Press, xvi+288 pp. <https://doi.org/10.17226/4978>

Patel, D., A. Vasava, K. Patel, V. Mistry, M. Patel & R. Vyas (2014). Attitudes, Perceptions and Knowledge of the local people regarding crocodile and their conservation in Charotar region, Gujarat, India, pp. 336–347. Proceedings of the 23rd Working Meeting of the Crocodile Specialist Group of the Species Survival Commission of IUCN, at McNeese State University, Lake Charles, Louisiana, USA.

Pooley, S. (2016). *Croc Digest: A Bibliography of Human-Crocodile Conflicts Research and Reports.* London, 33 pp.

Rao, R.J. & R.K. Gurjwar (2013). Crocodile human conflict in National Chambal Sanctuary, India. Proceedings: World Crocodile Conference, 22nd Working Meeting of the IUCN SSC Crocodile Specialist Group, IUCN: Gland, Switzerland, 105–109 pp.

Rao, K.S., R. K. Maikhuri, S. Nautiyal & K.G. Saxena (2002). Crop damage and livestock depredation by wildlife: a case study from Nanda Devi Biosphere Reserve, India. *Journal of Environmental Management* 66: 317–327.

Ross, J.P. (1998). Crocodiles: Status Survey and Conservation Action Plan. 2nd edition, *IUCN Species Survival Commission*, Crocodile Specialist Group, Gland, Switzerland, 96 pp.

Sahoo, S.K. & S.M. Mohnot (2004). A survey of crop damage by Rhesus Monkeys (*Macaca mulatta*) and Hanuman Langur (*Semnopithecus entellus*) in Himachal Pradesh, India. *Tiger Paper* 31(2004): 1–6.

Schon, T. (2013). The cost of having wild boar: damage to agriculture in South-Southeast Sweden. *Master's dissertation Swedish University of Agricultural Sciences*, Sweden, 40 pp.

Shirley, M.H., K.A. Vliet, A.N. Carr & J.D. Austin (2013). Rigorous approaches to species delimitation have significant implications for African crocodilian systematics and conservation. *Proceedings of the Royal Society B: Biological Sciences* 281: 20132483. <https://doi.org/10.1098/rspb.2013.2483>

Shirley, M.H., A.N. Carr, J.H. Nestler, K.A. Vliet & C.A. Brochu (2018). Systematic revision of the living African Slender-snouted Crocodiles (*Mecistops* Gray, 1844). *Zootaxa* 4504(2): 151–193.

Sidaleau, B. & A. Britton (2012). A Preliminary Analysis of Worldwide Crocodilian Attacks. Crocodiles, Proceedings of the 21st Working Meeting of the IUCN-SSC Crocodile Specialist Group, IUCN: Gland, Switzerland: 111–114 pp.

Singh, L.A.K. (1993). New strategy suggested to save Crocodiles. *Down to Earth* March 1993.

Smith, E.N. (1979). Behavioral and Physiological Thermoregulation in Crocodilians. *American Zoologist* 19: 239–247.

Somaweera, R., J. Nifong, A. Rosenblatt, M.L. Brien, X. Combrink, R.M. Elsey, G. Grigg, W.E. Magnusson, F.J. Mazzotti, A. Pearcy, S.G. Platt, M.H. Shirley, M. Tellez, J. Ploeg, G. Webb, R. Whitaker & B.L. Webber (2020). The ecological importance of crocodylians: towards evidence-based justification for their conservation. *Biological Reviews Cambridge Philosophical Society* 95(4): 936–959. <https://doi.org/10.1111/brv.12594>

Southwood, T.R.E. & P.A. Henderson (2003). *Ecological Methods.* Blackwell Science, Oxford, UK, 592 pp.

Stevenson, C. (2019). *Crocodiles of the world: A complete guide to Alligators, Caimans, Crocodiles and Gharials.* New Holland Publishers, 287pp.

Stevenson, C., A. de Silva, R. Vyas, T. Nair, A. Mobaraki & A.A. Chaudhry (2014). Human-Crocodile Conflict in South East and Iran. 23rd Working Meeting of IUCN-SSC Crocodile Specialist Group, At: Lake Charles, Louisiana, USA Vol.: pp. 209–226, <https://www.researchgate.net/>

publication/320288323_Human_Crocodile_Conflict_in_South_Asia_and_Iran.

Thompson, W.L. (2002). Towards reliable bird surveys: accounting for individuals present but not detected. *The Auk* 119: 18–25.

Thorbjarnarson, J.B. (1992). Crocodiles: An action plan for their conservation. IUCN, Gland, Switzerland, 136 pp.

Treves, A. (2009). The human dimensions of conflicts with wildlife around protected areas, pp. 214–228. In: Manfredo, M., J.J. Vaske, P. Brown, D.J. Decker & E.A. Duke (eds.). *Wildlife and society: the science of human dimensions.* Island Press, Washington, D.C.

Uluwaduge, P., K.V.D. Edirisooriya, E.M. Menike, T.K. Senevirathna & G.C.L. Pathirana (2018). Mitigating the Human-Crocodile Conflict in Sri Lanka: A Study Based on the Nilwala River Area in Matara District. *Science Direct Procedia Engineering* 212(2018): 994–1001.

Upadhyay, J.N. & R.K. Sahu (2013). Study on *Crocodylus palustris*: co-existence of men, animal and population survey at Kheda Anand district in Gujarat, India, pp. 116–122. In: World Crocodile Conference, *Proceedings of the 22nd Working Meeting of the IUCN-SSC Crocodile Specialist Group*, IUCN: Gland, Switzerland.

Vasava, A., D. Patel, R. Vyas, V. Mistry & M. Patel (2015). Crocs of Charotar: Status, distribution and conservation of Mugger crocodiles in Charotar region, Gujarat, India. Voluntary Nature Conservancy, Vallabh Vidyanagar, India, Supported by Rufford Small Grant Foundation, Duleep Matthai Nature Conservation Trust and Idea Wild, 54 pp.

Venugopal, P.D. & K.V.D. Prasad (2003). Basking behaviour and survey of Marsh Crocodiles, *Crocodylus palustris* (Lesson, 1831) in Ranganthittu bird sanctuary, Karnataka, India. *Hamadryad* 27(2): 241–247.

Verdade, L.M. (2000). Regression equation between body and head measurement in the broad-snouted caiman (*Caiman latrostris*). *Revista Brasileira de Biologia* 60(3): 469–482.

Vyas, R. (2013). Recent Scenario of Mugger (*Crocodylus palustris*) population in three districts of Gujarat State, India. Proceedings of World Crocodile Conference, 22nd Working meeting of the IUCN SSC Crocodile Specialist Group 220–226pp.

Vyas R. & C.J. Stevenson (2017). Review and analysis of human and Mugger Crocodile conflict in Gujarat, India from 1960 to 2013. *Journal of Threatened Taxa* 9(12): 11016–11024. <https://doi.org/10.11609/jott.3790.9.12.11016-11024>

Vyas, R. & A. Vasava (2019). Mugger crocodiles (*Crocodylus palustris*) mortality due to road and railways in Gujarat, India. *Herpetological Conservation and Biology* 14(3): 615–626.

Webb, G.J.W. (1991). The influence of season on Australian crocodiles, pp. 125–131. In Monsoonal Australia. *Landscape, ecology and man in the northern lowlands* (eds C.D. Haynes, M.G. Ridpath and M.A.J. Williams), A.A. Balkema, Rotterdam, The Netherlands.

Whitaker, N. (2007). Survey of Human/Crocodile Conflict in India, Maharashtra State. December 2007, IUCN, 18 pp.

Whitaker, N. (2008). Survey of Human-Crocodile Conflict in Gujarat and Rajasthan: Trial of Conflict Mitigation Education Materials and Further Information on Conflicts, 30 pp. Available at: www.iucncsg.org/ph1/modules/Publications/reports.html

Whitaker, N. & M. Srinivasan (2020). Human crocodile conflict on the Cauvery river delta region, Tamil Nadu, south India. *International Journal of Fisheries and Aquatic Studies* 8(5): 01–05.

Whitaker, R. & Z. Whitaker (1989). Ecology of the Mugger crocodile. In: *Crocodiles: Their Ecology, Management and Conservation*, A Special Publication of the Crocodile Specialist Group, IUCN, Gland, Switzerland, 276–297 pp.

Whitaker, R. & N. Whitaker (2008). Who's got the biggest? Crocodile Specialist Group Newsletter 27(4): 26–30.

Wolch, J. (1996). Zoopolis. *Capitalism Nature Socialism* 7(2): 21–47.

Woodroffe, R., S. Thirgood & A. Rabinowitz (2005). The impact of human–wildlife conflict on natural systems. *People and wildlife: conflict and coexistence*, Cambridge University Press, New York pp. 1–12.

Wu, X.B., H. Xue, L.S. Wu, J.L. Zhu & R.P. Wang (2006). Regression analysis between body and head measurements of Chinese alligators (*Alligator sinensis*) in captive population. *Animal Biodiversity and Conservation* 29(1): 65–71.

Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lionel Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarsanan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarsanan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dubai, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rivonker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. M. Zafar-ul Islam, Prince Saud Al Faisal Wildlife Research Center, Taif, Saudi Arabia

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2019–2021

Due to paucity of space, the list of reviewers for 2018–2020 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:

The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore,
Tamil Nadu 641035, India
ravi@threatenedtaxa.org

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Communications

New records of pteridophytes in Mount Matutum Protected Landscape, South Central Mindanao, Philippines with notes on its economic value and conservation status

– Christine Dawn Galope-Obemio, Inocencio E. Buot Jr. & Maria Celeste Banaticla-Hilario, Pp. 22039–22057

Some threatened woody plant species recorded from forests over limestone of the Philippines

– Inocencio E. Buot Jr., Marne G. Origenes, Ren Divien R. Obeña, Elaine Loreen C. Villanueva & Marjorie D. delos Angeles, Pp. 22058–22079

Status of mangrove forest in Timaco Mangrove Swamp, Cotabato City, Philippines

– Cherie Cano-Mangaoang, Zandra Caderon Amino & Baingan Brahim Mastur, Pp. 22080–22085

A comparative analysis of the past and present occurrences of some species of *Paphiopedilum* (Orchidaceae) in northeastern India using MaxEnt and GeoCAT

– Debonina Dutta & Aparajita De, Pp. 22086–22097

Foraging activity and breeding system of *Avicennia officinalis* L. (Avicenniaceae) in Kerala, India

– K. Vinaya & C.F. Binoy, Pp. 22098–22104

Diversity patterns and seasonality of hawkmoths (Lepidoptera: Sphingidae) from northern Western Ghats of Maharashtra, India

– Aditi Sunil Shere-Kharwar, Sujata M. Magdum, G.D. Khedkar & Supriya Singh Gupta, Pp. 22105–22117

Population trends of Mugger Crocodile and human-crocodile interactions along the Savitri River at Mahad, Maharashtra, India

– Utkarsha Manish Chavan & Manoj Ramakant Borkar, Pp. 22118–22132

Paresis as a limiting factor in the reproductive efficiency of a nesting colony of *Lepidochelys olivacea* (Eschscholtz, 1829) in La Escobilla beach, Oaxaca, Mexico

– Alejandra Buenrostro-Silva, Jesús García-Grajales, Petra Sánchez-Nava & María de Lourdes Ruíz-Gómez, Pp. 22133–22138

Notes on the nesting and foraging behaviours of the Common Coot *Fulica atra* in the wetlands of Viluppuram District, Tamil Nadu, India

– M. Pandian, Pp. 22139–22147

Population abundance and threats to Black-headed Ibis *Threskiornis melanocephalus* and Red-naped Ibis *Pseudibis papillosa* at study sites in Jhajjar district, Haryana, India

– Anjali & Sarita Rana, Pp. 22148–22155

Crop raiding and livestock predation by wildlife in Kaptad National Park, Nepal

– Ashish Bashyal, Shyam Sharma, Narayan Koirala, Nischal Shrestha, Nischit Aryal, Bhupendra Prasad Yadav & Sandeep Shrestha, Pp. 22156–22163

Review

An annotated checklist of odonates of Amboli-Chaukul-Parpoli region showing new records for the Maharashtra State, India with updated state checklist

– Dattaprasad Sawant, Hemant Ogale & Rakesh Mahadev Deulkar, Pp. 22164–22178

Short Communications

The new addition of Blue Pimpernel of Primulaceae to the state flora of Assam, India

– Sushmita Kalita, Barnali Das & Namita Nath, Pp. 22179–22183

A new species of genus *Neocerura* Matsumura, 1929 (Notodontidae: Lepidoptera) from India

– Amritpal Singh Kaleka & Rishi Kumar, Pp. 22184–22189

Rediscovery of an interesting preying mantis *Deiphobella laticeps* (Mantodea: Rivetinidae) from Maharashtra, India

– Gauri Sathaye, Sachin Ranade & Hemant V. Ghate, Pp. 22190–22194

Camera trapping records confirm the presence of the elusive Spotted Linsang *Prionodon pardicolor* (Mammalia: Carnivora: Prionodontidae) in Murlen National Park (Mizoram, India)

– Amit Kumar Bal & Anthony J. Giordano, Pp. 22195–22200

Notes

First sighting record of the Orange-breasted Green-Pigeon *Treron bicinctus* (Aves: Columbiformes: Columbidae) from Chittaranjan, West Bengal, India

– Shahbaz Ahmed Khan, Nazneen Zehra & Jamal Ahmad Khan, Pp. 22201–22202

Book Reviews

Decoding a group of winged migrants!

– Review by Priyanka Iyer, Pp. 22203–22204

First steps of citizen science programs in India

– Review by Aishwarya S. Kumar & Lakshmi Nair, Pp. 22205–22206

Publisher & Host

